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TAHSIN M. KURÇ kurc@cs.umd.edu

Computer Science Department, University of Maryland, College Park, MD 20742

CEVDET AYKANAT aykanat@cs.bilkent.edu.tr

Computer Engineering Department, Bilkent University, TR-06533 Ankara, Turkey

(Received February 26, 1998; final version accepted November 17, 1998)

Abstract. Twelve adaptive image-space decomposition algorithms are presented for sort-first parallel
direct volume rendering (DVR) of unstructured grids on distributed-memory architectures. The algo-
rithms are presented under a novel taxonomy based on the dimension of the screen decomposition, the
dimension of the workload arrays used in the decomposition, and the scheme used for workload-array
creation and querying the workload of a region. For the 2D decomposition schemes using 2D workload
arrays, a novel scheme is proposed to query the exact number of screen-space bounding boxes of the
primitives in a screen region in constant time. A probe-based chains-on-chains partitioning algorithm
is exploited for load balancing in optimal 1D decomposition and iterative 2D rectilinear decomposition
(RD). A new probe-based optimal 2D jagged decomposition (OJD) is proposed which is much faster
than the dynamic-programming based OJD scheme proposed in the literature. The summed-area table
is successfully exploited to query the workload of a rectangular region in constant time in both OJD
and RD schemes for the subdivision of general 2D workload arrays. Two orthogonal recursive bisection
(ORB) variants are adapted to relax the straight-line division restriction in conventional ORB through
using the medians-of-medians approach on regular mesh and quadtree superimposed on the screen. Two
approaches based on the Hilbert space-filling curve and graph-partitioning are also proposed. An effi-
cient primitive classification scheme is proposed for redistribution in 1D, and 2D rectilinear and jagged
decompositions. The performance comparison of the decomposition algorithms is modeled by estab-
lishing appropriate quality measures for load-balancing, amount of primitive replication and parallel
execution time. The experimental results on a Parsytec CC system using a set of benchmark volumet-
ric datasets verify the validity of the proposed performance models. The performance evaluation of the
decomposition algorithms is also carried out through the sort-first parallelization of an efficient DVR
algorithm.
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1. Introduction

In many fields of science and engineering, computer simulations provide a cheap
and controlled way of investigating physical phenomena. The output of these simu-
lations is usually a large amount of numerical values, which makes it very difficult for
scientists to extract useful information from the data to derive useful conclusions.
Therefore, visualizing large quantities of numerical data as an image provides an
indispensable tool for researchers. In many engineering simulations, datasets con-
sist of numerical values which are obtained at points (sample points) distributed
in a volume that represents the physical environment. The sample points consti-
tute a volumetric grid superimposed on the volume, and they are connected to some
other nearby sample points to form volume elements (cells). Volumetric grids can
be divided into two categories as: structured and unstructured. Structured grids are
topologically equivalent to the integer lattices, and as such, can easily be repre-
sented by a 3D array. In unstructured grids, the sample points in the volume data
are distributed irregularly over 3 dimensional (3D) space and there may be voids
in the volumetric grid. Unstructured grids are also called cell oriented grids, be-
cause they are represented as a list of cells with pointers to the sample points that
form the respective cells. With recent advances in generating higher quality adap-
tive meshes, unstructured grids are becoming increasingly popular in the simulation
of scientific and engineering problems with complex geometries.

There are two major categories of volume rendering methods: indirect and direct.
Indirect methods extract intermediate geometrical representation of the data (i.e.
isosurfaces), and render those surfaces via conventional surface rendering methods.
Direct methods render the data without generating an intermediate representation,
hence they are more general, flexible and have the potential to provide more com-
plete information about the data being visualized. However, direct methods are slow
due to massive computations. Large scale scientific and engineering simulations are
usually performed in parallel on distributed-memory architectures. Parallel visual-
ization of the vast amount of volumetric data produced by these simulations on the
same parallel machine saves the time to transfer the data from the parallel ma-
chine to a sequential graphics workstation over possibly slow communication links.
Hence, direct volume rendering (DVR) is a good candidate for parallelization on
distributed-memory multicomputers.

1.1. Direct volume rendering (DVR)

In general, the DVR methods consist of two main phases. These are resampling and
composition phases, which are in general manipulated in a highly interleaved man-
ner. In the resampling phase, new samples are interpolated by using the original
sample points. The rendering method should somehow locate the new sample point
in the cell domain, because the vertices of that cell, in which the new sample is be-
ing generated, will be used in the interpolation for the new sample. This problem
is known as the point location problem. In the composition phase, the new sam-
ples generated are mapped to color and opacity values, which are composited to
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determine the contribution of the data on a pixel. The composition operation is as-
sociative, but not commutative; therefore these color and opacity values should be
composited in visibility order. The determination of the correct composition order
is known as the view sort problem.

The DVR algorithms for unstructured grids can be classified into three categories:
ray-casting, projection and hybrid [31]. In the ray-casting methods, the image space
is traversed to cast a ray for each pixel, and each ray is followed, sampled and
composited along the volume. In the projection methods, the volume is traversed
to perform a view-dependent depth sort on the cells. Then, all cells are projected
onto the screen, in this sorted order, to find their contributions to the image and
composite them. In the hybrid methods, the volume is traversed in object order such
that the contributions of the cells to the image are accumulated in image order.

A DVR application contains two interacting domains: object space and image
space. The object space is a 3D domain containing the volume data to be visual-
ized. The image space (screen) is a 2D domain containing pixels from which rays
are shot into the 3D object domain to determine the color values of the respective
pixels. Based on these domains, there are basically two approaches for data parallel
DVR: object-space parallelism and image-space parallelism. The cells or cell clus-
ters constitute the atomic tasks in the object-space parallelism, whereas the pixels
or pixel blocks constitute the atomic tasks in the image-space parallelism. The par-
allel DVR algorithms can also be categorized according to the taxonomy proposed
by Molnar et. al. [18] for parallel polygon rendering. In polygon rendering, the ren-
dering process is a pipeline of operations applied to the primitives in the scene. This
rendering pipeline has two major steps called geometry processing and rasterization.
Molnar et al. [18] provides a classification of parallelism, based on the point of
data redistribution step in the rendering pipeline, as sort-first (before geometry pro-
cessing), sort-middle (between geometry processing and rasterization), and sort-last
(after rasterization). In this taxonomy, the image-space and object-space parallelism
in DVR can be considered as the sort-first and sort-last parallelism, respectively.

In sort-last (object-space) parallel DVR, the 3D object domain is decomposed
into disjoint subvolumes and each subvolume is concurrently rendered by a distinct
processor. At the end of this local rendering phase, incomplete full-screen images
are created at each processor. In the pixel-merging phase, these local partial images
are merged for composition over the interconnection network. The sort-last paral-
lelism is a promising approach offering excellent scalability in terms of the number
of primitives it can handle. However, it suffers from high interprocessor communi-
cation volume during the pixel merging phase especially at high screen resolutions.

1.2. Sort-first parallel DVR

In sort-first (image-space) parallel DVR, which is the focus of this work, each pro-
cessor is initially assigned a subset of primitives in the scene. The screen is decom-
posed into regions and each region is assigned to a distinct processor for rendering.
The primitives are then redistributed among the processors so that each processor
has all the primitives whose projection areas intersect the region assigned to it. The
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primitives whose projection areas intersect more than one region are replicated in
the processors assigned to those regions. After primitive redistribution, each pro-
cessor performs local rendering operations on its region. The sort-first parallelism
is a promising approach since each processor generates a complete image for its lo-
cal screen subregion. However, it faces load-balancing problems in the DVR of un-
structured grids due to uneven on-screen primitive distribution. Hence, image-space
decomposition is a crucial factor in the performance of the sort-first parallelism.

The image-space decomposition schemes for sort-first parallel DVR can be clas-
sified as static, dynamic and adaptive. Static decomposition is a view-independent
scheme and the load-balancing problem is solved implicitly by the scattered assign-
ment of the pixels or pixel blocks. The load-balancing performance of this scheme
depends on the assumption that neighbor pixels are likely to have equal workload
since they are likely to have similar views of the volume. The scattered assignment
scheme has the advantage that assignment of screen regions to processors is known
a priori and static irrespective of the data. However, since the scattered assignment
scheme assigns adjacent pixels or pixel blocks to different processors, it disturbs the
image-space coherency and increases the amount of primitive replication. Here, the
image-space coherency relies on the observation that rays shot from nearby pixels
are likely to pass through the same cells involving similar computations. In addi-
tion, since decomposition is done irrespective of input data, it is still possible that
some regions of the screen are heavily loaded and some processors may perform
substantially more work than the others. In the dynamic approach, pixel blocks
are assigned to processors in a demand-driven basis when they become idle. The
dynamic approach also suffers from disturbing the image-space coherency since ad-
jacent pixel blocks may be processed by different processors. Furthermore, since
region assignments are not known a priori, each assignment should be broadcast to
all processors so that necessary primitive data is transmitted to the respective pro-
cessor. Hence, the dynamic scheme is not a viable approach for message-passing dis-
tributed memory architectures. Adaptive decomposition is a view-dependent scheme
and the load-balancing problem is solved explicitly by using the primitive distribu-
tion on the screen. The adaptive scheme is a promising approach since it handles
the load-balancing problem explicitly and it preserves the image-space coherency as
much as possible by assigning contiguous pixels to the processors.

1.3. Previous work

Most of the previous work on parallel DVR of unstructured grids evolved on shared-
memory multicomputers [3, 5, 29]. Challinger [3, 5] presents image-space paral-
lelization of a hybrid DVR algorithm [4] for BBN TC2000 shared-memory multi-
computer. In the former work [3], the scanlines are considered as the atomic tasks
and they are assigned to the processors using the static (scattered) and dynamic
(demand-driven) schemes for two different algorithms. In the latter work [5], the
screen is divided into square pixel blocks which are considered as the atomic tasks
for dynamic assignment. The pixel blocks are sorted in decreasing order according
to the number of primitives associated with them, and they are considered in this
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sorted order for dynamic assignment to achieve better load-balancing. Williams [29]
presents object-space parallelization of a projection based DVR algorithm [30] on
Silicon Graphics Power Series. The target machine is a shared-memory multicom-
puter with computer graphics enhancement. Ma [15] investigates sort-last paral-
lelization of a ray-casting based DVR algorithm [8] on an Intel Paragon multicom-
puter which is a message-passing distributed-memory architecture.

1.4. Contributions

In this work, we investigate sort-first parallelism for DVR of unstructured grids
on distributed-memory architectures. This type of parallelism was not previously
utilized in DVR of unstructured grids on distributed-memory multicomputers. We
present twelve adaptive image-space decomposition algorithms under a novel tax-
onomy. The proposed taxonomy is based on the dimension of the screen decom-
position and the dimension of the workload arrays used in the decomposition. The
decomposition algorithms are parallelized as much as possible to reduce the prepro-
cessing overhead. Table 1 displays the acronyms used for the image-space decom-
position algorithms listed according to the classification of the proposed taxonomy.

As in the previous works on parallel polygon rendering [7, 20, 25, 28], the num-
ber of primitives that fall onto a region is used to represent the workload of the
region. The screen-space bounding-box of the projection area of a primitive is used
to approximate the coverage of the primitive on the screen. The bounding-box ap-
proximation is selected to avoid expensive computations needed in finding the ex-

Table 1. The image-space decomposition algorithms

Classification Abbreviation Complete name Primitive classification

HHD Heuristic Horizontal Decomposition Inverse-mapping
1D-1D-exact OHD Optimal Horizontal Decomposition Inverse mapping

HJD Heuristic Jagged Decomposition Inverse mapping
2D-1D-exact ORB-1D Orthogonal Recursive Bisection with 1D

arrays
Rectangle-intersection

OJD-I Optimal Jagged Decomposition using In-
verse area heuristic for workload array

Inverse mapping

ORB-I Orthogonal Recursive Bisection using In-
verse area heuristic for workload array

Rectangle-intersection

ORBMM-Q Orthogonal Recursive Bisection with Me-
dians of Medians on Quadtree

Mesh

2D-2D-IAH ORBMM-M Orthogonal Recursive Bisection with Me-
dians of Medians on cartesian Mesh

Mesh

HCD Hilbert Curve based Decomposition Mesh
GPD Graph Partitioning based Decomposition Mesh

OJD-E Optimal Jagged Decomposition using Ex-
act model for workload array

Inverse mapping

2D-2D-exact RD Rectilinear Decomposition Inverse mapping
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act primitive coverage. All the decomposition algorithms query the bounding-box
counts (bb-counts) of the screen subregions repeatedly during the subdivision pro-
cess. Here, the bb-count of a region refers to the number of bounding boxes inter-
secting the region. We show that the exact bb-count of a stripe along one of the
dimensions can be found in constant time using two 1D workload arrays. This idea
is also exploited in some of the 2D decomposition algorithms producing rectangular
subregions in a hierarchical manner through using 1D workload arrays. In a pre-
vious work by Muller [20], a heuristic scheme, referred to here as the inverse area
heuristic (IAH), is used to estimate the bb-count of a region using one 2D array.
In this work, we propose a novel scheme, referred to here as the exact model, to
query the exact bb-count of a rectangular region in constant time by using four 2D
workload arrays. Both IAH and exact models are used in the 2D decomposition
algorithms utilizing 2D workload arrays.

We present subdivision algorithms that find optimal decompositions for load-
balancing. The load-balancing problem in 1D decomposition is modeled as the
well-known chains-on-chains partitioning (CCP) problem [2]. The objective in the
CCP problem is to divide a given chain of modules into a number of consecutive
subchains such that the load of the most heavily loaded subchain is minimized. An
efficient probe-based CCP algorithm is utilized for optimal 1D (horizontal) decom-
position. The probe-based CCP algorithm is also exploited for two different 2D
decomposition schemes: optimal jagged decomposition (OJD) and heuristic recti-
linear decomposition (RD). The proposed OJD scheme is a novel scheme appli-
cable to the subdivision of general 2D workload arrays, and it is much faster than
the dynamic-programming based OJD scheme proposed in the literature [17]. The
summed-area table [6] is successfully exploited to query the workload of a rectan-
gular region in constant time in both OJD and RD schemes for the subdivision of
general 2D workload arrays.

Three distinct 2D decomposition approaches, which generate non-rectangular
regions, are also investigated for image-space decomposition. Two orthogonal re-
cursive bisection (ORB) variants are implemented to alleviate the load-imbalance
problem due to the straight-line division restriction in the ORB scheme adopted
by Mueller [20] (referred to as MAHD in his work). These ORB variants apply
the medians-of-medians [23, 27] approach on regular mesh and quadtree superim-
posed on the screen. The Hilbert space-filling curve [19, 23, 27] is exploited for
image-space decomposition. Finally, image-space decomposition is modeled as a
graph-partitioning problem and state-of-the-art graph partitioning tool MeTiS [10]
is used for partitioning the generated graph.

Three classification schemes are investigated for primitive redistribution to be
performed according to the region-to-processor assignment. A straightforward
mesh-based local primitive classification algorithm can be used for the decom-
position algorithms that generate both rectangular and non-rectangular regions.
However, it is computationally very expensive since it involves tallying the bounding
boxes of the primitives. The rectangle-intersection based classification algorithm is
more efficient for the decomposition schemes that generate rectangular regions.
Furthermore, a much more efficient inverse-mapping based classification scheme
is proposed for the 1D horizontal, 2D jagged and 2D rectilinear decomposition
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schemes. The proposed scheme exploits the regular structure of the decomposi-
tions produced by these schemes so that its complexity per primitive is independent
of both the number of processors and the screen resolution.

The load-balancing, primitive-replication and parallel run-time performances
of the decomposition algorithms are compared both theoretically and exper-
imentally. The theoretical models for the comparison of load-balancing and
primitive-replication performances are based on establishing appropriate quality
measures. The experimental results on a Parsytec CC system using a set of bench-
mark volumetric datasets verify the validity of the proposed quality measures. The
performance evaluation of the presented image-space decomposition algorithms is
also carried out through sort-first parallelization of Challinger’s [4] hybrid DVR
algorithm on a Parsytec CC system.

The rest of the paper is organized as follows. Section 2 presents Challinger’s
DVR algorithm [4] and describes its sort-first parallelization. Section 3 summarizes
the basic steps involved in the parallel image-space decomposition. The taxonomy
of the image-space decomposition algorithms is introduced in Section 4. Section 5
presents the workload-array creation algorithms which enable the efficient query of
the workloads associated with the regions during the subdivision phase. The image-
space decomposition algorithms are presented and discussed in Section 6. The prim-
itive classification algorithms for the redistribution phase are given in Section 7. The
models for the theoretical performance comparison of the decomposition algorithms
are presented in Section 8. Finally, Section 9 presents the experimental results.

2. DVR algorithm

The sequential rendering algorithm chosen for sort-first parallelization is based on
the algorithm developed by Challinger [4]. This algorithm adopts the basic ideas in
the scanline Z-buffer based polygon rendering algorithms to resolve the point loca-
tion and view sort problems. As a result, the algorithm requires that the volumetric
dataset is composed of cells with planar faces. This algorithm does not require con-
nectivity information between cells, and it has the power to handle non-convex and
cyclic grids. In this work, the volumetric dataset is assumed to be composed of tetra-
hedral cells. If a dataset contains volume elements that are not tetrahedral, these
elements can be converted into tetrahedral cells by subdividing them [8, 26]. A
tetrahedral cell has four points and each face of a tetrahedral cell is a triangle, thus
easily meeting the requirement of cells with planar faces. Since the algorithm oper-
ates on polygons, the tetrahedral dataset is further converted into a set of distinct
triangles. Only triangle information is stored in the data files.

The algorithm starts with an initialization phase which involves the sorting of the
triangular faces (primitives) into a y-bucket structure according to their minimum
y-values in the screen coordinates. Each entry of the y-bucket corresponds to a
scanline on the screen. The algorithm performs the following initialization opera-
tions for each successive scanline on the screen. Active primitive and active edge lists
for the current scanline are updated incrementally. The active primitive list stores
the triangles intersecting the current scanline, and it is updated incrementally using
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the y-bucket. The active edge list stores the triangle edges intersecting the current
scanline. Finally, a span is generated for the active edge pair of each triangle in
the active primitive list, and it is sorted into an x-bucket according to its minimum
x value. Each entry of the x-bucket corresponds to a pixel location on the current
scanline.

Each successive pixel on a scanline is processed as follows. An active span-list is
maintained and updated incrementally along the scanline. Each entry of the active
span-list stores the z coordinate of the intersection point (z-intersection) of the
primitive that generates the span with the ray shot from the respective pixel location,
span information, a pointer to the primitive, and a flag to indicate whether the
primitive is an exterior or an interior face of the volume. If a face of a cell is
shared by two cells, that face is called interior. If it is not shared by any other
cell, the face is called exterior. The spans in the active span-list are maintained in
sorted increasing order according to their z-intersection values. The z-intersection
values are calculated by the incremental rasterization of the spans stored in the
x-bucket. Two consecutive spans in the list, if at least one of them belongs to an
interior triangle, correspond to the entry and exit faces of a tetrahedral cell hit by
the respective ray in the visibility order. As the entry and exit point z values are
known from the z-intersection values, a new sample is generated in the middle of
the line segment, which is formed by the entry and exit points of the respective
ray intersecting the cell, through 3D inverse-distance interpolation of the scalar
values at the corner points of the respective triangles. The color and opacity values
computed through mid-point sampling along the ray within the cell are composited
to the pixel.

The algorithm exploits image-space coherency for efficiency. The calculations of
intersections of triangular faces with the scanline, and insertion and deletion oper-
ations on the active primitive list are done incrementally. This type of coherency
is called inter-scanline coherency. The z-intersection calculations through span ras-
terization, depth-sorting of active spans according to their z-intersection values,
insertion to and deletion from the active span-list are done incrementally. This type
of coherency is called intra-scanline coherency.

2.1. Workload model

As mentioned earlier, the number of primitives that falls onto a region is used to
approximate the workload of the region through bounding-box approximation. This
workload model is used in the presented image-space decomposition algorithms for
the sake of general performance evaluation of sort-first parallel DVR. However,
there are three parameters affecting the computational load of a screen region
in Challinger’s DVR algorithm [4]. The first one is the number of triangles (primi-
tives), because the total workload of a region due to the transformation of triangles,
insertion operations into the y-bucket, and insertions into and deletions from the
active primitive list is proportional to the number of triangles in the region. The
second parameter is the number of scanlines each triangle extends. This parame-
ter represents the computational workload associated with the construction of the
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edge intersections (hence, corresponding spans), edge rasterization, clipping spans
to the region boundaries, and insertion of the spans into the x-bucket. The total
number of pixels generated through the rasterization of these spans is the third pa-
rameter affecting the computational load of a region. Each pixel generated adds
computations required for sorting, insertions to and deletions from the active-span
list, and interpolation and composition operations. Therefore, the workload (WL)
in a region can be approximated as;

WL = αTNT + αSNS + αPNP: [1]

Here, NT , NS , and NP represent the number of triangles, spans, and pixels, respec-
tively, to be processed in a region. In Eq. 1, αT , αS; and αP represent the relative
unit computational costs of the operations associated with triangles, spans, and pix-
els, respectively.

Finding the exact number of spans and pixels generated in a region due to a
triangle requires the rasterization of the triangle. The bounding-box approximation
used in finding the bb-count of a region is also exploited for estimating the span
and pixel counts of the region. That is, a triangle whose bounding box has corner
points (xmin; ymin) and (xmax; ymax) is assumed to generate ymax − ymin + 1 spans
and �ymax − ymin + 1� × �xmax − xmin + 1� pixels. It is clear that the bounding-box
approximation incurs errors in the estimation of the pixel count of a region in both
1D and 2D decompositions. The bounding-box approximation may also incur errors
in the estimation of the span count of a region in 2D decompositions. For example,
the triangle shown in Figure 1 contributes only one span to the span count of region
R2, while contributing four spans to the span counts of the other three regions R1,
R3 and R4. However, the bounding-box approximation incurs four spans for each
one of the four regions, thus inducing error in the estimation of the span count of
region R2.

It should be noted here that only the bb-counts are considered in the workload
model in the discussion of the image-space decomposition algorithms for the sake of
clarity of the presentation. The pixel and span counts can easily be incorporated into
the workload model by treating each span and pixel covered by the bounding box of
the triangle as bounding boxes of proper height and width with computational loads
of αS and αP , respectively. As will be discussed in Section 9, incorporating the span
and pixel counts into the workload model substantially increases the performance of
the parallelization of Challinger’s DVR algorithm [4] through better load balancing.

3. Parallel image-space decomposition

Parallel adaptive image-space decomposition on distributed-memory architectures
involves five consecutive phases: bounding-box creation, local workload-array cre-
ation, global-sum operation on local workload arrays, subdivision and primitive re-
distribution. In the bounding-box creation phase, processors concurrently create
the screen-space bounding boxes of their local primitives. In the workload-array
creation phase, processors concurrently create their local workload arrays using the
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Figure 1. The bounding-box approximation.

distribution of their local bounding boxes on the full screen. Then, a global-sum
operation is performed on the local arrays so that all processors receive the copies
of the global workload array(s). In the subdivision phase, the screen is subdivided
into P regions using the workload arrays so that each processor is assigned to a
single region. In some of the decomposition schemes, the subdivision operation is
also performed in parallel, whereas in the other schemes the subdivision operation
is not parallelized because of either the sequential nature or the fine granularity
of the subdivision algorithm. The schemes adopting parallel subdivision necessitate
a final all-to-all broadcast operation so that each processor gets all the region-to-
processor assignments. In the redistribution phase, processors concurrently classify
their local primitives according to the region-to-processor assignments. Then, the
primitives concurrently migrate to their new home processors through an all-to-all
personalized communication operation.

4. A taxonomy of the decomposition algorithms

The taxonomy (see Figure 2) proposed for the image-space decomposition algo-
rithms is based on the decomposition strategy and workload arrays used in the
decomposition. The first classification is based on the dimension of the decomposi-
tion of the screen, which is a 2D space. The 1D decomposition algorithms divide in
only one dimension of the screen. These algorithms utilize the workload distribution
with respect to only one dimension. On the other hand, the 2D decomposition al-
gorithms divide the screen in two dimensions by utilizing the workload distribution
with respect to both dimensions of the screen.

The second classification is based on the dimension of the workload arrays used
in the decomposition. The term arrays will also be used to refer to workload arrays.
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Figure 2. The taxonomy of the image-space decomposition algorithms. The abbreviations in the paren-
theses denote the algorithms in the respective class (see Table 1 for the complete names).

In the 1D arrays scheme, 1D arrays are used to find the distribution of the workload
along each dimension of the screen. In the 2D arrays scheme, a 2D coarse mesh is
superimposed on the screen and the distribution of the workload over this mesh is
used to divide the screen.

The third classification is based on the scheme used for workload-array creation
and querying the workload of a region, especially for the 2D decomposition schemes
utilizing 2D arrays. In the inverse area heuristic (IAH) model, an estimate of the bb-
count of a region is found, whereas in the exact model, the exact bb-count of a
region is found. The IAH model handles rectangular and non-rectangular regions
as well as regions consisting of non-adjacent mesh cells when 2D arrays are used.
However, the exact model is only used for rectangular regions because of the high
computational cost of finding the exact bb-counts of non-rectangular and discon-
nected regions.

5. Workload-array creation

This section describes the workload-array creation algorithms for a screen of resolu-
tion M×N . The main objective of the presented algorithms is to enable the efficient
query of workloads associated with regions during the subdivision operation.

5.1. 1D arrays

Here, we present an algorithm which enables to query the exact bb-count of a stripe
in O�1� time by using two 1D arrays. Without loss of generality, we will restrict our
discussion to 1D arrays for the y-dimension of the screen. The first array is the y-
dimension start (YS) array of size M . The second array is the y-dimension end (YE)
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array of size M . Each entry of these arrays corresponds to a scanline in the screen.
Each bounding box with y-extent �ymin; ymax� increments YS�ymin� and YE�ymax� by
one. After processing all bounding boxes, a prefix-sum operation is performed on
both arrays. Hence, YS�j� gives the number of bounding boxes that start before
scanline j, including scanline j, whereas YE�j� gives the number of bounding boxes
that end before scanline j, including scanline j. The workload (WL)—in terms of
the exact bb-count—of a horizontal stripe bounded by scanlines i and j �> i� is
computed as:

WL�i; j� = YS�j� − YE�i− 1�: [2]

5.2. 2D arrays

In the algorithms using 2D arrays, a 2D coarse mesh of size m×n is superimposed
on the screen to make the decomposition affordable both in terms of space and
execution time. The mesh cell weights are computed using the distribution of the
bounding boxes over this coarse mesh.

5.2.1. Inverse-area-heuristic (IAH) model. In this scheme, the bounding boxes are
tallied to the mesh cells. Some bounding boxes may intersect multiple cells. The
IAH model [20] is utilized to decrease the amount of errors due to counting such
bounding boxes many times. Each bounding box increments the weight of each cell
it intersects by a value inversely proportional to the number of cells the bounding
box intersects.

In the IAH model, if the screen regions generated by a decomposition algorithm
do not have any shared bounding boxes then the sum of the weights of the cells
forming each region gives the exact bb-count of that region. However, the shared
bounding boxes still cause errors when calculating the bb-count of a region. The
contribution of a bounding box shared among regions is divided among those re-
gions. Thus, the computed workload of a region is less than the actual bb-count.
However, the error is expected to be less than counting shared bounding boxes
multiple times while adding cell weights.

In order to query the workload of a rectangular region in O�1� time, 2D work-
load array T of size m × n is converted into a summed area table (SAT) [6] by
performing a 2D prefix sum over the T array. The 2D prefix sum is done by per-
forming a 1D prefix sum on each individual row of T followed by a 1D prefix sum
on each individual column of T . After the 2D prefix-sum operation, T �x; y� gives
the workload of the region ��1; 1�y �x; y�� bounded by the corner points �1; 1� and
�x; y�. Hence, the workload of a rectangular region ��xmin; ymin�y �xmax; ymax�� can
be computed using the following expression;

WL = T �xmax; ymax� − T �xmax; ymin − 1� − T �xmin − 1; ymax�
+ T �xmin − 1; ymin − 1�: [3]
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5.2.2. Exact model. In this work, we propose an efficient algorithm for finding
the exact number of bounding boxes in a rectangular region. The proposed method
uses four 2D arrays SXY, EXY, EX, EY each of size m× n (see Figure 3(a)). Each
bounding box with x-extent �xmin; xmax� and y-extent �ymin; ymax� increments both
SXY�xmin; ymin� and EXY�xmax; ymax� by one. Each bounding box also increments
both EX�xmax; y� and EY�x; ymax� by one for ymin ≤ y ≤ ymax and xmin ≤ x ≤ xmax,
respectively. These operations correspond to rasterizing the right and top sides of
the bounding box for computing its contribution to the EX and EY arrays, respec-
tively. After processing all bounding boxes, a 2D prefix-sum operation is performed
on both SXY and EXY arrays. In addition, rowwise and columnwise 1D prefix-
sum operations are performed on the EX and EY arrays, respectively. After the
prefix-sum operations on the arrays, SXY�x; y� gives the number of bounding boxes
intersecting the region ��1; 1�y �x; y��. In other words, it finds the number of bound-
ing boxes that start (or whose lower-left corners reside) in that region. EXY�x; y�
gives the number of bounding boxes that end (whose upper-right corners reside)
in the region ��1; 1�y �x; y��. EX�x; y� gives the number of bounding boxes whose
right sides intersect the line segment ��1; y�; �x; y��. EY�x; y� gives the number of
bounding boxes whose top sides intersect the line ��x; 1�; �x; y��.

After defining the arrays SXY, EXY, EX and EY, we can calculate the exact
bb-count (WL) of a region ��xmin; ymin�y �xmax; ymax�� as follows;

WL = SXY�xmax; ymax� − EXY�xmin − 1; ymax − 1�
− EXY�xmax − 1; ymin − 1�
+ EXY�xmin − 1; ymin − 1� − EX�xmin − 1; ymax�
− EY�xmax; ymin − 1�: [4]

Figure 3. (a) The 2D arrays used for the exact model: (i) SXY, (ii) EXY, (iii) EX, and (iv) EY. (b) The
exact model for calculating the exact number of bounding boxes in the shaded region.
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As seen in Eq. 4, the proposed scheme requires only 4 subtractions and 1 ad-
dition to query the exact bb-count of a rectangular region. The correctness of
Eq. 4 can easily be verified with the help of Fig. 3(b) as follows. Each letter
(A − P) in the figure represents the bounding boxes of the same type. The ex-
act bb-count of the shaded rectangular region is equal to the number of bound-
ing boxes of types A − I. SXY�xmax; ymax� gives the number of bounding boxes of
types A− P . EXY�xmin − 1; ymax − 1� gives the number of bounding boxes of types
J;K;L and EXY�xmax − 1; ymin − 1� gives the number of bounding boxes of types
L;M;N . Since we subtract the number of L-type bounding boxes twice, we add
EXY�xmin − 1; ymin − 1� to the sum. Arrays SXY and EXY are not sufficient for
the exact computation because of the bounding boxes of types O and P . So, we
use EX�xmin − 1; ymax� and EY�xmax; ymin − 1� to subtract the number of bounding
boxes of types P and O, respectively.

6. Screen decomposition algorithms

In this section, we present P-way image-space decomposition algorithms according
to the taxonomy given in Section 4. Here P denotes the number of processors.
Example 16-way decompositions for all decomposition schemes discussed here are
displayed in Figure 6.

6.1. 1D decomposition algorithms

The 1D decomposition schemes use 1D arrays with the exact model. Without loss of
generality, only horizontal decomposition is discussed here. Note that the horizontal
decomposition preserves the intra-scanline coherency which is a valuable asset for
the DVR algorithms utilizing such coherency. The load-balancing problem in the
decomposition of 1D domains can be modeled as the chains-on-chains partitioning
(CCP) problem [2]. In the CCP problem, we are given a chain of work pieces
called modules and wish to partition the chain into P subchains, each subchain
consisting of consecutive modules. The subchain with the maximum load is called
the bottleneck subchain and the load of this subchain is called the bottleneck value of
the partition. The objective is to minimize the bottleneck value. In 1D image-space
decomposition, the ith module corresponds to the ith scanline and the load Wij of
a subchain �i; j� corresponds to the bb-count of the respective horizontal stripe. Wij
is computed in O�1� time by using 1D arrays YS and YE according to Eq. 2.

6.1.1. Heuristic horizontal decomposition (HHD). The screen is decomposed into
P horizontal stripes recursively. At each recursive-bisection step, a region �i; j� is
divided into two regions �i; k� and �k+ 1; j� such that the horizontal division line k
minimizes the expression max�Wi;k;Wk+1; j�. Although each bisection achieves an
optimal division, the sequence of these optimal bisections may lead to poor load
balancing. The HHD algorithm runs in 2�M logP� time.
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6.1.2. Optimal horizontal decomposition (OHD). The existing algorithms for the
optimal solution of the CCP problem can be classified into two categories: dynamic
programming and probe-based methods. We use Nicol’s probe-based CCP algo-
rithm [21] because of its better speed performance. Nicol’s algorithm is based on a
probe function, which takes a candidate bottleneck value L and determines whether
a partition exists with a bottleneck value L′, where L′ ≤ L. The probe function
loads consecutive processors with consecutive subchains in a greedy manner such
that each processor is loaded as much as possible without exceeding L. That is, the
probe function finds the largest index i1 such that W1; i1 ≤ L by using the binary
search. Similarly, it finds the largest index i2 such that W1; i2 ≤ W1; i1 + L. This pro-
cess continues until either all modules are assigned, or some modules remain after
loading P parts. In the former case, we say that a partition with a bottleneck value
no more than L exists. In the latter case, we know that no partition exists with a
bottleneck value less than or equal to L. It is clear that this greedy approach will
find a solution with a bottleneck value no greater than L if there is any. The probe
function runs in O�P logM� time.

Nicol’s algorithm exploits the fact that candidate L values all have the form
of Wij for 1 ≤ i ≤ j ≤ M . It efficiently searches for the earliest range Wij for
which Lopt = Wij by considering each processor in order as a candidate bottleneck
processor in an optimal mapping. The algorithm uses the binary search and finds
the greatest index i1 such that the call of probe with W1; i1 returns false. Here, either
W1; i1+1 is the bottleneck value of an optimal solution, which means that processor 1
is a bottleneck processor, or W1; i1 is the cost of processor 1 in an optimal solution.
We save W1; i1+1 as L1; and starting from i1 + 1 perform the same operation to find
i2 and L2. This operation is repeated P times and the minimum of Li values for
1 ≤ i ≤ P constitutes the optimal bottleneck value. Once the optimal bottleneck
value is found, the division points for an optimal decomposition can easily be found
by using the greedy approach of the probe function. The complexity of this probe-
based CCP algorithm is O�M + �P logM�2�, where the 2�M� cost comes from the
initial prefix-sum operation on the YS and YE arrays.

6.2. 2D decomposition algorithms

6.2.1. Rectilinear decomposition (RD). This scheme is a 2D decomposition algo-
rithm using 2D arrays with the exact model. This scheme divides the y-dimension
into p horizontal stripes and the x-dimension into q vertical stripes, where p× q =
P . We use Nicol’s iterative algorithm [21] that utilizes CCP for rectilinear decom-
position. As the optimal rectilinear decomposition is known to be NP-complete [9],
this algorithm finds a suboptimal solution.

The iterative algorithm is based on finding an optimal partition in one dimension
given a fixed partition in the alternate dimension. The next iteration uses the parti-
tion just found in the previous dimension as a fixed partition and finds an optimal
partition in the other dimension. This operation is repeated, each time fixing the
partition in the alternate dimension. The decomposition problem in one dimension
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is the adaptation of the CCP problem. It is proven that the iterations converge very
fast to a locally optimum solution [21].

The original algorithm has O�K�n2 + �pq log n�2��-time complexity for an n×n
square coarse mesh, where K is the number of iterations. Here, the 2�n2� cost
comes from collapsing stripes into chains. In this work, we use our exact model
proposed in Section 5.2.2 to query the bb-count of a rectangular region in O�1�
time. This scheme avoids the need for collapsing at each iteration, thus reducing
the overall complexity to O�n2 + K�pq log n�2�. We also note that this asymptotic
improvement proposed for image-space decomposition is also valid for the rectilin-
ear decomposition of general 2D workload arrays. In the general case, the n × n
workload array should be converted into a SAT by performing a 2D prefix-sum
operation in 2�n2� time at the beginning.

6.2.2. Jagged decomposition (JD). In the jagged decomposition, the screen is par-
titioned into p horizontal stripes, and each horizontal stripe is independently parti-
tioned into q vertical stripes, where p×q=P .

Heuristic Jagged Decomposition (HJD). This algorithm is a 2D decomposition
algorithm using 1D arrays with the exact model. In this scheme, the screen is divided
into p horizontal stripes through a recursive-bisection based heuristic as in the
HHD scheme using 1D YS and YE arrays. After this 1D decomposition along the
y-dimension, the workload distribution in the x-dimension is calculated for each
horizontal stripe using two 1D arrays XS and XE. Then, each horizontal stripe is
divided independently in parallel into q vertical stripes in the x-dimension using the
same recursive-bisection based heuristic. The HJD algorithm runs in 2�M logp+
N log q� time since the vertical partitioning of the horizontal stripes are performed
in parallel.

Optimal Jagged Decomposition (OJD). The OJD algorithms presented in this
section are based on the optimal semi-generalized block partitioning algorithm
proposed by Manne and Sørevik [17]. Their algorithm extends the dynamic-
programming based 1D CCP [16] to OJD. They perform a p-way CCP on the rows
of the workload array. The cost of a subchain in a p-way rowwise partition is found
by applying a q-way CCP on the columns of that stripe and taking the bottleneck
value of the columnwise partition as the cost of the subchain. The complexity of
their algorithm is O�pq�m − p��n − q��. In this work, we extend Nicol’s probe-
based CCP algorithm to OJD of general 2D workload arrays. A straightforward
extension of Nicol’s CCP algorithm leads to an O��p logm�2�mn+ �q log n�2��-time
OJD algorithm. Fortunately, the run time of our algorithm asymptoticly reduces
to O�mn + �p logm�2�q log n�2� by converting the 2D m × n workload array into
a SAT through an initial 2D prefix-sum operation in 2�mn� time as mentioned
earlier. The details of the proposed OJD algorithm can be found in [13].

The proposed OJD algorithm is exploited in two distinct image-space decom-
position schemes, namely OJD with the IAH model (OJD-I) and OJD with the
exact model (OJD-E). Note that the OJD-I scheme will create a suboptimal jagged
decomposition for actual primitive distribution because of the IAH model used.
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6.2.3. Orthogonal recursive bisection (ORB). We present four algorithms based on
the orthogonal recursive bisection paradigm. These algorithms divide a region into
two subregions so that the workload of the most heavily loaded subregion is min-
imized. Then, they recursively bisect the subregions, each time dividing along the
longer dimension, until the number of regions is equal to the number of proces-
sors. Dividing the longer dimension aims at reducing the total perimeter of the
final regions as an attempt to reduce the amount of primitive replication due to the
primitives intersecting multiple regions.

ORB with 1D arrays (ORB-1D). This scheme is a 2D decomposition algorithm
using 1D arrays with the exact model. In this scheme, the primitive distribution
over both dimensions of the screen is needed to divide the screen horizontally or
vertically. 1D arrays are used for each dimension of the screen. That is, in addition
to the YS and YE arrays for the y-dimension, each processor allocates XS and XE
arrays for the x-dimension of the screen.

In this scheme, the initially created workload arrays are updated between the
successive steps of the decomposition operations. Therefore, the global-sum and
prefix-sum operations are repeated after each update of the workload arrays [1].
Initially, each processor is assigned the full screen as its local image region. Each
processor divides its local image region into two regions along the longer dimen-
sion. Note that for the group of processors that are assigned to the same image
region, the division will be the same. After the division, half of the processors are
assigned to one of the regions, and the other half of the processors are assigned to
the other region. Then, each processor sends the local bounding boxes intersecting
the other region to the neighbor processor assigned to that region. Neighborhood
between processors can be defined according to various criteria such as intercon-
nection topology of the architecture, labeling of the processors etc. In this work, the
hypercube labeling is selected for the neighborhood definition since it is very simple.
After this exchange operation, each processor has all bounding boxes that project
onto its new local screen region and the decomposition operation is repeated for
the new image region. In order to decompose the new screen region, we need to
update the (X/Y)S and (X/Y)E arrays for the new region. We update these arrays
incrementally using the bounding boxes exchanged between the processors. Each
processor decrements the appropriate positions in its local (X/Y)S and (X/Y)E ar-
rays for each bounding box its sends and increments the appropriate locations in
these arrays for each bounding box it receives.

Each recursive-bisection level of the ORB-1D algorithm consists of two phases:
subdivision, and bounding-box classification and migration. The overall complexity
of the subdivision phase is 2�N logP� for a square screen of resolution N ×N . Un-
der average-case conditions, half of the bounding boxes can be assumed to migrate
at each recursive-bisection level of the algorithm. Hence, if primitive replication is
ignored, the total volume of communication due to the bounding-box migrations
will be �B/2� logP bounding boxes, where B denotes the total number of bound-
ing boxes in the scene. Under perfect load balance conditions, each processor is
expected to hold B/P bounding boxes and each processor pair can be assumed to
exchange B/�2P� bounding boxes at each level. Hence, under these conditions, to-
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tal concurrent volume of communication will be �B/�2P�� logP . Note that primitive
replication will increase these values.

ORB with IAH model (ORB-I). This scheme is a 2D decomposition algorithm
using 2D arrays with the IAH model. ORB-I is equivalent to the mesh-based adap-
tive hierarchical decomposition scheme (MAHD) proposed by Mueller [20]. The
bisection lines for dividing along the longer dimensions are found by using the bi-
nary search on the SAT. The ORB-I algorithm runs in 2�n√P� time for a square
coarse mesh of size n× n.

ORB with medians-of-medians (ORBMM). The algorithms presented in this sec-
tion are 2D decomposition algorithms using 2D arrays with the IAH model. In this
scheme, the screen is divided using ORB with the medians-of-medians approach
(ORBMM) [23, 27]. The medians-of-medians scheme is used to decrease the load
imbalance at each recursive decomposition step by relaxing the straight line restric-
tion in the division. We apply ORBMM on a cartesian mesh (ORBMM-M) and a
quadtree (ORBMM-Q).

In ORBMM-Q, we generate a quadtree from the mesh superimposed on the
screen to decrease the errors due to the IAH model. Each leaf node of the tree is
referred to here as a quadnode. The quadtree is generated in such a way that each
quadnode has approximately the same workload. The screen is decomposed at the
quadnode boundaries. In this work, we use a bottom-up approach to generate a
quadtree, whereas a top-down approach was implemented in [11]. That work uses a
2D segment tree [24] to generate the quadtree. The 2D segment tree data structure
has a recursive structure. In the top-down approach, the root of the tree covers
the full screen and at each level a node is divided into four quadrants forming its
children. This division is repeated until the size of a leaf node is equal to one mesh
cell. Then, the segment tree is traversed to generate the quadnodes. In the bottom-
up approach, we join the mesh cells to form the quadnodes. The mesh cells may be
considered as the leaf nodes of the segment tree. In this scheme, we do not explicitly
create a segment tree. Instead, we consider a virtual segment tree superimposed on
the coarse mesh. This virtual segment tree is traversed in a bottom-up fashion and
the quadnodes are inserted into a linked-list structure. In this traversal, if the cost
of a node is under a specified threshold value, but one of the siblings exceeds the
threshold value, we add this node to the quadnode list. In addition, if four sibling
nodes do not individually exceed the threshold value, but their sum exceeds, we add
four of them to the quadnode list. The threshold value is selected empirically as a
certain percentage of the total number of primitives. Larger threshold values cause
poor load balance, whereas smaller values result in more irregular partitions and
larger decomposition time.

In ORBMM-M, the cells of the coarse mesh are inserted into a linked-list struc-
ture in a similar way to that of ORBMM-Q. This scheme may also be considered as
a special case of the quadtree scheme, where the threshold value is zero and each
leaf node is inserted into the linked-list structure.

At each recursive-bisection step of ORBMM, the mid-points of the quadnodes
are used to find the median line. The problem with this scheme is how to assign the
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quadnodes which straddle the median-line. Taking the centers of the quadnodes and
assigning them according to their centers may cause load imbalance. The medians-
of-medians (MM) scheme [23, 27] is used to alleviate this problem. The idea in
the MM scheme is once the median line is determined, the border quadnodes that
straddle the median-line are identified and repartitioned. In this phase, we sort the
border quadnodes along the bisection direction and assign the nodes in this order
to the one side so that the load of the maximally loaded side is minimized. Both
ORBMM-Q and ORBMM-M run in O�n2

√
P� time for a square coarse mesh of

size n× n.

6.2.4. Hilbert-curve based decomposition (HCD). This scheme is a 2D decomposi-
tion algorithm using 2D arrays with the IAH model. In the HCD scheme, the 2D
coarse mesh is traversed according to the Hilbert curve to map the 2D coarse mesh
to a 1D chain of mesh cells. That is, the mesh cells are assigned to the processors
such that each processor gets the cells that are consecutive in this traversal. The
load-balancing problem in this decomposition scheme reduces to the CCP problem.
The advantage of the Hilbert curve over the other space-filling curves [19, 23] is
that it traverses the 2D mesh along neighbor cells without any jumps. Therefore,
we may expect that the total perimeter of the resulting regions will be less com-
pared to the regions to be obtained by other curves. An example for traversing a
2D mesh with the Hilbert curve is shown in Figure 4(a). The numbers inside the
cells represent the order the mesh cells are traversed.

Our approach to traverse the mesh is based on the costzones scheme proposed
by Singh et al. [27]. Their approach traverses the 2D segment tree already superim-
posed on the space. Here, we superimpose a virtual 2D segment tree on the screen.
The key idea in this approach is to traverse the child nodes in a predetermined
order such that the traversal of the leaf nodes forms a space-filling curve. As the
children of a node are the quadrants of the region represented by that node, we
have four possible starting points and two possible directions (clockwise or counter-
clockwise) for each starting point. An appropriate choice of four out of the eight
orderings is needed. The ordering of the children of a cell C depends on the order-

Figure 4. (a) Traversing a 2D mesh with the Hilbert curve and mapping of the mesh-cell locations into
1D array indices. (b) Child ordering of the costzones scheme.
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ing of C’s parent’s children and the position of C in this ordering (Fig. 4(b)). The
cells are assigned to the processors during the traversal of the virtual 2D segment
tree.

Mapping the 2D coarse mesh to a 1D chain of mesh cells takes 2�mn� time
and the recursive-bisection based heuristic used for load-balanced partitioning takes
2�mn logP� time.

6.2.5. Graph-partitioning based decomposition (GPD). This scheme is a 2D de-
composition algorithm using 2D arrays with the IAH model. This algorithm models
the image-space decomposition problem as a graph-partitioning (GP) problem [12].
Each cell in the coarse mesh is assumed to be connected to its north, south, west
and east neighbors. The vertices of the graph are the mesh cells and the concep-
tual connections between the neighbor mesh cells form the edges of the graph. The
weight of a cell represents the bb-count of the cell. The weight of an edge between
two neighbor cells represents the number of bounding boxes intersecting both cells.
The objective in GP is to minimize the cutsize among the parts while maintain-
ing the balance among the part sizes. Here, the cutsize refers to the sum of the
weights of the cut edges, where an edge is said to be cut if its pair of vertices be-
long to two different parts. The size of a part refers to the sum of the weights
of the vertices in that part. In our case, maintaining the balance among the part
sizes corresponds to maintaining the computational load balance. Minimizing the
cutsize corresponds to minimizing the amount of primitive replication due to the
shared primitives. The state-of-the-art GP tool MeTiS [10] is used in this work.
The GP approach decomposes the screen in the most general way. Unlike the pre-
vious decomposition algorithms, noncontiguous sets of cells may be assigned to a
processor.

In the GPD scheme, each processor tallies the bounding boxes of its local primi-
tives to the mesh cells and updates the weights of the corresponding cells and edges.
The cell weights are updated using the IAH model. In order to decrease the errors
caused by the primitives shared among more than two cells, we adopt the follow-
ing scheme for edge weighting. First, we classify the shared bounding boxes into
three categories: vertical, horizontal, and general. The vertical bounding boxes are
the ones that intersect multiple cells in only a single column of the coarse mesh.
The horizontal bounding boxes intersect multiple cells in only a single row. The
general bounding boxes intersect multiple (at least 4) cells in different rows and
columns. The weight of an edge between two neighbor cells in a row (column) is
incremented by a value proportional to the number of horizontal (vertical) bound-
ing boxes intersecting those two cells. The weight of an edge between two neigh-
bor cells is incremented by each general bounding box intersecting those two cells
with a value inversely proportional to the total number of cells the bounding box
intersects.

The average-case running time of recursive-bisection based pMeTiS can be as-
sumed to be O�e logP�, where e denotes the number of edges in the given graph.
Since the graph constructed in the GPD scheme contains 4mn − 2�m + n� edges,
the GPD algorithm runs in O�mn logP�. However, the hidden constants in the com-
plexity are substantially larger than those of the other decomposition algorithms.
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7. Primitive redistribution

After the decomposition of the screen, each processor needs all the primitives inter-
secting the region it is assigned in order to perform the local rendering calculations.
Thus, the local primitives in each processor should be redistributed according to the
region-to-processor assignment. Each processor classifies its local primitives accord-
ing to the regions they intersect. According to the classification, each primitive is
stored in the respective send buffer of that region. If a primitive overlaps multiple
regions, the primitive is stored in the send buffers of the respective regions. These
buffers are exchanged to complete the redistribution of the primitives. In this work,
we propose several algorithms for classifying primitives in the redistribution phase.

7.1. 2D mesh-based primitive classification

This is the most general classification scheme applicable to all decomposition
schemes. In this scheme, each mesh cell constituting a pixel block is marked with
the index of the processor whose screen region covers this particular cell. Then,
each bounding box is tallied to the mesh cells, and the respective primitive is stored
into the send buffers of the processors according to the marks of the cells the
bounding box covers. This scheme is computationally expensive since it involves
tallying the bounding boxes, and its complexity per primitive is proportional to the
area of the bounding box of the primitive. This scheme is adopted in the HCD,
ORBMM-Q, ORBMM-M and GPD algorithms, since these algorithms produce
non-rectangular regions.

7.2. Rectangle-intersection based primitive classification

The expensive tallying operation needed in the mesh-based classification can be
avoided for the decomposition algorithms that generate rectangular regions. The
intersection of a primitive with a rectangular region can easily be tested at a very low
cost by testing the intersection of both the x and y extents of the primitive with the x
and y extents of the region, respectively. This classification scheme is adopted in the
ORB-1D and ORB-I decomposition algorithms that generate rectangular regions
in a hierarchical manner based on recursive bisection. The hierarchical nature of
these two decomposition schemes is exploited to reduce the number of intersection
tests for a bounding-box b to O�Rb logP�, where Rb denotes number of regions
intersecting b.

7.3. Inverse-mapping based primitive classification

We propose more efficient algorithms for the 1D horizontal, 2D rectilinear and
2D jagged decomposition schemes by exploiting the regularity of the resulting de-
compositions. In these schemes, it is possible to give numbers to the resulting re-
gions in row-major (column-major) order if the screen is divided completely in the
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y-dimension (x-dimension). For example, in the row-major ordering of a p× q rec-
tilinear decomposition, the region at the rth horizontal stripe and cth vertical stripe
is labeled as q�r − 1� + c for r = 1; : : : ; p and c = 1; : : : ; q.

In the 1D decomposition schemes, we use an inverse-mapping array IMY of
size m. This array represents the assignment of the scanlines to the processors. That
is, IMY�i� = k for each scanline i in the kth horizontal stripe. Then, a primitive
with y-extent �ymin; ymax� is inserted into the send buffer of each processor k for
IMY�ymin� ≤ k ≤ IMY�ymax�. This algorithm is faster than the rectangle-intersection
based scheme, because only two simple table lookups are sufficient to classify a
primitive.

The rectilinear decomposition scheme requires two inverse-mapping arrays: IMY
of size m and IMX of size n. Arrays IMY and IMX represent the assignments of
the rows (scanlines) and columns of the screen to the horizontal and vertical stripes
of the decomposition. That is, IMY�i� = r for each row i of the screen in the rth
horizontal stripe. Similarly, IMX�j� = c for each column j of the screen in the
cth vertical stripe. A primitive with y-extent �ymin; ymax� and x-extent �xmin; xmax�
is inserted into the send buffer of each processor k = q�r − 1�+c for IMY�ymin� ≤
r ≤ IMY�ymax� and IMX�xmin� ≤ c ≤ IMX�xmax�. This scheme requires only 4 table
lookups for the classification of a primitive.

The jagged decomposition scheme requires �p+ 1� inverse-mapping arrays. One
array IMY of size m is needed for the horizontal striping and one IMXr array
of size n is needed for the vertical striping in the rth horizontal stripe for r =
1; : : : ; p. Here, IMY�i� = r for each row i of the screen in the rth horizontal
stripe. IMXr�j� = c for each column j in the cth vertical stripe of the rth horizontal
stripe. A primitive is inserted into the send buffer of each processor k = q�r −
1�+c for IMY�ymin� ≤ r ≤ IMY�ymax� and IMXr�xmin� ≤ c ≤ IMXr�xmax�. This
scheme requires 2h+ 2 table lookups for classifying a primitive which intersects h
consecutive horizontal stripes.

8. Models for performance comparison

The performance comparison of the image-space decomposition algorithms is
conducted on a common framework according to three criteria: load balancing,
amount of primitive replication and parallel execution time. Primitive replication is
a crucial criterion because of the following reasons. A primitive shared by k pro-
cessors incurs k−1 replications of the primitive after the redistribution. Thus, each
replication of a primitive incurs the communication of the primitive during the re-
distribution phase, and redundant computation and redundant storage in the local
rendering phase. Furthermore, as we will discuss in Section 8.2, primitive replica-
tion has an adverse effect on the load balancing performance of the decomposition
algorithms. The parallel execution time of a decomposition algorithm is also an im-
portant criterion since the decomposition operation is a preprocessing for the sake
of efficient parallel rendering.

A formal approach for the prediction, analysis and comparison of the load bal-
ancing and primitive replication performances of the algorithms requires a prob-
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abilistic model. However, such a formal approach necessitates the selection of a
proper probabilistic distribution function for representing both the bounding-box
and bounding-box size distribution over the screen. In this work, we present a
rather informal performance comparison based on establishing appropriate qual-
ity measures. The experimental results given in Section 9 confirm the validity of the
proposed measures.

8.1. Primitive replication

Among all decomposition algorithms, only the GPD algorithm explicitly tries to
minimize the amount of primitive replication. In the other algorithms, the topologi-
cal properties of the underlying decomposition scheme have a very strong effect on
the amount of primitive replication. Here, we establish two topological quality mea-
sures: the total perimeter of the regions and the total number of junction points
generated with the division lines.

The number of bounding boxes intersecting two neighbor regions is expected
to increase with increasing length of the boundary between those two regions.
In the 1D decomposition schemes, the total perimeter is equal to �P − 1�N . In
both jagged and rectilinear decomposition schemes, the total perimeter is equal to
�p− 1�N + �q− 1�M for a p× q processor mesh. For an N ×N square screen, the
total perimeter is minimized by choosing p and q such that the resulting p× q pro-
cessor mesh is close to a square as much as possible. The total perimeter becomes
2�√P − 1�N for a

√
P ×√P square processor mesh in both jagged and rectilinear

decomposition schemes. In the ORB and ORBMM decomposition schemes for P
being an even power of 2, the total perimeter values are equal to 2�√P − 1�N and
2�√P − 1�N + �P − 1��N/n�, respectively, if the successive divisions are always per-
formed along the alternate dimensions. Note that the total perimeter of ORB with
divisions along the alternate dimensions is equal to that of the jagged and rectilin-
ear schemes. However, in our implementation for the ORB and ORBMM schemes,
dividing along the longer dimension is expected to further reduce the total perime-
ter especially in the decomposition of highly non-uniform workload arrays for large
P values. In the HCD scheme, using the Hilbert curve as the space-filling curve is an
implicit effort towards reducing the total perimeter since the Hilbert curve avoids
jumps during the traversal of the 2D coarse mesh. Nevertheless, the total perime-
ter in the HCD scheme is expected to be much higher than those of the other 2D
decomposition schemes, since HCD generates irregularly shaped regions.

The total perimeter measure mainly accounts for the amount of replication due
to the bounding boxes intersecting two neighbor regions under the assumption that
both x and y extents of the bounding boxes are much smaller than the x and y ex-
tents of the regions respectively. A junction point of degree d > 2—shared by the
boundaries of d regions—is very likely to incur bounding boxes intersecting those d
regions thus resulting in d − 1 replications of the respective primitives. Each junc-
tion point can be weighted by its degree minus one so that the sum of the weights
of the junction points can be used as a secondary quality measure for the relative
performance evaluation of the 2D decomposition schemes. It should be noted here
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that the validity of this measure depends on the assumption that the bounding boxes
are sufficiently small and the junction points are sufficiently away from each other
so that the bounding boxes do not cover multiple junction points. Both jagged and
ORB decomposition schemes generate 2�p− 1��q− 1� junction points each with a
degree of 3 for a p × q processor mesh. Here, we assume that the successive di-
visions are always performed along the alternate dimensions in the ORB scheme.
The number of junction points generated by the rectilinear decomposition scheme
is half as much as that of the jagged and ORB schemes. However, each junction
point in the rectilinear decomposition scheme has a degree of 4. As seen in Table 2,
under the given assumptions and the additional assumption that the bounding-box
density remains the same around the junction points, the rectilinear decomposition
is expected to incur 25% less primitive replication than both jagged and ORB de-
composition schemes due to the bounding boxes intersecting more than two regions.

As seen in Table 2, according to the total perimeter measure, the 2D decompo-
sition schemes are expected to perform better than the 1D schemes such that this
performance gap is also expected to increase rapidly with increasing P . Among the
2D decomposition schemes, the jagged, rectilinear and ORB schemes are expected
to display comparable performance. However, ORB can be expected to perform
slightly better than the other two schemes because of the possibility of further re-
duction in the total perimeter by performing divisions along the longer dimension.
As the jagged and rectilinear decomposition schemes are expected to display similar
performance according to the total perimeter measure, the rectilinear decomposi-
tion scheme is expected to perform better than the jagged decomposition scheme
because of the secondary quality measure.

8.2. Load balancing

The load-balancing performance of the decomposition algorithms are evaluated
according to the actual load-imbalance values defined as

LI = �B′max − Bavg�/Bavg [5]

Table 2. Topological quality measures of the decomposition schemes for primitive replication for a
square screen of resolution N ×N

Decomposition Total (Degree− 1)
scheme perimeter weighted junction sum

1D (Horizontal) �P − 1�N 0
Rectilinear 2�√P − 1�N 3�√P − 1�2
Jagged 2�√P − 1�N 4�√P − 1�2
ORB ≤ 2�√P − 1�N 4�√P − 1�2
ORBMM ≤ 2�√P − 1�N + �P − 1��N/n� 4�√P − 1�2

P is assumed to be an even power of 2 for 2D decomposition schemes. A square coarse mesh of
resolution n × n is assumed for the 2D-2D algorithms, so that N/n denotes the height and width of a
coarse-mesh cell.
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for a P-way decomposition of a given screen with B primitives. Here, B′max denotes
the number of primitives (triangles) assigned to the most heavily loaded (bottleneck)
processor, and Bavg = B/P denotes the number of primitives to be assigned to each
processor under the ideal balance condition without primitive replication. Let

r = �B′ − B�/B [6]

denote the primitive replication ratio, where B′ denotes the total number of prim-
itives in the parallel environment after the primitive redistribution phase so that
B′ − B corresponds to the total amount of primitive replication. Also let ε =
�B′max − B′avg�/B′avg denote the simple load-imbalance ratio, where B′avg = B′/P .
Then, the actual load-imbalance ratio of a decomposition with a primitive repli-
cation ratio of r and a simple load-imbalance ratio of ε will be

LI =
B′
P
�1+ ε� − B

P
B
P

=
B�1+r�
P
�1+ ε� − B

P
B
P

= r + ε+ rε: [7]

Note that ε mainly accounts for the simple load-balancing performance of the sub-
division algorithm, whereas r accounts for the primitive-replication performance
of the underlying decomposition scheme. It is clear from Eq. 7 that the primi-
tive replication ratio constitutes a lower bound on the actual load-imbalance value
of a decomposition. So, although all decomposition algorithms try to minimize the
bounding-box count of the bottleneck region (i.e. B′max), their load-balancing perfor-
mances highly depend on the primitive-replication performances of the underlying
decomposition schemes. This dependence is expected to be more pronounced in the
decomposition algorithms using the IAH model, because the error rate of the IAH
model is likely to increase with increasing amount of primitive replication. So, the
primitive-replication performance of the underlying decomposition scheme of a par-
titioning algorithm is a crucial quality measure for the load-balancing performance
of the algorithm.

The following factors are important in the performance comparison of different
subdivision algorithms using the same decomposition scheme. The exact algorithms
finding globally optimal partitions are expected to perform better than the heuristics.
For example, OHD and OJD-E are expected to perform better than HHD and
HJD, respectively. The subdivision algorithms using the exact workload model are
expected to perform better than the ones using the IAH model because of the
adverse effect of the primitive replication on the accuracy of the IAH model. For
example, ORB-1D and OJD-E are expected to perform better than ORB-I and
OJD-I, respectively.

The solution-space size is established as a quality measure for comparing the
load-balancing performance of the constructive and iterative-improvement based
decomposition algorithms. The performances of these algorithms can be expected
to increase with increasing size of the solution space. Here, the solution space of a
decomposition algorithm refers to the set of distinct feasible screen partitions the
best of which is found by the algorithm. For example, the solution-space sizes of
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the OHD, RD and OJD algorithms are

SOHD =
(
N − 1
P − 1

)
SRD = K

(
n− 1√
P − 1

)
≤
(
n− 1√
P − 1

)2

and

SOJD =
(
n− 1√
P − 1

)√P+1

; [8]

respectively. Here, a
√
P ×√P square processor mesh is assumed for the 2D recti-

linear and jagged decomposition algorithms. As seen in Eq. 8, OJD is expected to
perform better than RD which is in turn expected to perform better than OHD. In
fact, the load-balancing performance of OJD is always better than or equal to that
of RD, because the solution space of RD is a subset of that of OJD. Another factor
in favor of OJD is the fact that it is an exact algorithm whereas RD is an iterative
heuristic.

Two quality measures are established for the decomposition algorithms using
recursive-bisection based heuristics: the total degree of freedom in selecting the
line segments for bisecting the regions and the imbalance propagation during the
successive bisection steps. The load-balancing performance of these algorithms can
be expected to increase with increasing degree of freedom in selecting the bisec-
tion line segments. The degree-of-freedom values for the HHD, ORB and HJD
algorithms are;

DHHD ≈ N logP;DORB ≈ 3�
√
P − 1�N and

DHJD ≈ 0:5�
√
P + 1�N logP; [9]

respectively, where P is assumed to be an even power of 2 for the 2D ORB and HJD
algorithms. Hence, both of the 2D ORB and HJD algorithms have more degrees
of freedom than the 1D HHD algorithm.

Although HJD has more degrees of freedom than ORB, ORB is less susceptible
to imbalance propagation than HJD, because ORB uses shorter line segments than
HJD during the earlier recursive bisection levels. Consider the imbalance propaga-
tion in the HJD and ORB algorithms for uniform jagged and ORB decompositions.
Assume that P is an even power of 2 and each bisection step incurs an equal sim-
ple load-imbalance ratio of ε2. Also assume that a division line segment of length
N incurs λN shared bounding boxes between the two respective subregions, so that
λ effectively denotes the bounding-box density along the division lines. HJD uses
division lines of length N at each bisection step during the first half of the recur-
sion levels, and it uses lines of length N/

√
P = N/2�logP�/2 at each bisection step

during the second half of the recursion levels. ORB uses line segments of length
N/2�`/2� at each bisection step in recursion level ` = 1; 2; : : : ; logP . For example,
for P = 16, HJD and ORB use line segments of lengths N; N; N/4; N/4 and N;
N/2; N/2; N/4 in recursion levels ` = 1; 2, 3, 4, respectively. So, the upper bounds
on the actual load-imbalance values for the HJD and ORB heuristics are;

LIHJD =
(�1+ ε2�4 − 1

)+ λN( 1
16�1+ ε2�4 + 1

8�1+ ε2�3 + 1
16�1+ ε2�2
+ 1

8�1+ ε2�
)

[10]
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LIORB =
(�1+ ε2�4 − 1

)+ λN( 1
16�1+ ε2�4 + 1

16�1+ ε2�3 + 1
8�1+ ε2�2

+ 1
8�1+ ε2�

)
: [11]

Thus, the load imbalance value of HJD can be expected to be greater than that of
ORB by the amount of 1LI ≈ LIHJD −LIORB = ε2�1+ ε2�2λN/16: The difference
in the load imbalance is expected to increase with increasing P . For example, for
P = 64, HJD and ORB use line segments of lengths N; N; N; N/8; N/8; N/8 and
N; N/2; N/2; N/4; N/4; N/8 in recursion levels ` = 1; 2, 3, 4, 5, 6, respectively,
thus resulting in 1LI ≈ ε2�1+ ε2�2�2 + ε2��3+ ε2�λN/64:

8.3. Execution time

Table 3 displays the dissection of the parallel execution times of the decomposition
algorithms. Since the bounding-box creation time is equal (2�B/P�) in all decom-
position algorithms, it is not displayed in the table.

As seen in Table 3, the workload array creation time (TWL) can be further dis-
sected into two components: the local workload array fill-in time (TF ) and the
prefix-sum operation time (TPSUM). As seen in the table, TF decreases linearly with
increasing number of processors as the fill-in computations are performed in parallel
without communication. As seen in Table 3, both TPSUM and global-sum operation
time (TGS) constitute unscalable components in all algorithms. This unscalability is
more severe in the 2D decomposition algorithms using 2D arrays. Imposing a coarse
mesh on the screen is an effort towards maintaining these unscalable components
within reasonable limits in these algorithms. TWL and TGS of the decomposition
algorithms using 2D arrays are significantly more than those of the algorithms us-
ing 1D arrays. Among the algorithms using 2D arrays, the ones utilizing the exact
model incur six times TPSUM and four times TGS than the ones utilizing the IAH
model. However, during the workload array fill-in operations, the tallying time for
a bounding-box b is proportional to its area ab in the IAH model, whereas it is pro-
portional to half of its perimeter hb + hw in the exact model. Thus, TF in the IAH
model is more sensitive to the increase in the mesh resolution than TF in the exact
model.

As seen in Table 3, the subdivision times (TS) of all decomposition algorithms
increase with increasing number of processors since more divisions are performed
over the same workload array. Note that the subdivision phases of only the 2D-1D
based HCD and ORB-1D algorithms are implemented in parallel through exploit-
ing their parallel nature. As seen in the table, the OHD and OJD algorithms, which
utilize the efficient probe-based CCP schemes, find globally optimal horizontal and
jagged decompositions with comparable run-time complexities to those of the HHD
and HJD algorithms which utilize recursive-bisection based heuristics. The asymp-
totic efficiency of the OJD algorithm is mainly because of the proposed SAT scheme
which enables the probe-based algorithm to query the workload of a rectangular re-
gion in O�1� time. Similarly, the SAT scheme brings an asymptotic efficiency to the
RD algorithm. The comparison of the run-time complexities of the ORB-I and
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Table 3. The dissection of the parallel execution times of the image-space decomposition algorithms
for a screen of resolution N ×N and a coarse mesh of resolution n× n

Algorithm Classification TWL TGS TS TPC

HHD O�N logP� 2
B

P
tlup

OHD 1D-1D-exact 2
B

P
tinc

+ 2Ntpsum

2
P − 1
P

Ntcom O�P2 log2 N� 2
B

P
tlup

HJD
B

P
�4+Hb�tinc 2�√P + 1�

×P − 1
P

Ntcom

O�N logP� �2Hb + 2�B
P
tlup

+ 2
(√
P + 1

)
Ntpsum

ORB-1D 2D-1D-exact 4
B

P
tinc

+ 2N logPtpsum

≤ 2N logPtcom ≥ B

2P
logPtcom Rb

B

P
logPtcomp

+O�N logP�

OJD-I O�P2 log4 n� �2Hb + 2�B
P
tlup

ORB-I O�n√P� Rb
B

P
logPtcomp

ORBMM-Q O�n2
√
P� B

P
abtlup

ORBMM-M 2D-2D-IAH
B

P
abtinc

+ n2tpsum

P − 1
P

n2tcom O�n2
√
P� B

P
abtlup

HCD O�n2 logP� B

P
abtlup

GPD O�n2 logP� B

P
abtlup

OJD-E O�P2 log4 n� �2Hb + 2�B
P
tlup

RD 2D-2D-exact
B

P
�2 + hb +wb�tinc 4

P − 1
P

n2tcom O�KP2 log2 n� 4
B

P
tlup

+ 6n2tpsum

B denotes the total number of bounding boxes. P , which denotes the number of processors, is assumed to be an even
power of 2. TWL, TGS , TS and TPC denote the local workload array creation time, global-sum operation time on local
workload arrays, subdivision time and primitive classification time, respectively. tinc and tpsum denote the time taken
for incrementing a workload array entry and an addition operation during the prefix-sum, respectively. tcom denotes the
per-word transmission time. tcomp and tlup denote the time taken for testing the intersection of two rectangles and a
table lookup operation, respectively. hb, wb and ab denotes the average height, width and area of a bounding-box in
terms of number of mesh cells. Hb and Rb denote the average number of horizontal stripes and regions intersecting a
bounding box, respectively. K denotes the number of iterations required for convergence in RD.

ORBMM algorithms in Table 3 shows that the use of the medians-of-medians ap-
proaches in the ORBMM algorithms asymptotically increases the complexity. It
should be noted here that the hidden constants in the asymptotic complexity of the
graph-partitioning tool MeTiS used in the GPD scheme are quite large.

As seen in Table 3, the primitive classification time (TPC) of each decomposition
algorithm decreases with increasing number of processors due to the parallel nature
of the primitive classification operations. The algorithms using the inverse-mapping
based classification scheme result in much less TPC than the other algorithms.
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Among the algorithms using the inverse-mapping based classification scheme, the
regularity of the underlying decomposition scheme dictates the complexity of TPC .
That is, the 1D horizontal decomposition scheme incurs less TPC than the 2D rec-
tilinear decomposition scheme which in turn incurs less TPC than the 2D jagged
decomposition scheme.

9. Experimental results

The image-space decomposition and parallel DVR algorithms presented in this
work were implemented on a Parsytec CC system, which is a message-passing
distributed-memory architecture. The Parsytec CC system contains 16 nodes each
of which is equipped with a 133 MHz PowerPC 604 processor and 64 MB mem-
ory. The interconnection network consists of sparsely connected four 8×8 crossbar
switching boards such that each switching board connects 4 processors. The network
can sustain 20 MB/s point-to-point communication bandwidth [14]. The algorithms
were implemented using the C language and the native message passing library
Embedded Parix (EPX) [22].

Table 4 summarizes the properties of the volumetric datasets used in the exper-
iments. Figure 5 shows the rendered images of these datasets. These datasets are
obtained from NASA-Ames Research Center, and they are commonly used by re-
searchers in the volume rendering field. All datasets are originally curvilinear in
structure, and they represent the results of CFD simulations. The raw datasets con-
sist of hexahedral cells. They are converted into unstructured tetrahedral data for-
mat by dividing each hexahedral cell into 5 tetrahedral cells [8, 26]. Each one of the
three datasets is visualized from six different viewing directions at the screen reso-
lution of 512× 512. The six viewing directions are selected such that different views
of the datasets are rendered as much as possible. The average sequential rendering
time of each dataset is displayed in the last column of Table 4. In all figures given in
this section, each parallel performance value represents the averages of the results
of the eighteen distinct visualization instances for a fixed number of processors (i.e.
3 datasets each of which visualized from 6 viewing directions for a fixed P).

The performances of the decomposition algorithms are experimented on a com-
mon framework according to the three criteria discussed in Section 8: percent load
imbalance, percent primitive replication and parallel execution time. The percent
load-imbalance and percent primitive-replication values are computed as 100LI and
100r, where LI and r are computed according to Eqs. 5 and 6, respectively. The

Table 4. Volumetric datasets used in the experiments

Seq. rendering
Dataset # Vertices # Cells # Triangles time (sec)

Blunt fin 40,960 187,395 381,548 59.6
Oxygen post 109,744 513,375 1,040,588 81.6
Delta wing 211,680 1,005,675 2,032,084 103.6



80 kutluca, kurç, and aykanat

Figure 5. (a) Oxygen liquid post image, (b) delta wing image, and (c) blunt fin image.
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Figure 6. 16-way decompositions produced by the algorithms: (a) HHD and OHD, (b) RD, (c) HJD,
OJD-I and OJD-E, (d) ORB-I and ORB-1D, (e) ORBMM-Q, (f) ORBMM-M, (g) HCD, and (h) GPD.
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performances of the image-space decomposition algorithms for the sort-first para-
llelization of Challinger’s DVR algorithm are displayed as speedup values. The mea-
sured execution times of the decomposition algorithms and the measured speedup
values for the parallel renderings are given for 2, 4, 8 and 16 processors of our
Parsytec CC system. The percent load-imbalance and percent primitive-replication
values are computed and displayed for 2, 4, 8 and 16 processors. These values are
also computed and displayed for 32, 64 and 128 processors through simulation to
predict and analyze the performance of the decomposition algorithms on large scale
parallelization.

The highest screen resolution of 512 × 512 is used in the algorithms using 1D
workload arrays. As mentioned earlier, for the algorithms using 2D workload ar-
rays, a 2D coarse mesh is superimposed on the screen to make the decomposition
affordable both in terms of space and execution time. So, the variation of the load-
balancing and parallel run-time performances of the 2D decomposition algorithms
with varying coarse mesh size is experimented for the mesh resolutions of 32 × 32;
64× 64; 128× 128; 256× 256 and 512× 512. The coarse-mesh size of 512× 512 is
used for displaying the variation of the performances of all algorithms with varying
the number of processors.

Bar charts are used in all of the following figures for displaying the experimental
results. In these figures, the vertical scales are selected such that the performance
differences among the algorithms can be seen clearly. In some figures, some bars
exceed the scale of the graphs because of the small scales selected for the respective
figures. In all figures, the vertical dashed lines denote the division lines for the
classification of the algorithms according to the taxonomy given in Table 1.

9.1. Primitive replication

Figure 7 displays the percent primitive replication as the number of processors
varies. The amount of primitive replication increases with increasing number of
processors because of the increase in the total perimeter and number of junction
points.

As seen in Figure 7, the 1D decomposition schemes (HHD, OHD) and the HCD
scheme perform substantially worse than the other schemes, as expected. Figure 7
shows that the amount of primitive replication increases linearly with increasing
number of processors in the 1D schemes. This experimental finding confirms the
validity of the total perimeter measure discussed in Section 8, since the total perime-
ter is equal to �P − 1�N in the 1D schemes. Figure 7 also confirms the expectation
that the performance gap between the 1D and 2D decompositions increases rapidly
in favor of the 2D schemes.

As seen in Figure 7, among the 2D decomposition algorithms, the algorithms uti-
lizing the exact workload model perform better than the algorithms utilizing the
IAH model. This experimental finding is attributed to the following reason. All
decomposition algorithms try to minimize the load of the most heavily loaded pro-
cessor. This common nature of the algorithms also corresponds to an effort towards
reducing the amount of primitive replication within the limitations of the underly-
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Figure 7. Percent primitive replication on different number of processors.

ing decomposition scheme. Thus, in the algorithms utilizing the IAH model, the
errors in the IAH model degrades the primitive replication performance as well as
the load-balancing performance of these algorithms.

As seen in Figure 7, among the 2D decomposition algorithms utilizing the exact
workload model, ORB-1D performs better than RD which in turn performs better
than both HJD and OJD-E. The superior performance of ORD-1D is because of
performing divisions along the longer dimension thus leading to further reduction
in the total perimeter. Recall that the total perimeter values of the rectilinear and
jagged decomposition schemes are the same. Hence, the better performance of RD
than the jagged decomposition schemes HJD and OJD-E verifies the validity of the
junction-point quality measure discussed in Section 8.

As seen in Figure 7, among the 2D decomposition algorithms utilizing the IAH
model, the GPD algorithm displays the best performance since it explicitly tries
to minimize the total amount of primitive replication. In fact, the performance
of the GPD algorithm approaches to the performance of the 2D decomposi-
tion algorithms utilizing the exact workload model. As seen in the figure, HCD
performs substantially worse than all other 2D decomposition algorithms, as
expected.
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9.2. Load balancing

Figure 8 illustrates the effect of the coarse-mesh resolution on the load-balancing
performance of the 2D decomposition algorithms utilizing 2D workload arrays on
16 processors. The load-balancing performances of all decomposition algorithms
are expected to increase with increasing mesh resolution because of the increase in
the size of the search space. However, for a fixed number of processors, increas-
ing the mesh resolution is likely to increase the number of primitives intersecting
multiple regions thus increasing the error rate of the IAH model. Thus, beyond a
certain mesh resolution, the errors due to the IAH model may consume the gain
obtained by the increase in the size of the search space. As seen in Figure 8, among
the 2D decomposition algorithms using 2D workload arrays with the IAH model,
ORBMM-Q, ORBMM-M, HCD and GPD sometimes achieve their best perfor-
mance values at mesh resolutions less than 512 × 512, whereas OJD-I and ORB-I
always achieve their best results at 512× 512: The common characteristic of the for-
mer four algorithms is that they all produce non-rectangular regions. As discussed
in Section 8.1, division by non-rectangular regions has the potential of increasing
the amount of primitive replication because of the increase in the total perimeter.
Thus, the experimental results show that errors due to the inverse area heuristic
have more adverse affect on the load-balancing performance of the decomposition
algorithms that generate non-rectangular regions.

Figure 9 displays the load-balancing performance of the algorithms as the number
of processors varies. As expected, load imbalance increases with increasing number
of processors. As seen in Figure 9, OJD-E achieves the best load-balancing perfor-
mance, whereas ORB-1D and HJD display the second and third best performance,

Figure 8. Effect of coarse-mesh resolution on the load-balancing performance of the 2D decomposition
algorithms using 2D workload arrays on 16 processors.
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Figure 9. Load-balancing performance of the decomposition algorithms on different number of proces-
sors.

respectively. The common characteristics of these three algorithms are that they
achieve 2D decomposition, utilize the exact workload model, and produce rectangu-
lar regions with almost the same total perimeter values. The superior performance
of OJD-E is because of the fact that it is an exact algorithm whereas ORB-1D and
HJD are recursive-bisection based heuristics. As seen in Figure 9, the difference
in the load-balancing performance among these three algorithms increases with in-
creasing number of processors in favor of OJD-E because of the increase in the
amount of imbalance propagation in ORB-1D and HJD with increasing number
of recursion levels. The better load-balancing performance of ORB-1D compared
to that of HJD is because of the following two reasons. First, as discussed in Sec-
tion 9.1, ORB incurs less primitive replication than HJD thus resulting in less actual
load imbalance. Second, as mentioned in Section 8.2, ORB-1D is less susceptible
to imbalance propagation than HJD. Although RD has the same characteristics as
these three algorithms, it performs substantially worse than these three algorithms.
There are two main reasons for this finding. First, as seen in Eq. 8, rectilinear splits
in both dimensions of the screen restrict the solution space in the decomposition.
Second, the iterative algorithm may converge to a poor local optimum. Nicol [21]
states that starting with many randomly chosen initial partitions and then taking the
one giving the best result increases the performance of RD.



86 kutluca, kurç, and aykanat

As seen in Figure 9, the 1D decomposition algorithms HHD and OHD display
very poor load-balancing performance due to following two reasons. First, both
HHD and OHD have substantially larger total perimeter value than the 2D decom-
position algorithms, thus resulting in the increase of the total primitive replication
ratio r in Eq. 7. Second, as mentioned in Section 8.2, HHD and OHD have sub-
stantially less degrees of freedom and solution-space size, respectively, than the 2D
decomposition algorithms. Among these two, OHD performs better than HHD as
expected since OHD finds globally optimum horizontal decompositions.

As seen in Figure 9, the 2D decomposition algorithms which utilize the IAH
model display in-between load-balancing performance. Both ORBMM algo-
rithms perform better than the ORB-I algorithm thus showing the merits of the
medians-of-medians approach in the ORB-based schemes. The medians-of-medians
approach decreases the load imbalance at each recursive bisection step, thus re-
ducing the amount of imbalance propagation in the ORBMM schemes. For small
P values, both ORBMM schemes perform better than all the other algorithms uti-
lizing the IAH model. Among the two ORBMM schemes, ORBMM-M performs
better than ORBMM-Q for P = 4. However, the performance of the quadtree ap-
proach becomes better as the number of processors increases. This is because of
the fact that the amount of errors due to the inverse area heuristic is less with
larger quadnodes. As the number of processors increases, the performance of
GPD becomes the best among the ones utilizing the IAH model since it incurs
the least amount of primitive replication. The Hilbert-curve based decomposition
is found to be not suitable for image-space decomposition, since the HCD scheme
displays the worst load-balancing performance among the 2D decomposition
schemes.

9.3. Execution time

Figure 10 presents the execution times of the decomposition algorithms with vary-
ing the number of processors at the mesh resolution of 512 × 512. The execution
time of each algorithm decreases as the number of processors increases because of
the parallel nature of the decomposition algorithms. Figure 10 also illustrates the
dissection of the parallel execution times of the decomposition algorithms into five
components: bounding-box creation time (TBB), local workload-array creation time
(TWL), global-sum operation time on local workload arrays (TGS), subdivision time
(TS) and primitive redistribution time �TR�.

As seen in Figure 10, both TBB and TWL decrease with increasing number of
processors as the respective computations are performed in parallel without com-
munication. As seen in the figure, TBB is the dominating component in the overall
parallel decomposition time on P = 4, and its relative importance decreases with
increasing P . In the 2D decomposition algorithms using 2D workload arrays, al-
though the algorithms using the exact model fill four 2D arrays and the ones using
the IAH model fill only one 2D array, the former type of algorithms take less work-
load creation time (TWL) than the latter type of algorithms. This is expected as
shown in Table 3, because the tallying time per bounding box is proportional to
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Figure 10. Execution times of the decomposition algorithms on different number of processors at mesh
resolution of 512× 512. TBB, TWL, TGS , TS and TR denote the bounding-box creation, local workload-array
creation, global-sum operation, subdivision and primitive redistribution times, respectively.

the area of the bounding box in the IAH model, whereas it is proportional to the
perimeter of the bounding box in the exact model. As seen in Figure 10, the global-
sum time (TGS) increases slightly with increasing number of processors as expected
(see Table 3). In the 2D decomposition algorithms OJD-E and RD utilizing the
exact workload model, TGS tends to become the dominant component in the to-
tal decomposition time with increasing number of processors, as expected. As seen
in Figure 10, the subdivision time �TS� of each decomposition algorithm increases
with increasing number of processors as expected. The redistribution time (TR) de-
creases with increasing number of processors as expected since smaller number of
primitives are classified at each processor.

The total execution times of the 2D decomposition algorithms with varying
coarse-mesh resolution are given in Figure 11. As seen in Figure 11, the execution
times increase with increasing mesh resolution as expected. TWL, TGS and TS in-
crease since the sizes of the local workload arrays increase with increasing mesh
resolution. Furthermore, TR increases in the algorithms that use the mesh-based
classification scheme for redistribution, because this classification scheme involves
tallying the primitives onto the coarse mesh. As seen in the figure, the largest in-
creases in the execution times occur between the mesh resolutions of 256 × 256
and 512 × 512, because the screen-space bounding boxes of the primitives in our
datasets are small. Most of them intersect only a few mesh cells (typically one or
two cells) at small mesh resolutions. However, at the highest mesh resolution of
512 × 512, most of the primitives intersect multiple cells.
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Figure 11. Execution times of the 2D decomposition algorithms using 2D arrays with varying the coarse-
mesh resolution on 16 processors.

9.4. Parallel rendering performance

Figures 12–14 display the speedup values obtained in the sort-first parallelization
of Challinger’s DVR algorithm on the Parsytec CC system. Figure 12 shows the
speedup values for the parallel rendering phase when only the number of triangles
is used to approximate the workload in a region. In this case, the maximum speedup
obtained is 5:9 on 16 processors. Figure 13 illustrates the speedup values for the
rendering phase when spans and pixels are incorporated into the workload model.
In this case, the maximum speedup increases to 11:9 on 16 processors, which is more
than twice the maximum speedup when only the number of triangles is considered.
Figure 14 illustrates the speedup values when the execution times of the decom-
position algorithms are included in the running times. Comparison of Figures 13
and 14 shows that the decomposition overhead does not introduce substantial per-
formance degradation in the overall parallel algorithm. For example, the maximum
speedup on 16 processors slightly reduces from 11:9 to 10:7.

As seen in Figure 14, the best speedup values are achieved by the 1D horizon-
tal decomposition (HD) scheme. This is an unexpected result since HD has the
worst load-balancing and primitive-replication performance. However, HD has an
advantage over the other decomposition schemes for Challinger’s DVR algorithm
which heavily exploits both inter- and intra-scanline coherency. HD preserves intra-
scanline coherency since screen is not divided vertically. However, the 2D decom-
position schemes disturb both types of coherency. In addition, the bounding-box
approximation used for estimating the span and pixel counts of the regions is likely
to introduce more errors when screen is divided both horizontally and vertically
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Figure 12. Speedup for the parallel rendering phase when only the number of triangles is used to
approximate the workload in a region.

than it is divided only horizontally. As mentioned earlier (see Figure 1), the span
counts of the regions are estimated accurately when only horizontal division lines
are allowed. However, when vertical divisions are also allowed, the bounding-box
approximation introduces errors in the estimation of the span counts of the re-
gions. In spite of these findings, the 2D decomposition algorithms are expected to
yield better parallel performance for larger number of processors due to their much
better load-balancing and primitive-replication performances.

As seen in Figures 13 and 14, the speedup values are not very close to linear. This
experimental finding stems from the errors in estimating the workload associated
with a screen region. The number of spans and pixels to be generated by a triangle
are calculated erroneously because of the bounding-box approximation. The second
source of errors comes from the errors in the experimental estimation of the unit
computational costs of processing a triangle, a span and a pixel (i.e., constants αT ,
αS , and αP in Eq. (1)). These unit costs can not be determined precisely through
measurement because of the highly interleaved execution manner of the respective
types of computations.

10. Conclusions

Several adaptive image-space decomposition algorithms were presented according
to a novel taxonomy for sort-first parallelism in direct volume rendering of unstruc-
tured grids on distributed-memory architectures. The proposed taxonomy is based
on the dimension of the screen decomposition and the dimension of the workload
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Figure 13. Speedup for the parallel rendering phase when spans and pixels are incorporated into the
workload model.

arrays used in the decomposition. The decomposition algorithms were parallelized
as much as possible to reduce the preprocessing overhead.

The screen-space bounding boxes of the primitives were used to approximate the
coverage of the primitives on the screen. The number of bounding boxes in a screen
region was used as the workload of the region. For the 2D decomposition schemes
using 2D workload arrays, a novel scheme was proposed to query the exact number
of bounding boxes in constant time, whereas the inverse area heuristic (IAH) was
used in the literature for estimating the workload of a region.

The chains-on-chains partitioning (CCP) algorithms were exploited for load bal-
ancing in some of the proposed decomposition schemes. The probe-based CCP
algorithms were used for optimal 1D horizontal decomposition and iterative 2D
rectilinear decomposition. A new probe-based algorithm was proposed for find-
ing globally optimum 2D jagged decompositions of general workload arrays. The
summed-area table (SAT) scheme, which allows to find the workload of any rectan-
gular region in constant time, was exploited to reduce both the run-time efficiency
and computational complexity of the 2D optimal jagged and iterative rectilinear de-
composition of general 2D workload arrays. New 2D decomposition algorithms us-
ing the IAH model were implemented for image-space decomposition. The orthog-
onal recursive bisection approach with the medians-of-medians scheme was applied
on regular mesh and quadtree superimposed on the screen. The Hilbert space-filling
curve was exploited for image-space decomposition. A graph-partitioning based de-
composition scheme was also proposed and implemented. An efficient primitive
classification scheme was proposed for redistribution in 1D horizontal, 2D rectilin-
ear and 2D jagged decompositions. The complexity of the proposed classification
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Figure 14. Speedup for the overall parallel rendering algorithm (including decomposition time) when
spans and pixels are incorporated into the workload model.

scheme per primitive is independent of both the number of processors and the
screen resolution.

The load-balancing, primitive-replication and parallel run-time performances of
the decomposition algorithms were compared both theoretically and experimen-
tally. The theoretical models for the comparison of load-balancing and primitive-
replication performances were based on establishing appropriate quality measures.
The experimental results on a Parsytec CC system using a set of benchmark vol-
umetric datasets verified the validity of the proposed quality measures. The fol-
lowing two topological properties of the underlying decomposition scheme have
a very strong effect on the amount of primitive replication: the total perimeter
of the regions and the total number of junction points generated with the divi-
sion lines. The 2D orthogonal recursive bisection (ORB) scheme utilizing the exact
workload model achieves the best primitive-replication performance, and the 2D
jagged and rectilinear schemes utilizing the exact model display close performance
to that of ORB. The amount of primitive replication has a very strong effect on the
load-balancing performance of a decomposition algorithm. The 2D decomposition
algorithms achieve substantially better load-balancing performance than the 1D al-
gorithms since the 2D algorithms have larger solution space and incur less amount
of primitive replication. The optimal jagged decomposition through using the exact
model achieves the best load-balancing performance, and the ORB scheme utilizing
the exact model gives the second best performance. The decomposition algorithms
that use 1D workload arrays run faster than the 2D decomposition algorithms that
use 2D workload arrays. The performance evaluation of the presented image-space
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decomposition algorithms was also carried out through the sort-first parallelization
of an efficient DVR algorithm.

The presented decomposition algorithms can be extended to the decomposition
of 2D and 3D nonuniform workload arrays for the parallelization of irregular and
loosely synchronous data-parallel applications such as molecular dynamics, sparse
matrix computations, image processing, and FEM and CFD simulations.
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