
Scalable Unsupervised ML: Latency Hiding in

Distributed Sparse Tensor Decomposition
Nabil Abubaker , M. Ozan Karsavuran , and Cevdet Aykanat

Abstract—Latency overhead in distributed-memory parallel CPD-ALS scaleswith the number of processors, limiting the scalability of

computing CPDof large irregularly sparse tensors. This overhead comes in the form of sparse reduce and expand operations performed on

factor-matrix rows via point-to-pointmessages.We propose to hide the latency overhead through embedding all of the point-to-point

messages incurred by the sparse reduce and expand into dense collective operationswhich already exist in theCPD-ALS. The conventional

parallel CPD-ALS algorithm is not amenable for embedding sowe propose a computation/communication rearrangement to enable the

embedding.We embed the sparse expand and reduce into a hypercube-based ALL-REDUCE operation to limit the latency overhead to

Oðlog 2KÞ for aK-processor system. The embedding comeswith the cost of increased bandwidth overhead due to the

multi-hop routing of factor-matrix rows during the embedded-ALL-REDUCE. We propose an embedding scheme that takes advantage

of the expand/reduce properties to reduce this overhead. Furthermore, we propose a novel recursive bipartitioning framework that

enables simultaneous hypergraph partitioning and subhypergraph-to-subhypercube mapping to achieve subtensor-to-processor

assignment with the objective of reducing the bandwidth overhead during the embedded-ALL-REDUCE. We also propose a

bin-packing-based algorithm for factor-matrix row to processor assignment aiming at reducing processors’ maximum send and

receive volumes during the embedded-ALL-REDUCE. Experiments on up to 4096 processors show that the proposed framework

scales significantly better than the state-of-the-art point-to-point method.

Index Terms—Sparse tensor, tensor decomposition, CANDECOMP/PARAFAC, canonical polyadic decomposition, latency hiding, embedded

communication, communication cost, concurrent communication, recursive bipartitioning, hypergraph partitioning

Ç

1 INTRODUCTION

TENSOR decomposition has emerged as a successful tool
for analyzing multi-way data. Canonical polyadic (or

CANDECOMP/PARAFAC) decomposition (CPD) is one of
the popular tensor decompositions that extends singular
value decomposition to tensors and is a fundamental tool in
unsupervised learning setting [1], [2], [3], [4]. It has also
become an integral part of different machine learning fields
either as a method (e.g., regression [5], supervised classifica-
tion [6]), or as a support tool (e.g., compression for Deep
Learning [7], [8], [9]) and more [10]. CPD decomposes a ten-
sor into its constituent rank-one tensors thus revealing
latent factors to be used for data analysis.

Several algorithms exist for calculating the CPD for a given
decomposition rankR, amongwhich alternating least squares
(ALS) is the most popular and used in practice. Matricized
Tensor Times Khatri-Rao Product (MTTKRP) operation,
which is performed to compute decomposition factor matrix
for eachmode, is the bottleneck operation in CPD-ALS. In dis-
tributed-memory parallel CPD-ALS, eachMTTKRP operation
needs sparse reduce and expand communications as well as

two dense reduce communications. The sparse reduce/
expand are irregular due to the sparsity pattern of the tensor
and they are performed with point-to-point (P2P) messages.
On the other hand, the dense reduce communications involve
data of sizes R and R2 which are required by all processors
and thus are performed using the collective ALL-REDUCE

operation from theMPI primitives.
The bandwidth overhead of MTTKRP scales with both

tensor size and decomposition rank, whereas latency over-
head increases with increasing number of processors as
well as with increasing irregularity in the sparsity pattern of
the tensor. That is, CPD-ALS becomes latency bound for
small decomposition rank values. Although current distrib-
uted-memory parallel CPD-ALS algorithms, which utilize
P2P communication scheme [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20], scale well up to a certain number of pro-
cessors, these algorithms fail to scale after some number of
processors. We empirically find this number to be around
512–1024 processors as also reported in [12], [19]. Thus, opti-
mizing the latency overhead is a key point for scaling
CPD-ALS for large number of processors.

In this work, we propose hiding the latency overhead of
sparse expand and reduce operations of CPD-ALS by embed-
ding them into ALL-REDUCE. Although CPD-ALS has an
ALL-REDUCE for each sparse expand and reduce communi-
cation, it is not possible to embed each sparse expand/reduce
due to the dependencies between the sparse operations and
ALL-REDUCE. We propose a novel computation/communi-
cation rearrangement scheme of the CPD-ALS that removes
the dependencies and enables embedding each of the sparse
expand/reduce operations into an ALL-REDUCE.

� The authors are with the Department of Computer Engineering, Bilkent
University, Ankara 06800, Turkey. E-mail: nabil.abubaker@bilkent.edu.tr,
{ozan.karsavuran, aykanat}@cs.bilkent.edu.tr.

Manuscript received 1 Sept. 2021; revised 2 Nov. 2021; accepted 11 Nov. 2021.
Date of publication 17 Nov. 2021; date of current version 23 May 2022.
This work is supported by the Scientific and Technological Research Council of
Turkey (TUBITAK) under Project No. EEEAG-116E043.
(Corresponding author: Cevdet Aykanat.)
Recommended for acceptance by A. J. Pe~na, M. Si and J. Zhai.
Digital Object Identifier no. 10.1109/TPDS.2021.3128827

3028 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

1045-9219 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on June 07,2022 at 13:57:57 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5060-3059
https://orcid.org/0000-0002-5060-3059
https://orcid.org/0000-0002-5060-3059
https://orcid.org/0000-0002-5060-3059
https://orcid.org/0000-0002-5060-3059
https://orcid.org/0000-0002-0298-3034
https://orcid.org/0000-0002-0298-3034
https://orcid.org/0000-0002-0298-3034
https://orcid.org/0000-0002-0298-3034
https://orcid.org/0000-0002-0298-3034
https://orcid.org/0000-0002-4559-1321
https://orcid.org/0000-0002-4559-1321
https://orcid.org/0000-0002-4559-1321
https://orcid.org/0000-0002-4559-1321
https://orcid.org/0000-0002-4559-1321
mailto:nabil.abubaker@bilkent.edu.tr
mailto:ozan.karsavuran@cs.bilkent.edu.tr
mailto:aykanat@cs.bilkent.edu.tr

We use the hypercube-based ALL-REDUCE which uti-
lizes the E-cube routing for embedding and we denote the
embedding scheme by EMB hereafter. The utilized hyper-
cube topology is virtual and transparent to the actual
network topology of the target system. In the naive imple-
mentation of EMB, each individual P2P message of a sparse
expand/reduce operation is considered separately. This
may lead to multiple copies of the same expanded/reduced
factor-matrix row be in the same message between two pro-
cessors during the embedded-ALL-REDUCE. Therefore, we
propose an expand-and-reduce-aware embedding in which
each message contains only one copy of a factor-matrix row
in each step of ALL-REDUCE. We also extend the existing
communication duality between sparse reduce and expand
operations into EMB by proposing to use increasing dimen-
sion E-cube routing during the expand-embedded-ALL-
REDUCE, while using decreasing dimension E-cube routing
during reduce-embedded-ALL-REDUCE, or vice versa.

The proposed EMB totally avoids the latency overhead
associated with the sparse expand and reduce operations
and reduces both maximum and average number of mes-
sages handled by a processor to 2log 2K for each MTTKRP
for a K-processor system independent of the sparsity pat-
tern of the tensor. The only trade-off between the proposed
EMB and conventional P2P schemes is the increase in the
communication volume incurred by embedding the P2P
communications into the ALL-REDUCE communications.

In order to model the communication requirement of
EMB, we define a concurrent communication cost metric
which counts how many times each shared factor-matrix
row is concurrently communicated along hypercube
dimensions during the E-cube routing. Then we propose a
novel recursive bipartitioning (RB) framework that ena-
bles simultaneous hypergraph partitioning (HP) and sub-
hypergraph-to-subhypercube mapping to achieve task-to-
processor assignment which encodes minimizing the con-
current communication volume metric. In this HP model,
we propose and use sibling subnet removal and net-
anchoring schemes at each level of RB. We also propose a
novel bin-packing adaptation for the factor-matrix row to
processor assignment in order to minimize the maximum
volume handled by a processor during both expand-
embedded and reduce-embedded ALL-REDUCE opera-
tions. The proposed extension of duality to EMB enables
the proposed bin-packing to encode the minimization of
maximum volume for only one sparse embedding which
holds for the other.

Experimental results with thirteen tensors on up to 4096
processors show the validity of the proposed models and
methods. These results show that EMB scales well up to
4096 processors, whereas state-of-the-art P2P scales down
after 1024 processors.

The rest of the paper is organized as follows: Section 2
contains the background material. The proposed rear-
rangement scheme that enables embedding is discussed
in Section 3. Section 4 presents the proposed embedding
scheme. The proposed RB-based HP model for task-to-
processor assignment is described in Section 5. Section 6
displays and discusses the experimental results. The
related work is given in Section 7. Finally, Section 8 con-
cludes the paper.

2 BACKGROUND

2.1 Tensors, Notations and CPD

A tensor is denoted by calligraphic (X) while matrices by
bold capital (U) letters. An M-mode tensor has M dimen-
sions I1; I2; � � � ; IM and can be unfolded into a matrix shape
along one of its modes. This is called matricization and a
matricized tensor is of size Im � I1 � � � Im�1Imþ1 � � � IM and
denoted byXðmÞ wherem 2 ½1::M�.

The CPD decouples a tensor into R rank-1 components as
X �PR

i¼1 X i, where rank-1 component X i is the outer prod-
uct of M vectors u

ð1Þ
i � uð2Þi � � � � � uðMÞi . The R vectors along

mode m are combined to form a factor matrix UðmÞ 2 RIm�F

along mode m. Here, R is called the decomposition rank. A
row in UðmÞ is referred to as rmi . When the mode of the ten-
sor is irrelevant to the discussion, we use ri to refer to a row
in a factor matrix along any mode.

The goal of an algorithm computing the CPD is to find the
best approximation of a tensor X using R components that
minimizes a norm of X �PR

i¼1 �iX i. Here, the vectors used
to constructX i are normalized to length 1, and the value �i is
used as a scaling factor to the normalized X i rank-1 compo-
nent tensor. The matricized tensor along mode m can be
approximated as the product UðmÞð	i6¼mUðiÞÞ> where 	
denotes a Khatri-Rao product. Using ALS,UðmÞ is calculated
by fixing the other M�1 factor matrices and solving for
UðmÞ. The formulation to compute UðmÞ can be given as
XðmÞð	i6¼mUðiÞÞð
i 6¼mUðiÞ>UðiÞÞ�1, where
 denotes the Hada-
mard product. The term XðmÞð	i6¼mUðiÞÞ is the MTTKRP
operation. We refer the reader to the excellent survey by
Kolda and Bader [21] for a more comprehensive coverage of
the CPD and its computation.

2.2 Parallel CPD-ALS

We adopt nonzero-based parallelization of CPD-ALS. In this
parallelization, tensor nonzeros are distributed among pro-
cessors and processors locally compute (partial) results for
factor matrices using those nonzeros according to the owner-
computes rule. For processor pk, the factor matrix rows are
classified into three categories according to the tensor non-
zeros distribution as follows: Factor-matrix row ri is said to
be local if the nonzeros that contribute to its computation
reside in pk. ri is said to be local-shared if the nonzeros that
contribute to its computation reside in a set of sharing pro-
cessors Ŝi � P; jŜij > 1 ^ pk 2 Ŝi, and the processor respon-
sible for holding the final value of ri is pk. In such case, pk is
called the owner of ri and denoted by ownerðriÞ. We use Si ¼
Ŝi n ownerðriÞ to identify the set of sharing processors with-
out the owner. A local factor matrix that contains local and
local-shared rows is denoted byU

ðmÞ
k . ri is said to be nonlocal

if pk has one or more nonzeros that contribute to its computa-
tion but pk is not its owner. A local factor matrix that contains
U
ðmÞ
k in addition to nonlocal rows is distinguished by the hat

as Û
ðmÞ
k .

We use 3-mode tensors here and in Section 3 for a conve-
nient presentation. The discussions easily extend to higher
dimensional tensors (i.e., M > 3). Algorithm 1 describes the
parallel CPD-ALS for 3-mode tensors. In the algorithm,A;B
andC respectively representUð1Þ;Uð2Þ andUð3Þ. The commu-
nication requirement in this algorithm is detailed for updat-
ing A per processor pk as follows. After the local MTTKRP

ABUBAKER ETAL.: SCALABLE UNSUPERVISED ML: LATENCY HIDING IN DISTRIBUTED SPARSE TENSOR DECOMPOSITION 3029

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on June 07,2022 at 13:57:57 UTC from IEEE Xplore. Restrictions apply.

(line 3), partial results of local-shared factor matrix rows are
received while partial results of nonlocal rows are sent to
their owner processors. The received partial results are
reduced using an associative operation to form the up-to-
date local-shared rows. This communication operation is
referred to as sparse reduce. Using the up-to-date local and
local-shared factor matrix values, the product in line 5 can be
computed locally. Then, column normalization requires com-
puting � that depends on all factor matrix columns through
ALL-REDUCE in line 6. The normalized local-shared row ri is
needed by the processors in Si for the computation of the fac-
tor matrix along the next tensor mode. Therefore, the local-
shared rows are sent (expanded) to and the nonlocal rows are
received from their respective owner processors (line 7). This
operation is referred to as sparse expand. Finally, the partial
A>A product can be computed locally using local and local-
shared rows and an ALL-REDUCE operation is used for com-
puting the final product (line 8).

2.3 Hypergraph Partitioning (HP) Problem

A hypergraph H¼ðV;NÞ is defined as the set V of vertices
and the set N of nets. Each net n connects a subset of verti-
ces denoted by PinsðnÞ. Each vertex v is assigned a weight
and each net n is assigned a cost cðnÞ.

Let PðHÞ¼fV1;V2; . . . ;VKg denote a K-way vertex parti-
tion of H. The weight W ðVkÞ of part Vk in P is defined as
the sum of the weights of the vertices in Vk. PðHÞ satisfies
the partitioning constraint if WðVkÞ �Wavgð1þ �Þ for each
part Vk in P, for a given maximum allowed imbalance ratio
�. HereWavg denotes the average part weight.

In a given partitionPðHÞ, net n is said to connect part Vk if
it connects at least one vertex in Vk. The connectivity set of
net n, ConðnÞ, is defined as the set of parts connected by n.
The connectivity of n, conðnÞ, denotes the number of parts
connected by n. Net n is said to be cut if conðnÞ > 1, and
uncut otherwise. Then the connectivity cutsize is defined as
cutsizeðPÞ ¼Pn2N ðconðnÞ � 1ÞcðnÞ. In HP, the partitioning
objective is to minimize the cutsize while maintaining the
partitioning constraint. In HP with fixed vertices, part
assignment of some vertices are given priori to partitioning.

3 REARRANGEMENT OF PARALLEL CPD-ALS TO

ENABLE EMBEDDING

In the parallel CPD-ALS shown in Algorithm 1, there are two
sparse reduce and expand operations per tensormode to sat-
isfy the computational requirement of the MTTKRP opera-
tion. The dual sparse reduce and expand operations
(respectively in lines 4 and 7) are performed to complete the
computation of local and local-shared A-matrix rows. Simi-
larly, the dual sparse reduce and expand in lines 10, 13 and
lines 16, 19 do so respectively forB- andC-matrix rows. Fur-
thermore, there are two ALL-REDUCE operations attached
with the computation of factor matrices along each mode.
Despite having an ALL-REDUCE for each sparse expand/
reduce, it is not possible to embed each sparse expand/
reduce in the current form of Algorithm 1. This is due to the
dependencies of the two ALL-REDUCE operations in lines 6
and 8 to the sparse reduce in line 4. That is, the sparse reduce
cannot be embedded into the ALL-REDUCE in line 6 because
the Ak rows, which are computed in line 5, are required for

the computation of �. Furthermore, the sparse expand in
line 7 cannot be embedded into the ALL-REDUCE in line 6
because distributed column normalization need to be per-
formed before the expand. On the other hand, the sparse
expand can be embedded into the ALL-REDUCE in line 8.
Although embedding the sparse expand alone is important,
it is insufficient for hiding latency since the sparse reduce,
performed as P2P, will still be a bottleneck due to the high
number of messages.

We propose to rearrange the computation and communi-
cation steps in Algorithm 1 to enable the embedding of all
sparse expand/reduce operations without any dependency
issues. We highlight two important observations that facili-
tate the rearrangements for successful embedding.

First Observation: It is possible to expand non-normalized
Ak-matrix rows just after the operation in line 5, and then
normalize Âk-matrix rows. In other words, instead of
expanding normalized local-sharedAk rows, which requires
the � vector to be ready in advance, the non-normalized
local-shared Ak rows are expanded while computing global
� using ALL-REDUCE. The extra cost here is that each proces-
sor will take the responsibility of normalizing nonlocal rows
in addition to local and local-shared rows.With this observa-
tion the dependency between the ALL-REDUCE (line 6) and
the sparse expand (line 7) can be removed, allowing the latter
operation to be embedded into the former. The same argu-
ment applies to the normalization of B- and C-matrix col-
umns in lines 12 and 18, respectively.

Second Observation: The A>A product (line 8 of Algo-
rithm 1) is not required until the operation in line 11. The
associated ALL-REDUCE neither has dependency on the
sparse expand in line 7 nor on the sparse reduce in line 10,
thus it can be used to embed the sparse reduce of the next
mode. Similar discussion holds for the ALL-REDUCE associ-
ated with B>B. The C>C product (line 20) is not required
until the operation in line 5 of the next iteration. The associated
ALL-REDUCE neither has dependency to the sparse expand
in line 19 nor to the sparse reduce in line 4 of the next itera-
tion, and therefore it can be placed anywhere between line
19 of the current iteration to before the operation in line 5 of
the next iteration. This inter-mode and inter-iteration rear-
rangement is similar to the software pipelining used in com-
piler design and operating systems.

Algorithm 2 shows the rearranged version of Algorithm 1.
Lines 7, 8, 10, 11 of Algorithm 2 realize the column normali-

zation of matrixA, performed in line 6 of Algorithm 1, utiliz-

ing the first observation. In a similar way, lines 16, 17, 19, 20

and 25, 26, 28, 29 realize the column normalization of B and

C, respectively. The ALL-REDUCE operation for computing

A>A is shifted forward to be a neighbor to the sparse reduce

of the second mode (lines 13, 14). The same applies to B>B
and the sparse reduce of the third mode (lines 22, 23). On the

other hand, C>C is shifted to be a neighbor to the sparse

reduce of the first mode in the next CPD-ALS iteration. The

highlighted boxes show the sparse operations to be embed-

ded in the preceding/following ALL-REDUCE. Since there

are two sparse reduce and expand operations per tensor

mode, the rearranged algorithm shows six boxes to indicate

that all sparse operations are to be embedded for 3-mode

tensors.

3030 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on June 07,2022 at 13:57:57 UTC from IEEE Xplore. Restrictions apply.

4 EMBEDDING SPARSE EXPAND AND REDUCE

In order to realize the sparse expand and reduce operations
using P2P messages, processor px should maintain two pro-
cessor sets: workers set (WS) and masters set (MS) respec-
tively defined as

WSðpxÞ ¼
[

i ^ ri is local-shared

Si;

MSðpxÞ ¼ fownerðriÞ j ri is nonlocalg:

That is, WSðpxÞ contains the processors that contribute to
the computation of any row that px owns, whereas MSðpxÞ
contains the processors that px is partially contributing to
the computation of a row they own. Then, a sparse expand
(reduce) on row ri is achieved as messages from (to) px to
(from) every processor inWSðpxÞðMSðpxÞÞ.

4.1 Naive P2P Embedding

The hypercube-based ALL-REDUCE can be performed in
log 2K steps for a system with K¼2D processors. The K
processors are virtually organized as a D-dimensional
hypercube topology H. In H, each processor is represented
by a D-bit binary number. We interchangeably use px to
refer both index of a processor and its D-bit binary repre-
sentation. Two processors are said to be neighbors along
dimension i if their binary representation differ only in least
significant bit i. In a D-dimensional hypercube, a d-dimen-
sional subcube (0�d < D) is represented by d don’t care
bits (X) and D� d fixed 0=1 bits thus having 2d processors.
Tearing along dimension i is defined as halving H into two
disjoint ðD�1Þ-dimensional subcubes such that the process-
ors in the two sets are identified by the ith bit. For example,
a tearing along dimension i¼1 on processor set PXXXX

organized as a 4-dimensional hypercube can be shown
by processor sets PXX0X and PXX1X. The hypercube-based
ALL-REDUCE is well known and comes with several
names such as E-cube routing, bidirectional exchange and

exchange-add [22], [23], [24]. We adopt this ALL-REDUCE

scheme and we use RðHÞ to refer to it hereafter. A step si of
RðHÞ represents the exchange of messages between neigh-
boring processors along dimension i.

The naive embedding of P2P into ALL-REDUCE utilizing
RðHÞ is described as follows: A message mðpx; pzÞ originat-
ing from px is sent from px to the neighbor at dimension i
where i is the position of the least significant 1 bit in the
XOR product px pz. If the neighbor py at dimension i is the
destination processor (py ¼ pz), then mðpx; pzÞ is received
and need not to be in any exchange in any upcoming step.
Otherwise, py stores mðpx; pzÞ in a forward buffer and sends
it to its neighbor at dimension j > i, where j is the position
of the least significant 1 bit in pypz. A message is guaran-
teed to arrive to its destination in at mostD steps.

4.2 Expand-and-Reduce-Aware Embedding

Consider expanding a local-shared factor matrix row ri from
p0 to p3 and p5. In the naive EMB implementation, this
expand consists of two different messages mðp0; p3Þ and
mðp0; p5Þ. UsingRðHÞ, these messages will respectively take
the routes p0!p1!p3 and p0!p1!p5. This means that ri is
sent (forwarded) twice in the message from p0 to p1. In gen-
eral, a message between processor px and its neighbor py in
any step can contain up to D�1 duplicates of the same row
ri. This is because the naive EMB described in Section 4.1 is
unaware of the nature of the sparse expand and reduce. We

Algorithm 2. Rearranged Parallel CPD-ALS (X) for
3-Mode Tensors
1: Randomly initialize factor matricesA,B, andC
2: while not converged do
3: Â0k X

ð1Þ
k ðB̂k 	 ĈkÞ " MTTKRP

4: Sparse REDUCE on sharedA-matrix rows
5: ALL-REDUCE to computeC>C
6: Ak A0kðC>C
B>BÞ�1
7: �0c hAkð:; cÞ;Akð:; cÞi; 8c 2 ½1::R�
8: ALL-REDUCE to compute �0

9: Sparse EXPAND on sharedA-matrix rows
10: �r

ffiffiffiffiffi
�0c

p
; 8c 2 ½1::R�

11: Âkð:; cÞ Âkð:; cÞ=�c; 8c 2 ½1::R�
12: B̂0k X

ð2Þ
k ðÂk 	 ĈkÞ " MTTKRP

13: Sparse REDUCE on sharedB-matrix rows
14: ALL-REDUCE to computeA>A
15: Bk B0kðC>C
A>AÞ�1
16: �0c hBkð:; cÞ; B̂kð:; cÞi; 8c 2 ½1::R�
17: ALL-REDUCE to compute �0

18: Sparse EXPAND on sharedB-matrix rows
19: �c

ffiffiffiffiffi
�0c

p
; 8c 2 ½1::R�

20: B̂kð:; cÞ B̂kð:; cÞ=�c; 8c 2 ½1::R�
21: Ĉ0k X

ð3Þ
k ðÂk 	 B̂kÞ " MTTKRP

22: Sparse REDUCE on sharedC-matrix rows
23: ALL-REDUCE to computeB>B
24: Ck C0kðB>B
A>AÞ�1
25: �0c hĈkð:; cÞ; Ĉkð:; cÞi; 8c 2 ½1::R�
26: ALL-REDUCE to compute �0

27: Sparse EXPAND on sharedC-matrix rows
28: �c

ffiffiffiffiffi
�0c

p
; 8c 2 ½1::R�

29: Ĉkð:; cÞ Ĉkð:; cÞ=�c; 8c 2 ½1::R�
30: return ½½�;A;B;C��

Algorithm 1. Parallel CPD-ALS (X) for 3-Mode Tensors

1: Randomly initialize factor matricesA,B, andC
2: while not converged do
3: Â0k X

ð1Þ
k ðB̂k 	 ĈkÞ " MTTKRP

4: Sparse REDUCE on sharedA-matrix rows
5: Ak A0kðC>C
B>BÞ�1
6: ALL-REDUCE to normalize cols ofA into �
7: Sparse EXPAND on sharedA-matrix rows
8: ALL-REDUCE to computeA>A
9: B̂0k X

ð2Þ
k ðÂk 	 ĈkÞ " MTTKRP

10: Sparse REDUCE on shared B̂-matrix rows
11: Bk B0kðC>C
A>AÞ�1
12: ALL-REDUCE to normalize cols of B into �
13: Sparse EXPAND on sharedB-matrix rows
14: ALL-REDUCE to computeB>B
15: Ĉ0k X

ð3Þ
k ðÂk 	 B̂kÞ " MTTKRP

16: Sparse REDUCE on shared Ĉ-matrix rows
17: Ck C0kðB>B
A>AÞ�1
18: ALL-REDUCE to normalize cols ofC into �
19: Sparse EXPAND on sharedC-matrix rows
20: ALL-REDUCE to computeC>C
21: return ½½�;A;B;C��

ABUBAKER ETAL.: SCALABLE UNSUPERVISED ML: LATENCY HIDING IN DISTRIBUTED SPARSE TENSOR DECOMPOSITION 3031

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on June 07,2022 at 13:57:57 UTC from IEEE Xplore. Restrictions apply.

can reduce the increase in the communication volume in
EMB by exploiting the nature of the sparse expand and
reduce operations via avoiding transmitting the same row
more than once in amessage between hypercube neighbors.

We propose an intelligent expand-and-reduce-aware
EMB that avoids transmitting more than one copy of any
row between hypercube neighbors as follows: During an
embedded sparse expand, multiple copies of row ri at step s
of RðHÞ are sent only once. During an embedded sparse
reduce, multiple copies of row ri at step s of RðHÞ are
reduced locally, and then sent as one copy. So, the reduce on
ri in the intelligent EMB is done during the routing steps of
RðHÞ, whereas in naive EMB it is done at the receiving end
by ownerðriÞwhen all reducemessages are received.

4.3 Communication Duality in Embedding

In CPD-ALS, each shared factor-matrix row ri is reduced
from processors in Si to ownerðriÞ and then the updated ri
(through local operations) is expanded from the same
ownerðriÞ to the same set of processors Si. That is, the same
set of processors contribute to and need row ri. We call such
reduce and expand operations as dual communications.

In the P2P implementation, dual communications incur
dual communication patterns. That is, if processor px sends
ri to py in the reduce communication, px will receive ri from
py in the expand communication. This means that the maxi-
mum expand send volume is equal to the maximum reduce
receive volume. The same holds for maximum expand
receive and maximum reduce send volumes.

We extend the duality definition of the P2P implementa-
tion to the EMB implementation as follows: The embeddings
Ge and Gr of dual P2P expand/reduce are said to be dual if
for each send message at step si of Ge, there exists a step sj of
Gr which involves a receive message with the same constitu-
ent rows, and vice versa. This duality ensures that the maxi-
mum send/receive volumes at step si of Ge are equal to the
maximum receive/send volumes at step sj of Gr, and both Ge

and Gr incur the same amount of communication, including
the forwarding overhead due tomessage routing.

According to the definition of duality in EMB, if both
embeddings Gr and Ge utilize theRðHÞ routing then they are
not dual. Here we propose an EMB implementation that sat-
isfies the duality definition and attains the nice properties of
the dual reduce-and-expand communications. As the E-cube
routing algorithm RðHÞ defined earlier proceeds in increas-
ing dimension order, we then define an inverse routing algo-
rithm R�1ðHÞ that proceeds in decreasing dimension order.
That is, in step si of RðHÞ neighboring processors exchange

messages along dimension i, whereas in step si of R
�1ðHÞ

processors exchange messages along dimensionD�i�1, for
i ¼ 0; � � � ; D� 1. The following theorem shows duality in the
proposed EMB implementation.

Theorem 1. Utilizing RðHÞ for embedding P2P sparse expand
and R�1ðHÞ for embedding a dual P2P sparse reduce (or vice
versa) incurs dual embedded expand and reduce.

Proof. In RðHÞ, each message mðpx; pzÞ of the P2P expand
of row ri from px ¼ ownerðriÞ to pz 2 Si routes through a
certain path r¼px!� � �!py!� � �!pz. By the definition
of RðHÞ and R�1ðHÞ, a message mðpz; pxÞ of the dual P2P
reduce of row ri follows the same path with reverse order
r�1¼pz!� � �!py!� � �!px. This means that for each
expanded row in the message from py to its neighbor pt in
step s ofRðHÞ, there is a dual reduced row in the message
from pt to py in step D�s�1 of R�1ðHÞ. Therefore, the
constituent rows of the message from py to its neighbor pt
in step s of RðHÞ are the same as those in the message
from pt to py in stepD�s�1 ofR�1ðHÞ. tu
Duality in the EMB implementation, as well as in the P2P

implementation, of expand and reduce is pivotal in reducing
the problem size for intelligent partitioning models that
encode decreasing communication cost metrics. Further-
more, the duality in EMB enables halving the storage over-
head required for routing the data. That is, without the
duality property there will be an explicit need for separate
forward buffers during embedded expand and reduce
operations.

5 TASK-TO-PROCESSOR MAPPING

The objective in the proposed task partitioning and map-
ping is to minimize the communication volume overhead
incurred by the embedding of the P2P communications into
ALL-REDUCE. For this purpose, we define a communication
cost metric which is set as the sum of the concurrent commu-
nication volume incurred by each shared factor-matrix row in
EMB. In this concurrent communication cost metric, possibly
multiple communications incurred by the same sharedmatrix
row along the same dimension are counted as one. We pre-
ferred this communication cost metric in order to capture
some form of volume concurrency involved in the expand
and reduce operations associated with the shared factor-
matrix rows during the ALL-REDUCE operations.

Fig. 1 shows a sample expand incurred by a shared fac-
tor-matrix row ri from ownerðriÞ¼p2 to Si¼fp2; p6; p7g for
E-cube routing on a 3-dimensional hypercube. The gray

Fig. 1. A sample expand operation for a row ri from the ownerðriÞ ¼ p1 to Si ¼ fp2; p6; p7g in the embedded communication with E-cube routing.

3032 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on June 07,2022 at 13:57:57 UTC from IEEE Xplore. Restrictions apply.

processors denote the intermediate processors which do not
need ri but involve in expanding ri in EMB. In the figure,
two communication operations along dimension two con-
tributes only one to the concurrent communication volume.
Then concurrent communication volume is three.

5.1 Hypergraph Model

We propose a hypergraph modelH to assign atomic tasks to
the processors for reducing concurrent communication vol-
ume metric of EMB. In this hypergraph model, vertices rep-
resent atomic tasks, whereas nets represent factor-matrix
rows. Here atomic tasks may refer to individual tensor non-
zeros as well as disjoint nonzero clusters. The former case
corresponds to the fine-grain [12], [20] tensor partitioning,
whereas the latter case corresponds to the medium-
grain [14], [19] tensor partitioning. Each vertex is associated
with a weight equal to the number of nonzeros it represents
and each net is associated with a cost of R.

In this hypergraph, consider a net nm
i representing factor

matrix row rmi along mode m. Then, pins of this net repre-
sent the set of atomic tasks that contribute to the computa-
tion of rmi during the MTTKRP operation along mode m.
During the MTTKRP operations along each other mode, the
pins of this net represent the set of atomic tasks that need
rmi for their associated computations along that mode. Thus,
nm
i can be considered as encoding reduce type of communi-

cation along mode m, whereas encoding expand type of
communication along all other modes.

In a given partition PðHÞ, if net nm
i is internal to part Vk

then row rmi is local to part/processor Vk/pk since all atomic
tasks that contribute to and use that factor-matrix row are
assigned to that part/processor. If net nm

i is cut, then row
rmi becomes a shared row so that rmi is local-shared for the
processor ownerðrmi Þ, whereas it is nonlocal for the process-
ors in Si ¼ Conðnm

i Þnownerðrmi Þ.
For a cut net nm

i , its connectivity set Conðnm
i Þ ¼ Ŝi

denotes the set of processors that produce partial results for
rmi during the MTTKRP operation along mode m. Ŝi also
denotes set of processors that need rmi during MTTKRP
operations along all other modes. Thus, in the former case,
cut net nm

i will incur reduce communication from the set of
processors in Si to the processor ownerðrmi Þ, whereas it will
incur expand communication from the processor ownerðrmi Þ
to processors in Si.

In this HP model, the partitioning constraint of maintain-
ing balance among part weights encodes the computational
load balance during eachMTTKRP. For P2P, the partitioning
objective of minimizing the cutsize encodes minimizing the
sum of the total communication volume along all MTTKRP
operations. In the following subsection, we describe the pro-
posed RB-based model for many-to-one task mapping that
considers reducing concurrent communication volume
incurred by the shared rows in EMB.

5.2 Recursive-Bipartitioning Scheme

In the RB-based HP, the given hypergraph is bipartitioned
into two vertex parts which induce two subhypergraphs.
Then these two hypergraphs are further bipartitioned recur-
sively until K vertex parts are obtained. Each subtensor cor-
responding to a vertex part at the last (leaf) level is assigned

to a different processor. Here, without loss of generality, we
assume that the number K of processors is an exact power
of 2. This procedure produces a complete binary tree with
log 2K levels which is referred to as the RB tree. The RB lev-
els are denoted as d¼0; � � � ; log 2K�1, where d¼0 denotes
the root (bipartitioning of the original hypergraph) and d¼
log 2K�1 denotes the last internal level containing K=2 sub-
hypergraphs. 2d hypergraphs in the dth level are denoted
by Hd

1; . . . ;Hd
2d

from left to right for 0�d < log 2K. Note that
the RB tree is constructed utilizing the breadth-first biparti-
tioning order.

The conventional RB-based HP framework utilizes the
cut net splitting technique [25] after each RB step to encode
connectivity cutsize metric in the K-way partition to be
obtained at the end. Consider a bipartition P2ðHÞ¼fV0;V1g
obtained in a particular RB step. Then this vertex bipartition
is encoded as constituting subhypergraphs H0 ¼ðV0;N 0Þ
and H1¼ðV1;N 1Þ that are respectively induced by vertex
parts V0 and V1. That is, N 0 and N 1 respectively contain the
internal nets of V0 and V1 as well as the splitted subnets of
the cut nets in V0 and V1. Each cut net ni is splitted as
n0i with Pinsðn0iÞ¼PinsðniÞ\V0 and n00i with Pinsðn00i Þ¼
PinsðniÞ\V1 to the H0 and H1, respectively. These vertex-
parts/subhypergraphs V0/H0 and V1/H1 are also called as
left and right parts/hypergraphs, respectively.

The RB steps are encoded as subtensor/subhypergraph-
to-subcube mappings as follows: The root of the RB tree cor-
responds to hypergraph H0

0 representing the given tensor,
which is initially mapped to whole hypercube PX���X. At level
d¼0, bipartitioning H0

0 into subhypergraphs H1
0 and H1

1 is
encoded as mapping the subtensors represented by H1

0 and
H1

1 respectively to the subcubes PX���X0 and PX���X1 of hyper-
cube PX���X. At level d¼1, bipartitioning H1

0 intoH2
0 andH2

1 is
encoded as mapping the subtensors represented by H2

0 and
H2

1 respectively to the subcubes PX���X00 and PX���X10 of hyper-
cube PX���X0; and bipartitioningH1

1 intoH2
2 andH2

3 is encoded
as mapping the subtensors represented by H2

2 and H2
3

respectively to the subcubes PX���X01 and PX���X11 of hypercube
PX���X1. These two bipartitioning and mapping operations
together corresponds to tearing hypercube along dimension
d¼1. That is, PX���X00 [PX���X01¼PX���X0X and PX���X10 [PX���X11¼
PX���X1X. This process is repeated at each level of the RB tree.
Fig. 2a shows simultaneous bipartitioning/mapping for a 3-
dimensional hypercube. The RB-levels 0, 1 and 2 in the
figure, respectively correspond to the tearing of the hyper-
cube shown in Fig. 1 along dimensions 0, 1 and 2.

In order to encode the objective of concurrent communi-
cation volume minimization mentioned earlier, we utilize
the above-mentioned recursive bipartitioning and mapping
framework for modifying and enhancing the conventional
cut net splitting scheme. The proposed enhancement is per-
formed among the subnets of the same net within a same
level, whereas conventional cut net splitting is continued to
be applied across levels.

Consider the case where the subhypergraphs at a partic-
ular RB-level d contains multiple subnets (splitted nets)
n0i; n

00
i ; � � � ; n0���0i of the same net ni. Also consider the biparti-

tioning of the first level-d hypergraph Hd
x that contains the

subnet n0i of that net ni. It is clear that there are three cases
of net n0i in the bipartition P2ðHd

xÞ ¼ fV0;V1g: n0i is cut, n0i is
internal to left part V0 or right part V1.

ABUBAKER ETAL.: SCALABLE UNSUPERVISED ML: LATENCY HIDING IN DISTRIBUTED SPARSE TENSOR DECOMPOSITION 3033

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on June 07,2022 at 13:57:57 UTC from IEEE Xplore. Restrictions apply.

1) n0i is cut in PðHd
xÞ: This means that shared-factor

matrix row ri is communicated along dimension d of
the hypercube thus already encapsulating the con-
current communication volume metric along dimen-
sion d. Then we can safely remove its sibling nets
n00i ; � � � ; n0���0i from the respective subhypergraph parti-
tionings PðHd

y>xÞ to be performed later at this level.
Although these sibling nets are not considered in the
respective subhypergraph partitionings, the biparti-
tioning results of these subhypergraphs will be

utilized to apply conventional cut net splitting on
these sibling nets for including them into the subhy-
pergraphs to be bipartitioned at the further RB levels
‘ > d.

2) n0i is internal to left part V0 in PðHd
xÞ: This means that

shared factor-matrix row ri will incur concurrent
communication volume only if at least one of its sib-
ling nets n00i ; � � � ; n0���0i connect the right part V1 in a
bipartition PðHd

y>xÞ to be obtained at the current
level. This corresponds to the case where that sibling
net is either cut or internal to right part V1 in that
bipartition PðHd

y>xÞ.
Unfortunately current HP methods only adopt the

cut net metric in two-way partitionings thus they
cannot encode the increase in the cutsize for nets
that are either cut or internal to a part. For this pur-
pose, we introduce the net-anchoring scheme which
is realized as follows: we introduce two vertices vF0
and vF1 which are fixed to left and right parts V0 and
V1, respectively. Then a net is said to be anchored to
the left part if it connects vF0 , whereas it is said to be
anchored to the right part if it connects vF1 .

We utilize net-anchoring to encode the concurrent
communication volume for such nets as follows: In
each subhypergraph Hd

y>x that contains a sibling net
n00i of n0i, we anchor n00i to the left part V0. In this way,
we enforce n00i to connect left part in all bipartitions of
those hypergraphs to be obtained at the current level.
Thus, if n00i connects part V1 in any bipartition
P2ðHd

y>xÞ then it will become cut and increasing the
cutsize so that it will encode concurrent communica-
tion volume to be incurred correctly. After the first
bipartition P2ðHd

y>xÞ in which n00i is cut at level d, all
other further sibling nets n000i ; � � � ; n000���0i will be removed
from the respective subhypergraph Hd

z>y partition-
ings at level d in accordancewith the Case 1.

3) n0i is internal to right part V1 in PðHd
xÞ: This case is

handled in a dual manner with Case 2. That is, after
the first bipartition P2ðHd

y>xÞ in which n0i is internal
to V1 at level d, in each subhypergraph Hd

y>x that
contains a sibling net n00i of n0i, we anchor n00i to the
right part V1.

Fig. 2 illustrates the conventional cut net splitting tech-
nique (Fig. 2a) as well as the proposed enhancements
(Figs. 2b and 2c) for net ni on 8-way partitioning with 3 RB
levels. In all subfigures, at the root level bipartitioning, ni is
cut and thus splitted into its subnets n0i and n00i .

In Fig. 2a, at level-1, n0i remains internal to V1 in PðH1
0Þ,

whereas it is cut in PðH1
1Þ. At level-2, n0i is cut in PðH2

1Þ,
whereas subnets n000i and n0000i of n00i remain internal to the left
and right part in PðH2

2Þ and PðH2
2Þ, respectively. Since ni is

cut three times, its conðnÞ�1 value is three with the connec-
tivity set ConðniÞ ¼ Ŝi ¼ fp1; p2; p6; p7g. Expanding this row
is shown in Fig. 1 for ownerðriÞ ¼ p1.

Fig. 2b shows Cases 2 and 3. At level-1 of the figure, since
n0i is internal to V1 in H1

0, n
00
i is anchored to the right part V1

in H1
1. Similarly, at level-2, n0i is internal to V0 thus n000i and

n0000i are anchored to the left part V0 in H2
2 and H2

3, respec-
tively. Fig. 2c shows Case 1. At level-2 of the figure, n0i is cut
thus its sibling nets n000i and n0000i , which are splitted from n00i ,
are removed fromH2

2 andH2
3.

Fig. 2. (a) Conventional cut net splitting, (b) and (c) proposed enhance-
ments for net ni on eight-way partitioning with three levels of RB steps.

3034 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on June 07,2022 at 13:57:57 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3 shows the steps of the proposed RB frame-
work which realize the proposed enhancements. In the algo-
rithm, stateðnÞ maintains if a net n becomes cut or internal
to the left part (L-internal) or right part (R-internal) at the
current level of the RB tree. parentðnÞ denotes the parent
net from which net n is obtained through splitting(s). That
is, net n is effectively a subnet of parentðnÞ.

Algorithm 3. RB-Based Task-to-Processor Assignment

Require:H ¼ ðV;NÞ,K
1: H0

0 ¼ H
2: for each net n 2 N 0

0 do
3: parentðnÞ ¼ n " initialize parent of the net as itself
4: for d ¼ 0 to log 2K � 1 do
5: for each net n 2 N 0

0 do
6: stateðnÞ ¼ NIL "initial value for each net
7: for k ¼ 0 to 2d � 1 do
8: Vdk ¼ Vdk [fvF0 ; vF1 g
9: fix vF0 to V0, fix vF1 to V1
10: for each net n 2 N d

k do
11: if stateðparentðnÞÞ is CUT then
12: N d

k ¼ N d
k n fng

" remove n since it is already cut before at this level
13: if stateðparentðnÞÞ is L-internal then
14: PinsðnÞ¼PinsðnÞ [fvF0 g " anchor n to left part
15: if stateðparentðnÞÞ is R-internal then
16: PinsðnÞ¼PinsðnÞ [fvF1 g " anchor n to right part
17: P2¼BIPARTITION(Hd

k ¼ ðVdk;N d
k)) " P2¼fV0;V1g

18: for each net n 2 N d
k do

19: if n is a cut net then
20: stateðparentðnÞÞ ¼ CUT
21: if stateðparentðnÞÞ is not CUT then
22: if n is internal to left part then
23: stateðparentðnÞÞ ¼ L-internal
24: if n is internal to right part then
25: stateðparentðnÞÞ ¼ R-internal
26: FormH0 ¼ ðV0;N 0Þ induced by V0
27: N 0 ¼ fn0 : n 2 N ; pinsðnÞ \ V0 6¼ 0 9 pinsðn0Þ ¼

pinsðnÞ \ V0g " conventional cut net splitting
28: FormH1 ¼ ðV1;N 1Þ induced by V1
29: N 1 ¼ fn00 : n 2 N ; pinsðnÞ \ V1 6¼ 0 9 pinsðn00Þ ¼

pinsðnÞ \ V1g " conventional cut net splitting
30: Hdþ1

2k ¼ H0,Hdþ1
2kþ1 ¼ H1

31: for each cut net n 2 N d
k split as n

0 and n00 do
32: parentðn0Þ ¼ parentðn00Þ ¼ parentðnÞ

The outermost for loop in lines 4–32, performs the RB
steps in breadth-first traversal order, whereas the inner for
loop in lines 7–32 performs the bipartitionings at each
level. The state information of the nets are initialized to
NIL at the beginning of each level (lines 5–6). Lines 8 and
9 introduce the fixed vertices into Hd

k for enabling the reali-
zation of the net-anchoring. The inner for loop in line 10–
16 applies proposed net-removal and net-anchoring tech-
niques before bipartitioning the current hypergraph Hd

k

according to current states of the subnets involved in Hd
k.

The inner for loop in lines 18-25 computes the state infor-
mation for each net after bipartitioning. Lines 26–30 con-
struct the left and right subhypergraphs Hdþ1

2k and Hdþ1
2kþ1

(to be bipartitioned at the next level dþ1) from the current
Hd

k using current bipartition P2ðHd
kÞ obtained in line 17 by

utilizing the conventional cut net splitting. The for loop in

lines 31–32 inherits the parent field of the cut nets to its
split nets.

5.3 Factor-Matrix Row Assignment to Processors

The row-to-processor assignment problem corresponds to
determining ownerðriÞ for each factor-matrix row ri. For
CPD utilizing P2P, the well known best-fit increasing heuris-
tic used for solving the K-feasible bin-packing problem [26]
is adopted [14], [19]. This method aims at balancing process-
ors’ volume loads without increasing the total communica-
tion volume. Here, we also adopt B-feasible bin-packing
problem [26] for solving this assignment problem in EMB.

Themain difference between the row-to-processor assign-
ment problem encountered in P2P and EMB is that P2P
involves a single communication step, whereas EMB
involves loosely coupled D¼ log 2K communication steps.
So, in P2P, assignment of a row to a processor increases the
volume load of only that processor, whereas in EMB it
increases the volume loads of at mostD processors in differ-
ent communication steps. That is, if the distance between the
owner and receiver processors is equal to the dimensionD of
the hypercube, there are D� 2 intermediate processors
which are only forwarding the factor-matrix row. So, each
processor has a volume load at D different communication
steps. This difference increases the number of bins fromK in
P2P toDK in EMB.

In EMB, the cost of a row-to-processor assignment
instance is defined as the sum of the volume load of the
maximally loaded processor in each dimension. So, for the
best-fit criterion we define the sum of squares function as

Xd¼D
d¼1

Xk¼K
k¼1

B2
dk

 !2

: (1)

In the proposed algorithm, for each mode, factor-matrix
rows are considered in decreasing order of their jŜij values
for assignment. The best-fit criterion for the assignment is to
select the processor that incurs the minimum increase in (1).
After each assignment, we increase the loads of the bins
which are involved in the communication in terms of both
send and receive volumes. In this way, (1) captures process-
ors’ send plus receive volume loads during expand commu-
nication which is equal to the sum of processors’ send
volume loads during expand and reduce communications
thanks to the duality described in Section 4.3.

For P2P, each row is assigned to one of the processors
which contributes/needs that factor matrix row. This
ensures total communication volume does not increase with
the assignment. On the other hand, for EMB, we can relax
this constraint. That is, consider the processors that partici-
pate in the communication of a shared row but do not possi-
bly contribute/need that row. Such processors can also be
considered as candidate owners. Since these processors are
already communicating that row such assignments might
not increase the volume load. Obviously this relaxation is
expected to further decrease the function in (1) because of
larger degree of freedom for each assignment. We should
mention here that this relaxation in row-to-processor assign-
ments does not affect the concurrent communication cost
metric defined for individual shared factor-matrix rows and
minimized by the scheme in Section 5.2.

ABUBAKER ETAL.: SCALABLE UNSUPERVISED ML: LATENCY HIDING IN DISTRIBUTED SPARSE TENSOR DECOMPOSITION 3035

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on June 07,2022 at 13:57:57 UTC from IEEE Xplore. Restrictions apply.

6 EXPERIMENTS

6.1 Setting

We performed experiments using three methods: P2P-mg,
EMB-rand and EMB-hp. The term left to the hyphen denotes
the parallel scheme used (P2P or EMB), whereas the right
term denotes the nonzero partitioning method used. The mg
in P2P-mg refers to partitioning the input tensor according
to the state-of-the-art medium-grain HP model [19]. The
rand in EMB-rand refers to partitioning the input tensor ran-
domly in such a way that numbers of nonzeros assigned to
processors differ by at most one. The hp in EMB-hp refers to
partitioning and mapping the tensor nonzeros by using the
method proposed in Section 5. For partitioning the hyper-
graph models in P2P-mg and EMB-hp, we use the tool
PaToH [25], [27] with default parameters.

Parallel Setup. The experiments are taken with up to 4096
processors on an Apollo 9000 HPC system. Each node in
this system consists of two AMD EPYC 7742 processors,
each with 64 cores, and 256 GB of memory. The nodes are
connected with a Mellanox HDR Infiniband network. We
use 16 cores per node in all our experiments.

Dataset. Our dataset consists of thirteen real-world sparse
tensors with varying sizes. Table 1 shows the tensors and
their properties. Delicious, Enron, Flickr and NELL-1

are obtained from the FROSTT sparse tensors reposi-
tory [28]. 1998DARPA contains tuples that represent time-
stamps of connections made between source IP and
destination IP. Freebase-music contains music-related
(subject entity, object entity, relation) tuples from Freebase
online database. Gowalla contains check-in data as (user,
POI, check-in) tuples from the location-based social network
Gowalla [29]. Movies-amazon contains user-movie-word
tuples from the user reviews of movies in Amazon [30].
Netflix and Yelp are rating datasets that respectively con-
tain (usr, business, rating) and (user, movie, rating) tuples.

The dataset also contains the largest three tensors from
FROSTT, Amazon-reviews, Patents and Reddit-2015,
each having more than 1B nonzeros. Since common HP tools
such as PaToH and hMeTis [31] do not support 64-bit inte-
gers, these very large tensors are only used to evaluate the
EMB framework (Sections 3 & 4) by comparing EMB-rand

versus P2P-rand, whereas the rest of the tensors are used to
evaluate all contributions.

6.2 Performance Results

Latency Hiding. Table 2 displays the amount of latency hid-
den by EMB in terms of number of messages whose latency
overheads are totally avoided. In the table, P2P columns
show the number of messages only for the sparse expand
and reduce operations during a CPD-ALS iteration. That is,
latency overhead of ALL-REDUCE is not included in the P2P
columns. The table also displays the latency overhead of
ALL-REDUCE during a CPD-ALS iteration which is the only
latency overhead in EMB. In the table, “max” and “avg”
respectively refer to the maximum and average number of
messages handled by processors during a CPD-ALS itera-
tion. The maximum and average number of messages under
the P2P columns are the sums of maximum and average
number of messages required to perform the sparse expand
and reduce operations in P2P for each tensor mode. The
number of messages under the EMB column are the sum of
messages during the two ALL-REDUCE operations for each
tensor mode. Note that maximum and average values in
EMB are equal due to the regularity of communication.

Table 2 shows that sparse expand/reduce incur signifi-
cantly large number of messages in P2P, thus rendering the
parallel CPD-ALS as latency bound with increasing K. This
is because the number of messages in P2P usually increases
linearly with increasingK. On the other hand, the number of
messages in EMB is significantly smaller and increase loga-
rithmically with increasing K. The 72 and 96 values under
EMB refer to the number of messages handled by a processor
in 3-mode (3� 2� log 2K) and 4-mode (4� 2� log 2K) ten-
sors, respectively.

As seen in Table 2, there is a significant imbalance between
maximum and average number of messages in P2P. This dis-
turbs the scaling performance since usually the maximum
metric defines the runtime since there are global synchroniza-
tions (due to ALL-REDUCE) before/after the sparse P2P com-
munication steps. On the other hand, this problem does not
arise in EMB since the regular communication pattern of
EMB naturally attains equal number of maximum and aver-
age messages. This is a clear advantage in favor of EMB since

TABLE 1
Properties of the Test Tensors

tensor mode sizes nnz density
I1 I2 I3 I4

1998DARPA 23.8M 22.5K 22.5K 28.4M 2.37E-09
Delicious 533K 17.3M 2.47M 1.44K 140M 4.27E-15
Enron 6.07K 5.70K 244K 1.18K 54.2M 5.46E-09
Flickr 320K 28.2M 1.61M 731 113M 1.07E-14
Freebase-music 23.3M 0.17K 23.3M 100M 1.10E-09
Gowalla 1.3M 0.60K 107K 6.26M 7.65E-08
Movies-amazon 227K 4.40K 87.8K 15.0M 1.72E-07
NELL-1 25.5M 2.14M 2.90M 144M 9.05E-13
Netflix 480K 2.18K 17.8K 100M 5.40E-06
Yelp 773K 85.5K 687K 186M 4.09E-09

Very Large Tensors

Amazon-reviews 4.82M 1.77M 1.80M 1.74B 1.13E-10
Patents 239K 46 239K 3.60B 1.37E-03
Reddit-2015 8.21M 176K 8.12M 4.69B 3.97E-10

TABLE 2
Max/Avg Number of Messages in a CPD-ALS Iteration on

K ¼ 4096

tensor P2P EMB

max avg max(=avg)

1998DARPA 6,578 145 72
Delicious 25,413 13,332 96
Enron 19,755 2,149 96
Flickr 15,382 4,709 96
Freebase-music 14,739 868 72
Gowalla 6,245 907 72
Movies-amazon 9,590 1,786 72
NELL-1 22,543 15,434 72
Netflix 14,824 3,391 72
Yelp 20,375 6,112 72

average 14,076 2,480 78

The bold average row in this table, as well as in Tables 4 and 5, represents the
geometric mean.

3036 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on June 07,2022 at 13:57:57 UTC from IEEE Xplore. Restrictions apply.

there is no need to consider reducing/balancing the number
of messages when designing intelligent partitioning models
allowing them to focus on reducing/balancing volume.

The Expand-and-Reduce-Aware Embedding. Table 3 shows
the benefit of using expand-and-reduce-aware EMB (Sec-
tion 4.2) over naive EMB (Section 4.1) on both EMB-rand
and EMB-hp. The values given in the table are CPD-ALS
iteration times of the ten tensors taken with expand-and-
reduce-aware EMB normalized with respect to those taken
with naive EMB. The runtimes of all tensors are then aver-
aged per K value for each method. As seen in the table, uti-
lizing expand-and-reduce-aware EMB for sparse expand
and reduce decreases the parallel CPD-ALS runtime, on
average, by up to 21%� 28% when EMB-rand is used and
by 10%� 24% when EMB-hp is used. Furthermore, the rela-
tive percent improvement of expand-and-reduce-aware
EMB over naive EMB for both EMB-rand and EMB-hp gen-
erally increases with increasingK.

HP-Based Mapping. Table 4 shows the performance
improvement attained by the HP-based mapping algorithm

discussed in Section 5 against EMB-rand on K ¼ 4096. The
performance comparison is given in terms of maximum
and concurrent volume metrics as well as parallel run-
times for R ¼ f8; 32g. For each tensor, the first line dis-
plays actual values for EMB-hp, whereas the second line
displays normalized values with respect to those of
EMB-rand.

As seen in Table 4, EMB-hp achieves significant decrease
in concurrent communication volume metric (90% on aver-
age) compared to EMB-rand. EMB-hp achieves also signifi-
cant decrease in maximum communication volume handled
by a processor (65% on average) compared to EMB-rand.
These improvements in concurrent and maximum commu-
nication volume metrics lead to an approximately 68% and
71% improvement in CPD-ALS iteration time respectively
for R ¼ 8 and 32. Note that improvement in the maximum
communication volume closely correlates with the improve-
ment in the parallel runtime on average.

Factor-Matrix Row Assignment. Table 5 shows the perfor-
mance improvement of the proposed bin-backing based
factor-matrix row assignment method (Section 5.3) against
random assignment on K¼f128; � � � ; 4096g. The perfor-
mance comparison is given in terms of the maximum com-
munication volume handled by processors obtained by
bin-packing-based-assignment algorithm normalized with
respect to those by random assignment. As seen in the
table, the bin-backing algorithm attains considerable per-
formance improvement (15% on average) against random
assignment.

Strong Scaling. Fig. 3 shows the strong scaling curves of
the three methods on K¼f128; � � � ; 4096g processors with
two different R values. As seen in Fig. 3, P2P-mg does not
scale after K¼1024 for the tensors Delicious, Flickr
and NELL-1, whereas it does not scale after K¼512 for rest
of the tensors. Both EMB schemes scale much better than
P2P for each tensor and for both R values.

As seen in Fig. 3, EMB-hp runs much faster than
EMB-rand in all instances thus showing the validity of the
task-to-processor mapping method proposed in Section 5.
Furthermore, EMB-hp runs much faster than the state-of-
the-art P2P-mg for all tensors and all R values onK > 1024.

Fig. 4 shows the strong scaling curves for the three very
large tensors. As seen in the figure, for each large tensor,

TABLE 3
Improvement of Expand/Reduce-Aware EMB

Against Naive EMB

method K = 128 256 512 1024 2048 4096

EMB-rand 0.78 0.79 0.78 0.76 0.72 0.73
EMB-hp 0.90 0.86 0.84 0.81 0.82 0.76

Values are EMB runtimes normalized w.r.t. those by naive EMB.

TABLE 4
Performance of EMB-hp Against EMB-rand onK ¼ 4096

tensor volume �R runtime (ms)

max concurrent R ¼ 8 R ¼ 32

1998DARPA 9,155 94,639 28.609 35.794
0.359 0.004 0.929 0.702

Delicious 178,695 15,014,082 79.236 201.793
0.477 0.124 0.512 0.311

Enron 23,964 443,498 4.984 16.829
0.525 0.145 0.321 0.219

Flickr 51,391 5,472,870 12.802 77.683
0.139 0.025 0.091 0.142

Freebase-music 19,421 5,440,976 64.492 424.432
0.053 0.016 0.444 0.507

Gowalla 7,152 1,056,561 1.966 7.306
0.314 0.126 0.254 0.219

Movies-amazon 22,730 1,152,274 4.473 15.737
0.766 0.504 0.526 0.343

NELL-1 230,823 27,511,288 50.343 262.416
0.651 0.176 0.369 0.479

Netflix 60,170 3,092,374 11.275 45.305
0.440 0.519 0.151 0.137

Yelp 180,303 6,374,191 35.990 172.814
0.591 0.525 0.261 0.265

average 41,708 2,566,274 16.688 62.751
0.349 0.098 0.322 0.292

For each tensor, the first line displays actual values for EMB-hp, whereas the
second line displays the normalized values w.r.t. those of EMB-rand.

TABLE 5
Performance of Proposed Row-to-Processor Assignment

tensor maximum volume

K = 128 256 512 1024 2048 4096

1998DARPA 1.07 1.08 1.04 0.90 1.00 0.99
Delicious 0.82 0.86 0.84 0.85 0.86 0.86
Enron 0.91 0.93 0.90 0.86 0.89 0.86
Flickr 0.87 0.87 0.89 0.86 0.86 0.84
Freebase-music 0.69 0.63 0.70 0.63 0.60 0.56
Gowalla 0.81 0.79 0.83 0.82 0.84 0.81
Movies-amazon 0.85 0.88 0.84 0.81 0.87 0.83
NELL-1 0.80 0.84 0.83 0.87 0.88 0.88
Netflix 0.82 0.82 0.85 0.88 0.91 0.93
Yelp 0.85 0.84 0.84 0.84 0.89 0.84

average 0.84 0.85 0.85 0.83 0.85 0.83

Values are normalized w.r.t. those of random assignment.

ABUBAKER ETAL.: SCALABLE UNSUPERVISED ML: LATENCY HIDING IN DISTRIBUTED SPARSE TENSOR DECOMPOSITION 3037

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on June 07,2022 at 13:57:57 UTC from IEEE Xplore. Restrictions apply.

P2P-rand fails to scale after 1024 processors, whereas EMB-
rand continues to scale up to 4096 processors.

7 RELATED WORK

In the literature, there exists many shared- and distributed-
memory parallel CPD-ALS algorithms [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], [32], [33], [34], [35]. Here we
briefly mention about distributed-memory parallel CPD-
ALS algorithms.

Several works on scaling distributed-memory parallel
CPD-ALS target at enhancing the MTTKRP operation and/
or reducing the bandwidth overhead of the P2P sparse
reduce and expand operations through intelligent combina-
torialmodels or throughmultidimensional divisionmethods.

For instance, among combinatorial models for enhancing
MTTKRP, [15], [18] and [20] are proposed. Among combina-
torial models for reducing communication overhead, HP is
utilized [12], [14], [19], [20]. However, these HPmodels focus

on reducing the bandwidth component of the communica-

tion. Multidimensional cartesian partitioning is utilized with

a nice property of bringing upper bounds on both bandwidth

and latency components costs [13], [14]. TheHPmodel in [14]
targets at reducing the bandwidth requirement of Cartesian

partitioning. [16] also considers partitioning factor matrices

column-wise at the expense of tensor replication, whereas all

other methods as well as our method involve row-wise parti-

tioning of the factor matrices. There also exists toolkits for

shared- and distributed-memory parallel systems [11], [13],

[17], [35], [36].

Fig. 3. Comparing Strong Scaling curves of P2P-mg, EMB-rand and EMB-hp with decomposition ranks R ¼ 8 and R ¼ 32.

3038 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on June 07,2022 at 13:57:57 UTC from IEEE Xplore. Restrictions apply.

Latency reduction and hiding is well-known in parallel
iterative solvers, such as Conjugate Gradient and GMRES,
through communication/computation overlapping [37], [38],
pipelining [39], and embedding [40]. The embedding scheme
proposed in [40] exploits the fact that each SpMV is followed
by an inner product which involves the input and output vec-
tors. They propose to embed sparse expand operations on the
output vector entries to the following inner product realized
with ALL-REDUCE by utilizing row-parallel SpMV. Our work
differs from [40] in the following aspects: The rearrangements
which enable the embedding are different because of the
nature of the applications (CG versus CPD-ALS); [40] embeds
only sparse expand whereas we embed both sparse expand
and reduce; [40] uses naive embedding so that each message
in the ALL-REDUCEmay contain multiple copies of same out-
put-vector entries, whereas we avoid this with the proposed
expand-and-reduce-aware embedding; [40] uses conven-
tional HP followed by a KL-based one-to-one mapping,
whereas we propose a simultaneous partitioning/mapping
algorithm. To our knowledge, our work is the first to use
latency hiding in parallel tensor decomposition.

8 CONCLUSION

We proposed a framework for hiding the latency of P2P
sparse expand and reduce operations during parallel
CPD-ALS through embedding them into dense collective
ALL-REDUCE operations which already exist in the
CPD-ALS. The framework consists of a computation/com-
munication rearrangement of the CPD-ALS which enables
the embedding as well as an intelligent embedding scheme
that helps reducing the increase in communication due to
embedding. The recursive-bipartitioning-based hypergraph
partitioning method proposed for subtensor-to-processor
mapping as well as the bin-backing-based method proposed

for factor-matrix row to processor mapping are found to be
quite effective in reducing the bandwidth overhead in the
embedded-ALL-REDUCE. We have obtained very good scal-
ing results on up to 4096 processors for ten real-word ten-
sors, whereas a state-of-the-art P2P implementation does
not scale after 1024 processors due to large the latency over-
head especially for small decomposition ranks. The pro-
posed latency-hiding framework paves the way for scalable
sparse tensor decomposition on exa-scale systems.

REFERENCES

[1] T. D. Nguyen, T. Tran, D. Phung, and S. Venkatesh, “Tensor-vari-
ate restricted boltzmann machines,” in Proc. 29th AAAI Conf. Artif.
Intell., 2015, pp. 2887–2893.

[2] E. Acar and B. Yener, “Unsupervised multiway data analysis: A
literature survey,” IEEE Trans. Knowl. Data Eng., vol. 21, no. 1,
pp. 6–20, Jan. 2009.

[3] S. Hosseinimotlagh and E. E. Papalexakis, “Unsupervised con-
tent-based identification of fake news articles with tensor decom-
position ensembles,” in Proc. Workshop Misinformation Misbehavior
Mining Web, 2018.

[4] S. Rabanser, O. Shchur, and S. G€unnemann, “Introduction to ten-
sor decompositions and their applications in machine learning,”
2017, arXiv:1711.10781.

[5] H. Zhou, L. Li, and H. Zhu, “Tensor regression with applications
in neuroimaging data analysis,” J. Amer. Statist. Assoc., vol. 108,
no. 502, pp. 540–552, 2013.

[6] K. Makantasis, A. D. Doulamis, N. D. Doulamis, and A. Nikitakis,
“Tensor-based classification models for hyperspectral data analy-
sis,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 12, pp. 6884–6898,
Dec. 2018.

[7] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempit-
sky, “Speeding-up convolutional neural networks using fine-
tuned cp-decomposition,” 2015, arXiv:1412.6553.

[8] Y. Wang, W. G. Guo, and X. Yue, “Tensor decomposition to com-
press convolutional layers in deep learning,” IISE Trans., pp. 1–60,
Apr. 2021, doi: 10.1080/24725854.2021.1894514.

[9] D. Song, P. Zhang, and F. Li, “Speeding up deep convolutional
neural networks based on tucker-cp decomposition,” in Proc. 5th
Int. Conf. Mach. Learn. Technol., 2020, pp. 56–61.

[10] Y. Ji, Q. Wang, X. Li, and J. Liu, “A survey on tensor techniques
and applications in machine learning,” IEEE Access, vol. 7,
pp. 162 950–162 990, 2019.

[11] J. H. Choi and S. Vishwanathan, “Dfacto: Distributed factorization
of tensors,” in Advances in Neural Information Processing Systems 27,
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger, Eds. New York, NY, USA: Curran Associates, Inc.,
2014, pp. 1296–1304.

[12] O. Kaya and B. Uçar, “Scalable sparse tensor decompositions in
distributed memory systems,” in Proc. Int. Conf. High Perform.
Comput. Netw. Storage Anal., 2015, pp. 1–11.

[13] S. Smith and G. Karypis, “A medium-grained algorithm for sparse
tensor factorization,” in Proc. IEEE Int. Parallel Distrib. Process.
Symp., 2016, pp. 902–911.

[14] S. Acer, T. Torun, and C. Aykanat, “Improving medium-grain
partitioning for scalable sparse tensor decomposition,” IEEE
Trans. Parallel Distrib. Syst., vol. 29, no. 12, pp. 2814–2825, Dec.
2018.

[15] O. Kaya and B. Uçar, “Parallel CANDECOMP/PARAFAC
decomposition of sparse tensors using dimension trees,” SIAM J.
Sci. Comput., vol. 40, no. 1, pp. C99–C130, 2018.

[16] J. Choi, X. Liu, S. Smith, and T. Simon, “Blocking optimization
techniques for sparse tensor computation,” in Proc. IEEE Int. Paral-
lel Distrib. Process. Symp., 2018, pp. 568–577.

[17] M. Baskaran, T. Henretty, and J. Ezick, “Fast and scalable distrib-
uted tensor decompositions,” in Proc. IEEE High Perform. Extreme
Comput. Conf., 2019, pp. 1–7.

[18] L. Ma and E. Solomonik, “Efficient parallel CP decomposition
with pairwise perturbation and multi-sweep dimension tree,” in
Proc. IEEE Int. Parallel Distrib. Process. Symp., 2021, pp. 412–421.

[19] M. O. Karsavuran, S. Acer, and C. Aykanat, “Partitioning models
for general medium-grain parallel sparse tensor decomposition,”
IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 1, pp. 147–159,
Jan. 2021.

Fig. 4. Strong Scaling curves of EMB-rand versus P2P-rand on very
large tensors with decomposition ranks R ¼ 8 and R ¼ 32.

ABUBAKER ETAL.: SCALABLE UNSUPERVISED ML: LATENCY HIDING IN DISTRIBUTED SPARSE TENSOR DECOMPOSITION 3039

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on June 07,2022 at 13:57:57 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1080/24725854.2021.1894514

[20] N. Abubaker, S. Acer, and C. Aykanat, “True load balancing for
matricized tensor times khatri-Rao product,” IEEE Trans. Parallel
Distrib. Syst., vol. 32, no. 8, pp. 1974–1986, Aug. 2021.

[21] T. G. Kolda and B. W. Bader, “Tensor decompositions and
applications,” SIAMRev., vol. 51, no. 3, pp. 455–500, 2009.

[22] E. Chan, M. Heimlich, A. Purkayastha, and R. Van De Geijn,
“Collective communication: Theory, practice, and experience,” Con-
currency Comput. Pract. Experience, vol. 19, no. 13, pp. 1749–1783,
2007.

[23] Z. Chi, H. Yan, and T. Pham, Fuzzy Algorithms: With Applications to
Image Processing and Pattern Recognition, vol. 10. Singapore: World
Scientific, 1996.

[24] C.Aykanat, F.Ozguner, F. Ercal, andP. Sadayappan, “Iterative algo-
rithms for solution of large sparse systems of linear equations on
hypercubes,” IEEE Trans. Comput., vol. 37, no. 12, pp. 1554–1568,
Dec. 1988.

[25] €U. V. Çataly€urek and C. Aykanat, “Hypergraph-partitioning-based
decomposition for parallel sparse-matrix vector multiplication,”
IEEETrans. Parallel Distrib. Syst., vol. 10, no. 7, pp. 673–693, Jul. 1999.

[26] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms.
Rockville, MD, USA: Computer Science, 1978.

[27] €U. V. Çataly€urek and C. Aykanat, PaToH (Partitioning Tool for
Hypergraphs). Boston, MA, USA: Springer, 2011, pp. 1479–1487.

[28] S. Smith et al., “FROSTT: The formidable repository of open sparse
tensors and tools,” 2017. [Online]. Available: http://frostt.io/

[29] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility:
User movement in location-based social networks,” in Proc. 17th
ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2011,
pp. 1082–1090.

[30] J. McAuley and J. Leskovec, “Hidden factors and hidden topics:
Understanding rating dimensions with review text,” in Proc. 7th
ACM Conf. Recommender Sys., 2013, pp. 165–172.

[31] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel
hypergraph partitioning: Applications in VLSI domain,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 7, no. 1, pp. 69–79,
Mar. 1999.

[32] J. Li, B. Uçar, €U. V. Çataly€urek, J. Sun, K. Barker, and R. Vuduc,
“Efficient and effective sparse tensor reordering,” in Proc. ACM
Int. Conf. Supercomput., 2019, pp. 227–237.

[33] S. Smith and G. Karypis, “Tensor-matrix products with a com-
pressed sparse tensor,” in Proc. 5th Workshop Irregular Appl.: Archit.
Algorithms, 2015, pp. 5:1–5:7.

[34] J. Li, J. Sun, and R. Vuduc, “HiCOO: Hierarchical storage of sparse
tensors,” in Proc. Int. Conf. High Perform. Comput. Netw. Storage
Anal., 2018, pp. 238–252.

[35] K. D. Devine and G. Ballard, “GentenMPI: Distributed memory
sparse tensor decomposition,” United States, Aug. 2020. [Online].
Available: https://www.osti.gov/biblio/1656940, doi: 10.2172/
1656940.

[36] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis,
“SPLATT: Efficient and parallel sparse tensor-matrix multi-
plication,” in Proc. IEEE Int. Parallel Distrib. Process. Symp., 2015,
pp. 61–70.

[37] E. De Sturler and H. A. van der Vorst, “Reducing the effect of
global communication in GMRES(m) and CG on parallel distrib-
uted memory computers,” Appl. Numer. Math., vol. 18, no. 4,
pp. 441–459, 1995.

[38] T. Hoefler, P. Gottschling, A. Lumsdaine, and W. Rehm,
“Optimizing a conjugate gradient solver with non-blocking collec-
tive operations,” Parallel Comput., vol. 33, no. 9, pp. 624–633, 2007.

[39] P. Ghysels and W. Vanroose, “Hiding global synchronization
latency in the preconditioned conjugate gradient algorithm,” Par-
allel Comput., vol. 40, no. 7, pp. 224–238, 2014.

[40] R. O. Selvitopi, M. M. Ozdal, and C. Aykanat, “A novel method
for scaling iterative solvers: Avoiding latency overhead of parallel
sparse-matrix vector multiplies,” IEEE Trans. Parallel Distrib. Syst.,
vol. 26, no. 3, pp. 632–645, Mar. 2015.

Nabil Abubaker received the BS degree from An-
Najah National University, Palestine, where he
served as the vice-chair of the university’s IEEE
student branch, and the MS degree from Bilkent
University, Turkey where he is currently working
toward the PhD degree in computer engineering.
His research interests include parallel and scientific
computing, with focus on communication-efficient
iterative algorithms.

M. Ozan Karsavuran received the BS, MS, and
PhD degrees in computer engineering from Bil-
kent University, Turkey, in 2012, 2014, and 2020,
respectively, where he is currently postdocdoral
researcher. His research interests include combi-
natorial scientific computing, graph and hyper-
graph partitioning for sparse matrix and tensor
computations, and parallel computing in distrib-
uted and shared memory systems.

Cevdet Aykanat received the BS and MS degrees
in electrical engineering fromMiddle East Technical
University, Turkey, and the PhD degree in electrical
and computer engineering from Ohio State Univer-
sity, Columbus. He worked at the Intel Supercom-
puter Systems Division, Beaverton, Oregon, as a
research associate. Since 1989, he has been affili-
ated with the Department of Computer Engineer-
ing, Bilkent University, Turkey, where he is currently
a professor. His research interests include parallel
computing and its combinatorial aspects. He is the

recipient of 1995 Investigator Award of The Scientific and Technological
Research Council of Turkey and 2007 Parlar Science Award. He has
served as an associate editor of IEEE Transactions of Parallel and Distrib-
uted Systems between 2009 and 2013.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

3040 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on June 07,2022 at 13:57:57 UTC from IEEE Xplore. Restrictions apply.

http://frostt.io/
http://dx.doi.org/10.2172/1656940
http://dx.doi.org/10.2172/1656940

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

