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Abstract

The one-dimensional decomposition of nonuniform workload arrays with optimal load balancing is investigated. The problem

has been studied in the literature as the ‘‘chains-on-chains partitioning’’ problem. Despite the rich literature on exact algorithms,

heuristics are still used in parallel computing community with the ‘‘hope’’ of good decompositions and the ‘‘myth’’ of exact

algorithms being hard to implement and not runtime efficient. We show that exact algorithms yield significant improvements in load

balance over heuristics with negligible overhead. Detailed pseudocodes of the proposed algorithms are provided for reproducibility.

We start with a literature review and propose improvements and efficient implementation tips for these algorithms. We also

introduce novel algorithms that are asymptotically and runtime efficient. Our experiments on sparse matrix and direct volume

rendering datasets verify that balance can be significantly improved by using exact algorithms. The proposed exact algorithms are

100 times faster than a single sparse-matrix vector multiplication for 64-way decompositions on the average. We conclude that exact

algorithms with proposed efficient implementations can effectively replace heuristics.

r 2004 Elsevier Inc. All rights reserved.

Keywords: One-dimensional partitioning; Optimal load balancing; Chains-on-chains partitioning; Dynamic programming; Iterative refinement;

Parametric search; Parallel sparse matrix vector multiplication; Image-space parallel volume rendering
1. Introduction

This article investigates block partitioning of possibly
multi-dimensional nonuniform domains over one-di-
mensional (1D) workload arrays. Communication and
synchronization overhead is assumed to be handled
implicitly by proper selection of ordering and parallel
computation schemes at the beginning so that load
balance is the only metric explicitly considered for
decomposition. The load balancing problem in the
partitioning can be modeled as the chains-on-chains

partitioning (CCP) problem with nonnegative task
weights and unweighted edges between successive tasks.
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The objective of the CCP problem is to find a sequence
of P � 1 separators to divide a chain of N tasks with
associated computational weights into P consecutive
parts so that the bottleneck value, i.e., maximum load
among all processors, is minimized.
The first polynomial time algorithm for the CCP

problem was proposed by Bokhari [4]. Bokhari’s
OðN3PÞ-time algorithm is based on finding a minimum
path on a layered graph. Nicol and O’Hallaron [28]
reduced the complexity to OðN2PÞ by decreasing the
number of edges in the layered graph. Algorithm
paradigms used in following studies can be classified
as dynamic programming (DP), iterative refinement, and
parametric search. Anily and Federgruen [1] initiated
the DP approach with an OðN2PÞ-time algorithm.
Hansen and Lih [13] independently proposed an
OðN2PÞ-time algorithm. Choi and Narahari [6], and
Olstad and Manne [30] introduced asymptotically
faster OðNPÞ-time, and OððN � PÞPÞ-time DP-based
algorithms, respectively. The iterative refinement ap-
proach starts with a partition and iteratively tries to
improve the solution. The OððN � PÞP log PÞ-time
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algorithm proposed by Manne and S^revik [23] falls
into this class. The parametric-search approach relies on
repeatedly probing for a partition with a bottleneck

value no greater than a given value. Complexity of
probing is yðNÞ; since each task has to be examined, but
can be reduced to OðP log NÞ through binary search,
after an initial yðNÞ-time prefix-sum operation on the
task chain [18]. Later the complexity was reduced to
OðP logðN=PÞÞ by Han et al. [12].
The parametric-search approach goes back to Iqbal’s

work [16] describing an e-approximate algorithm which
performs OðlogðWtot=eÞÞ probe calls. Here, Wtot denotes
the total task weight and e40 denotes the desired
accuracy. Iqbal’s algorithm exploits the observation that
the bottleneck value is in the range ½Wtot=P;Wtot� and
performs binary search in this range by making
OðlogðWtot=eÞÞ probes. This work was followed by
several exact algorithms involving efficient schemes for
searching over bottleneck values by considering only
subchain weights. Nicol and O’Hallaron [28,29] pro-
posed a search scheme that requires at most 4N probes.
Iqbal and Bokhari [17] relaxed the restriction of this
algorithm on bounded task weight and communication
cost by proposing a condensation algorithm. Iqbal [15]
and Nicol [27,29] concurrently proposed an efficient
search scheme that finds an optimal partition after only
OðP log NÞ probes. Asymptotically more efficient algo-
rithms were proposed by Frederickson [7,8] and Han
et al. [12]. Frederickson proposed an OðNÞ-time optimal
algorithm. Han et al. proposed a recursive algorithm
with complexity OðN þ P1þEÞ for any small E40: These
two studies have focused on asymptotic complexity,
disregarding practice.
Despite these efforts, heuristics are still commonly

used in the parallel computing community, and design
of efficient heuristics is still an active area of research
[24]. The reasons for preferring heuristics are ease of
implementation, efficiency, the expectation that heur-
istics yield good partitions, and the misconception that
exact algorithms are not affordable as a preprocessing
step for efficient parallelization. By contrast, our work
proposes efficient exact CCP algorithms. Implementa-
tion details and pseudocodes for proposed algorithms
are presented for clarity and reproducibility. We also
demonstrate that qualities of the decompositions ob-
tained through heuristics differ substantially from those
of optimal ones through experiments on a wide range of
real-world problems.
For the runtime efficiency of our algorithms, we use

an effective heuristic as a preprocessing step to find a
good upper bound on the optimal bottleneck value.
Then we exploit lower and upper bounds on the optimal
bottleneck value to restrict the search space for
separator-index values. This separator-index bounding
scheme is exploited in a static manner in the DP
algorithm, drastically reducing the number of table
entries computed and referenced. A dynamic separator-
index bounding scheme is proposed for parametric
search algorithms, narrowing separator-index ranges
after each probe. The upper bound on the optimal
bottleneck value is also exploited to find a much better
initial partition for the iterative-refinement algorithm
proposed by Manne and S^revik [23]. We also propose a
different iterative-refinement technique, which is very
fast for small-to-medium number of processors. Ob-
servations behind this algorithm are further used to
incorporate the subchain-weight concept into Iqbal’s
[16] approximate bisection algorithm to make it an exact
algorithm.
Two applications are investigated in our experiments:

sparse matrix–vector multiplication (SpMxV) which is
one of the most important kernels in scientific comput-
ing and image-space parallel volume rendering which is
widely used for scientific visualization. Integer and real
valued workload arrays arising in these two applications
are their distinctive features. Furthermore, SpMxV, a
fine-grain application, demonstrates the feasibility of
using optimal load balancing algorithms even in sparse-
matrix decomposition. Experiments with proposed CCP
algorithms on a wide range of sparse test matrices show
that 64-way decompositions can be computed 100 times
faster than a single SpMxV time, while reducing the load
imbalance by a factor of four over the most effective
heuristic. Experimental results on volume rendering
dataset show that exact algorithms can produce 3.8
times better 64-way decompositions than the most
effective heuristic, while being only 11 percent slower
on average.
The remainder of this article is organized as follows.

Table 1 displays the notation used in the paper. Section 2
defines the CCP problem. A survey of existing CCP
algorithms is presented in Section 3. Proposed CCP
algorithms are discussed in Section 4. Load-balancing
applications used in our experiments are described in
Section 5 and performance results are discussed in
Section 6.
2. Chains-on-chains partitioning (CCP) problem

In the CCP problem, a computational problem,
decomposed into a chain T ¼ /t1; t2;y; tNS of N

task/modules with associated positive computational
weights W ¼ /w1;w2;y;wNS; is to be mapped onto
a chain P ¼ /P1;P2;y;PPS of P homogeneous

processors. It is worth noting that there are no
precedence constraints among the tasks in the chain. A
subchain of T is defined as a subset of contiguous tasks,
and the subchain consisting of tasks /ti; tiþ1;y; tjS is
denoted as T i;j : The computational load Wi;j of
subchain T i;j is Wi;j ¼

Pj
h¼i wh: From the contiguity

constraint, a partition P should map contiguous
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Table 1

The summary of important abbreviations and symbols

Notation Explanation

N number of tasks

P number of processors

P processor chain

Pi ith processor in the processor chain

T task chain, i.e., T ¼ /t1; t2;y; tNS
ti ith task in the task chain

T ij subchain of tasks starting from ti upto tj ; i.e., T ij ¼
/ti; tiþ1;y; tjS

T p
i subproblem of p-way partitioning of the first i tasks in

the task chain T :

wi computational load of task ti

wmax maximum computational load among all tasks

wavg average computational load of all tasks

Wij total computational load of task subchain Tij

Wtot total computational load

W½i� total weight of the first i tasks

Pp
i partition of first i tasks in the task chain onto the first p

processors in the processor chain

Lp load of the pth processor in a partition

UB upperbound on the value of an optimal solution

LB lower bound on the value of an optimal solution

B ideal bottleneck value, achieved when all processors

have equal load.

B
p
i optimal solution value for p-way partitioning of the

first i tasks

sp index of the last task assigned to the pth processor.

SLp lowest position for the pth separator index in an

optimal solution

SHp highest position for the pth separator index in an

optimal solution
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subchains to contiguous processors. Hence, a P-way
chain-partition PP

N of a task chain T with N tasks onto
a processor chain P with P processors is described by a
sequence PP

N ¼ /s0; s1; s2;y; sPS of P þ 1 separator
indices, where s0 ¼ 0ps1p?psP ¼ N: Here, sp de-
notes the index of the last task of the pth part so that Pp

gets the subchain T sp�1þ1;sp
with load Lp ¼ Wsp�1þ1;sp

:
The cost CðPÞ of a partition P is determined by the
maximum processor execution time among all proces-
sors, i.e., CðPÞ ¼ B ¼ max1pppP fLpg: This B value of a
partition is called its bottleneck value, and the processor/
part defining it is called the bottleneck processor/part.
The CCP problem can be defined as finding a mapping
Popt that minimizes the bottleneck value Bopt ¼ CðPoptÞ:
3. Previous work

Each CCP algorithm discussed in this section and
Section 4 involves an initial prefix-sum operation on the
task-weight array W to enhance the efficiency of
subsequent subchain-weight computations. The prefix-
sum operation replaces the ith entry W½i� with the sum
of the first i entries ð

Pi
h¼1 whÞ so that computational

load Wij of a subchain T i;j can be efficiently determined
as W½ j� � W½i � 1� in Oð1Þ-time. In our discussions, W
is used to refer to the prefix-summed W-array, and the
yðNÞ cost of this initial prefix-sum operation is
considered in the complexity analysis. The presentations
focus only on finding the bottleneck value Bopt; because
a corresponding optimal mapping can be constructed
easily by making a PROBEðBoptÞ call as discussed in
Section 3.4.

3.1. Heuristics

The most commonly used partitioning heuristic is
based on recursive bisection ðRBÞ: RB achieves P-way
partitioning through log P bisection levels, where P is a
power of 2. At each bisection step in a level, the current
chain is divided evenly into two subchains. Although
optimal division can be easily achieved at every bisection
step, the sequence of optimal bisections may lead to
poor load balancing. RB can be efficiently implemented
in OðN þ P log NÞ time by first performing a prefix-sum
operation on the workload array W; with complexity
OðNÞ; and then making P � 1 binary searches in the
prefix-summed W-array, each with complexity
Oðlog NÞ:
Miguet and Pierson [24] proposed two other heur-

istics. The first heuristic ðH1Þ computes the separator
values such that sp is the largest index such that
W1;sp

ppB; where B ¼ Wtot=P is the ideal bottleneck
value, and Wtot ¼

PN
i¼1 wi denotes sum of all task

weights. The second heuristic ðH2Þ further refines the
separator indices by incrementing each sp value found in
H1 if ðW1;spþ1 � pBÞoð pB � W1;sp

Þ: These two heur-
istics can also be implemented in OðN þ P log NÞ time
by performing P � 1 binary searches in the prefix-
summed W-array. Miguet and Pierson [24] have already
proved the upper bounds on the bottleneck values of the
partitions found by H1 and H2 as BH1;BH2oB þ
wmax; where wmax ¼ max1pppN fwig denotes the max-
imum task weight. The following lemma establishes a
similar bound for the RB heuristic.

Lemma 3.1. Let PRB ¼ /s0; s1;y; sPS be an RB solu-

tion to a CCP problem ðW;N;PÞ: Then BRB ¼ CðPRBÞ
satisfies BRBpB þ wmaxðP � 1Þ=P:

Proof. Consider the first bisection step. There exists a
pivot index 1pi1pN such that both sides weigh less
than Wtot=2 without the i1th task, and more than Wtot=2
with it. That is,

W1;i1�1;Wi1þ1;NpWtot=2pW1;i1 ;Wi1;N :

The worst case for RB occurs when wi1 ¼ wmax and
W1;i1�1 ¼ Wi1þ1;N ¼ ðWtot � wmaxÞ=2: Without loss of
generality, assume that ti1 is assigned to the left part so
that sP=2 ¼ i1 and W1;sP=2

¼ Wtot=2þ wmax=2: In a
similar worst-case bisection of T 1;sP=2

; there exists an



ARTICLE IN PRESS

Fig. 1. OððN � PÞPÞ-time dynamic-programming algorithm proposed

by Choi and Narahari [6], and Olstad and Manne [30].
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index i2 such that wi2 ¼ wmax and W1;i2�1 ¼ Wi2þ1;sP=2
¼

ðWtot � wmaxÞ=4; and ti2 is assigned to the left part so
that sP=4 ¼ i2 and W1;sP=4

¼ ðWtot � wmaxÞ=4þ wmax ¼
Wtot=4þ ð3=4Þwmax: For a sequence of log P such worst-
case bisection steps on the left parts, processor P1 will be
the bottleneck processor with load BRB ¼ W1;s1 ¼
Wtot=P þ wmaxðP � 1Þ=P: &

3.2. Dynamic programming

The overlapping subproblem space can be defined as
T p

i ; for p ¼ 1; 2;y;P and i ¼ p; p þ 1;y;N � P þ p;
where T p

i denotes a p-way CCP of prefix task-subchain
T 1;i ¼ /t1; t2;y; tiS onto prefix processor-subchain
P1;p ¼ /P1;P2;y;PpS: Notice that index i is restricted
to ppipN � P þ p range because there is no merit in
leaving a processor empty. From this subproblem space
definition, the optimal substructure property of the CCP
problem can be shown by considering an optimal
mapping Pp

i ¼ /s0; s1;y; sp ¼ iS with a bottleneck
value B

p
i for the CCP subproblem T p

i : If the last
processor is not the bottleneck processor in Pp

i ; then
Pp�1

sp�1
¼ /s0; s1;y; sp�1S should be an optimal mapping

for the subproblem T p�1
sp�1

: Hence, recursive definition for
the bottleneck value of an optimal mapping is

B
p
i ¼ min

p�1pjoi
fmaxfB

p�1
j ;Wjþ1;igg: ð1Þ

In (1), searching for index j corresponds to searching for
separator sp�1 so that the remaining subchain T jþ1;i is
assigned to the last processor Pp in an optimal mapping
Pp

i of T p
i : The bottleneck value BP

N of an optimal
mapping can be computed using (1) in a bottom-up
fashion starting from B1

i ¼ W1;i for i ¼ 1; 2;y;N: An
initial prefix-sum on the workload array W enables
constant-time computation of subchain weight of the
form Wjþ1;i through Wjþ1;i ¼ W½i� � W½ j�: Computing
B

p
i using (1) takes OðN � pÞ time for each i and p; and

thus the algorithm takes OððN � PÞ2PÞ time since the
number of distinct subproblems is equal to ðN � P þ 1ÞP:
Choi and Narahari [6], and Olstad and Manne [30]

reduced the complexity of this scheme to OðNPÞ and
OððN � PÞPÞ; respectively, by exploiting the following
observations that hold for positive task weights. For a
fixed p in (1), the minimum index value j

p
i defining B

p
i

cannot occur at a value less than the minimum index
value j

p
i�1 defining B

p
i�1; i.e., j

p
i�1pj

p
i pði � 1Þ: Hence, the

search for the optimal j
p
i can start from j

p
i�1: In (1), B

p�1
j

for a fixed p is a nondecreasing function of j; and Wjþ1;i
for a fixed i is a decreasing function of j; reducing to 0 at
j ¼ i: Thus, two cases occur in a semi-closed interval
½ j

p
i�1; iÞ for j: If Wjþ1;i4B

p�1
j initially, then these two

functions intersect in ½ j
p
i�1; iÞ: In this case, the search for

j
p
i continues until Wjþ1;ipB

p�1
j and then only j and

j � 1 are considered for setting j
p
i with j

p
i ¼ j if
B
p�1
j pWj;i and j

p
i ¼ j � 1 otherwise. Note that this

scheme automatically detects j
p
i ¼ i � 1 if Wjþ1;i and

B
p�1
j intersect in the open interval ði � 1; iÞ: However if,

Wjþ1;ipB
p�1
j initially, then B

p�1
j lies above Wjþ1;i in the

closed interval ½ j
p
i�1; i�: In this case, the minimum value

occurs at the first value of j; i.e., j
p
i ¼ j

p
i�1: These

improvements lead to an OððN � PÞPÞ-time algorithm
since computation of all B

p
i values for a fixed p makes

OðN � PÞ references to already computed B
p�1
j values.

Fig. 1 displays a run-time efficient implementation of
this OððN � PÞPÞ-time DP algorithm which avoids the
explicit min–max operation required in (1). In Fig. 1, B

p
i

values are stored in a table whose entries are computed
in row-major order.

3.3. Iterative refinement

The algorithm proposed by Manne and S^revik [23],
referred to here as the MS algorithm, finds a sequence of
nonoptimal partitions such that there is only one way
each partition can be improved. For this purpose, they
introduce the leftist partition (LP). Consider a partition
P such that Pp is the leftmost processor containing at
least two tasks. P is defined as an LP if increasing the
load of any processor Pc that lies to the right of Pp by
augmenting the last task of Pc�1 to Pc makes Pc a
bottleneck processor with a load XCðPÞ: Let P be an
LP with bottleneck processor Pb and bottleneck value B:
If Pb contains only one task, then P is optimal. On the
other hand, assume that Pb contains at least two tasks.
The refinement step, which is shown by the inner while–
loop in Fig. 2, tries to find a new LP of lower cost by
successively removing the first task of Pp and augment-
ing it to Pp�1 for p ¼ b; b � 1;y; until LpoB: Refine-
ment fails when the while–loop proceeds until p ¼ 1 with
LpXB: Manne and S^revik proved that a successful
refinement of an LP gives a new LP and the LP is
optimal if the refinement fails. They proposed using an
initial LP in which the P � 1 leftmost processors each
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has only one task and the last processor contains the
remaining tasks. The MS algorithm moves each
separator index at most N � P times so that the total
number of separator-index moves is OðPðN � PÞÞ: A
max-heap is maintained for the processor loads to find a
bottleneck processor at the beginning of each repeat-
loop iteration. The cost of each separator-index move is
Oðlog P) since it necessitates one decrease-key and one
increase-key operations. Thus the complexity of the MS
algorithm is OðPðN � PÞ log PÞ:

3.4. Parametric search

The parametric-search approach relies on repeated
probing for a partition P with a bottleneck value no
Fig. 2. Iterative refinement algorithm proposed by Manne and S^revik

[23].

Fig. 3. (a) Standard probe algorithm with OðP logNÞ complexity, (b) O
greater than a given B value. Probe algorithms exploit
the greedy-choice property for existence and construc-
tion of P: The greedy choice here is to minimize
remaining work after loading processor Pp subject to
LppB for p ¼ 1;y;P � 1 in order. PROBEðBÞ func-
tions given in Fig. 3 exploit this greedy property as
follows. PROBE finds the largest index s1 so that
W1;s1pB; and assigns subchain T 1;s1 to processor P1

with load L1 ¼ W1;s1 : Hence, the first task in the second
processor is ts1þ1: PROBE then similarly finds the
largest index s2 so that Ws1þ1;s2pB; and assigns the
subchain T s1þ1;s2 to processor P2: This process continues
until either all tasks are assigned or all processors are
exhausted. The former and latter cases indicate feasi-
bility and infeasibility of B; respectively.
Fig. 3(a) illustrates the standard probe algorithm. The

indices s1; s2;y; sP�1 are efficiently found through
binary search (BINSRCH) on the prefix-summed W-
array. In this figure, BINSRCHðW; i;N;BsumÞ searches
W in the index range ½i;N� to compute the index ipjpN

such that W½ j�pBsum and W½ j þ 1�4Bsum: The
complexity of the standard probe algorithm is
OðP log NÞ: Han et al. [12] proposed an OðP log N=PÞ-
time probe algorithm (see Fig. 3(b)) exploiting P

repeated binary searches on the same W array
with increasing search values. Their algorithm divides
the chain into P subchains of equal length. At
each probe, a linear search is performed on the
weights of the last tasks of these P subchains to find
out in which subchain the search value could be,
and then binary search is performed on the respective
subchain of length N=P: Note that since the probe
search values always increase, linear search can be
performed incrementally, that is, search continues
from the last subchain that was searched to the right
with OðPÞ total cost. This gives a total cost of
OðP logðN=PÞÞ for P binary searches thus for the probe
function.
ðP logðN=PÞÞ-time probe algorithm proposed by Han et al. [12].
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3.4.1. Bisection as an approximation algorithm

Let f ðBÞ be the binary-valued function where f ðBÞ ¼
1 if PROBEðBÞ is true and f ðBÞ ¼ 0 if PROBEðBÞ is
false. Clearly, f ðBÞ is nondecreasing in B; and Bopt lies
between LB ¼ B ¼ Wtot=P and UB ¼ Wtot: These
observations are exploited in the bisection algorithm
leading to an efficient e-approximate algorithm, where e
is the desired precision. The interval ½Wtot=P;Wtot� is
conceptually discretized into ðWtot � Wtot=PÞ=e bottle-
neck values, and binary search is used in this range to
find the minimum feasible bottleneck value Bopt: The
bisection algorithm, as illustrated in Fig. 4, performs
OðlogðWtot=eÞÞ PROBE calls, and each PROBE call
costs OðP logðN=PÞÞ: Hence, the bisection algorithm
runs in OðN þ P logðN=PÞ logðWtot=eÞÞ time, where
OðNÞ cost comes from the initial prefix-sum operation
on W: The performance of this algorithm deteriorates
when logðWtot=eÞ is comparable with N:

3.4.2. Nicol’s algorithm

Nicol’s algorithm [27] exploits the fact that any
candidate B value is equal to weight Wi;j of a subchain.
A naive solution is to generate all subchain weights of
the form Wi;j ; sort them, and then use binary search to
find the minimum Wa;b value for which PROBEðWa;bÞ ¼
TRUE: Nicol’s algorithm efficiently searches for the
earliest range Wa;b for which Bopt ¼ Wa;b by considering
each processor in order as a candidate bottleneck
processor in an optimal mapping. Let Popt be the
optimal mapping constructed by greedy PROBEðBoptÞ;
and let processor Pb be the first bottleneck processor
with load Bopt in Popt ¼ /s0; s1;y; sb;y; sPS: Under
these assumptions, this greedy construction of Popt

ensures that each processor Pp preceding Pb is loaded
as much as possible with LpoBopt; for p ¼ 1; 2;y; b � 1
in Popt: Here, PROBEðLpÞ ¼ FALSE since LpoBopt;
and PROBEðLp þ Wspþ1Þ ¼ TRUE since adding one
more task to processor Pp increases its load to Lp þ
wspþ14Bopt: Hence, if b ¼ 1 then s1 is equal to the
smallest index i1 such that PROBEðW1;i1Þ ¼ TRUE; and
Fig. 4. Bisection as an e-approximation algorithm.
Bopt ¼ B1 ¼ W1;s1 : However, if b41; then because of the
greedy choice property P1 should be loaded as much as
possible without exceeding Bopt ¼ BboB1; which implies
that s1 ¼ i1 � 1; and hence L1 ¼ W1;i1�1: If b ¼ 2; then s2
is equal to the smallest index i2 such that
PROBEðWi1;i2Þ ¼ TRUE; and Bopt ¼ B2 ¼ Wi1;i2 : If
b42; then s2 ¼ i2 � 1: We iterate for b ¼ 1; 2;y;P �
1; computing ib as the smallest index for which
PROBEðWib�1;ibÞ ¼ TRUE and save Bb ¼ Wib�1;ib with
iP ¼ N: Finally, the optimal bottleneck value is selected
as Bopt ¼ min1pbpP Bb:
Fig. 5 illustrates Nicol’s algorithm. As seen in this

figure, given ib�1; ib is found by performing a binary
search over all subchain weights of the form Wib�1;j; for
ib�1pjpN; in the bth iteration of the for–loop. Hence,
Nicol’s algorithm performs Oðlog NÞ PROBE calls to
find ib at iteration b; and each probe call costs
OðP logðN=PÞÞ: Thus, the cost of computing an
individual Bb value is OðP log N logðN=PÞÞ: Since P �
1 such Bb values are computed, the overall complexity of
Nicol’s algorithm is OðN þ P2 log N logðN=PÞÞ; where
OðNÞ cost comes from the initial prefix-sum operation
on W:
Two possible implementations of Nicol’s algorithm

are presented in Fig. 5. Fig. 5(a) illustrates a straightfor-
ward implementation, whereas Fig. 5(b) illustrates a
careful implementation, which maintains and uses the
information from previous probes to answer without
calling the PROBE function. As seen in Fig. 5(b), this
information is efficiently maintained as an undetermined
bottleneck-value range ðLB;UBÞ; which is dynamically
refined after each probe. Any bottleneck value encoun-
tered outside the current range is immediately accepted
or rejected. Although this simple scheme does not
improve the asymptotic complexity of the algorithm, it
drastically reduces the number of probes, as discussed in
Section 6.
4. Proposed CCP algorithms

In this section, we present proposed methods. First,
we describe how to bound the separator indices for an
optimal solution to reduce the search space. Then, we
show how this technique can be used to improve the
performance of the dynamic programming algorithm.
We continue with our discussion on improving the MS
algorithm, and propose a novel refinement algorithm,
which we call the bidding algorithm. Finally, we discuss
parametric search methods, proposing improvements
for the bisection and Nicol’s algorithms.

4.1. Restricting the search space

Our proposed CCP algorithms exploit lower and
upper bounds on the optimal bottleneck value to restrict
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Fig. 5. Nicol’s [27] algorithm: (a) straightforward implementation, (b) careful implementation with dynamic bottleneck-value bounding.
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the search space for separator values as a preprocessing
step. Natural lower and upper bounds for the optimal
bottleneck value Bopt of a given CCP problem instance
ðW;N;PÞ are LB ¼ maxfB;wmaxg and UB ¼
B þ wmax; respectively, where B ¼ Wtot=P: Since
wmaxoB in coarse grain parallelization of most real-
world applications, our presentation will be for
wmaxoB ¼ LB even though all results are valid when
B is replaced with maxfB;wmaxg: The following lemma
describes how to use these natural bounds on Bopt to
restrict the search space for the separator values.

Lemma 4.1. For a given CCP problem instance

ðW;N;PÞ; if Bf is a feasible bottleneck value in the

range ½B;B þ wmax�; then there exists a partition P ¼
/s0; s1;y; sPS of cost CðPÞpBf with SLppsppSHp;
for 1ppoP; where SLp and SHp are, respectively, the

smallest and largest indices such that

W1;SLp
XpðB � wmaxðP � pÞ=PÞ and

W1;SHp
ppðB þ wmaxðP � pÞ=PÞ:
Proof. Let Bf ¼ B þ w; where 0pwowmax: Partition P
can be constructed by PROBEðBÞ; which loads the first
p processors as much as possible subject to LqpBf ; for
q ¼ 1; 2;y; p: In the worst case, wspþ1 ¼ wmax for each
of the first p processors. Thus, we have W1;sp

Xf ðwÞ ¼
pðB þ w � wmaxÞ for p ¼ 1; 2;y;P � 1: However, it
should be possible to divide the remaining subchain
T spþ1;N into P � p parts without exceeding Bf ; i.e.,
Wspþ1;NpðP � pÞ ðB þ wÞ: Thus, we also have
W1;sp

XgðwÞ ¼ Wtot � ðP � pÞðB þ wÞ: Note that f ðwÞ
is an increasing function of w; whereas gðwÞ is a
decreasing function of w: The minimum of
maxf f ðwÞ; gðwÞg is at the intersection of f ðwÞ and
gðwÞ so that W1;sp

XpðB � wmaxðP � pÞ=PÞ:
To prove the upper bounds, we can start with

W1;sp
pf ðwÞ ¼ pðB þ wÞ; which holds when Lq ¼ B þ

w for q ¼ 1;y; p: The condition Wspþ1;NXðP � pÞðB þ
w � wmaxÞ; however, ensures feasibility of Bf ¼ B þ w;
since PROBEðBÞ can always load each of the remaining
ðP � pÞ processors with B þ w � wmax: Thus, we also
have W1;sp

pgðwÞ ¼ Wtot � ðP � pÞðB þ w � wmaxÞ:
Here, f ðwÞ is an increasing function of w; whereas
gðwÞ is a decreasing function of w; which yields
W1;sp

ppðB þ wmaxðP � pÞ=PÞ: &

Corollary 4.2. The separator range weights are DWp ¼PSHp

i¼SLp
wi ¼ W1;SHp

� W1;SLp
¼ 2wmaxpðP � pÞ=P with a

maximum value Pwmax=2 at p ¼ P=2:

Applying this corollary requires finding wmax; which
entails an overhead equivalent to that of the prefix-sum
operation, and hence should be avoided. In this work,
we adopt a practical scheme to construct the bounds on
separator indices. We run the RB heuristic to find a
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hopefully good bottleneck value BRB; and use BRB as an
upper bound for bottleneck values, i.e., UB ¼ BRB:
Then we run LR-PROBEðBRBÞ and RL-PROBEðBRBÞ
to construct two mappings P1 ¼ /h10; h11;y; h1PS and
P2 ¼ /c20; c

2
1;y; c2PS with CðP1Þ;CðP2ÞpBRB: Here,

LR-PROBE denotes the left-to-right probe given in
Fig. 3, whereas RL-PROBE denotes a right-to-left
probe function, which can be considered as the dual of
the LR-PROBE: RL-PROBE exploits the greedy-choice
property from right to left. That is, RL-PROBE assigns
subchains from the right end towards the left end of the
task chain to processors in the order PP;PP�1;y;P1:
From these two mappings, lower and upper bound
values for sp separator indices are constructed as SLp ¼
c2p and SHp ¼ h1p; respectively. These bounds are further
refined by running LR-PROBEðBÞ and
RL-PROBEðBÞ to construct two mappings P3 ¼
/c30; c

3
1;y; c3PS and P4 ¼ /h40; h41;y; h4PS; and then

defining SLp ¼ maxfSLp; c
3
pg and SHp ¼ minfSHp; h4pg

for 1ppoP: Lemmas 4.3 and 4.4 prove correctness of
these bounds.

Lemma 4.3. For a given CCP problem instance ðW;N;PÞ
and a feasible bottleneck value Bf ; let P1 ¼
/h10; h11;y; h1PS and P2 ¼ /c20; c

2
1;y; c2PS be the parti-

tions constructed by LR-PROBEðBfÞ and RL-PROBEðBfÞ;
respectively. Then any partition P ¼ /s0; s1;y; sPS of cost

CðPÞ ¼ BpBf satisfies c2ppspph1p:

Proof. By the property of LR-PROBEðBfÞ; h1p is the
largest index such that T 1;h1p

can be partitioned into p

parts without exceeding Bf : If sp4h1p; then the bottle-
neck value will exceed Bf and thus B: By the property of
RL-PROBEðBfÞ; c2p is the smallest index where T c2p;N
can be partitioned into P � p parts without exceeding
Bf : If spoc2p; then the bottleneck value will exceed Bf

and thus B: &

Lemma 4.4. For a given CCP problem instance

ðW;N;PÞ; let P3 ¼ /c30; c
3
1;y; c3PS and P4 ¼

/h40; h41;y; h4PS be the partitions constructed by

LR-PROBEðBÞ and RL-PROBEðBÞ; respectively.

Then for any feasible bottleneck value Bf ; there exists a

partition P ¼ /s0; s1;y; sPS of cost CðPÞpBf that

satisfies c3ppspph4p:

Proof. Consider the partition P ¼ /s0; s1;y; sPS con-
structed by LR-PROBEðBfÞ: It is clear that this
partition already satisfies the lower bounds, i.e.,
spXc3p: Assume sp4h4p; then partition P0 obtained by
moving sp back to h4p also yields a partition with cost
CðP0ÞpBf ; since T h4pþ1;N can be partitioned into P � p

parts without exceeding B: &

The difference between Lemmas 4.3 and 4.4 is that the
former ensures the existence of all partitions with
costpBf within the given separator-index ranges,
whereas the latter ensures only the existence of at least
one such partition within the given ranges. The
following corollary combines the results of these two
lemmas.

Corollary 4.5. For a given CCP problem instance

ðW;N;PÞ and a feasible bottleneck value Bf ; let

P1 ¼ /h10; h11;y; h1PS; P2 ¼ /c20; c
2
1;y; c2PS; P3 ¼

/c30; c
3
1;y; c3PS; and P4 ¼ /h40; h

4
1;y; h4PS be the parti-

tions constructed by LR-PROBEðBfÞ; RL-PROBEðBfÞ;
LR-PROBEðBÞ; and RL-PROBEðBÞ; respectively.

Then for any feasible bottleneck value B in the range

½B;Bf �; there exists a partition P ¼ /s0; s1;y; sPS of

cost CðPÞpB with SLppsppSHp; for 1ppoP; where

SLp ¼ maxfc2p; c3pg and SHp ¼ minfh1p; h4pg:

Corollary 4.6. The separator range weights become

DWp ¼ 2 minf p; ðP � pÞgwmax in the worst case, with a

maximum value Pwmax at p ¼ P=2:

Lemma 4.1 and Corollary 4.5 infer the following
theorem since BpBoptpB þ wmax:

Theorem 4.7. For a given CCP problem instance

ðW;N;PÞ; and SLp and SHp index bounds constructed

according to Lemma 4.1 or Corollary 4.5, there exists

an optimal partition Popt ¼ /s0; s1;y; sPS with SLpp
sppSHp; for 1ppoP:

Comparison of separator range weights in Lemma 4.1
and Corollary 4.5 shows that separator range weights
produced by the practical scheme described in
Corollary 4.5 may be worse than those of Lemma 4.1
by a factor of two. This is only the worst-case behavior
however, and the practical scheme normally finds much
better bounds, since order in the chain usually prevents
the worst-case behavior and BRBoB þ wmax: Experi-
mental results in Section 6 justify this expectation.

4.1.1. Complexity analysis models

Corollaries 4.2 and 4.6 give bounds on the weights of
the separator-index ranges. However, we need bounds
on the sizes of these separator-index ranges for
computational complexity analysis of the proposed
CCP algorithms. Here, the size DSp ¼ SHp � SLp þ 1
denotes the number of tasks within the pth range
½SLp;SHp�: Miguet and Pierson [24] propose the model
wi ¼ yðwavgÞ for i ¼ 1; 2;y;N to prove that their H1
and H2 heuristics allocate yðN=PÞ tasks to each
processor, where wavg ¼ Wtot=N is the average task
weight. This assumption means that the weight of each
task is not too far away from the average task weight.
Using Corollaries 4.2 and 4.5, this model induces DSp ¼
OðP wmax=wavgÞ: Moreover, this model can be exploited
to induce the optimistic bound DSp ¼ OðPÞ: However,
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we find their model too restrictive, since the minimum
and maximum task weights can deviate substantially
from wavg: Here, we establish a looser and more realistic
model on task weights so that for any subchain T i;j

with weight Wi;j sufficiently larger than wmax; the
average task weight within subchain T i;j satisfies
OðwavgÞ: That is, Di;j ¼ j � i þ 1 ¼ OðWi;j=wavgÞ: This
model, referred to here as model M; directly induces
DSp ¼ OðPwmax=wavgÞ; since DWppDWP=2 ¼ Pwmax=2
for p ¼ 1; 2;y;P � 1:

4.2. Dynamic-programming algorithm with static

separator-index bounding

The proposed DP algorithm, referred to here as the
DP+ algorithm, exploits bounds on the separator
indices for an efficient solution. Fig. 6 illustrates the
proposed DP+ algorithm, where input parameters SL

and SH denote the index bound arrays, each of size P;
computed according to Corollary 4.5 with Bf ¼ BRB:
Note that SLP ¼ SHP ¼ N; since only B½P;N� needs to
be computed in the last row. As seen in Fig. 6, only B

p
j

values for j ¼ SLp;SLp þ 1;y;SHp are computed at
each row p by exploiting Corollary 4.5, which ensures
existence of an optimal partition Popt ¼ /s0; s1;y; sPS
with SLppsppSHp: Thus, these B

p
j values will suffice

for correct computation of B
pþ1
i values for i ¼

SLpþ1;SLpþ1 þ 1;y;SHpþ1 at the next row p þ 1:
As seen in Fig. 6, explicit range checking is avoided in

this algorithm for utmost efficiency. However, the j-
index may proceed beyond SHp to SHp þ 1 within the
repeat–until-loop while computing B

pþ1
i with

SLpþ1pipSHpþ1 in two cases. In both cases, functions
Wjþ1;i and B

p
j intersect in the open interval ðSHp;SHp þ

1Þ so that B
p
SHp

oWSHpþ1;i and B
p
SHpþ1XWSHpþ2;i: In the

first case, i ¼ SHp þ 1 so that Wjþ1;i and B
p
j intersect in
Fig. 6. Dynamic-programming algorithm with static separator-index

bounding.
ði � 1; iÞ; which implies that B
pþ1
i ¼ Wi�1;i; with j

pþ1
i ¼

SLp; since Wi�1;ioB
p
i ; as mentioned in Section 3.2. In

the second case, i4SHp þ 1; for which Corollary 4.5
guarantees that B

pþ1
i ¼ WSLpþ1;ipB

p
SHpþ1; and thus we

can safely select j
pþ1
i ¼ SLp: Note that WSLpþ1;i ¼

B
p
SHpþ1 may correspond to a case leading to another

optimal partition with j
pþ1
i ¼ spþ1 ¼ SHp þ 1: As seen in

Fig. 6, both cases are efficiently resolved simply by
storing N to B

p
SHpþ1 as a sentinel. Hence, in such cases,

the condition WSHpþ1;ioB
p
SHpþ1 ¼ N in the if–then

statement following the repeat–until-loop is always true
so that the j-index automatically moves back to SHp:
The scheme of computing B

p
SHpþ1 for each row p; which

seems to be a natural solution, does not work since
correct computation of B

pþ1
SHpþ1þ1 may necessitate more

than one B
p
j value beyond the SHp index bound.

A nice feature of the DP approach is that it can be
used to generate all optimal partitions by maintaining a
P � N matrix to store the minimum j

p
i index values

defining the B
p
i values at the expense of increased

execution time and increased asymptotic space require-
ment. Recall that index bounds SL and SH computed
according to Corollary 4.5 restrict the search space for
at least one optimal solution. The index bounds can be
computed according to Lemma 4.4 for this purpose,
since the search space restricted by Lemma 4.4 includes
all optimal solutions.
The running time of the proposed DP+ algorithm is

OðN þ P log NÞ þ
PP

p¼1 yðDSpÞ: Here, OðNÞ cost comes
from the initial prefix-sum operation on the W array,
and OðP log NÞ cost comes from the running time of the
RB heuristic and computing the separator-index bounds
SL and SH according to Corollary 4.5. Under model
M; DSp ¼ OðPwmax=wavgÞ; and hence the complexity is
OðN þ P log N þ P2 wmax = wavgÞ: The algorithm be-
comes linear in N when the separator-index ranges do
not overlap, which is guaranteed by the condition
wmax ¼ Oð2Wtot=P2Þ:

4.3. Iterative refinement algorithms

In this work, we improve the MS algorithm and
propose a novel CCP algorithm, namely the bidding

algorithm, which is run-time efficient for small-to-
medium number of processors. The main difference
between the MS and the bidding algorithms is as
follows: the MS algorithm moves along a series of
feasible bottleneck values, whereas the bidding algo-
rithm moves along a sequence of infeasible bottleneck
values so that the first feasible bottleneck value becomes
the optimal value.

4.3.1. Improving the MS algorithm

The performance of the MS algorithm strongly
depends on the initial partition. The initial partition
proposed by Manne and S^revik [23] satisfies the leftist
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Fig. 7. Bidding algorithm.
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partition constraint, but it leads to very poor run-time
performance. Here, we propose using the partition
generated by PROBEðBÞ as an initial partition. This
partition is also a leftist partition, since moving any
separator to the left will not decrease the load of the
bottleneck processor. This simple observation leads to
significant improvement in run-time performance of the
algorithm. Also, using a heap as a priority queue does not
give better run-time performance than using a running
maximum despite its superior asymptotic complexity. In
our implementation, we use a running maximum.

4.3.2. Bidding algorithm

This algorithm increases the bottleneck value gradu-
ally, starting from the ideal bottleneck value B; until it
finds a feasible partition, which is also optimal. Consider
a partition Pt ¼ /s0; s1;y; sPS constructed by
PROBEðBtÞ for an infeasible Bt: After detecting the
infeasibility of this Bt value, the point is to determine the
next larger bottleneck value B to be investigated.
Clearly, the separator indices of the partitions to be
constructed by future PROBEðBÞ calls with B4Bt will
never be to the left of the respective separator indices of
Pt: Moreover, at least one of the separators should
move right for feasibility, since the load of the last
processor determines infeasibility of the current Bt value
(i.e., LP4Bt). To avoid missing the smallest feasible
bottleneck value, the next larger B value is selected as
the minimum of processor loads that will be obtained by
moving the end-index of every processor to the right by
one position. That is, the next larger B value is equal to
minfmin1ppoP fLp þ wspþ1g;LPg: Here, we call the
Lp þ wspþ1 value the bid of processor Pp; which refers
to the load of Pp if the first task tspþ1 of the next
processor is augmented to Pp: The bid of the last
processor PP is equal to the load of the remaining tasks.
If the smallest bid B comes from processor Pb; probing
with new B is performed only for the remaining
processors /Pb;Pbþ1;y;PPS in the suffix Wsb�1þ1:N
of the W array.
The bidding algorithm is presented in Fig. 7. The

innermost while–loop implements a linear probing
scheme, such that the new positions of the separators
are determined by moving them to the right, one by one.
This linear probing scheme is selected because new
positions of separators are likely to be in a close
neighborhood of previous ones. Note that binary search
is used only for setting the separator indices for the first
time. After the separator index sp is set for processor Pp

during linear probing, the repeat–until-loop terminates if
it is not possible to partition the remaining subchain
T spþ1;N into P � p processors without exceeding the
current B value, i.e., rbid ¼ Lr=ðP � pÞ4B; where Lr

denotes the weight of the remaining subchain. In this
case, the next larger B value is determined by consider-
ing the best bid among the first p processors and rbid.
As seen in Fig. 7, we maintain a prefix-minimum
array BIDS for computing the next larger B value. Here,
BIDS is an array of records of length P; where
BIDS½ p�:B and BIDS½ p�:b store the best bid value of
the first p processors and the index of the defining
processor, respectively. BIDS½0� helps the correctness of
the running prefix-minimum operation.
The complexity of the bidding algorithm for integer

task weights under model M is OðN þ P log N þ
P wmax þ P2ðwmax=wavgÞÞ: Here, OðNÞ cost comes from
the initial prefix-sum operation on the W array, and
OðP log NÞ cost comes from initial settings of separators
through binary search. The B value is increased at most
Bopt � Bowmax times, and each time the next B value
can be computed in OðPÞ time, which induces the cost
OðP wmaxÞ: The total area scanned by the separators is at
most OðP2ðwmax=wavgÞÞ: For noninteger task weights,
complexity can reach OðP log N þ P3ðwmax=wavgÞÞ in
the worst case, which occurs when only one separator
index moves to the right by one position at each B value.
We should note here that using a min-heap for finding
the next B value enables terminating a repeat-loop
iteration as soon as a separator-index does not move.
The trade-off in this scheme is the Oðlog PÞ cost incurred
at each separator-index move due to respective
key-update operations on the heap. We implemented
this scheme as well, but observed increased execution
times.
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4.4. Parametric search algorithms

In this work, we apply theoretical findings given in
Section 4.1 for an improved probe algorithm. The
improved algorithm, which we call the restricted probe
(RPROBE), exploits bounds computed according to
Corollary 4.5 (with Bf ¼ BRB) to restrict the search
space for sp separator values during binary searches on
theW array. That is, BINSRCHðW;SLp;SHp;BsumÞ in
RPROBE searches W in the index range ½SLp;SHp� to
find the index SLppsppSHp such that W½sp�pBsum

and W½sp þ 1�4Bsum via binary search. This scheme
and Corollaries 4.2 and 4.6 reduce the complexity of
an individual probe to

PP
p¼1yðlog DpÞ ¼ OðP log P þ

P logðwmax=wavgÞÞ: Note that this complexity reduces to
OðP log PÞ for sufficiently large P where P ¼ Oðwmax=
wavgÞ: Figs. 8–10 illustrate RPROBE algorithms tailored
for the respective parametric-search algorithms.

4.4.1. Approximate bisection algorithm with dynamic

separator-index bounding

The proposed bisection algorithm, illustrated in Fig. 8,
searches the space of bottleneck values in range ½B;BRB�
Fig. 8. Bisection as an e-approximation algorithm

Fig. 9. Exact bisection algorithm with d
as opposed to ½B;Wtot�: In this algorithm, if
PROBEðBtÞ ¼ TRUE; then the search space is re-
stricted to BpBt values, and if PROBEðBtÞ ¼ FALSE;
then the search space is restricted to B4Bt values. In
this work, we exploit this simple observation to propose
and develop a dynamic probing scheme that increases
the efficiency of successive PROBE calls by modifying
separator index-bounds depending on success and fail-
ure of the probes. Let Pt ¼ /t0; t1;y; tPS be the
partition constructed by PROBEðBtÞ: Any future
PROBEðBÞ call with BpBt will set the sp indices with
spptp: Thus, the search space for sp can be restricted to
those indices ptp: Similarly, any future PROBEðBÞ call
with BXBt will set sp indicesXtp: Thus, the search space
for sp can be restricted to those indices Xtp:
As illustrated in Fig. 8, dynamic update of separator-

index bounds can be performed in yðPÞ time by a for–

loop over SL or SH arrays, depending on failure or
success, respectively, of RPROBE ðBtÞ: In our imple-
mentation, however, this update is efficiently achieved in
Oð1Þ time through the pointer assignment SL’P or
SH’P depending on failure or success of
RPROBE ðBtÞ:
with dynamic separator-index bounding.

ynamic separator-index bounding.
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Fig. 10. Nicol’s algorithm with dynamic separator-index bounding.
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Similar to the e-BISECT algorithm, the proposed
e-BISECT+ algorithm is also an e-approximation
algorithm for general workload arrays. However, both
the e-BISECT and e-BISECT+ algorithms become
exact algorithms for integer-valued workload arrays by
setting e ¼ 1: As shown in Lemma 3.1, BRBoB þ wmax:
Hence, for integer-valued workload arrays the max-
imum number of probe calls in the e-BISECT+
algorithm is log wmax; and thus the overall complexity
is OðN þ P log N þ logðwmaxÞðP log P þ P logðwmax=
wavgÞÞÞ under model M: Here, OðNÞ cost comes from
the initial prefix-sum operation on W and OðP log NÞ
cost comes from the running time of the RB heuristic
and computing the separator-index bounds SL and SH

according to Corollary 4.5.

4.4.2. Bisection as an exact algorithm

In this section, we will enhance the bisection
algorithm to be an exact algorithm for general workload
arrays by clever updating of lower and upper bounds
after each probe. The idea is, after each probe moving
upper and lower bounds on the value of an optimal
solution to a realizable bottleneck value (total weight of
a subchain of W). This reduces the search space to a
finite set of realizable bottleneck values, as opposed to
an infinite space of bottleneck values defined by a range
½LB;UB�: Each bisection step is designed to eliminate at
least one candidate value, and thus the algorithm
terminates in finite number of steps to find the optimal
bottleneck value.
After a probe RPROBE ðBtÞ; the current upper

bound value UB is modified if RPROBE ðBtÞ succeeds.
Note that RPROBE ðBtÞ not only determines the
feasibility of Bt; but also constructs a partition P with
costðPtÞpBt: Instead of reducing the upper bound UB

to Bt; we can further reduce UB to the bottleneck value
B ¼ costðPtÞpBt of the partition Pt constructed by
RPROBE ðBt). Similarly, the current lower bound LB is
modified when RPROBE ðBtÞ fails. In this case, instead
of increasing the bound LB to Bt; we can exploit the
partition Pt constructed by RPROBE ðBtÞ to increase
LB further to the smallest realizable bottleneck value B

greater than Bt: Our bidding algorithm already describes
how to compute

B ¼ min min
1ppoP

fLp þ wspþ1g;LP

� �
;

where Lp denotes the load of processor Pp in Pt: Fig. 9
presents the pseudocode of our algorithm.
Each bisection step divides the set of candidate

realizable bottleneck values into two sets, and eliminates
one of them. The initial set can have a size between 1
and N2: Assuming the size of the eliminated set can be
anything between 1 and N2; the expected complexity of
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the algorithm is

TðNÞ ¼ 1

N2

XN2

i¼1
TðiÞ þ OðP log P

þ P logðwmax=wavgÞÞ;

which has the solution OðP log P log N þ
P log N logðwmax=wavgÞÞ: Here, OðP log P þ P logðwmax=
wavgÞÞ is the cost of a probe operation, and log N is the
expected number of probes. Thus, the overall complex-
ity becomes OðN þ P log P log N þ P log N logðwmax=
wavgÞÞ; where the OðNÞ cost comes from the initial
prefix-sum operation on the W array.

4.4.3. Improving Nicol’s algorithm as a divide-and-

conquer algorithm

Theoretical findings of previous sections can be
exploited at different levels to improve performance of
Nicol’s algorithm. A trivial improvement is to use the
proposed restricted probe function instead of the
conventional one. The careful implementation scheme
given in Fig. 5(b) enables use of dynamic separator-
index bounding. Here, we exploit the bisection idea to
design an efficient divide-and-conquer approach based
on Nicol’s algorithm.
Consider the sequence of probes of the form

PROBEðW1;jÞ performed by Nicol’s algorithm for
processor P1 to find the smallest index j ¼ i1 such that
PROBEðW1;jÞ ¼ TRUE: Starting from a naive bottle-
neck-value range ðLB0 ¼ 0;UB0 ¼ WtotÞ; success and
failure of these probes can narrow this range to
ðLB1;UB1Þ: That is, each PROBEðW1;jÞ ¼ TRUE
decreases the upper bound to W1;j and each
PROBEðW1;jÞ ¼ FALSE increases the lower bound to
W1;j: Clearly, we will have ðLB1 ¼ W1;i1�1;UB1 ¼ W1;i1Þ
at the end of this search for processor P1: Now consider
the sequence of probes of the form PROBEðWi1;jÞ
performed for processor P2 to find the smallest
index j ¼ i2 such that PROBEðWi1;jÞ ¼ TRUE: Our
key observation is that the partition Pt ¼
/0; t1; t2;y; tP�1;NS to be constructed by any
PROBEðBtÞ with LB1oBt ¼ Wi1;joUB1 will satisfy
t1 ¼ i1 � 1; since W1;i1�1oBtoW1;i1 : Hence, probes with
LB1oBtoUB1 for processor P2 can be restricted to be
performed in W i1:N ; where W i1:N denotes the
ðN � i1 þ 1Þth suffix of the prefix-summed W array.
This simple yet effective scheme leads to an efficient
divide-and-conquer algorithm as follows. Let T P�p

i

denote the CCP subproblem of ðP � pÞ-way partitioning
of the ðN � i þ 1Þth suffix T i;N ¼ /ti; tiþ1;y; tNS of
the task chain T onto the ðP � pÞth suffix Pp;P ¼
/Ppþ1;Ppþ2;y;PPS of the processor chain P: Once
the index i1 for processor P1 is computed, the optimal
bottleneck value Bopt can be defined by either W1;i1 or
the bottleneck value of an optimal ðP � 1Þ-way parti-
tioning of the suffix subchain T i1;N : That is, Bopt ¼
minfB1 ¼ W1;i1 ;CðPP�1
i1

Þg: Proceeding in this way, once
the indices /i1; i2;y; ipS for the first p processors
/P1;P2;y;PpS are determined, then Bopt ¼
minfmin1pbppfBb ¼ Wib�1;ibg; CðPP�p

ip
Þg:

This approach is presented in Fig. 10. At the bth
iteration of the outer for–loop, given ib�1; ib is found in
the inner while–loop by conducting probes on W ib�1:N to
compute Bb ¼ Wib�1; ib : The dynamic bounds on the
separator indices are exploited in two distinct ways
according to Theorem 4.7. First, the restricted probe
function RPROBE is used for probing. Second, the
search spaces for the bottleneck values of the processors
are restricted. That is, given ib�1; the binary search
for ib over all subchain weights of the form Wib�1þ1;j for
ib�1ojpN is restricted to Wib�1þ1;j values for
SLbpjpSHb:
Under model M; the complexity of this algorithm is

OðN þ P log N þ wmaxðP log P þ P logðwmax=wavgÞÞÞ for
integer task weights, because the number of probes
cannot exceed wmax; since there are at most wmax distinct
bound values in the range ½B;BRB�: For noninteger
task weights, the complexity can be given as
OðNþP logNþwmaxðP log PÞ2þ wmaxP

2 log P logðwmax=
wavgÞÞ; since the algorithm makes OðwmaxP log PÞ probes.
Here, OðNÞ cost comes from the initial prefix-sum
operation on W; and OðP logNÞ cost comes from the
running time of the RB heuristic and computing the
separator-index bounds SL and SH according to
Corollary 4.5.
5. Load balancing applications

5.1. Parallel sparse matrix–vector multiplication

Sparse matrix–vector multiplication (SpMxV) is one
of the most important kernels in scientific computing.
Parallelization of repeated SpMxV computations re-
quires partitioning and distribution of the matrix. Two
possible 1D sparse-matrix partitioning schemes are
rowwise striping (RS) and columnwise striping (CS).
Consider parallelization of SpMxV operations of the
form y ¼ Ax in an iterative solver, where A is an N � N

sparse matrix and y and x are N-vectors. In RS,
processor Pp owns the pth row stripe Ar

p of A and is
responsible for computing yp ¼ Ar

px; where yp is the pth
stripe of vector y: In CS, processor Pp owns the pth
column stripe Ac

p of A and is responsible for computing
yp ¼ Ac

p x; where y ¼
PP

p¼1y
p: All vectors used in the

solver are divided conformably with row (column)
partitioning in the RS (CS) scheme, to avoid unneces-
sary communication during linear vector operations. RS
and CS schemes require communication before or after
local SpMxV computations, thus they can also be
considered as pre- and post-communication schemes,
respectively. In RS, each task tiAT corresponds to the
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atomic task of computing the inner-product of row i of
matrix A with column vector x: In CS, each task tiAT
corresponds to the atomic task of computing the sparse
DAXPY operation y ¼ y þ xiai; where ai is the ith
column of A: Each nonzero entry in a row and column
of A incurs a multiply-and-add operation, thus the
computational load wi of task ti is the number of
nonzero entries in row i (column i) in the RS (CS)
scheme. This defines how load balancing problem for
rowwise and columnwise partitioning of a sparse matrix
with a given ordering can be modeled as a CCP
problem.
In RS (CS), by allowing only row (column) reorder-

ing, load balancing problem can be described as the
number partitioning problem, which is NP-Hard [9]. By
allowing both row and column reordering, the problem
of minimizing communication overhead while maintain-
ing load balance can be described as graph and
hypergraph partitioning problems [5,14], which are
NP-Hard [10,21] as well. However, possibly high
preprocessing overhead involved in these models may
not be justified in some applications. If the partitioner is
to be used as part of a run-time library for a parallelizing
compiler for a data-parallel programming language
[33,34], row and column reordering lead to high memory
requirement due to the irregular mapping table and
extra level of indirection in locating distributed data
during each multiply-and-add operation [35]. Further-
more, in some applications, the natural row and column
ordering of the sparse matrix may already be likely to
induce small communication overhead (e.g., banded
matrices).
The proposed CCP algorithms are surprisingly fast so

that the initial prefix-sum operation dominates their
execution times in sparse-matrix partitioning. In this
work, we exploit the standard compressed row storage

(CRS) and compressed column storage (CCS) data
structures for sparse matrices to avoid the prefix-sum
operation. In CRS, an array DATA of length NZ stores
nonzeros of matrix A; in row-major order, where NZ ¼
Wtot denotes the total number of nonzeros in A: An
index array COL of length NZ stores the column indices
of respective nonzeros in array DATA: Another index
array ROW of length N þ 1 stores the starting indices of
respective rows in the other two arrays. Hence, any
subchain weight Wi;j can be efficiently computed using
Wi;j ¼ ROW ½ j þ 1� � ROW ½i� in Oð1Þ time without any
preprocessing overhead. CCS is similar to CRS with
rows and columns interchanged, thus Wi;j is computed
using Wi;j ¼ COL ½ j þ 1� � COL½i�:

5.1.1. A better load balancing model for iterative solvers

The load balancing problem for parallel iterative
solvers has usually been stated considering only the
SpMxV computations. However, linear vector opera-
tions (i.e., DAXPY and inner-product computations)
involved in iterative solvers may have a considerable
effect on parallel performance with increasing sparsity
of the coefficient matrix. Here, we consider incorporat-
ing vector operations into the load-balancing model as
much as possible.
For the sake of discussion, we will investigate this

problem for a coarse-grain formulation [2,3,32] of the
conjugate-gradient (CG) algorithm. Each iteration of
CG involves, in order of computational dependency,
one SpMxV, two inner-products, and three DAXPY
computations. DAXPY computations do not involve
communication, whereas inner-product computations
necessitate a post global reduction operation [19] on
results of the two local inner-products. In rowwise
striping, pre-communication operations needed for
SpMxV and the global reduction operation constitute
pre- and post-synchronization points, respectively, for
the aggregate of one local SpMxV and two local inner-
product computations. In columnwise striping, the
global reduction operation in the current iteration and
post-communication operations needed for SpMxV in
the next iteration constitute the pre- and post-synchro-
nization points, respectively, for an aggregate of three
local DAXPY and one local SpMxV computations.
Thus, columnwise striping may be favored for a wider
coverage of load balancing. Each vector entry incurs a
multiply-and-add operation during each linear vector
operation. Hence, DAXPY computations can easily be
incorporated into the load-balancing model for the CS
scheme by adding a cost of three to the computational
weight wi of atomic task ti representing column i of
matrix A: The initial prefix-sum operation can still be
avoided by computing a subchain weight Wi;j as Wi;j ¼
COL½ j þ 1� � COL½i� þ 3ð j � i þ 1Þ in constant time.
Note that two local inner-product computations still
remain uncovered in this balancing model.

5.2. Sort-first parallel direct volume rendering

Direct volume rendering (DVR) methods are widely
used in rendering unstructured volumetric grids for
visualization and interpretation of computer simulations
performed for investigating physical phenomena in
various fields of science and engineering. A DVR
application contains two interacting domains: object
space and image space. Object space is a 3D domain
containing the volume data to be visualized. Image
space (screen) is a 2D domain containing pixels from
which rays are shot into the 3D object domain to
determine the color values of the respective pixels. Based
on these domains, there are basically two approaches for
data parallel DVR: image- and object-space parallelism,
which are also called as sort-first and sort-last paralle-
lism according to the taxonomy based on the point of
data redistribution in the rendering pipeline [25]. Pixels
or pixel blocks constitute the atomic tasks in sort-first
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parallelism, whereas volume elements (primitives) con-
stitute the atomic tasks in sort-last parallelism.
In sort-first parallel DVR, screen space is decomposed

into regions and each region is assigned to a separate
processor for local rendering. The primitives, whose
projection areas intersect more than one region, are
replicated. Sort-first parallelism has an advantage of
processors generating complete images for their local
screen subregion, but it faces load-balancing problems
in the DVR of unstructured grids due to uneven on-
screen primitive distribution.
Image-space decomposition schemes for sort-first

parallel DVR can be classified as static and adaptive

[20]. Static decomposition is a view-independent scheme,
and the load-balancing problem is solved implicitly by
scattered assignment of pixels or pixel blocks. Load-
balancing performance of this scheme depends on the
assumption that neighbor pixels are likely to have equal
workload since they are likely to have similar views of
the volume. As the scattered assignment scheme assigns
adjacent pixels or pixel blocks to different processors, it
disturbs image-space coherency and increases the
amount of primitive replication. Adaptive decomposi-
tion is a view-dependent scheme, and the load-balancing
problem is solved explicitly by using the primitive
distribution on the screen.
In adaptive image-space decomposition, the number

of primitives with bounding-box approximation is taken
to be the workload of a screen region. Primitives
constituting the volume are tallied to a 2D coarse mesh
superimposed on the screen. Some primitives may
intersect multiple cells. The inverse-area heuristic [26]
is used to decrease the amount of error due to counting
such primitives multiple times. Each primitive incre-
ments the weight of each cell it intersects by a value
inversely proportional to the number of cells the
primitive intersects. In this heuristic, if we assume that
there are no shared primitives among screen regions,
then the sum of the weights of individual mesh cells
forming a region gives the number of primitives in that
region. Shared primitives may still cause some errors,
but such errors are much less than counting such
primitives multiple times while adding mesh-cell
weights.
Minimizing the perimeter of the resulting regions in

the decomposition is expected to minimize the commu-
nication overhead due to the shared primitives. 1D
decomposition, i.e., horizontal or vertical striping of the
screen, suffers from unscalability. A Hilbert space-filling
curve [31] is widely used for 2D decomposition of 2D
nonuniform workloads. In this scheme [20], the 2D
coarse mesh superimposed on the screen is traversed
according to the Hilbert curve to map the 2D coarse
mesh to a 1D chain of mesh cells. The load-balancing
problem in this decomposition scheme then reduces to
the CCP problem. Using a Hilbert curve as the space-
filling curve is an implicit effort towards reducing the
total perimeter, since the Hilbert curve avoids jumps
during the traversal of the 2D coarse mesh. Note that
the 1D workload array used for partitioning is a real-
valued array because of the inverse-area heuristic used
for computing weights of the coarse-mesh cells.
6. Experimental results

All algorithms were implemented in the C program-
ming language. All experiments were carried out on a
workstation equipped with a 133 MHz PowerPC and
64 MB of memory. We have experimented with P ¼ 16-,
32-, 64-, 128-, and 256-way partitioning of each test
data.
Table 2 presents the test problems we have used in our

experiments. In this table, wavg; wmin; and wmax columns
display the average, minimum, and maximum task
weights. The dataset for the sparse-matrix decomposi-
tion comes from matrices of linear programming test
problems from the Netlib suite [11] and the IOWA

Optimization Center [22]. The sparsity patterns of these
matrices are obtained by multiplying the respective
rectangular constraint matrices with their transposes.
Note that the number of tasks in the sparse-matrix
(SpM) dataset also refers to the number of rows and
columns of the respective matrix. The dataset for image-
space decomposition comes from sort-first parallel DVR
of curvilinear grids blunt-fin and post representing the
results of computational fluid dynamic simulations,
which are commonly used in volume rendering. The
raw grids consist of hexahedral elements and are
converted into an unstructured tetrahedral data format
by dividing each hexahedron into five tetrahedrons.
Triangular faces of tetrahedrons constitute the primi-
tives mentioned in Section 5.2. Three distinct 1D
workload arrays are constructed both for blunt-fin and
post as described in Section 5.2 for coarse meshes of
resolutions 256� 256; 512� 512; and 1024� 1024
superimposed on a screen of resolution 1024� 1024:
The properties of these six workload arrays are
displayed in Table 2. The number of tasks is much less
than coarse-mesh resolution because of the zero-weight
tasks, which can be compressed to retain only nonzero-
weight tasks.
The following abbreviations are used for the CCP

algorithms: H1 and H2 refer to Miguet and Pierson’s
[24] heuristics, and RB refers to the recursive-bisection
heuristic, all described in Section 3.1. DP refers to the
OððN � PÞPÞ-time dynamic-programming algorithm in
Fig. 1. MS refers to Manne and S^revik’s iterative-
refinement algorithm in Fig. 2. eBS refers to the
e-approximate bisection algorithm in Fig. 4. NC- and
NC refer to the straightforward and careful implemen-
tations of Nicol’s parametric-search algorithm in



ARTICLE IN PRESS

Table 2

Properties of the test set

Sparse-matrix dataset Direct volume rendering (DVR) dataset

Name No. of tasks N Workload: No. of nonzeros ex. time Name No. of tasks N Workload

Total Wtot Per row/col (task) SpMxV Total Per task

wavg wmin wmax (ms) Wtot wavg wmin wmax

NL 7039 105 089 14.93 1 361 22.55 blunt256 17 303 303 K 17.54 0.020 1590.97

cre-d 8926 372 266 41.71 1 845 72.20 blunt512 93 231 314 K 3.36 0.004 661.50

CQ9 9278 221 590 23.88 1 702 45.90 blunt1024 372 824 352 K 0.94 0.001 411.04

ken-11 14 694 82 454 5.61 2 243 19.65 post256 19 653 495 K 25.19 0.077 3245.50

mod2 34 774 604 910 17.40 1 941 124.05 post512 134 950 569 K 4.22 0.015 1092.00

world 34 506 582 064 16.87 1 972 119.45 post1024 539 994 802 K 1.49 0.004 1546.78
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Figs. 5(a) and (b), respectively. Abbreviations ending
with ‘‘+’’ are used to represent our improved versions
of these algorithms. That is, DP+, eBSþ; NC+ refer to
our algorithms given in Figs. 6, 8, and 10, respectively,
and MS+ refers to the algorithm described in
Section 4.3.1. BID refers to our bidding algorithm given
in Fig. 7. EBS refers to our exact bisection algorithm
given in Fig. 9. Both eBS and eBSþ algorithms are
effectively used as exact algorithms for the SpM dataset
with e ¼ 1 for integer-valued workload arrays in the
SpM dataset. However, these two algorithms were not
tested on the DVR dataset, since they remain approx-
imation algorithms due to the real-valued task weights
in DVR.
Table 3 compares load-balancing quality of heuristics

and exact algorithms. In this table, percent load-
imbalance values are computed as 100� ðB � BÞ=B;
where B denotes the bottleneck value of the respective
partition and B ¼ Wtot=P denotes ideal bottleneck
value. OPT values refer to load-imbalance values of
optimal partitions produced by exact algorithms. Table 3
clearly shows that considerably better partitions are
obtained in both datasets by using exact algorithms
instead of heuristics. The quality gap between exact
algorithms and heuristics increases with increasing
P: The only exceptions to these observations are 256-
way partitioning of blunt256 and post256, for which the
RB heuristic finds optimal solutions.
Table 4 compares the performances of the static

separator-index bounding schemes discussed in
Section 4.1. The values displayed in this table are the
sums of the sizes of the separator-index ranges normal-
ized with respect to N; i.e.,

PP�1
p¼1 DSp=N; where DSp ¼

SHp � SLp þ 1: For each CCP instance, ðN � PÞP
represents the size of the search space for the separator
indices and the total number of table entries referenced
and computed by the DP algorithm. The columns
labeled L1; L3; and C5 display total range sizes obtained
according to Lemma 4.1, Lemma 4.3 and Corollary 4.5,
respectively. As seen in Table 4, proposed practical
scheme C5 achieves substantially better separator-index
bounds than L1; despite its inferior worst-case behavior
(see Corollaries 4.2 and 4.6). Comparison of columns L3
and C5 shows the substantial benefit of performing left-
to-right and right-to-left probes with B according to
Lemma 4.4. Comparison of ðN � PÞP and the C5
column reveals the effectiveness of the proposed
separator-index bounding scheme in restricting the
search space for separator indices in both SpM and
DVR datasets. As expected, the performance of index
bounding decreases with increasing P because of
decreasing N=P values. The numbers for the DVR
dataset are better than those for the SpM dataset
because of the larger N=P values. In Table 4, values less
than 1 indicate that the index bounding scheme achieves
nonoverlapping index ranges. As seen in the table,
scheme C5 reduces the total separator-index range sizes
below N for each CCP instance with Pp64 in both the
SpM and DVR datasets. These results show that the
proposed DP+ algorithm becomes a linear-time algo-
rithm in practice.
The efficiency of the parametric-search algorithms

depends on two factors: the number of probes and the
cost of each probe. The dynamic index bounding
schemes proposed for parametric-search algorithms
reduce the cost of an individual probe. Table 5
illustrates how the proposed parametric-search algo-
rithms reduce the number of probes. To compare
performances of EBS and eBSþ on the DVR dataset,
we forced the eBSþ algorithm to find optimal partitions
by running it with e ¼ wmin and then improving the
resulting partition using the BID algorithm. Column
eBSþ &BID refers to this scheme, and values after ‘‘+’’
denote the number of additional bottleneck values tested
by the BID algorithm. As seen in Table 5, exactly one
final bottleneck-value test was needed by BID to reach
an optimal partition in each CCP instance.
In Table 5, comparison of the NC- and NC columns

shows that dynamic bottleneck-value bounding drasti-
cally decreases the number of probes in Nicol’s
algorithm. Comparison of the eBS and eBSþ columns
in the SpM dataset shows that using BRB instead of Wtot



ARTICLE IN PRESS

Table 3

Percent load imbalance values

Sparse-matrix dataset DVR dataset

CCP instance Heuristics OPT CCP instance Heuristics OPT

Name P H1 H2 RB Name P H1 H2 RB

NL 16 2.60 2.44 1.20 0.35 blunt256 16 4.60 1.20 0.49 0.34

32 5.02 5.75 3.44 0.95 32 6.93 2.61 1.94 1.12

64 8.95 9.01 5.60 2.37 64 14.52 9.44 9.44 2.31

128 33.13 27.16 22.78 4.99 128 38.25 24.39 16.67 4.82

256 69.55 69.55 60.78 14.25 256 96.72 37.03 34.21 34.21

cre-d 16 2.27 0.98 0.53 0.45 blunt512 16 0.95 0.98 0.98 0.16

32 4.19 4.42 3.74 1.03 32 1.38 1.38 1.18 0.33

64 7.12 4.92 4.34 1.73 64 2.87 2.69 1.66 0.53

128 25.57 18.73 16.70 2.88 128 5.62 8.45 4.62 0.97

256 37.54 26.81 35.20 10.95 256 14.18 14.33 9.34 2.28

CQ9 16 1.85 1.85 0.58 0.58 blunt1024 16 0.94 0.57 0.95 0.10

32 5.65 2.88 2.24 0.90 32 1.89 1.21 0.97 0.14

64 13.25 11.49 7.64 1.43 64 4.99 2.16 1.44 0.26

128 33.96 32.22 22.34 3.51 128 10.06 4.25 2.47 0.57

256 58.62 58.62 58.62 14.72 256 19.65 9.68 9.68 0.98

ken-11 16 3.74 2.01 0.98 0.21 post256 16 1.10 1.43 0.76 0.56

32 3.74 4.67 3.74 1.18 32 3.23 3.98 3.23 1.11

64 13.17 13.17 13.17 1.29 64 17.28 11.04 10.90 3.10

128 13.17 16.89 13.17 6.80 128 45.35 29.09 29.09 8.29

256 50.99 50.99 50.99 7.11 256 67.86 67.86 67.86 67.86

mod2 16 0.06 0.06 0.06 0.03 post512 16 0.49 1.25 0.33 0.33

32 0.19 0.19 0.19 0.07 32 0.94 1.61 0.90 0.58

64 7.42 2.72 2.18 0.18 64 4.85 5.33 4.85 0.94

128 16.15 6.29 2.46 0.41 128 18.03 14.55 10.15 1.72

256 19.47 19.47 18.92 1.23 256 30.03 25.29 25.29 3.73

world 16 0.27 0.18 0.09 0.04 post1024 16 0.70 0.70 0.53 0.20

32 1.03 0.37 0.27 0.08 32 1.49 1.49 1.41 0.54

64 4.73 4.73 4.73 0.28 64 2.85 2.85 1.49 0.91

128 6.37 6.37 6.37 0.76 128 13.15 11.79 9.10 1.11

256 27.99 27.41 27.41 1.11 256 40.50 13.37 14.19 2.54

Averages over P

16 1.76 1.15 0.74 0.36 16 1.44 1.01 1.04 0.28

32 3.99 3.39 2.88 0.76 32 2.64 2.05 1.61 0.64

64 9.01 6.78 5.69 1.43 64 7.89 5.58 4.96 1.31

128 19.97 17.66 14.09 3.36 128 21.74 15.42 12.02 2.91

256 43.89 38.91 36.04 9.18 256 44.82 27.93 26.76 18.60
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for the upper bound on the bottleneck values consider-
ably reduces the number of probes. Comparison of the
eBSþ and EBS columns reveals two different behaviors
on SpM and DVR datasets. The discretized dynamic
bottleneck-value bounding used in EBS produces only
minor improvement on the SpM dataset because of the
already discrete nature of integer-valued workload
arrays. However, the effect of discretized dynamic
bottleneck-value bounding is significant on the real-
valued workload arrays of the DVR dataset.
Tables 6 and 7 display the execution times of CCP

algorithms on the SpM and DVR datasets, respectively.
In Table 6, the execution times are given as percents of
single SpMxV times. For the DVR dataset, actual
execution times (in msecs) are split into prefix-sum times
and partitioning times. In Tables 6 and 7, execution
times of existing algorithms and their improved versions
are listed in the same order under each respective
classification so that improvements can be seen easily. In
both tables, BID is listed separately since it is a new
algorithm. Results of both eBS and eBSþ are listed in
Table 6, since they are used as exact algorithms on SpM
dataset with e ¼ 1: Since neither eBS nor eBSþ can be
used as an exact algorithm on the DVR dataset, EBS, as
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Table 4

Sizes of separator-index ranges normalized with respect to N

Sparse-matrix dataset DVR dataset

CCP instance ðN � PÞP L1 L3 C5 CCP instance ðN � PÞP L1 L3 C5

Name P Name P

NL 16 15.97 0.32 0.13 0.036 blunt256 16 15.99 0.38 0.07 0.003

32 31.86 1.23 0.58 0.198 32 31.94 1.22 0.30 0.144

64 63.43 4.97 2.24 0.964 64 63.77 5.10 3.81 0.791

128 125.69 19.81 19.60 4.305 128 127.06 21.66 12.88 2.784

256 246.73 77.96 82.83 22.942 256 252.23 101.68 50.48 10.098

cre-d 16 15.97 0.16 0.04 0.019 blunt512 16 16.00 0.09 0.17 0.006

32 31.89 0.76 0.90 0.137 32 31.99 0.35 0.26 0.043

64 63.55 2.89 1.85 0.610 64 63.96 1.64 0.69 0.144

128 126.18 11.59 15.12 2.833 128 127.83 6.65 4.59 0.571

256 248.69 46.66 57.54 16.510 256 255.30 28.05 16.71 2.262

CQ9 16 15.97 0.30 0.03 0.023 blunt1024 16 16.00 0.05 0.09 0.010

32 31.89 1.21 0.34 0.187 32 32.00 0.18 0.18 0.018

64 63.57 4.84 2.96 0.737 64 63.99 0.77 0.74 0.068

128 126.25 19.20 18.66 3.121 128 127.96 3.43 2.53 0.300

256 248.96 74.84 86.80 23.432 256 255.82 13.92 20.36 1.648

ken-11 16 15.98 0.28 0.11 0.024 post256 16 15.99 0.35 0.04 0.021

32 31.93 1.10 1.13 0.262 32 31.95 1.50 0.52 0.162

64 63.73 4.42 7.34 0.655 64 63.79 6.12 4.26 0.932

128 126.89 17.60 14.56 4.865 128 127.17 26.48 23.68 4.279

256 251.56 69.18 85.44 13.076 256 252.68 124.76 90.48 16.485

mod2 16 15.99 0.16 0.00 0.002 post512 16 16.00 0.13 0.02 0.003

32 31.97 0.55 0.04 0.013 32 31.99 0.56 0.14 0.063

64 63.88 2.14 1.22 0.109 64 63.97 2.33 2.41 0.413

128 127.53 8.62 2.59 0.411 128 127.88 9.33 10.15 1.714

256 254.12 34.49 39.02 2.938 256 255.52 37.08 46.28 6.515

world 16 15.99 0.15 0.01 0.004 post1024 16 16.00 0.17 0.07 0.020

32 31.97 0.59 0.06 0.020 32 32.00 0.54 0.27 0.087

64 63.88 2.30 2.81 0.158 64 63.99 2.19 0.61 0.210

128 127.53 9.23 7.19 0.850 128 127.97 8.77 9.48 0.918

256 254.11 36.97 53.15 2.635 256 255.88 34.97 27.28 4.479

Averages over K

16 15.97 0.21 0.06 0.018 16 16.00 0.20 0.08 0.011

32 31.88 0.86 0.68 0.136 32 31.98 0.73 0.28 0.096

64 63.52 3.43 2.63 0.516 64 63.91 3.03 2.09 0.426

128 126.07 13.68 12.74 2.731 128 127.65 12.72 10.55 1.428

256 248.26 54.28 57.55 14.089 256 254.57 56.74 41.93 6.915

L1; L3 and C5 denote separator-index ranges obtained according to results of Lemmas 4.1, 4.3 and Corollary 4.5.
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an exact algorithm for general workload arrays, is listed
separately in Table 7.
As seen in Tables 6 and 7, the RB heuristic is faster

than both H1 and H2 for both SpM and DVR datasets.
As also seen in Table 3, RB finds better partitions than
both H1 and H2 for both datasets. These results reveal
RB’s superiority to H1 and H2:
In Tables 6 and 7, relative performance comparison of

existing exact CCP algorithms shows that NC is two
orders of magnitude faster than both DP and MS for
both SpM and DVR datasets, and eBS is considerably
faster than NC for the SpM dataset. These results show
that among existing algorithms the parametric-search
approach leads to faster algorithms than both the
dynamic-programming and the iterative-improvement
approaches.
Tables 6 and 7 show that our improved algorithms are

significantly faster than the respective existing algo-
rithms. In the dynamic-programming approach, DP+ is
two-to-three orders of magnitude faster than DP so that
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Table 5

Number of probes performed by parametric search algorithms

Sparse-matrix dataset DVR dataset

CCP instance Parametric search algorithms CCP instance Parametric search algorithms

Name P NC� NC NC+ eBS eBS+ EBS Name P NC� NC NC+ eBS+&BID EBS

NL 16 177 21 7 17 6 7 blunt256 16 202 18 6 16 + 1 9

32 352 19 7 17 7 7 32 407 19 7 19 + 1 10

64 720 27 5 16 7 6 64 835 18 10 21 + 1 12

128 1450 40 14 17 8 8 128 1686 25 15 22 + 1 13

256 2824 51 14 16 8 8 256 3556 203 62 23 + 1 11

cre-d 16 190 20 6 19 7 5 blunt512 16 245 20 8 17 + 1 9

32 393 25 11 19 9 8 32 502 24 13 18 + 1 10

64 790 24 10 19 8 6 64 1003 23 11 18 + 1 12

128 1579 27 10 19 9 9 128 2023 26 12 20 + 1 13

256 3183 37 13 18 9 9 256 4051 23 12 21 + 1 13

CQ9 16 182 19 3 18 6 5 blunt1024 16 271 21 10 16 + 1 13

32 373 22 8 18 8 7 32 557 24 12 18 + 1 12

64 740 29 12 18 8 8 64 1127 21 11 18 + 1 12

128 1492 40 12 17 8 8 128 2276 28 13 19 + 1 13

256 2971 50 14 18 9 9 256 4564 27 16 21 + 1 15

ken-11 16 185 21 6 17 6 6 post256 16 194 22 9 18 + 1 7

32 364 20 6 17 6 6 32 409 19 8 20 + 1 12

64 721 48 9 17 7 7 64 823 17 11 22 + 1 12

128 1402 61 8 16 7 7 128 1653 19 13 22 + 1 14

256 2783 96 7 17 8 8 256 3345 191 102 23 + 1 13

mod2 16 210 20 6 20 5 4 post512 16 235 24 9 16 + 1 10

32 432 26 8 19 5 5 32 485 23 12 18 + 1 11

64 867 24 6 19 8 8 64 975 22 13 20 + 1 14

128 1727 38 7 20 7 7 128 1975 25 17 21 + 1 14

256 3444 47 9 20 9 9 256 3947 29 20 22 + 1 15

world 16 211 22 6 19 5 4 post1024 16 261 27 10 17 + 1 13

32 424 26 5 19 6 6 32 538 23 13 19 + 1 14

64 865 30 12 19 9 9 64 1090 22 12 17 + 1 14

128 1730 44 10 19 8 8 128 2201 25 15 21 + 1 16

256 3441 44 11 19 10 10 256 4428 28 16 22 + 1 16

Averages over P

16 193 20.5 5.7 18.5 5.8 5.2 16 235 22.0 8.7 16.7+1 10.2

32 390 23.0 7.5 18.3 6.8 6.5 32 483 22.0 10.8 18.7+1 11.5

64 784 30.3 9.0 18.0 7.8 7.3 64 976 20.5 11.3 19.3+1 12.7

128 1564 41.7 10.2 18.0 7.8 7.8 128 1969 24.7 14.2 20.8+1 13.8

256 3108 54.2 11.3 18.0 8.8 8.8 256 3982 83.5 38.0 22.0+1 13.8
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DP+ is competitive with the parametric-search algo-
rithms. For the SpM dataset, DP+ is 630 times
faster than DP on average in 16-way partitioning, and
this ratio decreases to 378, 189, 106, and 56 with
increasing number of processors. For the DVR dataset,
if the initial prefix-sum is not included, DP+ is 1277,
578, 332, 159, and 71 times faster than DP for
P ¼ 16; 32; 64; 128; and 256, respectively, on average.
This decrease is expected because the effectiveness of
separator-index bounding decreases with increasing
P: These experimental findings agree with the variation
in the effectiveness of separator-index bounding values
seen in Table 4. In the iterative refinement approach,
MS+ is also one-to-three orders of magnitude faster than
MS, where this drastic improvement simply depends on
the scheme used for finding an initial leftist partition.
As Tables 6 and 7 reveal, significant improvement

ratios are also obtained for the parametric search
algorithms. On average, NC+ is 4.2, 3.5, 3.1, 3.7, and
3.7 times faster than NC for P ¼ 16; 32, 64, 128, and
256, respectively, for the SpM dataset. For the DVR
dataset, if the initial prefix-sum time is not included,
NC+ is 4.2, 3.2, 2.6, 2.5, and 2.7 times faster than NC
for P ¼ 16; 32; 64; 128; and 256, respectively. For the
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Table 6

Partitioning times for sparse-matrix dataset as percents of SpMxV times

CCP instance Heuristics Exact algorithms

Name P H1 H2 RB Existing Proposed

DP MS eBS NC DP+ MS+ eBS+ NC+ BID

NL 16 0.09 0.09 0.09 93 119 0.93 1.20 0.40 0.44 0.40 0.40 0.22

32 0.18 0.18 0.13 177 194 1.77 2.17 1.73 1.73 0.80 0.80 0.44

64 0.35 0.35 0.31 367 307 3.15 5.85 5.81 4.12 1.86 1.77 1.82

128 0.89 0.84 0.71 748 485 6.30 17.12 19.87 26.92 4.26 7.32 4.21

256 1.51 1.55 1.37 1461 757 11.09 40.31 91.80 96.41 9.80 15.70 21.06

cre-d 16 0.03 0.01 0.01 33 36 0.33 0.37 0.12 0.06 0.10 0.11 0.03

32 0.04 0.06 0.06 71 61 0.65 0.93 0.47 1.20 0.29 0.33 0.10

64 0.12 0.12 0.08 147 98 1.22 1.69 1.66 1.83 0.61 0.71 0.21

128 0.28 0.29 0.14 283 150 2.41 3.59 5.47 10.94 1.68 1.68 0.61

256 0.53 0.54 0.25 571 221 4.20 10.22 27.05 26.02 3.30 4.46 1.20

CQ9 16 0.04 0.04 0.04 59 73 0.48 0.59 0.20 0.13 0.15 0.13 0.17

32 0.09 0.09 0.07 127 120 0.94 1.31 0.94 0.72 0.41 0.41 0.28

64 0.20 0.17 0.15 248 195 1.85 3.18 3.01 4.47 1.00 1.44 0.68

128 0.44 0.44 0.31 485 303 3.18 8.52 9.65 18.82 2.44 3.05 2.51

256 0.92 0.92 0.63 982 469 6.51 20.33 69.56 72.2 5.32 7.45 14.92

ken-11 16 0.10 0.10 0.10 238 344 1.27 1.88 0.56 0.61 0.46 0.41 0.25

32 0.20 0.20 0.15 501 522 2.29 3.10 3.82 4.78 1.22 1.17 1.63

64 0.46 0.46 0.36 993 778 4.48 13.08 9.41 24.78 3.10 3.46 2.29

128 1.17 1.17 0.71 1876 1139 9.21 39.59 50.13 50.03 6.41 6.62 17.4

256 2.14 2.14 1.42 3827 1706 17.76 119.13 129.01 241.48 14.91 14.50 29.11

mod2 16 0.02 0.02 0.01 92 119 0.27 0.34 0.07 0.05 0.06 0.06 0.03

32 0.04 0.04 0.02 188 192 0.51 0.78 0.19 0.18 0.16 0.15 0.07

64 0.11 0.10 0.06 378 307 1.04 1.91 0.86 2.18 0.51 0.55 0.23

128 0.24 0.23 0.11 751 482 2.28 5.92 2.61 3.72 1.06 1.23 0.53

256 0.48 0.48 0.23 1486 756 4.26 11.14 12.11 50.04 2.91 3.43 3.66

world 16 0.02 0.02 0.02 99 122 0.29 0.33 0.08 0.05 0.07 0.08 0.03

32 0.04 0.04 0.04 198 196 0.59 0.88 0.26 0.21 0.18 0.19 0.08

64 0.12 0.11 0.09 385 306 1.16 1.70 1.09 4.84 0.64 0.54 0.35

128 0.24 0.23 0.19 769 496 2.19 5.32 4.48 10.15 1.31 1.23 1.77

256 0.47 0.47 0.36 1513 764 4.06 11.83 11.54 69.99 3.46 3.50 2.48

Averages over P

16 0.05 0.05 0.05 102 136 0.60 0.78 0.24 0.22 0.21 0.20 0.12

32 0.10 0.10 0.08 210 214 1.12 1.53 1.23 1.47 0.51 0.51 0.43

64 0.23 0.22 0.18 420 332 2.15 4.57 3.64 7.04 1.29 1.41 0.93

128 0.54 0.53 0.36 819 509 4.26 13.34 15.37 20.1 2.86 3.52 4.51

256 1.01 1.01 0.71 1640 779 7.98 35.49 56.84 92.69 6.62 8.17 12.07
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SpM dataset, eBSþ is 3.4, 2.5, 1.8, 1.6, and 1.3 times
faster than eBS for P ¼ 16; 32, 64, 128, and 256,
respectively. These improvement ratios in the execution
times of the parametric search algorithms are below the
improvement ratios in the numbers of probes displayed
in Table 5. Overhead due to the RB call and initial
settings of the separator indices contributes to this
difference in both NC+ and eBSþ : Furthermore, costs
of initial probes with very large bottleneck values are
very cheap in eBS:
In Table 6, relative performance comparison of

the proposed exact CCP algorithms shows that BID is
the clear winner for small to moderate P values
(i.e., Pp64) in the SpM dataset. Relative performance
of BID degrades with increasing P so that both
eBSþ and NC+ begin to run faster than BID for
PX128 in general, where eBSþ becomes the winner. For
the DVR dataset, NC+ and EBS are clear winners
as seen in Table 7. NC+ runs slightly faster than EBS
for Pp128; but EBS runs considerably faster than
NC+ for P ¼ 256: BID can compete with these
two algorithms only for 16- and 32-way partitioning
of grid blunt-fin (for all mesh resolutions). As seen in
Table 6, BID takes less than 1% of a single SpMxV time



ARTICLE IN PRESS

Table 7

Partitioning times (in msecs) for DVR dataset

CCP instance Prefix Heuristics Exact algorithms

Name P sum H1 H2 RB Existing Proposed

DP MS NC DP+ MS+ NC+ EBS BID

blunt256 16 0.02 0.02 0.03 68 49 0.36 0.21 0.53 0.10 0.14 0.03

32 0.05 0.05 0.05 141 77 0.77 0.76 0.76 0.21 0.27 0.24

64 1.95 0.11 0.12 0.09 286 134 1.39 3.86 8.72 0.64 0.71 0.78

128 0.24 0.25 0.20 581 206 3.66 12.37 29.95 1.78 1.84 2.33

256 0.47 0.50 0.37 1139 296 52.53 42.89 0.78 13.96 3.11 56.69

blunt512 16 0.03 0.03 0.03 356 200 0.55 0.25 0.91 0.14 0.16 0.09

32 0.07 0.07 0.07 792 353 1.31 1.23 2.13 0.44 0.43 0.22

64 13.45 0.18 0.19 0.14 1688 593 2.65 3.68 9.28 0.94 1.10 0.45

128 0.39 0.40 0.28 3469 979 5.84 15.01 46.72 2.29 2.63 1.65

256 0.74 0.75 0.54 7040 1637 9.70 57.50 164.49 5.59 5.95 10.72

blunt1024 16 0.03 0.03 0.03 1455 780 0.75 0.93 4.77 0.25 0.28 0.19

32 0.12 0.11 0.08 3251 1432 1.81 2.02 8.92 0.60 0.62 0.31

64 59.12 0.27 0.27 0.19 6976 2353 3.50 7.35 22.28 1.27 1.37 1.39

128 0.50 0.51 0.37 14 337 3911 9.14 33.01 69.38 3.36 3.56 16.21

256 0.97 1.00 0.68 29 417 6567 16.59 180.09 538.10 8.48 8.98 16.29

post256 16 0.02 0.03 0.03 79 61 0.46 0.18 0.13 0.10 0.11 0.24

32 0.05 0.05 0.05 157 100 0.77 1.05 1.74 0.26 0.31 0.76

64 2.16 0.10 0.11 0.10 336 167 1.37 5.26 9.72 0.61 0.70 4.67

128 0.25 0.26 0.18 672 278 2.90 22.94 55.10 1.65 1.77 23.96

256 0.47 0.48 0.37 1371 338 45.16 84.78 0.77 13.04 3.62 299.32

post512 16 0.02 0.02 0.03 612 454 0.63 0.20 0.44 0.14 0.16 1.21

32 0.07 0.07 0.07 1254 699 1.30 2.49 1.95 0.38 0.42 3.36

64 20.55 0.18 0.18 0.13 2559 1139 2.58 16.93 38.73 0.97 1.07 8.53

128 0.38 0.39 0.28 5221 1936 5.84 68.25 156.15 2.27 2.44 31.54

256 0.70 0.73 0.53 10 683 3354 12.67 256.48 726.54 5.44 5.39 140.88

post1024 16 0.03 0.04 0.03 2446 1863 0.91 2.88 5.73 0.17 0.21 2.63

32 0.09 0.08 0.08 5056 2917 1.61 13.57 17.37 0.51 0.58 12.73

64 69.09 0.25 0.26 0.17 10 340 4626 3.56 35.05 33.25 1.35 1.47 32.53

128 0.51 0.53 0.36 21 102 7838 7.90 156.34 546.92 2.95 3.28 76.96

256 0.95 0.98 0.67 43 652 13770 16.30 764.59 1451.87 7.55 7.02 300.70

Averages normalized w.r.t. RB times ( prefix-sum time not included )

16 0.83 0.94 1.00 27 863 18919 20.33 25.83 69.50 5.00 5.89 24.39

32 1.10 1.06 1.00 23 169 12156 18.47 47.37 72.82 5.83 6.46 39.02

64 1.30 1.35 1.00 22 636 9291 17.88 82.81 145.19 7.00 7.81 53.81

128 1.35 1.39 1.00 22 506 7553 20.46 168.36 481.19 8.60 9.31 86.81

256 1.35 1.39 1.00 24 731 6880 59.10 390.25 772.99 19.55 10.51 286.77

Averages normalized w.r.t. RB times ( prefix-sum time included )

16 1.00 1.00 1.00 32 23 1.08 1.04 1.09 1.01 1.02 1.03

32 1.00 1.00 1.00 66 36 1.15 1.21 1.29 1.04 1.05 1.13

64 1.00 1.00 1.00 135 58 1.27 1.97 2.90 1.11 1.12 1.55

128 1.01 1.01 1.00 275 94 1.62 4.75 10.53 1.28 1.30 3.25

256 1.02 1.02 1.00 528 142 7.98 14.64 13.71 2.95 1.55 26.73
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for Pp64 on average. For the DVR dataset (Table 7),
the initial prefix-sum time is considerably larger than
the actual partitioning time of the EBS algorithm in
all CCP instances except 256-way partitioning of
post256. As seen in Table 7, EBS is only 12% slower
than the RB heuristic in 64-way partitionings on
average.
These experimental findings show that the pro-

posed exact CCP algorithms should replace
heuristics.
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7. Conclusions

We proposed runtime efficient chains-on-chains par-
titioning algorithms for optimal load balancing in 1-D
decompositions of nonuniform computational domains.
Our main idea was to run an effective heuristic, as a pre-
processing step, to find a ‘‘good’’ upper bound on the
optimal bottleneck value, and then exploit lower and
upper bounds on the optimal bottleneck value to restrict
the search space for separator-index values. This
separator-index bounding scheme was exploited in a
static manner in the dynamic-programming algorithm,
drastically reducing the number of table entries com-
puted and referenced. A dynamic separator-index
bounding scheme was proposed for parametric search
algorithms to narrow separator-index ranges after each
probe. We enhanced the approximate bisection algo-
rithm to be exact by updating lower and upper bounds
into realizable values after each probe. We proposed a
new iterative-refinement scheme, that is very fast for
small-to-medium numbers of processors.
We investigated two distinct applications for experi-

mental performance evaluation: 1D decomposition of
irregularly sparse matrices for parallel matrix–vector
multiplication, and decomposition for image-space
parallel volume rendering. Experiments on the sparse
matrix dataset showed that 64-way decompositions can
be computed 100 times faster than a single sparse matrix
vector multiplication, while reducing the load imbalance
by a factor of four over the most effective heuristic.
Experimental results on the volume rendering dataset
showed that exact algorithms can produce 3.8 times
better 64-way decompositions than the most effective
heuristic, while being only 11% slower, on average.
8. Availability

The methods proposed in this work are implemented in
C programming language and are made publicly available
at http://www.cse.uiuc.edu/~alipinar/ccp/.
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