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Abstract—MTTKRP is the bottleneck operation in algorithms used to compute the CP tensor decomposition. For sparse tensors,

utilizing the compressed sparse fibers (CSF) storage format and the CSF-oriented MTTKRP algorithms is important for both memory

and computational efficiency on distributed-memory architectures. Existing intelligent tensor partitioning models assume the

computational cost of MTTKRP to be proportional to the total number of nonzeros in the tensor. However, this is not the case for the

CSF-oriented MTTKRP on distributed-memory architectures. We outline two deficiencies of nonzero-based intelligent partitioning

models when CSF-oriented MTTKRP operations are performed locally: failure to encode processors’ computational loads and increase

in total computation due to fiber fragmentation. We focus on existing fine-grain hypergraph model and propose a novel vertex weighting

scheme that enables this model encode correct computational loads of processors. We also propose to augment the fine-grain model

by fiber nets for reducing the increase in total computational load via minimizing fiber fragmentation. In this way, the proposed model

encodes minimizing the load of the bottleneck processor. Parallel experiments with real-world sparse tensors on up to 1024 processors

prove the validity of the outlined deficiencies and demonstrate the merit of our proposed improvements in terms of parallel runtimes.

Index Terms—Load balancing, sparse tensors, MTTKRP, CP decomposition, fine-grain hypergraph partitioning
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1 INTRODUCTION

CANONICAL polyadic decomposition (CPD) is an extension
of singular value decomposition to tensors and a funda-

mental tool for the analysis of multiway data. It approximates
a given tensor by the sum of multiple rank-one tensors so that
each rank-one tensor corresponds to a structural feature in the
data set. CPD is used for dimensionality reduction, data com-
pletion and compression, and finds application in various
domains such as neuroscience [1], [2], machine learning [3],
[4], chemistry [5], cybersecurity [6], signal processing [7], and
network analysis [8].

The most popular algorithm that computes the CPD is
based on the alternating least squares method and generally
referred to as CP-ALS. Each iteration of the CP-ALS algorithm
computes a new factor matrix for each mode by performing
several computational steps. Among those steps, matricized
tensor times Khatri-Rao product (MTTKRP) constitutes the
biggest bottleneck because of its high computational cost.

When CP-ALS is performed on a sparse tensor and on a
distributed-memory setting, the optimization of theMTTKRP
operation becomes more tedious due to the irregular sparsity
pattern of the tensor nonzeros. Practitioners usually perform
tensor decompositionmany times with different ranks, which
makes the optimization of MTTKRP even more crucial for

reducing the turnaround time of their analysis. For achieving
a performant and scalable parallel decomposition, one should
take the sparsity information into account in crucial design
decisions associated with high communication and computa-
tional costs. These decisions involve

(i) how the input tensor is distributed amongprocessors,
(ii) how the tensor nonzeros are stored in each processor,
(iii) and howMTTKRP is realized on the given storage.
To address (i), several successful partitioning models [9],

[10], [11], [12] have been proposed with the goal of reducing
the communication cost of MTTKRP while maintaining a bal-
ance on its computational costs on all processors. To address
(ii) and (iii), several storage formats [13], [14], [15] have been
proposed, usually together with a new method to realize
MTTKRP on the proposed format. Among those, compressed
sparse fiber (CSF) proves to be the most commonly-used stor-
age format due to its efficiency in terms of both memory and
computation [11], [13], [14]. CSF is an extension of the com-
pressed sparse row format to tensors and the total flop count
in the CSF-orientedMTTKRP is proportional to the total num-
ber of nonzeros and fibers (along a specified mode) in the
given tensor. The flop count of the CSF-oriented MTTKRP is
significantly smaller than the flop count of theMTTKRP based
on the coordinate-format [13], [14].

Besides the popularity of the CSF format, tensor partitioning
models still assume the computational cost of MTTKRP to be
proportional to the total number of nonzeros in the input sparse
tensor. This creates a discrepancywhen the tensor is stored in a
CSF format and hence a CSF-oriented MTTKRP operation is
performed. This discrepancy leads to a failure in balancing the
computational loads of processors in the distributed-memory
parallelization. This failure becomes more prominent as the
variance on the nonzero counts of fibers becomes larger, that is,
as the tensor becomesmore irregular.
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In this work, we propose a tensor partitioning model
with true load balancing for MTTKRP operation when the
CSF format is used. Our model is based on the fine-grain
model [9], which is (theoretically and practically) the most
successful model in reducing the total communication vol-
ume and balancing the number of tensor nonzeros in pro-
cessors. Our contributions can be summarized as follows:

� We outline two deficiencies of the existing fine-grain
modelwhen theCSF scheme is used for localMTTKRP
operations: failure to encode the correct computational
loads of processors and the increase in the total
amount of computation due to fiber fragmentation.

� Wefirst propose a heuristic that leads to a novel vertex
weighting scheme which helps the hypergraph model
correctly encapsulate the computational loads of pro-
cessors. We then utilize the well-known recursive
bipartitioning framework for improving the accuracy
of the heuristic.

� We also propose an augmentation to the fine-grain
model by fiber nets that reduce the fiber fragmentation
and help theweighting scheme achieve its potential.

The rest of the paper is organized as follows. In Section 2
the necessary backgrounds for CPD, CP-ALS, and hyper-
graph partitioning are given. The deficiencies of the HP-
based fine-grain method are discussed in Section 3. In
Section 4, our proposed framework is presented and dis-
cussed in details. Experimental results are given and dis-
cussed in Section 5. Related work is given in Section 6 and
the paper is concluded in Section 7.

2 BACKGROUND

2.1 Tensors and Notations

We denote tensors by calligraphic letters (X ) and matrices
by bold capital letters (A). The number of dimensions of a
tensor, denoted by N , is called the mode of the tensor. Note
that matrices and vectors are 2-mode and 1-mode tensors,
respectively. For the sake of simplicity, we assume 3-mode
tensors of size I�J�K.

Fibers are analogous to matrix rows or columns, which
can be obtained by fixing all but one indices of the tensor. In
3-mode tensors there are row, column and tube fibers which
are respectively denoted by Xði; :; kÞ, Xð:; j; kÞ and Xði; j; :Þ.
Slices are analogous to matrices and can be obtained by fixing
all but two indices. In 3-mode tensors, there are horizontal
(e.g.,Xði; :; :Þ), lateral (e.g.,Xð:; j; :Þ) and frontal (e.g.,Xð:; :; kÞ)
slices. Matricization of a tensor means unfolding it into a
matrix shape along one of its modes. For instance, the matrici-
zation of X along the first mode, denoted by Xð1Þ, is a matrix
of size I � JK. We refer the reader to the survey byKolda and
Bader [16] formore details on tensor decompositions.

2.2 The Canonical Polyadic Decomposition

The CPD, with R as the decomposition rank, approximates
tensor X as the sum of R rank-one tensors: X �PR

r¼1 ar �
br � cr. Here “�” denotes the outer product operation. The
a, b and c components in each of the R rank-one tensors are
assembled to respectively form factor matrices A 2 RI�R,
B 2 RJ�R andC 2 RK�R.

Themost commonly used algorithm to compute the CPD is
CP-ALS, which uses the Alternating Least Squares approach.

Algorithm 1 shows the steps of the CP-ALS algorithm.During
each iteration, two factormatrices are fixed to find the remain-
ing one by solving a linear alternating least squares problem.

For instance, minAjjXð1Þ �AðC�BÞT jj2R is solved to find A

by computingXð1ÞðC�BÞðCTC �BTBÞ. The columns of fac-
tor matrices are then normalized to length one, and the actual
lengths are stored in �. The operations � and � denote the
Khatri-Rao and theHadamard products, respectively.

The MTTKRP operation, which is the target operation in
this work, takes place in lines 4, 7, and 10 of Algorithm 1,
each of which is for computing a factor matrix along a dif-
ferent mode. Although it is shown as a multiply of an
unfolded (matricized) tensor (e.g., Xð1Þ) with a large matrix
(e.g., (B�C)), this is basically for simplicity and the corre-
sponding multiply is impractical for sparse tensors. Many
implementations prefer to realize the MTTKRP operation
Â Xð1ÞðB�CÞ in a rowwise way for Â, such as

Âði; :Þ ¼
X

Xði;j;kÞ6¼0
Xði; j; kÞ½Bðj; :Þ �Cðk :Þ	: (1)

This computation style is preferred when the tensor is stored
as a list of ði; j; k; valÞ coordinates, called the COO format.
Note that in this formulation, the corresponding rows of B
andC are retrieved andmultiplied for each nonzero.

As a better alternative, the software toolkit SPLATT [13]
uses the flops-reducing formulation

Âði; :Þ ¼
X

j3nnzðXði;j;:ÞÞ6¼0
Bðj; :Þ �

X

k3Xði;j;kÞ6¼0
Xði; j; kÞCðk :Þ;

(2)

which uses a fiber-centric data structure (to be discussed in
the next subsection). Hereafter, nnzð:Þ refers to the number
of nonzeros in a (sub)tensor. In (2), the outer and inner sum-
mations respectively run over all nonzero fibers of slice
Xði; :; :Þ, and all nonzero entries of fiber Xði; j; :Þ.

Algorithm 1. CP-ALS for 3-Mode Tensors

1: procedure CP-ALS(X )
2: Initialize matricesA,B andC randomly
3: while not converged do
4: Â Xð1ÞðB�CÞ
5: A ÂðCTC �BTBÞ�1
6: Normalize columns ofA into �
7: B̂ Xð2ÞðC�AÞ
8: B B̂ðCTC �ATAÞ�1
9: Normalize columns ofB into �
10: Ĉ Xð3ÞðB�AÞ
11: C ĈðBTB �ATAÞ�1
12: Normalize columns ofC into �
return [[�;A;B;C]]

2.3 Efficient Computation of MTTKRP

The efficient formulation in (2) can be realized using the Com-
pressed Sparse Fibers scheme, which was first introduced by
Smith and Karypis [14]. The CSF storage scheme can be con-
sidered as a natural extension of the Compressed Sparse
Rows/Columns schemes widely used for sparse matrices.
Fig. 1 shows an illustration of the CSF storage format for a

ABUBAKER ETAL.: TRUE LOAD BALANCING FOR MATRICIZED TENSOR TIMES KHATRI-RAO PRODUCT 1975

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on March 23,2021 at 00:03:42 UTC from IEEE Xplore.  Restrictions apply. 



3-mode sparse tensor. In the figure, the pSlice and pFiber
arrays respectively represent the compressed slices and fibers.
The pSlice array consists of pointers to the starting indices of
the compressed fibers of the respective slices in the pFiber
array. Similarly, the pFiber array consists of pointers to the
starting indices of the nonzeros of the respective fibers in Vals.
The iSlice, iFiber and iVals arrays respectively store the i, j
and k indices of the respective nonzero slices, fibers and
entries.

Algorithm 2.MTTKRP Used by Both CSF-D and CSF-S

Require: Tensor X stored in CSF,A;B andC
1: for i 1 to sizeðpSliceÞ do
2: is iSlice½i	
3: for j pSlice½i	 to pSlice½iþ 1	 � 1 do
4: jf  iFiber½j	
5: if pFiber½jþ 1	 � pFiber½j	 ¼ 1 then
6: k pFiber½j	
7: Âðis; :Þþ ¼ Vals½k	�CðiVals½k	Þ�Bðif; :Þ
8: else
9: accð:Þ  0

10: for k pFiber½j	 to pFiber½jþ 1	 � 1 do
11: accð:Þþ¼ accð:Þ þ Vals½k	 �CðiVals½k	; :Þ
12: Âðis; :Þþ¼ accð:Þ �Bðjf; :Þ

Two CSF-based computational schemes are used for com-
puting the MTTKRP operations in Algorithm 1 using the for-
mulation in (2). These two schemeswill be referred to as CSF-S
and CSF-D, where “-S” and “-D” refer to the use of Single and
Double storage, aswill be explained shortly.

The CSF-S scheme operates on a single CSF storage of the
tensor, where the compressed fibers are the tensor’s fibers
along the longest mode. This scheme is proposed by Smith
andKarypis [14] and currently used in SPLATT.CSF-S utilizes
Algorithm 2 for computing the MTTKRP operations along all
modes but the longest mode, while it utilizes Algorithm 3 to
compute theMTTKRP operation along the longestmode.

The CSF-D scheme uses two different CSF storages of the
tensor. The first storage s1 is the same as of CSF-S, while the
second storage s2 utilizes the fibers along the second longest
mode as the compressed pFiber array. This scheme was used
in several works that target computing the MTTKRP in dis-
tributed settings [11], [13], [17]. CSF-D utilizes Algorithm 2 for

computing the MTTKRP operations along all modes but the
longest mode by feeding s1, and it utilizes the same algorithm
to compute the MTTKRP operation along the longest mode
by feeding s2. Although CSF-D has a larger memory footprint
compared to CSF-S, it has the advantage of avoiding the use
of costly mutexes when used in hybrid (distributed + shared)
settings [14].

Algorithm 3.MTTKRP Used by CSF-S

Require: Tensor X stored in CSF,A;B andC
1: for i 1 to sizeðpSliceÞ do
2: is iSlice½i	
3: for j pSlice½i	 to pSlice½iþ 1	 � 1 do
4: jf  iFiber½j	
5: if pFiber½jþ 1	 � pFiber½j	 ¼ 1 then
6: k pFiber½j	
7: ĈðiVals½k	; :Þþ¼ Vals½k	 �Aðis; :Þ �Bðjf; :Þ
8: else
9: accð:Þ  Aðis; :Þ �Bðjf; :Þ
10: for k pFiber½j	 to pFiber½jþ 1	 � 1 do
11: ĈðiVals½k	; :Þþ¼ accð:Þ � Vals½k	

2.4 Hypergraph Partitioning (HP)

A hypergraph H¼ðV;NÞ is defined as a set of vertices V
and a set of nets N . Each net n2N connects a subset of ver-
tices, which is denoted by PinsðnÞ. Each net n is assigned a
cost cðnÞ, whereas each vertex v maybe assigned C weights
denoted by wcðvÞ where c 2 f1; 2; ::; Cg. For C > 1, the HP
problem is commonly known as multi-constraint HP.

P ¼ fV1;V2; . . . ;VPg denotes a P -way partition of H if
the vertex parts are mutually exclusive and exhaustive. For
a given partition P,

WcðVpÞ ¼
X

vi2Vp
wcðviÞ; 8c 2 f1; 2; ::; Cg: (3)

denotes the cth weight of part Vp. In P, a net is said to con-
nect a part if it connects at least one vertex in that part.
conðnÞ denotes the number of parts that net n connects. Net
n is called cut if it connects at least two parts, i.e., conðnÞ >
1, and called internal otherwise.

In the HP problem, the partitioning objective is to mini-
mize the cutsize, which is defined as

cutsizeðPÞ ¼
X

n2N
ðconðnÞ � 1ÞcðnÞ: (4)

The partitioning constraint is to maintain balance on part
weights

WcðVpÞ 
Wc
avgð1þ �Þ; 8Vp 2 P; 8c 2 f1; 2; ::; Cg; (5)

where Wc
avg¼

PP
p¼1 W

cðVpÞ=P denotes the average part
weight for the cth constraint and � denotes the maximum
allowed imbalance ratio.

The Recursive Bipartitioning (RB) paradigm iswidely used
in graph/hypergraph partitioning. In the RB paradigm, an
input hypergraph is bipartitioned recursively in log2P steps
to obtain P parts. Without loss of generality, we assume that
P is an exact power of 2. A bipartition P2 ¼ fVL;VRg of a
hypergraph H at some RB step is used to produce two new

Fig. 1. A 3-mode tensor (top) and the corresponding CSF storage
(bottom).
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hypergraphs HL ¼ ðVL;N LÞ and HR ¼ ðVR;N RÞ, where L
and R to refer to the two parts as Left and Right, respectively.
The net sets N L and N R are obtained by keeping all internal
nets of each part and splitting the cut-nets using the cut-net
splittingmethod [18].

2.5 Fine-Grain (FG) Partitioning for MTTKRP

In the work by Kaya and Uçar [9], a fine-grain task is
defined as the multiplication of a tensor nonzero by the
Hadamard product of the corresponding rows of the factor
matrices along all but the mode of the factor matrix being
computed (according to (1)).

A fine-grain hypergraph model H ¼ ðV;NÞ is pro-
posed [9] for fine-grain task partitioning. H contains a ver-
tex vijk for each tensor nonzero Xði;j;kÞ, and nets nH

i , n
L
j and

nF
k for respectively each nonempty horizontal, lateral and

frontal slice of the tensor. Each vertex vijk is connected by
three nets nH

i , n
L
j and nF

k .
All vertices of H are assigned a unit weight under the

assumption that every nonzero of X incurs the same amount
of computation during the MTTKRP operations. All nets ofH
are assigned a cost of R since factor-matrix rows of size R
words are communicated between processors. Then, the par-
titioning objective ofminimizing the cutsize encodesminimiz-
ing the total volume of communication due to expand-type
communications on input matrix rows as well as reduce-type
communications on outputmatrix rows.

3 DEFICIENCIES OF THE FINE-GRAIN MODEL

3.1 Failure to Encode Processors’ Computational
Loads

The COO-based implementation of the MTTKRP operation
according to (1) incurs 3Rm flops for tensor X with m non-
zero elements. Here, 2Rm flops are performed for the initial
products and Rm flops are performed for the summation
operations. In other words, each tensor nonzero incurs 3R
flops. So although vertices are assigned unit weight in the
conventional FGmodel, we assume the vertices are assigned
aweight of

wðvijkÞ ¼ 3R: (6)

In this way, the part weights computed by using (6) in (3)
will correctly encapsulate processor’s computational loads .

On the other hand, the CSF format enables reducing the
amount of total computation from 3Rm flops to 2Rðmþ F Þ
flops, where F denotes the number of fibers, using the formu-
lation in (2). This is because, in (2), each nonzero Xði; j; kÞ
incurs 2R flops due to Cðk; :Þ, whereas each fiber Xði; j; :Þ
incurs 2R flops due toBðj; :Þ. That is, the amount of computa-
tion associated with each nonzero may differ depending on
the fiber fragmentation introduced by the partitioning algo-
rithm. So, the part weights computed according to (6) fail to
correctly encapsulate the computational loads of processors.

The top part of Fig. 2 shows a sample 8 � 6 frontal slice
Xð:; :; kÞwith 24 nonzeros. In the figure, stars represent non-
zeros while shaded rectangles represent fibers along the
longest mode which is the second mode. The bottom part
shows a bipartition of the nonzeros of the slice between two
processors p1 and p2. The subslices assigned to p1 and p2 are

respectively denoted by Xð:; :; kÞp1 and Xð:; :; kÞp2 . This
bipartition shows an even nonzero partition since each sub-
slice has 12 nonzeros. However, the nonzeros of the subsli-
ces Xð:; :; kÞp1 and Xð:; :; kÞp2 respectively belong to 6 and 4

subfibers. Thus, Xð:; :; kÞp1 will incur 2Rð12þ 6Þ ¼ 36R flops

associated with the MTTKRP operation on p1, whereas Xð:; :
; kÞp2 will incur 32R flops on p2. So, despite the even nonzero
distribution, the partition incurs a significant amount of
computational load imbalance.

3.2 Increase in Total Computation

As mentioned in Section 3.1, the number of flops performed
using the fiber-centric MTTKRP formulation in (2) is equal
to 2Rðmþ F Þ in serial and shared-memory settings. How-
ever, in distributed-memory settings, since the fibers are
local to the processors, the number of flops increases as a
result of fragmenting fibers among processors.

Assuming single precision floating-point values, the
COO-based MTTKRP incurs 16mþ 12Rm memory byte
accesses [19], whereas the CSF-based MTTKRP with S slices
incurs 8ðS þ F þmÞ þ 12Rðmþ F Þ accesses . Note that fiber
fragmentation increases the number of flops as well as the
number of memory accesses at the same rate, thus it does
not affect the arithmetic intensity (flops per byte) of the
CSF-based MTTKRP. Therefore, any further discussion on
increasing/decreasing flop counts also applies to the associ-
ated number of memory accesses.

In an ideal situation, each fiber is assigned to a single
processor as a whole without any fragmentation thus result-
ing in no increase in the number of flops, which can be set as
the lower bound for distributed-memory settings. However,
any fiber whose nonzeros are fragmented among � process-
ors will incur 2Rð�� 1Þ additional flops. In the worst-case,
if every nonzero of each fiber is assigned to a different pro-
cessor, then each fiber will have a single nonzero, resulting
in a loose upper bound of 3Rm total flops following the if-
statement in Algorithm 2.

Fig. 2. A bipartition of slice Xð:; :; kÞ to processors p1 and p2, having the
same nonzero count but different flop counts.
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The bipartition shown in the bottom part of Fig. 2 incurs
the fragmentation of 4 out of 6 fibers of Xð:; :; kÞ. So, this
bipartition incurs an increase in the total number of fibers
from 6 to 10 thus increasing the total number of flops from
2Rð24þ 6Þ ¼ 60R to 36Rþ 32R ¼ 68R during the MTTKRP
operations associated with Xð:; :; kÞ.

Since the fine-grain HP-based method described in
Section 2.5 is not aware of the role of tensor fiberswhile parti-
tioning the HP model, it may incur a significant amount of
fiber fragmentation leading to significant increase in the total
computational load.

4 IMPROVING FINE-GRAIN HP MODEL

4.1 A Novel Vertex Weighting Scheme

As mentioned earlier, balancing on the flop counts of pro-
cessors cannot be enforced during partitioning the fine-
grain HP model. This is because of the vertex weighting
scheme that only encodes balancing nonzero counts of pro-
cessors while failing to encode the fiber counts.

Here, we propose a novel vertex weighting scheme for
estimating correct flop counts of processors during parti-
tioning the fine-grain model. For this purpose, we propose
an Inverse-Fiber-Size (IFS) heuristic for estimating the fiber
counts of processors. In the IFS scheme, the 2R flop contri-
bution of a fiber is distributed uniformly, as vertex weights,
among the vertices representing the tensor nonzeros consti-
tuting that fiber. That is, a fiber Xði; j; :Þ of size nnzðXði; j; :
ÞÞ contributes 2R=nnzðXði; j; :ÞÞ, as a weight, to each vertex
representing its constituent nonzeros.

In a given nonzero partition, if the nonzeros of a given
fiber are all assigned to the same part, the IFS scheme cor-
rectly encodes the contribution of a fiber count (2R) to the
respective part. If, however, the nonzeros of a given fiber
are fragmented between two parts, then the IFS scheme will
incur fractional fiber count contributions to these two parts
with a sum of 2R.

Since the two efficient schemes described in Section 2.3
(CSF-S and CSF-D) for computing the MTTKRP have differ-
ent algorithms and different fiber types, we describe how
the IFS scheme is applied to each of them separately. With-
out loss of generality, we assume that tube fibers (Xði; j; :Þ)
and row fibers (Xði; :; kÞ) are the tensor’s fibers along the
longest and second longest modes, respectively.

4.1.1 IFS Scheme for CSF-S

In this scheme, the tensor is stored only once as fibers of the
longest mode. While computing the MTTKRP for N � 1
modes as described in Algorithm 2, the number of fibers
times 2R correctly encapsulate flop count of the Hadamard
product and the addition operation involving Bðjf; :Þ
(line 12). On the other hand, while computing the MTTKRP
for the longest mode using Algorithm 3, the number of
fibers times 2R correctly encapsulates the flop count of only
the Hadamard product operations (line 9). Therefore, we
use the IFS scheme for updating the weights of the vertices
as follows: for each vijk 2 V

wðvijkÞ ¼ 2Rþ 2R

nnzðXði; j; :ÞÞ : (7)

Here, “2R” refers to the number of flops associated with the
respective nonzero, whereas 2R=nnzðXði; j; :ÞÞ refers to
the number of flops associated with the fiber that contains
the respective nonzero.

4.1.2 IFS Scheme for CSF-D

In this scheme, the tensor is stored twice in fiber-centric
fashion. As discussed in Section 2.3, the first storage utilizes
the fibers of the longest mode, while the second storage uti-
lizes the fibers of the second longest mode. For both fiber
types, the number of fibers times 2R correctly encapsulate
flop count of the Hadamard product and addition opera-
tions (Algorithm 2 line 12). The distinction is, the number of
fibers along the longest mode correctly encapsulates the
number of flops during each of the N � 1 MTTKRP opera-
tions performed along all but the longest mode, whereas
number of fibers along the second longest mode correctly
encapsulates the number of flops during the MTTKRP oper-
ation along the longest mode.

A two-constraint formulation is needed for balancing the
computational loads of processors in the computational
scheme that utilizes CSF-D. This is because, in the CP-ALS
algorithm, MTTKRP operations are performed in different
phases interleaved with synchronizing communication
operations, and the MTTKRP operations are performed
with two different types of fibers.

We use the IFS scheme to compute the two weights of the
vertices for the two-constraint formulation as follows: for
each vijk 2 V

w1ðvijkÞ ¼ 2Rþ 2R

nnzðXði; j; :ÞÞ (8a)

w2ðvijkÞ ¼ 2Rþ 2R

nnzðXði; :; kÞÞ : (8b)

At each iteration, W 1ðVp) (computed using (3)) encodes
the computational load of processor p during N � 1
MTTKRP operations, whereas W 2ðVpÞ encodes the compu-
tational load of processor p during only one MTTKRP oper-
ation. So, the success of this two-constraint scheme depends
on giving more importance to the first over second con-
straint. This can only be achieved by relaxing the maximum
allowed imbalance ratio (�) of the second constraint. Unfor-
tunately, the state-of-the-art HP tools do not support differ-
ent � values for different constraints. For this reason, we
propose the following alternative single-constraint weight-
ing scheme that can emulate the above mentioned two-con-
straint scheme:

wðvijkÞ ¼ ðN � 1Þw1ðvijkÞ þ w2ðvijkÞ

¼ 2RN þ 2RðN � 1Þ
nnzðXði; j; :ÞÞ þ

2R

nnzðXði; :; kÞÞ ; (9)

for each vijk 2 V. In (9), the relative importance of w1ðvijkÞ
over w2ðvijkÞ is modeled by multiplying w1ðvijkÞ by N � 1 as
the CSF storage along the longest mode is used in N � 1
MTTKRP operations at each CP-ALS iteration. Note
that in (9) the value of N should be set to 3 in case of a
3-mode tensor, but we prefer to use N for a more general
presentation.
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Algorithm 4. RB-Based FG HPWith IFS Scheme

Require: Sparse tensor X
1: H Fine-grain hypergraph of X
2: " F is the set of nonzero fibers along the longest mode.
3: F  ffij ¼ Xði; j; :Þ : nnzðXði; j; :ÞÞ 6¼ 0g
4: if X is stored as CSF-S then
5: RB-STEP-S(H, F )
6: else " X is stored as CSF-D
7: " F2 is the set of nonzero fibers along 2nd longest mode.
8: F2 ffik ¼ Xði; :; kÞ : nnzðXði; :; kÞÞ 6¼ 0g
9: RB-STEP-D(H, F , F2)
10: function RB-STEP-S(H, F )
11: P2 ¼ ðVL;VRÞ  BIPARTITION(H)
12: FormHL ¼ ðVL;N LÞ andHR ¼ ðVR;N RÞ
13: ðFL;FRÞ ¼ SPLIT-FIBERS(P2, F )
14: UPDATE-WEIGHTS-S(P2;FL;FR )
15: RB-STEP-S(HL, FL)
16: RB-STEP-S(HR, FR)
17: function RB-STEP-D(H, F , F2)
18: P2 ¼ ðVL;VRÞ  BIPARTITION(H)
19: FormHL ¼ ðVL;N LÞ andHR ¼ ðVR;N RÞ
20: ðFL;FRÞ ¼ SPLIT-FIBERS(F ;P2)
21: ðF2L;F2RÞ ¼ SPLIT-FIBERS(F2;P2)
22: UPDATE-WEIGHTS-D(P2, FL, FR, F2L, F2R )
23: RB-STEP-D(HL, FL, F2L)
24: RB-STEP-D(HR, FR, F2R)

Algorithm 5. SPLIT-FIBERS

Require: (P2, F )
1: FL;FR  ;
2: for all Xði; j; :Þ ¼ fij 2 F do
3: fL

ij ¼ XLði; j; :Þ ¼ Xði; j; :Þ \ fXði;j;kÞ : vijk 2 VLg
4: fR

ij ¼ XRði; j; :Þ ¼ Xði; j; :Þ \ fXði;j;kÞ : vijk 2 VRg
5: if nnzðfLijÞ > 0 then
6: FL  FL [ ffL

ijg
7: if nnzðfRij Þ > 0 then
8: FR  FR [ ffRijg
return ðFL;FRÞ

Algorithm 6. UPDATE-WEIGHTS-S

Require: P2 , FL, FR

1: for all vijk 2 VL do
2: wðvijkÞ  2Rþ 2R

nnzðXLði;j;:ÞÞ
3: for all vijk 2 VR do
4: wðvijkÞ  2Rþ 2R

nnzðXRði;j;:ÞÞ

Algorithm 7. UPDATE-WEIGHTS-D

Require: P2, FL, FR, F2L, F2R
1: for all vijk 2 VL do
2: wðvijkÞ ¼ 2RN þ 2RðN�1Þ

nnzðXLði;j;:ÞÞ þ 2R
nnzðXLði;:;kÞÞ

3: for all vijk 2 VR do
4: wðvijkÞ ¼ 2RN þ 2RðN�1Þ

nnzðXRði;j;:ÞÞ þ 2R
nnzðXRði;:;kÞÞ

4.2 Improving IFS Through Utilizing RB

The accuracy of the IFS heuristic depends on keeping track
of the correct fibers sizes, which could change significantly

as a result of fiber fragmentation during partitioning. We
propose to utilize the RB scheme to increase the accuracy of
the IFS heuristic in estimating the fiber counts of parts. After
each bipartitioning step, the sizes of the fragmented fibers
are updated for recomputing the vertex weights according
to the IFS heuristic.

Algorithm 4 shows the proposed RB-based IFS scheme.
In the algorithm, H refers to the current hypergraph to be
bipartitioned, whereas F and F2 refer to the current set of
nonzero fibers along the first and second longest modes,
respectively. The sets of (fragmented) fibers are maintained
during the RB scheme for recomputing the vertex weights
according to the correct fiber sizes. Note that both F and F2
are used for the CSF-D scheme while only F is required for
the CSF-S scheme. The algorithm checks whether CSF-S or
CSF-D is used and respectively invokes RB-STEP-S or RB-
STEP-D accordingly.

In lines 11 and 18 of Algorithm 4, the hypergraph parti-
tioning tool is invoked to obtain a bipartition P2 on the ver-
tices of H. In lines 12 and 19, the left hypergraph HL and
right hypergraph HR are constructed according to the net-
splitting strategy mentioned in Section 2.4. In line 13,
SPLIT-FIBERS function is invoked to form the fiber sets FL

and FR of the left and right parts, for the CSF-S scheme. In
lines 20 and 21, SPLIT-FIBERS is invoked to compute FL

and FR as well as F2L and F2R of the left and right parts,
respectively, for the CSF-D scheme.

The SPLIT-FIBERS function (Algorithm 5) implements
the fiber fragmentation strategy as follows. The for-loop in
lines 2-8 computes the intersection of each fiber of the cur-
rent fiber set F with the nonzeros corresponding to the ver-
tices of the left and right parts. Then, it assigns an
unfragmented fiber to either FL or FR, whereas it adds the
subfibers of a fragmented fiber to both FL and FR.

Then, in lines 14 and 22 of Algorithm 4, the vertex weight-
ing scheme is invoked in order to recompute the weights of
vertices according to the IFS scheme with correct (frag-
mented) fiber sizes. Algorithm 6 (UPDATE-WEIGHTS-S) is
used to update the weights for CSF-S according to (7),
whereas Algorithm 7 (UPDATE-WEIGHTS-D) is used to
update theweights for CSF-D according to (9).

4.3 Fiber-Net Augmentation for Reducing Total Flops

In conventional graph/hypergraph partitioning formulations
used for irregular scientific applications in distributed settings,
the total amount of computationalwork is constant. So, in these
formulations the partitioning constraint of balancing the part
weights correctly corresponds to reducing the computational
load of themaximally loaded processor (bottleneck processor).
This correspondence will refer to minimizing the computa-
tional load of the bottleneck processor as the maximum
allowed imbalance ratio (�) is reduced. This is in fact the case
for finding a fine-grain partitioning formulation for parallel
tensor decomposition which utilizes the COO format for local
MTTKRP computations (formulation (1)). However, the total
amount of computational work is not constant in the fine-grain
partitioning formulation that utilizes the CSF format for local
MTTKRP computations (formulation (2)). Hence, the partition-
ing constraint of balancing the part weights loosely relates to
reducing the computational load of the bottleneck processor.
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The partitioning constraint of balancing part weights cor-
rectly refers to reducing the computational load of the bottle-
neck processor if the partitioning formulation targets at
reducing the increase in the total computational load due to
fiber fragmentation while minimizing the total communication
volume. For this purpose, the standard fine-grain hypergraph
model, which contains slice nets that encode communication
volume, is augmented with fiber nets. Each fiber net connects
all vertices corresponding to the nonzeros constituting the fiber.

For the CSF-D scheme, a net nf
ij is created for each non-

zero fiber Xði; j; :Þ along the longest mode. Similarly, a net
nf
ik is created for each nonzero fiber Xði; :; kÞ along the sec-

ond longest mode. The sets of vertices connected by nf
ij and

nf
ik are respectively defined as

Pinsðnf
ijÞ ¼ fvijk : Xði;j;kÞ 6¼ 0 8k 2 f1; ::; Kgg (10a)

Pinsðnf
ikÞ ¼ fvijk : Xði;j;kÞ 6¼ 0 8j 2 f1; ::; Jgg: (10b)

For the CSF-S scheme, constructing the nets for the longest-
mode fibers suffices, and the set of vertices connected by each
fiber net is the same as in (10a).

The fiber-net augmentation can be easily integrated into
the RB-based framework given in Algorithm 4. After con-
structing the hypergraph model, the sets of fibers F (line 3)
and F2 (line 8) provide the sufficient nonzero-to-fiber rela-
tions that can be used to construct the fiber nets. No other
modifications are needed in the RB-STEP routines.

Consider a partition P of an augmented hypergraph for
the CSF-S scheme. In P, a cut slice net ns with connectivity
conðnsÞwill incur a communication of RðconðnsÞ � 1Þwords
during each MTTKRP operation as in the standard fine-
grain hypergraph model. In P, internal fiber nets do not
incur any increase in the total number of flops. However, a
cut fiber net nf with connectivity conðnfÞ encodes an
increase of 2RðconðnfÞ � 1Þ flops during each MTTKRP
operation. A similar discussion holds for the CSF-D scheme.

For the CSF-S scheme, the cost of fiber nets along the lon-
gest mode is set to 2R, whereas the cost of slice nets is set to
aR. For the CSF-D scheme, the cost of fiber nets along the
longest and second longest modes are set to 2RðN � 1Þ and
2R respectively, whereas the cost of slice nets are set to
aRN . Here, a refers to the scaling factor between the cost of
increasing the communication volume by R words and the
cost of increasing the total flop count by 2R.

In the augmented fine-grain hypergraph model, the parti-
tioning objective ofminimizing the cut sizewill simultaneously
encode minimizing both the communication volume and the
increase in total flop count. The partitioning constraint ofmain-
taining balance on part weighs (according to the proposed ver-
tex weighting schemes described in Section 4.1) will encode
minimizing the flop count of the bottleneck processor with
decreasing � because of the proposed fiber-net augmentation.

The augmentation of fiber nets is also expected to contrib-
ute to improving the accuracy of the IFS scheme. Reducing the
number of cut fiber nets relates to maximizing the number of
internal nets, where internal nets correspond to unfragmented
fibers. So, increasing the number of unfragmented fibers ena-
bles the IFS scheme to correctly encode the contribution of
larger number of fibers to the part weights. So, the objective
of reducing fiber fragmentation decreases the number of

erroneous vertex weight contributions incurred by frag-
mented fibers. This decrease is expected to improve the accu-
racy of the IFS scheme thus leading to better load balancing.

5 EXPERIMENTS

5.1 Setting

There are several successful hypergraphpartitioning tools [18],
[20], [21]. We use PaToH [18] (version 3.2) in speed mode and
the value of � is set to 0.10. Since PaToH contains randomized
algorithms, we partition each tensor three times for each parti-
tioning method, and we report the average of the three
instances.

The topologies of the hypergraph models are orthogonal
to the value of R. On the other hand, the vertex weighting
schemes as well as the net costs presented in this paper
involve R, which acts as a scaling factor, for the sake of clar-
ity of presentation. Thus, removing this scaling factor affects
neither the cutsize nor the balancing qualities, so in our par-
titioning implementation the R value is set to one.

For the parallel experiments, we use the parallel CP-ALS
code developed and used in the work by Acer et al. [11]. The
code is implemented in C, uses MPI for interprocess com-
munication and compiled with gcc version 8.3.0 using O3

optimization flag. The MTTKRP implementation in the code
is based on the flop-efficient formulation in (2), which is
identical to CSF-D. We have modified the code to include
CSF-S. The runtimes of CP-ALS are reported as per-iteration
times by taking the average of total runtime of 50 iterations.

Our parallel experiments are conducted on Bull Sequana
X1000 system. A node in this system operates on dual Intel
Xeon Skylake 8168 with total of 48 cores, 96 GB of memory
and 2.70 GHz clock frequency. The nodes are connected
with the high speed network EDR-Infiniband (Connect-X4).

5.2 Dataset

Our dataset is composed of six real-world sparse tensors
commonly used as a benchmark for parallel sparse tensor
research. Table 1 shows the properties of the tensors.
Enron [22] consists of words of email exchanges in the
form of sender-receiver-word-date quadruplets. It has been
used with tensor decomposition methods for social network
analysis and link prediction [23]. Flickr is a binary tensor
representing user-image-tag-date quadruplets, which was
first crawled by G€orlitz et al. [24] from flickr.com.

Bhargava et al. [25] factorize Flickr using CP-ALS for
forming multi-dimensional collaborative recommendations.
Movies-amazon represents user-movie-word triplets extra-
cted from the user reviews of movies in Amazon [26].

TABLE 1
Properties of Test Tensors

size of dimensions

Tensor I J K L nnz Density

Enron 6.0K 5.6K 244.2K 1.1K 54.2M 5:5 � 10�9
Flickr 319.6K 28.1M 1.6M 730 112.9M 1:1 � 10�14
Movies-amazon 87.8K 4.4K 226.5K — 15.0M 1:7 � 10�7
Nell-1 2.9M 2.1M 25.5M — 143.6M 9:1 � 10�13
Nell-2 12.1K 9.2K 28.8K — 76.8M 2:4 � 10�5
Yelp 686.5K 85.5K 773.2K — 185.5M 4:1 � 10�9
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Movies-amazon is one of the datasets used for evaluating
recommender systems research, including CPD-based sys-
tems. Nell-1 and Nell-2 [27] represent entity-relation-entity
tuples of the Never Ending Language Learner knowledge
base. Kang et al. [28] used both tensors for concept discovery
and contextual synonym detection using CP-ALS. Yelp con-
tains user-business-word triplets obtained from business
reviews in Yelp academic dataset.1 Yelp is generally used in
the context of tensor decomposition for community detection
and recommender systems.

5.3 Performance Comparison

We compare the performance of the proposed improvement
schemes against the baseline FG method in terms of compu-
tational and communication cost metrics as well as parallel
MTTKRP and CP-ALS times on the 6 tensors given in
Table 1. We use P ¼ 512 and a ¼ 10 in all tables unless spec-
ified otherwise.

The computational cost metrics consist of maximum and
average number of flops performed by a processor. The
communication cost metrics consist of maximum and aver-
age send volume handled by a processor. The latency-based
communication cost metrics regarding maximum and aver-
age number of messages sent by a processor are not
reported as all methods display almost the same perfor-
mance on these metrics. Here, average flop count and aver-
age volume values refer to the total flop count and total
volume values, respectively, divided by the number of pro-
cessors. We prefer to report average values instead of total
values because the former give a better view on the devia-
tion of maximum from average. When a normalized value
is presented, it means the value of the respective method
divided by that of other method (usually the baseline). Since
we aim at minimizing all performance metrics considered in
this paper, a normalized value of < 1 means an improve-
ment over the baseline, and deterioration otherwise.

5.3.1 Results of CSF-S Experiments

Table 2 displays the performance improvement rates
attained by the optimization schemes in Section 4 in an
incremental way. Note that ”Avg.” row at the bottom of the
table and all other tables refers to the geometric mean. As

seen in the table, on average, utilizing IFS for vertex weight-
ing (Algorithm 4) in FG+ improves the maximum and aver-
age flop counts by 8.0 and 4.0 percent, respectively,
compared to FG. Fiber-net augmentation used in FG++ sig-
nificantly decreases maximum and average flop counts
respectively by 16.3 and 14.6 percent compared to FG+. As
seen in the table, utilizing the two optimization schemes in
FG++ leads to a significant decrease in the maximum and
average flop counts respectively by 23.2 and 17.8 percent
compared to the baseline FG method.

As seen in Table 2, in terms of communication volumemet-
rics, FG+ attains slightly better performance compared to FG.
That is, FG+ reduces the maximum and average communica-
tion volumes by 6.2 and 7.0 percent compared to FG, on aver-
age. Comparing FG++ against FG+ shows that although they
display comparable performance in terms of average commu-
nication volume, FG++ achieves considerably better perfor-
mance in terms of maximum communication volume by an
amount of 9.6 percent. As seen in the table, FG++ achieves a
considerable decrease in the maximum and average commu-
nication volume respectively by 15.5 and 7.3 percent com-
pared to the baseline FG method. These findings show that
the use of fiber nets do not lead to performance degradation
in communication volume metrics. This can be attributed to
the fact that fiber nets are subnets of the slice nets. Relatively
better performance obtained by FG++ against FG in terms of
maximum volume compared to average volume can be attrib-
uted to the expectation that better computational load balanc-
ing achieved by FG++ leads to a better communication
volume balancing. Here and hereafter, the proposed FG++
will be referred to as impFG.

Table 3 shows how the above-mentioned performance
improvements lead to improving the actual parallel runtimes.
In the table, the values under FG are actual runtimes, while
those under impFG are normalized with respect to those of
FG. Under MTTKRP tab, the “comp” column refers to the
computational part of the MTTKRP operation, whereas “tot”
refers to the total runtime of theMTTKRP operation including
communication. Comparing “max flops” column of impFG in
Table 2 with the “comp” column of impFG in Table 3 show
that there exist close correlation between the amount of
improvement in maximum flop count and the amount of
improvement in parallel MTTKRP computation time. That is,
the 23 percent improvement attained by impFG in maximum
flop count reflects as approximately 22 percent improvement

TABLE 2
Performance Comparison in Terms of Computational and Communication Cost Metrics on P ¼ 512 Processors for CSF-S

IFS: Inverse-Fiber-Size for vertex weighting with RB (Sections 4.1 and 4.2); FNA: Fiber Net Augmentation (Section 4.3) with a ¼ 10.

1. https://www.yelp.com/dataset/challenge
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in parallel MTTKRP computation time. In fact, this close rela-
tion also applies to individual tensors except for Nell-2. For
example, 28, 25, 13, 18 and 29 percent reduction in max flop
counts obtained by impFG for the tensors Enron, Flickr,

Amazon, Nell-1 and Yelp respectively reflect as approxi-
mately 36, 23, 11, 15 and 32 percent improvement in parallel
MTTKRP computation times. This confirms the validity of the
maximum flop count metric in determining the parallel com-
putation time.

Table 3 also shows relative runtime performance varia-
tion of impFG over FG with increasing R. We use the same
partitioned tensor, for each tensor, to obtain the parallel
running times with different R values. Keep in mind that
with increasing R value, the improvement ratios of impFG
over FG remain the same in terms of computational and
communication cost metrics (as in Table 2). As seen in the
normalized columns of Table 3, the relative performance of
impFG over FG slightly increases with increasing R in terms
of both parallel MTTKRP and CP-ALS runtimes. This is
expected because, with increasing R, while latency-based
communication costs remain the same, communication vol-
ume and computational costs increase.

Table 4 shows the effect of augmenting fiber nets on the
total communication volume along the longest mode as well
as the other N � 1modes. In the table, the values under FG
are actual communication volume values (in words), while
those under impFG are normalized with respect to those of
FG. Comparing the relative performance of impFG over FG,
the fiber-net augmentation along the longest mode incurs an
increase in communication volumeduring theMTTKRPoper-
ation along that mode, whereas it achieves a decrease in com-
munication volume during MTTKRP operations along all
other N � 1modes. As seen in the table, on average, impFG
incurs 16 percent increase in total volume during MTTKRP

along the longest mode, whereas it achieves 20 percent
decrease in that along all otherN � 1modes.

The above-mentioned experimental finding can be attrib-
uted to the fact that the nets representing the fibers along the
longest mode are subnets of the nets that represent slices of
the otherN � 1modes. That is, trying to keep fiber nets along
the longest mode internal can be expected to increase the pos-
sibility of keeping the nets representing slices along other
N � 1modes internal as well. Recall that the communication
volume during MTTKRP operations along different modes
differ depending on the number and connectivities of the cut
nets representing slices along those modes. As seen in the last
column of Table 3, impFG achieves an average decrease of
7 percent compared to FG in total volume during all MTTKRP
operations. However, for some tensors such as Nell-1 and
Nell-2, fiber-net augmentation respectively incurs overall
communication volume increase of 4 and 15 percent. This is
because for FG on Nell-1 and Nell-2, the total volume
along the longest mode is larger than or very close to that of
all other N � 1modes. In other tensors, such as Flickr, the
communication volume along allN � 1modes is significantly
larger than that of the longest mode. Therefore, the overall
improvement achieved by fiber-net augmentation depends
on two factors; the relative communication volume during
the longest and N � 1modes, and the increase/decrease
incurred/achieved along the longest and otherN � 1modes.

Table 5 shows the effect of different a values on the per-
formance of fiber-net augmentation in impFG. We ran the
impFG method with a ¼ 5, 10, 50 and 100. We report the
average flop count and communication volume statistics in
Table 5 as actual values. As seen in the table, increasing the
a value (giving more importance to decreasing total com-
munication volume over decreasing fiber fragmentation)
results in increasing the total flops while the communication

TABLE 3
Performance Comparison in Terms of Parallel
Runtimes on P ¼ 512 Processors for CSF-S

TABLE 4
Performance Comparison in Terms of Total Volume
During MTTKRPAlong the Longest Mode and Other
N � 1Modes on P ¼ 512 Processors for CSF-S

TABLE 5
Computational and Communication Cost Metrics

(in terms of R) of the impFG Method With Different a
Values on P ¼ 512 for CSF-S
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volume is decreased. As a trade-off between total flops and
communication volume, we choose a ¼ 10 for the rest of
tables and figures in this section.

5.3.2 Results of CSF-D Experiments

The performance comparisons in the previous section
regarding the incremental performance improvement atta-
ined by the optimization schemes in Section 4, the effect of
different R values as well as the effect of a value apply to
the CSF-D scheme as well. In order to present a wider spec-
trum of results, here we study the effect of applying the
CSF-S-based and the CSF-D-based optimization schemes on
the computational and total volume cost metrics for the
CSF-D-based MTTKRP. We perform this in order to justify
proposing a separate optimization techniques for CSF-D.
Here and hereafter, the superscripts ‘S’ and ‘D’ will be used
to distinguish the CSF-S-based and CSF-D-based optimiza-
tion schemes on the FG method. All the experiments in this
section utilize the CSF-D-based MTTKRP regardless of the
type of optimization scheme applied.

Table 6 compares impFGD against impFGS in terms of
computational and total communication volume statistics
normalized with respect to those of FG. In the table, these sta-
tistics are detailed along the longest mode, remaining
N � 1modes, and all modes. As seen in the table, on average,
utilizing the IFS scheme and fiber-net augmentation for the
longest mode only (CSF-S-based improvements) in the
impFGS method improves the maximum and average flop
counts by 13.0 and 11.0 percent, respectively, compared to
the FG method in all modes. Utilizing the IFS scheme and
fiber-net augmentation for both longest and second longest
modes (CSF-D-based improvements) in the impFGD method
improves the maximum and average flop counts by 4.6 and
7.8 percent, respectively, compared to the impFGS method in
all modes. Although the maximum and average flop counts
alongN � 1modes are almost the same for both impFGS and
impFGD, the relative improvements in all modes come from
improving the maximum and average flop counts along the
longest mode by 14.6 and 17.0 percent, respectively. As also
seen in the table, the impFGD method respectively achieves
17.0 and 18.0 percent improvements in maximum and aver-
age flop counts compared to the baseline FGmethod.

Comparison in terms of total volume metric shows a simi-
lar behavior as the comparison in terms of computational cost

metrics discussed above. That is, utilizing the CSF-S-based
improvements for the CSF-D-based MTTKRP in the impFGS

method incurs an increase of 16.0 percent, on average, in total
volume along the longest mode compared to FG. On the other
hand, impFGD achieves an improvement of 10.0 percent in
total volume during theMTTKRP along the longest mode as a
result of augmenting the fiber nets along the second longest
mode. The effect of this improvement can be seen in the table
as 7.5 percent improvement in terms of total volume of
impFGD compared to impFGS along all modes. As seen in the
table, impFGD achieves 14 percent improvement in terms of
total volume compared to FG along all modes.

Table 7 shows how the performance improvement
achieved by the proposed impFGD method in computational
and total volume metrics lead to improvements in actual par-
allel runtimes. In the table, the values under FG are actual run-
times, while those under impFGD are normalizedwith respect
to those of FG. Comparing “max flop” column of impFGD in
Table 6 (along all modes) with the “MTTKRP comp” column
of impFGD in Table 7 shows the close correlation between the
amount of improvement in maximum flop count and the
amount of improvement in parallel MTTKRP computation
time. That is, the 17.0 percent improvement attained by
impFGD in maximum flop count reflects as approximately
21.0 percent improvement in parallel MTTKRP computation
time, on average. As also seen in the table, the CP-ALS run-
time improves, on average, by 17.0 percent as a result of
applying the optimization schemes for CSF-D.

Figs. 3a and 3b respectively display the strong scaling
curves of impFG versus FG and impFGD versus FG. Note

TABLE 6
Performance Comparison in Terms of Computational and Total Volume Metrics on P ¼ 512 Processors for CSF-D

IFSS, FNAS, and impFGS denote the improvement schemes denoted at the bottom of Table 2.

TABLE 7
Performance Comparison in Terms of Parallel Runtimes

on P ¼ 512 Processors for CSF-D With R ¼ 64
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that in Fig. 3a the CSF-S scheme is utilized for computing
the MTTKRP, whereas in Fig. 3b the CSF-D is utilized
instead. The curves display parallel runtimes of the CP-ALS
algorithm on P ¼ 128 up to P ¼ 1024 processors with R ¼
64. As seen in the figure, impFG increases the scalability of
FG for both CSF-S and CSF-D schemes on all tensors. The
relative scalability between impFG and FG for CSF-S and
CSF-D schemes shows similar trend for all tensors, except
for Nell-2 which favors the CSF-D scheme. That is, for
Nell-2, although impFG and FG show very close scaling
performance for CSF-S scheme, impFGD displays signifi-
cantly better performance than FG for CSF-D. A grasp of the
actual runtime values can be taken from comparing the val-
ues of the CP-ALS column in Table 3 for R ¼ 64 with the
same column values in Table 7.

6 RELATED WORK

In the literature, there are various CP-ALS implementations
adopting different parallelism paradigms [13], [17], [28],
[29], [30], [31], [32]. On distributed-memory systems,
DMS [17] is the most commonly-used implementation.
DMS adopts a multi-dimensional cartesian partitioning
approach, however it does not support different partition-
ing techniques coming in more irregular forms.

To devise intelligent tensor partitioning models, sparse
matrix partitioning community adapted well-known sparse
matrix partitioning models for tensors. These models came in
different granularities: coarse-grain [9], multi-dimensional
cartesian model [11], fine-grain [9] and medium-grain [12].
The multidimensional cartesian model is derived from the

hypergraphmodel proposed earlier for 2D checkerboard par-
titioning of sparse matrices [33], [34]. The fine-grain model
can be considered as an extension of the fine-grain hyper-
graph model for 2D nonzero-based sparse matrix partition-
ing [33], [35], [36] to multi-dimensional tensor partitioning.
The recent general medium-grain model [12] can be consid-
ered as an extension of themedium-grainmodel for 2D sparse
matrix partitioning [37] to tensors. Among these, fine-grain
model achieves theminimum communication volume as well
as the best computational balance on the tensor nonzeros
assigned to processors.

Sparse tensor storage formats includeCOO (coordinate) [9],
CSF (compressed sparse fiber) [14], and HiCOO (hierarchical
coordinate) [15]. COO corresponds to a list of tensor nonzeros,
where each nonzero represented by a list of indices and the
value. Besides its simplicity, COO stores repeated indices
(within a fiber or a slice) redundantly and the MTTKRP on
COO performs redundant flops (see Section 3.1). CSF and
HiCOO are motivated by reducing the storage used by COO,
due to the limited memory in shared-memory architectures.
While the (sequential) MTTKRP algorithm on HiCOO has the
same flop count as that on COO, the algorithm on CSF
achieves a much better flop count compared to those on COO-
based formats. This improvement in the flop countmakes CSF
themost favorable alternative for the local MTTRKP computa-
tion on distributed-memory systems.

7 CONCLUSION

We proposed two improvement schemes to the existing fine-
grain hypergraph model in order to address the deficiencies

Fig. 3. Strong scaling curves for parallel CP-ALS obtained by FG and impFG using (a) CSF-S and (b) CSF-D.
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introduced by utilizing the CSF-orientedMTTKRP for distrib-
uted-memory CP-ALS computation. The improvement
schemes target at achieving true computational load balanc-
ing among processors, thus leading to faster parallel runtime.
The improvement schemesdonot deteriorate the communica-
tion overhead. In fact, the total volume overhead decreases as
a result of better load balancing, while the latency overhead
stays the same as that of the FGmethod.On average, applying
the proposed improvement schemes to the FG method
improves the parallel MTTKRP computation time and the
overall CP-ALS time respectively by 22.0 and 14.0 percent on
512 processors, and with similar percentages on 128, 256 and
1024.As futurework,we plan to extend the proposed true bal-
ancing method for other nonzero-based tensor partitioning
models.
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