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Abstract

Data declustering is an important issue for reducing query response times in multi-disk database systems. In this

paper, we propose a declustering method that utilizes the available information on query distribution, data distribution,

data-item sizes, and disk capacity constraints. The proposed method exploits the natural correspondence between a

data set with a given query distribution and a hypergraph. We define an objective function that exactly represents the

aggregate parallel query-response time for the declustering problem and adapt the iterative-improvement-based

heuristics successfully used in hypergraph partitioning to this objective function. We propose a two-phase algorithm

that first obtains an initial K-way declustering by recursively bipartitioning the data set, then applies multi-way

refinement on this declustering. We provide effective gain models and efficient implementation schemes for both phases.

The experimental results on a wide range of realistic data sets show that the proposed method provides a significant

performance improvement compared with the state-of-the-art declustering strategy based on similarity-graph

partitioning.
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1. Introduction

Minimizing query-response times is a crucial
issue in designing high-performance database
systems for application domains such as scientific,
spatial and multimedia. These systems are often
used interactively and amounts of data to be
retrieved for individual queries are quite large. In
such database systems, the I/O bottleneck is
overcome through parallel I/O across multiple
disks. Disks are accessed in parallel while proces-
sing a query, so response time for a query can be
d.
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minimized by balancing the amount of data to be
retrieved on each disk. Therefore, data is distrib-
uted across multiple disks, respecting disk capacity
constraints, in such a way that data items that are
more likely to be retrieved together are located
into separate disks. This operation is known as
declustering.
There have been considerable amounts of

research on developing strategies to effectively
decluster data on several disks in order to achieve
minimum I/O cost. Many declustering strategies
were developed on declustering multi-dimensional
data structures such as cartesian product files, grid
files, quad trees and R-trees [1–8], multimedia
databases [9–13], parallel web servers [14], signa-
ture files [15], spatial databases and geographic
information systems (GIS) [16,17].
In the literature, there exists a vast amount of

work on mapping-function-based declustering
techniques such as Coordinate Modulo Decluster-
ing (CMD) [5], Field-wise Exclusive-OR Distribu-
tion [18], Hilbert Curve Method [3,19], Lattice
Allocation Method [2], and Cyclic Allocation
Scheme [8]. Commonly these methods scatter the
data into disks in such a way that the neighboring
data items in multi-dimensional space are placed
into different disks. The applications of these
methods are restricted to spatial databases and
multi-attribute data sets. Furthermore, if there
exists information about query distribution and
data sizes, these methods do not exploit such
available information.
Recently, Shekhar and Liu [16] proposed a

novel declustering technique which can exploit
information about query distribution and handle
heterogeneous data-item sizes, non-uniform data
distributions, and constraints on disk sizes. They
model the declustering problem as max-cut parti-
tioning of a weighted similarity graph (WSG). The
nodes of WSG correspond to data items and
weights associated with edges represent similarity
between respective data-item pairs. Here, the
similarity between a pair of data items refers to
the likelihood that the pair will be accessed
together by queries. Hence, maximizing the edge
cut in a partitioning of WSG relates to maximizing
the chance of assigning similar data items to
separate disks. This model was reported [16] to
outperform all mapping-function-based strategies
in experiments with grid files. In this work, we
show that the objective function of max-cut graph
partitioning does not accurately represent the cost
function of declustering. This flaw is because of the
fact that WSG is an indirect model and it
represents each query defining a single multi-way
relation by multiple pairwise relations.
In this work, we propose a direct model for

solving the declustering problem by exploiting the
correspondence between a data set with a given
query distribution and a hypergraph. Each data
item and query in the database system correspond,
respectively, to a vertex and a hyperedge (net) of
the hypergraph. The hypergraph partitioning (HP)
problem has been widely encountered in VLSI
layout design [20,21] and partitioning irregular
computational domains for parallel computing
[22,23]. We define an objective function that
exactly represents the total query response time
for the declustering problem and adapt the
iterative-improvement-based HP algorithms to
this objective function. We propose a two phase
algorithm that first obtains an initial K-way
declustering by recursively bipartitioning the data
set, then applies multi-way refinement on this
declustering. We provide effective gain models and
efficient implementation schemes for both phases.
Experimental results on a wide range of realistic
data sets show that the proposed model provides
significantly better declusterings than the WSG
model, which is the most promising strategy in the
literature.
We define the declustering problem and intro-

duce the notation in Section 2. In Section 3, we
introduce the state-of-the-art WSG model and
discuss the flaws of this model. We introduce our
model and the adaptation of iterative-improve-
ment techniques to the problem in Section 4. In
Section 5, we report the experimental results and
evaluate the performance of the proposed method.
2. Basic definitions on declustering

Declustering problem can be defined in various
ways depending on the application. Shekhar
and Liu [16] define the problem in a database
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environment with a given data set and a query set.
Information on possible queries can be available in
many database applications, possible queries may
be predicted using the information on the applica-
tion or queries may be logged with the reasonable
assumption that the queries that will be processed
in the future will be similar to the recent ones. In
some cases, information on queries may not be
available and it can be more appropriate to
decluster the data in such a way that the data
items sharing a common feature are stored on
separate disks. This can be the case in some
multimedia servers [11,12] or content-based image
retrieval systems [24,13]. Therefore, it will be more
convenient to provide a definition of the problem
in terms of a set of data items and a set of relations
among data items as in the work of Zhou and
Williams [25]. The set of relations may refer to the
query set or a possible query may be the union of a
set of relations in many applications.
In the framework of this paper, the declustering

problem is defined on a database system repre-
sented as a two-tuple ðD;QÞ: D is the set of data
items, where each data item dAD may be a spatial
object, a multi-dimensional vector, a signature, or
a cluster of records depending on the application.
Q is the set of relations over D; where a relation
qAQ is defined to be a subset of D (i.e., qDD).
A relation is a query in applications for which prior
information on queries is available. In some other
applications, a relation may be a pattern, a spatial
neighborhood, or a bit position in a signature file. A
query will generally be the union of some relations
in such applications. Thus, without loss of general-
ity, we will use the term query instead of relation
throughout this paper for convenience.
Queries are associated with a relative frequency

function f : Q-½0; 1�; where f ðqÞ shows the like-
lihood of processing query q; i.e., the tendency of
the data items in q to be accessed together. Data
items are associated with two size functions w; t :
D-Zþ: Here, wðdÞ relates to the amount of
storage requirement for data item d; and tðdÞ
relates to the retrieval time of d from a disk. In
practice, these two size functions are closely
related since the I/O time required to retrieve a
data item is linearly proportional to its storage size
in general. Such relative weighting might be
necessary, because the sizes of data items can vary
significantly in many database systems like GIS or
multimedia applications [16]. In this paper, we will
refer to such systems as database systems with
heterogeneous data-item sizes. If all data items
have equal retrieval times, such systems will be
referred to as database systems with homogeneous
data-item sizes.

Definition 1. A K-way declustering of ðD;QÞ is a
K-way partition PK ¼ fD1;D2;y;DKg of D to K

disks, where parts are mutually exhaustive and
disjoint (i.e., ,K

k¼1Dk ¼ D and Dk-Dc ¼ | for
1pkacpK).

Definition 2. A declustering PK is said to be
feasible if each part Dk satisfies a given disk
capacity constraint, i.e., Wk ¼

P
dADk

wðdÞpCk

for 1pkpK : Here, Ck denotes the capacity of
disk Dk:

Definition 3. In a declustering PK ; response time
rðqÞ for a query q is rðqÞ ¼ max1pkpKftkðqÞg;
where tkðqÞ ¼

P
dAq-Dk

tðdÞ denotes the total
retrieval time of data items on disk Dk that qualify
for q: The aggregate parallel response time for a
query set Q is RðQÞ ¼

P
qAQ f ðqÞrðqÞ:

Definition 4. A declustering PK is said to be
strictly optimal with respect to a query set Q if and
only if it is optimal for every query qAQ; i.e.,
rðqÞ ¼ roptðqÞ; for each qAQ:

The problem of finding an optimal distribution
of data items in a single query q into K disks is
equivalent to the well-known number partitioning
problem which is known to be NP-hard [26].
However, for database systems with homogeneous
data-item sizes, rðqÞ ¼ max1pkpKfjq-Dkjg with
the assumption of unit data retrieval time. Thus,
this individual problem becomes trivial so that
roptðqÞ ¼ Jjqj=Kn: The concept of strict optimality
refers to attaining maximum parallelism without
any overhead due to allocation conflicts among
individual queries. We use the term allocation

conflict for the case when the strictly-optimal
declustering of a group of queries enforces non-
optimal declustering of at least one query.
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Definition 5. In a declustering PK ; the aggregate
parallel response overhead for a query set Q is
ROðQÞ ¼

P
qAQ f ðqÞðrðqÞ 
 roptðqÞÞ:

Definition 6. Given a database system ðD;QÞ; the
declustering problem is defined as finding a
feasible K-way declustering PK that minimizes
the aggregate parallel response time RðQÞ which is
equivalent to minimizing aggregate parallel re-
sponse overhead ROðQÞ:

The equivalence between these two objective
functions can easily be seen as follows:

ROðQÞ ¼
X
qAQ

f ðqÞðrðqÞ 
 roptðqÞÞ

¼
X
qAQ

f ðqÞrðqÞ 

X
qAQ

f ðqÞroptðqÞ

¼RðQÞ 
 RoptðQÞ: ð1Þ

Here, RoptðQÞ denotes the weighted sum of optimal
parallel response times of all queries, which is
equal to the aggregate parallel response time of a
strictly optimal declustering if it exists. So, RoptðQÞ
is a constant. Therefore, RðQÞ is minimized if and
only if ROðQÞ is minimized. ROðQÞ has the nice
property of providing information on ‘‘how far the
declustering is away from being strictly optimal’’
making the cost equal to zero for a strictly optimal
declustering. So, we prefer this metric as the cost
function.
3. Flaws of weighted similarity graph (WSG) model

In the model proposed by Shekhar and Liu [16],
a database system (D;Q) is represented by a
weighted similarity graph G ¼ ðV; EÞ: In G; V � D
so that vertex vi represents data item di: Each
query qAQ is represented by a clique of vertices
corresponding to the data items that qualify for q:
That is, each query q induces an edge between
every pair of vertices representing its qualifying
data items. For database systems with homoge-
neous data-item sizes, each edge in the clique is
weighted with the frequency of q: The multiple
edges connecting each pair of vertices of G are
contracted into a single edge of which weight is
equal to the sum of weights of the edges it repre-
sents. Formally, E � fðvi; vjÞ j vi; vjAV and (qAQ
{ di; djAqg with wðvi; vjÞ ¼

P
qAQij

f ðqÞ: Here,
QijDQ is the set of all queries that contain both
di and dj : Then, the problem of declustering (D;Q)
is formulated as max-cut partitioning of G: The
max-cut graph partitioning problem is defined as
the task of finding a feasible K-way partition
PK ¼ fV1;V2;y;VKg of V that maximizes the
cutsize of the partition. The cutsize of PK is
defined as the sum of weights of cut edges, where
an edge is said to be cut if it connects a pair of
vertices belonging to two different parts. The max-
cut graph partitioning problem is known to be
NP-hard [26].
In WSG, edge weights represent the similarity

between the end vertices, where the similarity bet-
ween two data items is defined as the likelihood of
being accessed together by queries in Q: So, in the
WSG model, maximizing the cutsize is expected to
minimize the aggregate parallel response overhead
through maximizing the likelihood of assigning
pairs of data items that are frequently accessed
together to separate disks.
Shekhar and Liu [16] prove that the WSG

model is able to find a strictly optimal decluster-
ing if it exists for a database system with
homogeneous data-item sizes. However, if no
strictly optimal declustering exists, the optimal
partition for the WSG model may be far away
from being an optimal declustering. This flaw
follows from the fact that the WSG model lacks
proper scaling in resolving allocation conflicts
among different queries. This is because multi-
item relations defined by individual queries are
represented as separate pairwise relations between
data items.
Consider two different query subsets Q1 ¼

ffd1; d2; d3gg and Q2 ¼ ffd1; d2g; fd1; d3g;
fd2; d3gg in a database system (D; Q), where D ¼
fd1; d2; d3g and all queries have equal frequencies.
Both query subsets induce the same subgraph in
WSG, which is a triangle with equally weighted
edges, so contributions of Q1 and Q2 to the
cutsize will be the same under any given parti-
tioning. However, in a two-way declustering
where all three data items are assigned to the
same part, we will have considerably different
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parallel response overheads of ROðQ1Þ ¼
ðRðQ1Þ 
 RoptðQ1ÞÞ=jQj ¼ ð3
 2Þ=jQj ¼ 1=jQj and
ROðQ2Þ ¼ ðRðQ2Þ 
 RoptðQ2ÞÞ=jQj ¼ ð6
 4Þ=jQj ¼
2=jQj: In this example, the WSG model over-
estimates the importance of Q1 compared to Q2 in
terms of contribution to the cutsize.
In a declustering, the parallel response time for a

query q is proportional to the maximum of the
number of data items on each disk qualifying for q:
So the actual objective should be minimizing the
distribution imbalances of all queries. However, in
the WSG model, contribution of the clique
induced by a query q to the cutsize, referred to
as the cutsize due to q; relates to the variance in the
distribution of data items in q over disks rather
than the imbalance of the distribution. In database
systems with allocation conflicts among queries,
this flaw in the optimization metric may lead to
erroneous situations such that larger cutsizes may
correspond to worse parallel response times for
individual queries. For example, consider two
different 3-way declusterings P0

3 and P00
3 with

distributions [5:5:1] and [6:3:2], respectively, for a
query q of size jqj ¼ 11: Here, size of a query q
Fig. 1. Adjacency matrix representations of WSG of a sample databa

frequency for 3-way declusterings: (a) P0
3 ¼ ffd1; d2; d3; d4g; fd5; d6; d7

28, and (b) P00
3 ¼ ffd1; d2; d3; d4g; fd5; d6; d7g; fd8; d9gg with cutsize 4

frequencies are ignored for the sake of clarity).
refers to the number of data items that qualify for
q: In P0

3; distribution [5:5:1] for q shows that 5, 5,
and 1 data items of q reside on disks D1; D2; and
D3; respectively. So, in P0

3; rðqÞ ¼ maxf5; 5; 1g ¼ 5
and the cutsize due to q is equal to ð5 5Þ þ ð5 1Þ
þð5 1Þ ¼ 35: Although distribution [6:3:2] for
q in P00

3 incurs a larger (better) cutsize of 36 in
WSG, it leads to a larger (worse) parallel response
time of 6.
We finalize the discussion for the homogeneous

case with a complete example. Fig. 1 shows a
database system ðD;QÞ with nine data items and
25 queries, and two different 3-way partitions P0

3

and P00
3 of the corresponding WSG displayed in

adjacency matrix representation. Since WSG is an
undirected graph, only the upper triangular por-
tion of its symmetric adjacency matrix is shown.
Off-diagonal blocks are colored into grey to show
the cut edges of a partition so that the sum of the
numbers in grey blocks is equal to the cutsize. P0

3

shown in Fig. 1(a) is the only optimal declustering
for ðD;QÞ; with aggregate parallel response time of
28, and the cutsize of P0

3 on WSG is equal to 48.
Although P00

3 shown in Fig. 1(b) is an optimal
se system with 9 data items of equal size and 25 queries of equal

; d8g; fd9gg with cutsize 48 and aggregate parallel response time

9 and aggregate parallel response time 29. (Note: equal query
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Fig. 2. WSG of a sample database system with 5 data items of different retrieval times and two queries of equal frequency for two-way

declusterings: (a) P0
2 ¼ ffd1; d2; d3g; fd4; d5gg with cutsize five and aggregate parallel response time 8, and (b) P00

2 ¼
ffd2; d3g; fd1; d4; d5gg with cutsize six and aggregate parallel response time 10 (Note: equal query frequencies are ignored in the

computation of response times for the sake of clarity).
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partition of WSG providing a greater cutsize of 49,
it incurs a worse aggregate parallel response time
of 29. This discrepancy between the objectives of
WSG model and the declustering problem is
caused by the allocation conflict between the
strictly optimal allocation of query group
fq2; q3;y; q25g and query q1: The WSG model
resolves this conflict by sacrificing optimal alloca-
tion of q25 for less variance in the distribution of q1
although this does not reduce the parallel response
time for q1:
For database systems with heterogeneous data-

item sizes, Shekhar and Liu [16] scale the weight of
each edge ðvi; vjÞ of WSG with minftðdiÞ; tðdjÞg;
that is wðvi; vjÞ ¼ minftðdiÞ; tðdjÞg 

P
qAQij

f ðqÞ for
each edge ðvi; vjÞAE: This scaling factor relates to
the possible savings in response time achieved by
assigning items di and dj to separate disks instead
of allocating them into the same disk, i.e.,
minftðdiÞ; tðdjÞg ¼ ðtðdiÞ þ tðdjÞÞ 
maxftðdiÞ; tðdjÞg:
Thus, the sum of possible savings in response times
is maximized by maximizing the cutsize on WSG.
However, the sum of pairwise savings for a query q

of size greater than 2 is only a coarse approxima-
tion to the actual saving achieved by parallelizing
the retrieval of q: For instance, for a query q ¼
fd1; d2; d3g; with tðd1Þ ¼ 1; tðd2Þ ¼ 2; tðd3Þ ¼ 3; the
weights of edges between corresponding vertices
are wðv1; v2Þ ¼ 1; wðv1; v3Þ ¼ 1 and wðv2; v3Þ ¼ 2
ignoring the frequency of q: In a two-way
declustering P2 ¼ fD1 ¼ fd1; d3g;D2 ¼ fd2gg; the
actual saving is ðtðd1Þ þ tðd2Þ þ tðd3ÞÞ 
maxftðd1Þ
þtðd3Þ; tðd2Þg ¼ 6
 4 ¼ 2; whereas the sum of
pairwise savings estimated by the WSG model
is minftðd1Þ; tðd2Þg þminftðd3Þ; tðd2Þg ¼ 1þ 2 ¼ 3:
The WSG model ignores the difference between
the retrieval times of data items d2 and d3;
although the decision of allocating d2 or d3 to
the same disk with d1 affects the parallel response
time for q:
A sample database system for which the WSG

model is unable to find the existing strictly-optimal
declustering is shown in Fig. 2. P0

2 shown in
Fig. 2(a) is a strictly-optimal two-way declustering
with aggregate parallel response time 8. P00

2 shown
in Fig. 2(b) is an optimal partition for WSG
model. Although P00

2 has a larger cutsize than that
of P0

2; it has a worse (larger) aggregate parallel
response time 10.
4. Hypergraph model for declustering

A database system ðD;QÞ can naturally be
described as a hypergraph. A hypergraph H ¼
ðV; EÞ is a generalized version of a graph in which
each edge eAE; usually referred to as hyperedge,
can connect possibly more than two vertices, i.e.,
eDV: So, each hyperedge can naturally represent a
query which may define a single relation among
more than two data items. That is, in H; V � D
and E � Q so that vertex vi represents data item di
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and hyperedge ej represents query qj : The vertices
connected by hyperedge ej ; referred to as pins of ej ;
correspond to the data items that qualify for query
qj : Each hyperedge is associated with a weight
equal to the frequency of the respective query.
With this representation, the declustering pro-

blem for a database system with homogeneous
data-item sizes can be modeled as a hypergraph
partitioning (HP) problem with proper modifica-
tion on the objective function. Traditionally, the
HP problem is defined as partitioning the hyper-
graph into equally weighted parts to minimize the
weighted sum of connectivities of hyperedges. Here,
connectivity of a hyperedge e refers to the number
of parts in which at least one pin of e is allocated. If
the size of each query is less than or equal to the
number of disks, then the declustering problem can
be exactly modeled as a max-cut HP problem,
where the objective function corresponds to max-
imizing the weighted sum of the connectivities of
hyperedges. In the general case, the objective is to
minimize the weighted sum of the bottleneck values
of pin distributions of hyperedges. Here, the
bottleneck value of pin distribution of a hyperedge
e refers to the number of pins of e in the bottleneck
part, which is the part that contains the maximum
number of pins of e over all parts.
As the HP problem is known to be NP-hard

[21], a vast amount of research has been conducted
to develop efficient heuristics and tools for the
solution of this well-known problem. Iterative-
improvement heuristics introduced by Kernighan–
Lin (KL) [27] and Fiduccia-Mattheyses (FM) [28]
have been widely used for graph/hypergraph
bipartitioning because of their short run times
and good-quality results. The FM algorithm,
starting from an initial bipartition, performs a
number of passes until it finds a locally optimal
partition, where each pass consists of a sequence of
vertex moves. The fundamental idea is the notion
of gain, which is the decrease in the cost of a
bipartition by moving a vertex to the other part.
The local search strategy adopted in the KLFM
approach repeatedly moves the vertex with the
maximum gain, even if that gain is negative, and
records the best bipartition encountered during a
pass. Allowing tentative moves with negative gains
brings ‘‘hill-climbing ability’’ to the approach.
The K-way HP problem is usually solved by
recursive bisection. In this scheme, first, a two-way
partition of H is obtained and then this bipartition
is further partitioned in a recursive manner. After
lg2K levels, H is partitioned into K parts. There
are also algorithms that try to compute a K-way
partitioning directly instead of recursive biparti-
tioning. The most notable of them is Sanchis’s
algorithm [29], which is a generalization of FM
paradigm to K-way partitioning. In this work, we
propose a two-phase approach for K-way declus-
tering. In the first phase, we perform recursive
bipartitioning to obtain an initial K-way partition.
In the second phase, this initial K-way partition/
declustering is improved through a direct K-way
refinement heuristic.
The basic idea behind our declustering algo-

rithms is same for database systems with homo-
geneous and heterogeneous data-item sizes.
However, the concepts and the algorithm are
simpler to present for homogeneous data-item
sizes. So, in the following section, we describe our
declustering algorithm for database systems with
homogeneous data-item sizes into detail. Then, we
briefly summarize the extension of the algorithm
to handle heterogeneous data-item sizes in a
separate section. Due to the natural correspon-
dence between a database system and a hyper-
graph, we describe our algorithms using the
database-specific notation of Section 2 instead of
hypergraph-specific notation, as much as possible,
for clarity of presentation.

4.1. Database systems with homogeneous data-item

sizes

In this section, without loss of generality, we
assume unit retrieval times for data items for
simplicity of discussion.

4.1.1. Recursive bipartitioning phase

The objective in recursive bipartitioning phase is
to attain a ‘‘good’’ initial K-way declustering for
multi-way refinement to be performed in the
second phase. Here, we consider a good initial
declustering for K-way refinement as even dis-
tribution of every query across disks. This even
query distribution is assumed to avoid a bad
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locally optimal declustering providing flexibility in
the search space of the multi-way refinement
scheme. We have also developed and experimented
a more complicated scheme which models, as
much as possible, the minimization of the objective
function for the final K-way declustering during
recursive bipartitioning. In this alternative scheme,
we keep track of individual query distribution
results obtained in the earlier bipartitioning levels
and then use this information to dynamically
update the best attainable final response time for
each query to relax the objective function for later
bipartitioning levels. In the experiments, we
observed that although this alternative scheme
produces K-way initial declusterings with less
aggregate parallel response time than the simpler
even query distribution scheme, it leads to worse
multi-way refinement results [30].
If K is a power of two, even query distribution

objective in the final K-way declustering can be
achieved by obtaining an even query distribution
at each bipartitioning step through adopting the
query splitting scheme shown in Fig. 3. Every
bipartitioning step resulting in a bipartition P2 ¼
fD0;D1g generates two database sub-systems
ðD0;Q0Þ and ðD1;Q1Þ: Each query qAQ is split
into two item-wise disjoint sub-queries q0 ¼ q-D0

and q00 ¼ q-D1: Then, these two queries are
added to the query sets Q0 and Q1 if jq0j > 1 and
jq00j > 1; respectively. So, the objective of even
distribution of these sub-queries at each recursive
bipartitioning step models the objective of even
distribution of queries into K disks. This scheme
can be enhanced to handle any arbitrary K value,
which is not restricted to be a power of two, by
Fig. 3. Query splitting process i
enforcing properly imbalanced query distributions
rather than even distributions in some bipartition-
ing steps. However, we will only discuss recursive
bipartitioning for the case of K being a power of
two for the sake of clarity of presentation.
The cost of a bipartition P2 according to the

‘‘goodness’’ definition discussed above is

costðP2Þ ¼
X
qAQ

f ðqÞ maxft0ðqÞ; t1ðqÞg 

jqj
2

� �� �
:

ð2Þ

As all data items are assumed to have unit retrieval
time, tkðqÞ denotes the number of data items in
part Dk that qualify for q; i.e., tkðqÞ ¼ jq-Dk j for
k ¼ 0; 1: So, without loss of generality, the gain of
moving a data item d from D0 to D1 will be

gðdÞ ¼
X

q:dAq

f ðqÞðmaxft0ðqÞ; t1ðqÞg


maxft0ðqÞ 
 1; t1ðqÞ þ 1gÞ: ð3Þ

We will restrict our discussion to the contribution
of a specific query q that contains d to gðdÞ:
Consider the case t0ðqÞpt1ðqÞ; which means that
maxft0ðqÞ; t1ðqÞg ¼ t1ðqÞ; prior to the move. Since
moving d to D1 will increase t1ðqÞ by 1, it will
increase the cost due to q by f ðqÞ; thus q

contributes to gðdÞ by f ðqÞ: It is clear from
Eq. (3) that the move of d to D1 will incur a
decrease in the cost due to q only if t0ðqÞ 
 1
Xt1ðqÞ þ 1: So, query q contributes to gðdÞ by f ðqÞ
if t0ðqÞXt1ðqÞ þ 2 prior to the move. Fig. 4 displays
our gain-computation algorithm in pseudo-code.
The efficiency of FM-based algorithms depends

on the simplicity and efficiency of maintaining
n recursive bipartitioning.



ARTICLE IN PRESS
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M. Koyut .urk, C. Aykanat / Information Systems 30 (2005) 47–70 55
move gains through local updates. We propose an
efficient local move-gain update scheme as shown
in Fig. 5. Our local update scheme is based on the
following observation. When a data item d� with
maximum gain is selected to move during the
course of the algorithm, only the distributions of
the queries that contain d� change. So, it is
sufficient to consider updating the move gains of
only the data items that qualify for these queries.
Such a query q incurs a gain update only if the
move causes a state transition in the distribution of
q; where those states are clearly shown in the gain
computation algorithm given in Fig. 4. As these
states are defined by the difference (i.e., D) between
the number of data items of q in the source
and destination parts and the state transitions
are at D ¼ 2 and 0 as shown in Fig. 4, the cases
to be considered for updating are restricted to
those with 
1pDp3 prior to the move as shown
in Fig. 5.
The overall algorithm can be summarized as

follows. The algorithm starts from a randomly
constructed initial feasible bipartition. The initial
move gains are computed using the algorithm
shown in Fig. 4. At the beginning of each pass, all
data items are unlocked. At each step in a pass, an
unlocked data item with maximum move gain
(even if it is negative), which does not violate the
feasibility criterion, is selected to move to the other
part and then it is locked. This locking mechanism,
which enforces each data item to be moved at most
once during a pass, is needed to avoid thrashing.
After the move, the move gains of the affected
data items are updated using the algorithm given
in Fig. 5. The refinement process within a pass
terminates when either no feasible move remains
or the sequence of last x moves does not yield a
decrease in the bipartitioning cost. This scheme
corresponds to realizing a prefix subsequence of
feasible moves, which incurs the maximum de-
crease in the cost. Here, x is the window size that
determines the hill-climbing ability. A high x

increases the chance of discovering a local mini-
mum that is hidden behind a local maximum at
the cost of increasing the running time of the
algorithm. Window size is usually selected to be a
small fraction of the total number of possible
moves (i.e., number of data items) for run-time
efficiency. x ¼ 0:05jDj is used in this work. If
the pass terminates due to window-size restriction,
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Fig. 5. Move-gain update algorithm for bipartitioning when d� with maximum gain is selected to move from source part Ds to

destination part Dz where z ¼ 1
 s:
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the last x moves are undone since they do not
decrease the cost (they might have actually
increased the cost). The initial gain computations
for the following pass is achieved through this
rollback operation. The overall refinement
process terminates if the total gain of a pass is
not positive.
Selection of moves with maximum gain necessi-

tates maintaining a priority queue, implemented as
a binary max-heap in this work. The priority
queue should support extract-max, increase-key
and decrease-key operations. Increase-key and
decrease-key operations are needed because of
the gain increment and decrement operations
performed during the gain update computations
shown in Fig. 5.

4.1.2. Multiway refinement phase

Although each data item is associated with a
single move in bipartitioning, K 
 1 moves are
associated with a data item in multi-way refine-
ment of a K-way declustering. Recall that the cost
of a K-way declustering of database system ðD;QÞ
with homogeneous data-item sizes is

costðPK Þ ¼ ROðQÞ ¼
X
qAQ

f ðqÞðrðqÞ 
 roptðqÞÞ; ð4Þ

where rðqÞ ¼ max1pkpK ftkðqÞg and roptðqÞ ¼
Jjqj=Kn: As seen in Eq. (4), a single data-item
move may decrease the response time rðqÞ of a
query q that has a non-optimal parallel response
time only if there exists only one bottleneck disk
Db for q: In this situation, we say that query q is
critical to disk Db since moving a data item that
qualifies for q and resides on Db to another disk Dz

may reduce rðqÞ by one. However, such a positive
move gain of f ðqÞ is offset if tzðqÞ ¼ rðqÞ 
 1 prior
to the move so that the move will not change rðqÞ:
As also seen in Eq. (4), a move can increase the
response time rðqÞ of a query q only if a data item
moves to a bottleneck disk of q: Thus, a query q
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contributes a negative gain of f ðqÞ to the moves of
its qualifying data items to its bottleneck disk(s).
The FM paradigm is quite suitable and efficient

for refining a bipartition. However, the refinement
of a K-way partition is much more difficult and
complicated than that of a bipartition. A direct
generalization of FM paradigm to K-way refine-
ment proposed by Sanchis [29] for hypergraph
partitioning is substantially more expensive. The
increase in the computational cost is mainly due to
the large number of move-gain updates incurring
priority queue updates, which is approximately K

times greater than that of bipartitioning. There are
K 
 1 moves (move directions) associated with
each vertex and K parts in the partition, so there
are a total of KðK 
 1Þ priority queues. Such
schemes are stated to be practical for only small K

values (e.g., Ko8).
In this work, we propose an efficient greedy

approach to decrease the number of gain update
operations by maintaining a single gain value for
each data item rather than K 
 1 move gains. The
proposed scheme has the nice property of necessi-
tating only one priority queue rather than KðK 
 1Þ
priority queues. A vertex move can be viewed as a
two-stage process: vertex leaves the source disk on
which it resides and then arrives at the destination
disk. So, the move gain can be considered as the
leave gain minus the arrival loss. These two
components of a move gain can easily be extracted
from the discussion given above. For example, the
leave gain of a data item d from disk Ds is equal to
the sum of the frequencies of queries that contain
d and are critical to Ds: So our basic idea is to
select the data items according to their leave gains
and after each selection try to realize the best move
associated with the selected data item. Note that
finding the best move corresponds to finding a
destination part that minimizes the total arrival
loss for the selected data item. In this work, rather
than using the actual leave gains we introduce and
use a virtual leave-gain concept to associate with
data items so that data items are maintained in the
priority queue according to these key values. The
reasons behind this choice are both declustering
quality and run-time efficiency of gain-update
operations as will become clear throughout the
discussions.
The virtual leave gain *gðdÞ of a data item d that
resides on disk Ds is defined as

*gðdÞ ¼
X

qAQþðd;sÞ

f ðqÞ; where

Qþðd; sÞ � fqAQ : dAq and tsðqÞ > roptðqÞg: ð5Þ

That is, each query q that contains d contributes
f ðqÞ to *gðdÞ if the number of data items that
qualify for q and reside on Ds is greater than the
optimal response time of q: This means that it is
possible to improve the distribution of query q

through moving data item d to an appropriate
destination disk Dz: Thus, virtual leave gain *gðdÞ is
an upper bound on the actual leave gain.
Consider a sample query q of size 10 in a 4-way

declustering with roptðqÞ ¼ J10=4n ¼ 3: For both
4-way distributions [4:3:2:1] and [4:4:1:1] of q; q

contributes a virtual leave gain of f ðqÞ to its 4
qualifying data items residing on disk D1; because
t1ðqÞ ¼ 4 > 3 ¼ roptðqÞ in both distributions. Since
q is critical to D1 in the former distribution, this
virtual leave gain is equal to the actual leave gain
and it corresponds to the possibility of attaining
actual move gain of f ðqÞ which can be realized by
moving a data item of q from D1 to D3 or D4:
However, in the latter distribution, this virtual
leave gain only corresponds to an improvement on
the distribution of q by a similar move which will
make q critical to D2; thus providing the possibility
of attaining optimal response time for q by further
moves from D2: This can be considered as a look-
ahead capability in move-gain computations.
The overall algorithm for multi-way refinement

can be summarized as follows. The algorithm
starts from the initial K-way declustering obtained
through recursive bipartitioning as described in
Section 4.1.1. The initial virtual leave-gain for
every data item is computed using the algorithm
shown in Fig. 6. This algorithm also contains the
other necessary initialization operations. At the
beginning of each pass, all data items are unlocked.
At each step in a pass, an unlocked data item d�

with maximum virtual leave gain is selected. The
K 
 1 actual move gains associated with d� are
computed as shown in Fig. 7. Then, the best move
associated with d�; which does not violate the
feasibility constraint, is realized if the respective
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Fig. 7. Algorithm for computing the K 
 1 actual move gains for selecting the best move associated with data item d� that has

maximum virtual leave gain.

Fig. 6. Initial virtual leave-gain computation algorithm for multi-way refinement. Note that nbðqÞ; which denotes the number of

bottleneck disks for query q; is maintained for each query to simplify the process for testing a query being critical to a disk in move-gain
computations as shown in Fig. 7.
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gain is positive and then d� is locked. If the best
feasible move has zero gain, then it is realized only
if it leads to a better declustering in terms of
feasibility.
After a move is realized, the virtual leave gains

of affected unlocked data items are updated using
the algorithm given in Fig. 8. As expected, possible
virtual leave-gain updates are restricted only to the
data items that qualify for the queries containing
the moved data item. As a fortunate property of
virtual leave-gain concept, it is sufficient to
consider the update of the virtual leave gains of
only those data items that reside on the source and
destination disks of the move. This is because of
the simple fact that the virtual leave gain of a data
item d depends on only the data items that reside
on the same disk with d: Comparison of update
algorithms given in Fig. 5 and Fig. 8 shows that
the virtual leave-gain update algorithm is at least
as simple and efficient as the move-gain update
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algorithm for bipartitioning. The multi-way re-
finement process within a pass terminates when all
data items are explored or the last x ¼ 0:05jDj
steps do not lead to a move. The overall refinement
process terminates if no move is realized in a pass.
Note that the hill-climbing capability of the
KLFM paradigm is omitted in our algorithm,
because data items are moved only if they lead to
non-negative gains.

4.2. Database systems with heterogeneous data-

item sizes

In this section, we mainly discuss the extensions
to the algorithms presented in Section 4.1 that are
necessary to handle data items with different
retrieval times. The omitted details should be
assumed to be the same or trivially extendible.
4.2.1. Recursive bipartitioning phase

In the case of heterogeneous data-item sizes, the
‘‘goodness’’ of an initial K-way declustering for
multi-way refinement corresponds to query dis-
tribution with small variance as much as possible.
This objective is approximated by balancing the
distribution of every query in each bipartitioning
step. Thus, for the recursive bipartitioning phase,
the cost of a bipartition is

costðP2Þ ¼
X
qAQ

f ðqÞðmaxft0ðqÞ; t1ðqÞg 
 roptðqÞÞ:

ð6Þ

Here, roptðqÞ is the optimal response time of query
q for a 2-way declustering, which is NP-hard to
find. Fortunately, it is not necessary to compute
roptðqÞ for move gain computations since it is a
constant. The move gain of a data item d depends
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on its retrieval time tðdÞ:

gðdÞ ¼
X

q:dAq

f ðqÞ maxft0ðqÞ; t1ðqÞgð


 maxft0ðqÞ 
 tðdÞ; t1ðqÞ þ tðdÞgÞ: ð7Þ

assuming dAD0 without loss of generality. There-
fore, the move gain of d can be easily computed by
comparing D ¼ t0ðqÞ 
 t1ðqÞ with tðdÞ for every
query q containing d: Only three cases need to be
checked for initial gain computations as shown in
Table 1.
For local gain update, a query q that contains

the moved data item d� incurs a gain update for a
data item dAq only if the move causes a state
transition in the distribution of q; where the state
transitions are at D ¼ 2tðdÞ and D ¼ 0: The six
distinct cases that need to be examined for gain
update of data item d that resides in the same part
with d� prior to the move are displayed in Table 2.
As seen in the table, the move necessitates a gain
update only if 0oDo2ðtðdÞ þ tðd�ÞÞ prior to the
move. The six cases that need to be examined for
updating the gain of a data item that resides in the
other part are symmetric and can be derived easily.
Table 1

Initial gain computation for a data item dADk: contribution of

a query q that contains d to gðdÞ; where D ¼ tkðqÞ 
 t1
kðqÞ

Case Contribution of q

DX2tðdÞ tðdÞ
0pDo2tðdÞ D
 tðdÞ
Do0 
tðdÞ

Table 2

Gain update for a data item dADs when data item d�ADs is moved to

d and d� to gðdÞ; where D ¼ tsðqÞ 
 t1
sðqÞ prior to the move

Case Contribution o

Before move After move Before move

DX2tðdÞ D
 2tðd�ÞX2tðdÞ tðdÞ
DX2tðdÞ 0pD
 2tðd�Þo2tðdÞ tðdÞ
DX2tðdÞ D
 2tðd�Þo0 tðdÞ
0pDo2tðdÞ 0pD
 2tðd�Þo2tðdÞ D
 tðdÞ
0pDo2tðdÞ D
 2tðd�Þo0 D
 tðdÞ
Do0 D
 2tðd�Þo0 
tðdÞ
4.2.2. Multi-way refinement phase

For the multi-way refinement phase of hetero-
geneous case, the virtual leave-gain concept can be
generalized as follows for a data item dADs:

*gðdÞ ¼
X

q:dAq

f ðqÞminftðdÞ;maxf0; tsðqÞ 
 roptðqÞgg:

ð8Þ

That is, the contribution of a query q that contains
d to *gðdÞ corresponds to how much the total
retrieval time of data items that qualify for q and
reside on Ds approaches from above to the optimal
response time of q with the leave of d from Ds:
Note that *gðdÞ is an upper bound on the gain of
the best move associated with data item d as in the
homogeneous case. As the number partitioning
problem is NP-hard, roptðqÞ values needed for the
computation of virtual leave gains are estimated
by adapting the best-fit-decreasing heuristic used
in solving the K-feasible bin-packing problem [31].
In this heuristic, data items that qualify for a query
q are assigned to K bins in decreasing retrieval-
time order, where best-fit criterion corresponds to
assigning a data item to the bin with minimum
sum of retrieval times.
For the local update of virtual leave gains after

the move of a data item d�Aq from disk Ds to Dz;
it is only necessary to compute the difference
between the values of minftðdÞ;maxf0; tkðqÞ 

roptðqÞgg for k ¼ s (before the move) and k ¼ z

(after the move), to update the virtual move gain
of a data item dAq residing on Ds or Dz:
For the computation of K 
 1 actual move gains

of a selected data item d�; we maintain a variable
D1
s: change in the contribution of a query q that contains both

f q

After move Change in contribution

tðdÞ 0

D
 2tðd�Þ 
 tðdÞ D
 2tðd�Þ 
 2tðdÞ

tðdÞ 
2tðdÞ
D
 2tðd�Þ 
 tðdÞ 
2tðd�Þ

tðdÞ 
D

tðdÞ 0
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r2ðqÞ ¼ max1pkabpK tkðqÞ for each query q; where
b is the index of the bottleneck disk of q

(i.e., rðqÞ ¼ tbðqÞ). r2ðqÞ may also be described as
the total retrieval time of q in its second bottleneck
disk. Keeping track of r2ðqÞ; we can easily decide if
a disk is the only bottleneck disk for a query, so we
can compute the contribution of a query q to the
actual gain of moving d�Aq from Ds to Dk in
constant time as follows:

if tsðqÞ ¼ rðqÞ then x if q is critical to Ds
gðd�; kÞ ’gðd�; kÞþ

f ðqÞðrðqÞ 
maxtsðqÞ 
 tðdÞ; tzðqÞ þ tðdÞ; r2ðqÞÞ
else
gðd�; kÞ’gðd�; kÞþ

f ðqÞðrðqÞ 
maxrðqÞ; tzðqÞ þ tðdÞÞ
Note that r2ðqÞ corresponds to nbðqÞ of the
homogeneous case, but nbðqÞ is more informative
taking advantage of the fact that a move can only
cause a unit change in the response time of a query.

4.3. Running-time analysis

In the recursive bipartitioning phase, initial-gain
computations shown in Fig. 4 take Yð

P
qAQjqjÞ

time for each FM pass. Each FM pass requires at
most jDj extract-max operations since there can be
at most jDj moves in a pass. Gain-update
computations dominate the time complexity of
each FM pass. As seen in Fig. 5, the number of
gain updates associated with a query q after the
move of data item d�Aq is at most the number of
data items in q that are unlocked at the time of the
move. Since a data item is locked immediately
after being moved, the number of unlocked data
items in q becomes one less after each move. Thus,
in each FM pass, the number of gain updates
associated with a query q is at most jqjðjqj 
 1Þ=2:
So, gain-update computations necessitate
Oð

P
qAQ jqj2Þ increase-key and decrease-key opera-

tions in a pass. With a binary heap implemen-
tation of priority queue, the cost of an FM
pass is OðjDjlgjDj þ

P
qjqj

2lgjDjÞ ¼ Oð
P

qjqj
2lgjDjÞ:

In practice, small number of FM passes ðp5Þ
are sufficient for convergence. So, the compu-
tational cost of a recursive bipartitioning
step is Oð

P
qjqj

2lgjDjÞ: Since Jlg2Kn levels are
involved, recursive bipartitioning phase takes
Oð

P
qjqj

2lgjDjlg KÞ time. This is a rather loose
bound since it disregards the decrease in the square
terms due to the decrease in the query sizes
incurred by the query splitting process. For the
homogeneous case, in which the objective is
even splits of queries, individual square terms
effectively reduce by a factor of two after each
recursive bipartitioning level. That is, the total
number of priority-queue update operations can be

written as Oð
PlgK
1

i¼0

P
q 2

iðjqj=2iÞ2Þ ¼ 2ððK 
 1Þ=

KÞOð
P

qjqj
2Þ ¼ Oð

P
qjqj

2Þ: So, for practical pur-

poses, the running time reduces to Oð
P

qjqj
2lgjDjÞ

for the homogeneous case.
The proposed multi-way refinement scheme

maintains a single gain value (virtual leave gain)
for every vertex and hence maintains a single
priority queue. So, the running-time analysis given
for a bipartitioning step also applies to the multi-
way refinement phase. There are only two sources
of additional cost. The first one is the computation
of K 
 1 actual move gains for selecting the best
move associated with the data item that has the
maximum virtual leave gain. As seen in Fig. 7, this
additional cost is OðjDjKÞ: The second one is the
update of rðqÞ and nbðqÞ (r2ðqÞ in the heterogeneous
case), which is performed when rðqÞ is affected by
the move. As seen in Fig. 8, this operation can be
performed in OðKÞ time for each affected query.
Since a query q can be affected by at most jqj
moves, this additional cost is OðK

P
qjqjÞ: Hence,

the running time of the multi-way refinement
phase is OðKðjDj þ

P
qjqjÞ þ

P
qjqj

2lgjDjÞ ¼
al ¼ 1 > OðK

P
qjqj þ

P
qjqj

2lgjDjÞ: Thus, the over-
all running time of the proposed algorithm is
OðK

P
q jqj þ

P
q jqj

2lgjDjlgKÞ; where the lg K

factor disappears in the homogeneous case as
discussed above.
It is possible to reduce the effect of the quadratic

term in the complexity of our proposed algorithm
with a simple engineering approach. Gain-update
operations are much cheaper than the associated
increase-key and decrease-key operations on the
priority queue. After each move, a data item that
shares more than one query with the data item
being moved can have its gain updated multiple
times. However, the modification of priority queue
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can be performed only once per data item. Based
on this observation, it is possible to modify the
gain-update algorithm as follows. During each
move, we update the gains of data items with-
out modifying the priority queue while maintain-
ing a list of data items that have their gains
updated. At the end of the move, we perform
increase-key or decrease-key operations for the
data items in this list. This improvement reduces
the number of priority-queue updates to the
number of edges in the similarity graph of the
database system.
The running-time analysis of the WSG method

[16] is also given here for the sake of performance
comparison. The construction of WSG G ¼ ðV; EÞ
for a given database system (D;Q) involves the
construction of Yð

P
qjqj

2Þ edges. The contractions
of multiple edges connecting the same pairs of
vertices require search in the adjacency lists of the
respective vertices. So, the average running time of
the graph construction phase can be given as
Yða

P
qjqj

2Þ; where a ¼ jEj=2jVj is the average
vertex degree in the WSG. The global WSG
method [16] is a two-phase approach consisting
of recursive-bipartitioning followed by pairwise
optimization. In the recursive bipartitioning phase,
the running time of an FM pass is OððjVj þ
jEjÞlgjV jÞ ¼ OððjDj þ jEjÞlgjDjÞ ¼ OðjEjlgjDjÞ with a
binary heap implementation of priority queue. It is
also assumed that constant number of FM passes
are sufficient for convergence in each bipartition-
ing step. As the cut edges are removed after each
bipartitioning step, it can also be assumed that
Jlg Kn recursive bipartitioning levels do not
increase the asymptotic complexity. In the pairwise
optimization phase, the bipartitioning algorithm is
used to refine selected part (disk) pairs until no
pairwise improvement is possible. Although this
method may require OðK2Þ pairwise refinement
steps, it converges quickly in practice for suffi-
ciently small K as also mentioned in [16]. So, the
running time of the partitioning phase can be
assumed to be OðjEjlgjDjÞ: Note that the partition-
ing time heavily depends on jEj; which depends on
the similarities among the queries in Q: A high
level of similarity means smaller jEj in the WSG,
which means less partitioning time. However, this
also means higher construction time due to the
increase in the search time during the contraction
of multiple edges between vertex pairs.
The running times of both the proposed and

WSG algorithms can be improved for the homo-
geneous case by using gain-bucket list implementa-
tion [28] for the priority queue. This implementation
enables almost constant-time priority-queue opera-
tions when the range of possible gain values is
small. This condition holds for the homogeneous
case, so that the lgjDj factor disappears.

4.4. Dynamic databases

The proposed two-phase algorithm is mainly
well suited for static databases. However, the
multi-way refinement scheme of the second phase
is very suitable to adjust an existing declustering to
updates in a dynamic database. These updates
include insertion and deletion of data items as well
as changes in the available query information.
Independent of the type of updates, it is possible to
consider the current status of the database as an
initial declustering. Therefore, the multi-way
refinement algorithm can be used to refine the
declustering to adapt to the updated database.
This can be performed periodically using the latest
query information.
For periodical refinement, the initial decluster-

ing is regarded as a ðK þ 1Þ-way declustering as
follows. The data items that already exist in the
database inherit their current disk allocation in
this initial declustering, thus constituting the
allocation for the first K disks, D1;y;DK : The
data items that are inserted after the last refine-
ment are temporarily allocated onto a virtual disk
DKþ1: The data items that are deleted after the last
declustering are no longer in the database, so they
are not considered any more. With this setting,
periodical refinement is performed in two stages.
The purpose of the first stage is to induce a K-way
declustering from the ðK þ 1Þ-way declustering by
allowing moves only from disk DKþ1 to disks
D1;y;DK : The K moves associated with each
data item on DKþ1 are inserted into the respective
priority queues according to their respective
arrival-loss values. Note that leave gains are not
considered since all data items will eventually leave
disk DKþ1: For the same reason, the data items
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that are currently on DKþ1 are not considered in
arrival-loss computations, i.e., query sizes and
roptðqÞ values are gradually incremented as data
items move from DKþ1: At each step of the
algorithm, a feasible move with minimum arri-
val-loss value is selected from these K priority
queues. After the move of a data-item d; arrival-
loss values of the moves associated with the data
items that share queries with d are updated
accordingly. The first stage ends when disk DKþ1

becomes empty. Then, the second stage is carried
on as a multi-way refinement over the first K disks
as described in Sections 4.1.2 and 4.2.2.
The period of refinement should be chosen

carefully depending on the frequency of updates in
the database. The amount of change in the
database between two successive refinement steps
should be small enough to justify the ‘‘goodness’’
of the initial declustering. Note that the proposed
refinement scheme does not encapsulate the I/O
cost associated with the migration of data items
after each refinement. Encapsulating both the
improvement of declustering quality and data-
item migration cost is a further research issue.
5. Experimental results

The proposed direct declustering (DD) algo-
rithm was tested on a collection of database
Table 3

Properties of database systems used in experiments

Class Data set jDj

Image Face 844

Function HH 1638

Approx. FR 3338

GIS Airport 1176

(Point) Place90 3382

GIS Park 1022

(Polygon) Ntar 8952

Bea 10674

State 10827
systems obtained by creating synthetic query sets
on real data sets. The mapping-function-based
declustering schemes perform well for database
systems with uniform structure, but their perfor-
mance degrades for unstructured database systems
(e.g., the more the level of page sharing, the worse
the performance of CMD in grid files) [16]. Thus,
we use unstructured data and query sets and
compare the performance of the proposed algo-
rithm with only the WSG model, which can take
advantage of existing query information and can
handle non-uniform query and data-item sets.
A general implementation of the global WSG
scheme described in [16] was used in the experi-
ments. Both DD and WSG algorithms were
implemented in C language on a Linux platform.
All experiments were performed on a PC equipped
with a 2 GHz Intel Pentium-IV processor and
500 MB RAM.
Table 3 shows the properties of the nine data-

base systems used in the experiments. The nine
data sets used for constructing the database sys-
tems can be classified into four groups. The Face

data set is a collection of gray-scale face images
containing 144 images from the MIT image data-
base, 300 images from PEIPA and 400 images
from the ORL image database [32–34]. These 844
images are used to construct an image retrieval
system using the algorithm described in [24]. In
this algorithm, the significant pixels of the images
Avg. Avg. vertex

query degree

jQj size in WSG

1024 23.1 301.7

1000 43.3 367.2

5000 10.0 69.8

2500 22.8 86.1

6000 17.9 60.1

2000 20.1 51.3

5000 29.2 103.5

10000 26.8 124.4

5000 33.5 114.3
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are extracted by multi-resolution wavelet analysis
and a number of significant pixels are kept as
signature for each image. Thus, each pixel location
defines a relation among the images (data items)
that contain the pixel in their signature files. As a
query is a signature (i.e., a set of pixel locations),
the set of all possible pixel locations in the images
naturally constitutes the query set.
The second group of data sets consists of multi-

feature point data used for function-approxima-
tion experiments [35]. The HH and FR data sets
contain 22 784 and 40 768 points in 16 and 10
dimensions, respectively. These data sets are
indexed into a grid directory with cell size
restricted to 16 points as described in [36]. The
resulting grid directory contains 1638 data pages
(data items) for HH and 3338 data pages for FR. A
set of synthetic rectangular and diagonal queries is
generated assuming Gaussian distribution for both
query sides and centers for each data set.
Other data sets consist of GIS data collected

from the National Transportation Atlas Data-
bases [37]. The Airport and Place90 data sets
contain two-dimensional point data. Airport con-
tains the public use airports and landing facilities
in the US. Place90 contains place locations from
the 1990 Census Master Area reference file.
Airport, containing 6735 points, is indexed into a
grid file of 1176 pages with cell capacity of 8
points. Similarly, Place90, containing 23651
points, is indexed into a grid file of 3382 pages.
The Park, Ntar, State and Bea data sets contain
two-dimensional polygon data. The bounding box
of every polygon is considered as a data item for
these data sets. Park contains the national parks,
Ntar contains the national transportation analysis
regions, Bea contains the economic areas, and
State contains the US boundaries with integrated
shorelines. A set of synthetic rectangular and
diagonal queries are generated for the GIS data
sets as for the function-approximation data sets.
As there is significant locality of data items in

spatial database systems, the similarities among
queries are more regular, i.e., if a pair of queries
share some data item, they are likely to share some
other neighboring data items. However, as the
number of dimensions for multi-dimensional data
sets increase, the amount of such locality de-
creases. For the image data set, the locality is
restricted to pixels, so the variation among queries
is high for this database system. Thus, these
database systems constitute hard declustering
instances that cannot be solved effectively by
mapping-function-based strategies since these stra-
tegies take advantage of locality.
In Table 3, the cardinalities of data-item and

query sets are listed for each database system.
Information on average query sizes is also
provided to be able to observe the effects of query
size on the performances of the algorithms. The
average vertex degree in the corresponding WSG
of each database system is also displayed. As seen
in the table, for data sets with less locality such as
Face and HH, the average vertex degree is higher
since the queries are highly irregular. For all
database systems, all queries are assumed to have
equal relative frequencies, that is f ðqÞ ¼ 1=jQj for
each qAjQj:
All nine database systems listed in Table 3

were used in the experiments for homogeneous
data-item sizes. In these experiments, unit storage
size and retrieval time are assumed for all data
items. Only the four database systems containing
GIS polygon data sets Park, Ntar, Bea, and State

were used in the experiments for heterogeneous
data-item sizes. In these experiments, item sizes are
taken to be equal to the number of edges in the
respective polygons. The retrieval times are taken
to be proportional to the item sizes. Disks are
assumed to be identical so balanced partitioning of
data items into disks is aimed in all experiments.
We have tested K ¼ 4; 8, 16, 32 way declustering

of every database system. For a specific K value,
K-way declustering of a database system constitu-
tes a declustering instance. During recursive
bipartitioning phase of both WSG and DD
algorithms, initial bipartitions are constructed
randomly. So, both algorithms are executed 10
times with different random seeds for each
declustering instance. The average performance
results are displayed in Tables 4–6. The bottom
parts of these tables display the geometric means
of every performance figure over all database
systems for each K :
Two performance metrics, namely aggregate

parallel response time RðQÞ and aggregate parallel
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Table 4

Performance comparison for database systems with homogeneous data-item sizes

Aggregate parallel Aggregate parallel % storage

response time response overhead imbalance

Data set K Ideal WSG DD WSG DD WSG DD

Face 4 6.15 6.83 6.81 0.68 0.66 0.4 0.2

8 3.32 4.15 4.05 0.83 0.73 1.4 1.2

16 1.92 2.78 2.60 0.86 0.68 3.7 4.4

32 1.26 2.03 1.79 0.77 0.53 5.8 3.8

HH 4 11.20 11.99 11.99 0.80 0.79 2.6 0.7

8 5.84 6.82 6.71 0.98 0.87 5.3 0.5

16 3.18 4.24 3.99 1.05 0.81 6.9 1.0

32 1.86 2.86 2.60 1.00 0.74 7.8 2.0

FR 4 2.88 3.32 3.27 0.44 0.39 4.2 0.1

8 1.72 2.20 2.10 0.48 0.38 8.1 0.2

16 1.18 1.60 1.48 0.42 0.30 7.4 0.5

32 1.02 1.26 1.17 0.24 0.15 7.5 1.9

Airport 4 6.09 6.48 6.47 0.39 0.38 1.4 1.3

8 3.30 3.74 3.72 0.44 0.42 3.5 1.6

16 1.93 2.37 2.28 0.44 0.36 4.9 3.3

32 1.28 1.65 1.52 0.38 0.24 6.4 5.8

Place90 4 4.85 5.20 5.18 0.34 0.33 1.2 0.2

8 2.70 3.07 3.01 0.36 0.30 2.5 0.3

16 1.65 1.97 1.88 0.32 0.23 5.2 0.5

32 1.16 1.39 1.30 0.23 0.14 6.4 1.0

Park 4 5.38 5.53 5.54 0.14 0.16 1.4 1.3

8 2.90 3.09 3.09 0.19 0.19 2.4 3.0

16 1.73 1.89 1.85 0.16 0.11 5.8 4.9

32 1.25 1.35 1.30 0.10 0.05 6.1 7.1

Ntar 4 7.68 7.95 7.92 0.27 0.24 0.5 0.2

8 4.04 4.36 4.31 0.32 0.27 1.4 0.2

16 2.30 2.52 2.45 0.22 0.15 2.8 0.4

32 1.52 1.64 1.59 0.12 0.07 5.2 0.8

Bea 4 7.07 7.40 7.38 0.33 0.32 0.5 0.2

8 3.74 4.13 4.10 0.39 0.36 1.2 0.3

16 2.14 2.43 2.37 0.29 0.23 2.3 0.3

32 1.45 1.61 1.55 0.16 0.10 4.2 0.5

State 4 8.75 9.08 9.03 0.33 0.28 0.8 0.1

8 4.58 4.97 4.89 0.39 0.31 1.9 0.2

16 2.56 2.86 2.77 0.30 0.20 3.2 0.4

32 1.62 1.83 1.74 0.21 0.12 5.2 0.3

Geometric means over all database systems

4 6.27 6.70 6.67 0.37 0.35 1.1 0.3

8 3.39 3.88 3.81 0.44 0.38 2.5 0.5

16 1.99 2.43 2.32 0.38 0.28 4.4 1.0

32 1.36 1.68 1.58 0.27 0.16 6.0 1.6
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Table 5

Performance comparison for database systems with heterogeneous data-item sizes

Aggregate parallel Aggregate parallel % storage

response time response overhead imbalance

Data set K Ideal WSG DD WSG DD WSG DD

4 358.5 416.6 400.3 58.0 41.8 4.6 3.5

Park 8 300.8 329.3 317.2 28.5 16.4 7.6 7.3

16 295.0 303.2 295.9 8.1 0.8 12.3 9.6

32 295.0 296.6 295.1 1.5 0.0 11.1 10.9

4 869.4 1000.4 988.0 131.1 118.7 2.5 1.9

Ntar 8 563.8 675.5 661.1 111.7 97.2 5.0 5.4

16 473.7 513.8 502.7 40.1 29.0 8.7 8.7

32 461.9 468.4 465.4 6.5 3.5 9.7 9.9

4 942.5 1092.5 1089.2 150.0 146.7 1.9 1.9

Bea 8 589.7 727.3 715.5 137.6 125.8 4.0 3.4

16 477.8 539.5 528.9 61.7 51.1 7.8 7.0

32 459.7 471.8 468.0 12.1 8.4 9.6 9.6

4 755.0 866.9 852.9 111.9 97.9 2.9 1.0

State 8 520.1 602.4 586.9 82.3 66.8 5.6 3.6

16 461.4 484.5 475.9 23.1 14.5 9.1 8.7

32 457.0 459.7 457.2 2.7 0.2 9.7 9.9

Geometric means over all database systems

4 686.3 792.6 778.6 106.3 91.8 2.8 1.9

8 477.6 558.7 544.7 77.5 60.5 5.4 4.7

16 419.0 449.2 439.9 26.1 11.5 9.3 8.4

32 411.3 416.6 414.0 4.2 0.6 10.0 10.1
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response overhead ROðQÞ defined in Section 2, are
used to measure the qualities of the obtained
declusterings. In Tables 4 and 5, the ideal response
time refers to the aggregate parallel response time
of a strictly optimal declustering if it exists. So, it is
effectively a lower bound for the optimal response
time. Note that ideal response overhead for a
declustering is zero by definition. As all queries
have equal relative frequencies, aggregate parallel
response overhead of a declustering becomes

ROðQÞ ¼

P
qAQðrðqÞ 
 roptðqÞÞ

jQj
: ð9Þ

So, this value effectively refers to the average
deviation from optimal parallel response time per
query. Thus, especially for the case of homoge-
neous data-item sizes, aggregate parallel response
overhead provides a general measure to compare
the performances of the algorithms for different
database systems independent of their sizes. For
example, as shown in Table 4, the response
overhead values for database systems involving
data sets Face and HH, which were declared to be
difficult to parallelize, are substantially higher than
those for other database systems.
In the experiments for homogeneous data-item

sizes, the objective of declustering fits the balanced
partitioning objective as both retrieval times and
storage sizes for all data items are assumed to be
equal. So we preferred to ignore the feasibility
constraint mentioned in Definition 2 during the
course of both WSG and DD algorithms in these
experiments. Substantially small percent storage
imbalance values were obtained as displayed in the
last two columns of Table 4. The percent storage
imbalance value of a given declustering is
computed as 100 ðWmax 
 WavgÞ=Wavg; where
Wmax denotes the load of the most heavily
loaded disk and Wavg denotes the load of each
disk under perfect load balance condition. Note
that for homogeneous data-item sizes, Wmax ¼
max1pkpK jDkj and Wavg ¼ JjDj=Kn:
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Table 6

Average execution times of WSG and DD algorithms in seconds

Homogeneous Heterogeneous

Data set K WSG DD WSG DD

Construction Partitioning Total Partitioning Total

4 0.12 0.29 0.41 0.16

Face 8 0.35 0.47 0.22

16 0.47 0.59 0.26

32 0.59 0.71 0.44

4 0.34 1.06 1.40 0.20

HH 8 1.00 1.34 0.33

16 1.09 1.43 0.53

32 1.29 1.63 0.79

4 0.29 0.53 0.82 0.44

FR 8 0.41 0.70 0.68

16 0.53 0.82 1.09

32 0.65 0.94 1.31

4 0.16 0.18 0.34 0.12

Airport 8 0.24 0.40 0.18

16 0.24 0.40 0.41

32 0.24 0.40 0.84

4 0.39 0.53 0.92 0.46

Place90 8 0.53 0.92 1.05

16 0.47 0.86 2.25

32 0.71 1.10 2.81

4 0.10 0.12 0.22 0.08 0.06 0.16 0.41

Park 8 0.12 0.22 0.11 0.06 0.16 0.72

16 0.12 0.22 0.16 0.06 0.16 1.14

32 0.12 0.22 0.19 0.12 0.16 1.96

4 1.78 1.35 3.13 0.78 2.35 4.13 3.48

Ntar 8 1.65 3.43 1.03 2.47 4.25 5.43

16 2.12 3.90 1.44 2.65 4.43 8.37

32 2.76 5.54 1.59 3.59 5.37 13.74

4 3.15 2.82 5.97 1.70 3.24 6.39 6.25

Bea 8 3.35 6.50 2.42 3.12 6.27 9.84

16 3.88 7.03 3.91 3.29 6.44 15.75

32 4.71 7.86 5.92 4.43 7.58 24.97

4 2.82 1.65 4.47 1.06 2.71 5.53 3.95

State 8 2.00 4.82 1.43 2.86 5.68 5.60

16 2.53 5.35 2.08 3.00 5.82 8.62

32 3.35 6.17 3.46 4.00 6.82 12.89

Geometric means over all database systems

4 0.47 0.61 1.12 0.35 1.05 2.20 2.44

8 0.66 1.16 0.54 1.07 2.21 3.83

16 0.77 1.25 0.86 1.12 2.36 6.00

32 0.91 1.45 1.23 1.66 2.58 9.65
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As seen in Table 4, the proposed DD algorithm
performs better than the WSG algorithm for
all declustering instances except 4-way declustering
of Park. The performance gap increases with
increasing K in favor of our DD algorithm for
all database systems. In terms of the mean parallel
response overhead values given at the bottom of
the table, the DD algorithm produces 5%, 15%,
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35%, and 63% better declusterings than the WSG
algorithm for K ¼ 4; 8, 16, and 32, respectively.
This experimental finding can be attributed to the
success of our K-way refinement scheme in
comparison with the pairwise optimization scheme
of the WSG algorithm. As seen in Table 4,
although the percent improvement of DD over
WSG is substantially large in terms of parallel
response overhead, this improvement is smaller in
terms of parallel response time. However, the
percent improvement in terms of parallel response
time is higher for hard declustering instances
involving data sets Face and HH as compared
with other declustering instances.
In the experiments for heterogeneous data-item

sizes, percent storage imbalance ratio of 10% is
enforced in both WSG and DD algorithms. As
seen in the last two columns of Table 5, storage
imbalance in all declustering instances is below this
threshold except in 16- and 32-way declusterings of
Park. This is due to high variation on data-item
sizes and small number of data items in the Park

data set. As seen in Table 5, storage imbalance
values are comparable in the declusterings pro-
duced by WSG and DD algorithms. As also seen
in the table, the proposed DD algorithm produces
better declusterings than the WSG algorithm in all
16 declustering instances. As in the case of
homogeneous data-item sizes, the performance
gap increases with increasing K in favor of our
DD algorithm for all database systems.
Table 6 shows the comparison of execution

times of WSG and DD on database systems used
in the experiments. The execution time of WSG is
decomposed into construction time and partition-
ing time. In terms of partitioning times in the
homogeneous case, while DD is faster than WSG
for small number of disks, it becomes slower with
increasing number of disks as expected from the
running-time analysis given in Section 4.3. How-
ever, as seen in the table, the WSG construction
time is significant so that the proposed DD
algorithm is faster than WSG in total declustering
time in 29 out of 36 declustering instances.
Moreover, DD remains to be faster than WSG
for all K on average. The instances for which WSG
runs faster correspond to the declustering of
database systems with high level of locality (e.g.,
Airport, Place90 and FR) across large number of
disks. On the other hand, DD runs much faster on
database systems with lower level of locality (e.g.,
Face and HH). Fortunately, this is consistent with
the performance gap between the two algorithms,
i.e., there is no tradeoff between declustering time
and quality. Consequently, we can conclude that
optimization-based declustering techniques pro-
vide a powerful alternative to mapping-function-
based techniques. Although mapping-function-
based strategies fit well to structured database
systems, the WSG model can be the best choice for
unstructured data sets with high locality. On the
other hand, DD is a good alternative for database
systems with lower level of locality (e.g., high-
dimensional data sets or image databases). More-
over, WSG and DD can be effectively used
together for initial partitioning and K-way refine-
ment, respectively.
In the case of heterogeneous systems, the

execution time of WSG is not affected since the
underlying algorithm remains the same. On the
other hand, DD is slower on heterogeneous data
compared with homogeneous. This is due to the
lgK factor that remains in the running time of
recursive bipartitioning phase in the heterogeneous
case as discussed in Section 4.3. However, this
result actually poses a tradeoff between decluster-
ing quality and time when we consider the
significance of the performance gap between
WSG and DD in heterogeneous database systems.
6. Conclusion

In the literature, vast amount of research is
devoted to finding appropriate mapping functions
to decluster structured data. There exist many
techniques that provide reasonable bounds on the
aggregate or maximum query-response time for
specific data structures. However, the problem can
arise in various applications for which the data
may not be structured. In such cases, a general tool
for declustering is necessary. The only model in
literature that provides such generality is the WSG
model, which exploits available information on
query and data distribution and data sizes with no
restriction on the structure of the data or query
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sets. Our study contributes to this approach by
providing a direct model to solve the problem.
Although WSG is an elegant model that has
reasonable performance for a wide range of
instances, the performance of the algorithm
degrades as the degree of locality in the data set
decreases. Such degradation is caused by the fact
that the model cannot capture the individual
multi-item relations among data items as demon-
strated in this study. As a result, this study
provides a general framework for the declustering
problem, which is scalable in terms of the degree of
locality of the data.
The second phase of the proposed algorithm

introduces an original approach to the problem of
multi-way data partitioning. The leave-gain con-
cept provides a reasonable approximation to
multi-way move gains. This concept can be
extended for other partitioning problems with
different cost functions to get a faster way of
performing multi-way refinement on partitions.
An effective hybrid approach can be refining the
declustering generated by the WSG model using
the proposed multi-way refinement scheme. An-
other interesting question will be how to generalize
the proposed method for handling systems with
heterogeneous disks in terms of storage space or
I/O speed.
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