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Abstract—The scheduling of independent but file-sharing tasks on heterogeneous master-slave platforms has recently found

important applications in Grid environments. The scheduling heuristics recently proposed for this problem are all constructive in nature

and based on a common greedy criterion which depends on the momentary completion time values of the tasks. We show that this

greedy decision criterion has shortcomings in exploiting the file-sharing interaction among tasks since completion time values are

inadequate to extract the global view of this interaction. We propose a three-phase scheduling approach which involves initial task

assignment, refinement, and execution ordering phases. For the refinement phase, we model the target application as a hypergraph

and, with an elegant hypergraph-partitioning-like formulation, we propose using iterative-improvement-based heuristics for refining the

task assignments according to two novel objective functions. Unlike the turnaround time, which is the actual schedule cost, the

smoothness of proposed objective functions enables the use of iterative-improvement-based heuristics successfully since their

effectiveness and efficiency depend on the smoothness of the objective function. Experimental results on a wide range of synthetically

generated heterogeneous master-slave frameworks show that the proposed three-phase scheduling approach performs much better

than the greedy constructive approach.

Index Terms—Scheduling, file-sharing tasks, heterogeneous master-slave platform, grid computing, iterative improvement.
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1 INTRODUCTION

IN this work, we investigate the scheduling of independent
but file-sharing tasks on heterogeneous master-slave

environments. This framework has recently been studied
in [7], [8], [9], [15], [16] for adaptive scheduling of
parameter-sweep-like applications in Grid environments.
Such applications arise in the Application Level Scheduling
(AppLeS) project [7]. In this framework, input files, which
can be requested by multiple tasks, are initially stored in the
master processor and slave processors have different
network access bandwidths and computing powers. The
objective is to find a schedule that minimizes the turn-
around time of the target application on the given master-
slave platform.

In Grid systems, the environment variables such as the
execution times of tasks on heterogeneous processors and
the bandwidth values of the network dynamically change
due, respectively, to the loads of the processors and the
congestion in the network. Since creating a good schedule
depends on the quality of the information used, the system
state must be monitored by an information agent to enable
the generation of better schedules for the execution of the
target application. Such an agent can estimate the network
bandwidths and task-execution times by previous execu-
tions, machine benchmark values, or information provided

by users. These estimations can be useful to create an
adaptive scheduling tool. In our model, we assume that
task-execution times and network bandwidth values remain
constant during each schedule period, however, the
dynamic nature of the processors and network is assumed
to be modeled by using up-to-date values for these
environment variables obtained by an information agent
before each schedule generation period.

Task scheduling in such heterogeneous environments is
harder than scheduling in homogeneous ones and it is an
important problem for today’s computational Grid [14]
which contains highly heterogeneous environments. In a
heterogeneous environment, highly interacting tasks which
need the same files as inputs might have different favorite
processors so that it may not be feasible to assign them to
the same processor because of appropriate resource utiliza-
tion. Even if such tasks may have the same favorite
processor, that processor might have relatively low band-
width so that assigning these tasks to that processor can
increase the file transfer time, although this decision
decreases the file transfer amount.

Several heuristics were recently proposed for the target
framework. Casanova et al. [8], [9] extended three heur-
istics, namely, MinMin, MaxMin, and Sufferage, which were
initially proposed in [21] for scheduling independent tasks.
They used these extended heuristics in the AppLeS Parameter
Sweep Template (APST) project [7]. They also proposed a
new heuristic XSufferage exclusively for APST. After this
work, Giersch et al. [15], [16] proposed several different
heuristics which reduce the time complexity while preser-
ving the quality of schedules. All these scheduling heur-
istics are based on the greedy choices that depend on the
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momentary completion time values of tasks. We show that
this greedy decision criterion cannot use the file sharing
information effectively since completion time values are not
sufficient to extract the global view of the interaction among
the tasks.

Instead of the direct construction of schedules, we
propose a three-phase scheduling approach which involves
initial task assignment, refinement, and execution ordering
phases. For the refinement phase, we propose an elegant
hypergraph-partitioning-like formulation with two novel
smooth objective functions. The effectiveness and efficiency
of the iterative-improvement heuristics, which are widely
and successfully used for hypergraph partitioning, depend
on the smoothness of the objective functions they improve,
but the actual schedule cost does not have this property.
Fortunately, the smoothness of proposed objective functions
enables the use of these heuristics for refining the task
assignments successfully. The first assignment objective
function represents an upper bound, while the second one
represents a lower bound for the turnaround time of a
schedule. The former one corresponds to a pessimistic view,
while the latter one corresponds to an optimistic view for
the execution scheme. Experimental results on a wide range
of synthetically generated heterogeneous master-slave
frameworks show that the proposed three-phase scheduling
approach performs much better than the existing greedy
constructive heuristics.

The rest of the paper is organized as follows: The details
of the scheduling framework are presented in Section 2.
Section 3 discusses the structure and flaws of the existing
constructive heuristics. The background material on hyper-
graph partitioning problem and iterative-improvement
heuristics is given in Section 4. Section 5 presents and
discusses the models and methodologies used in the
proposed refinement phase. Our implementation scheme
and the complexity analysis for the proposed three-phase
approach are given in Section 6. Section 7 briefly mentions
the modifications needed for adapting the proposed
approach to the clustered master-slave framework. The
experimental evaluation of the proposed approach is
presented in Section 8. Section 9 concludes the paper.

2 FRAMEWORK

Here, we briefly summarize the target scheduling frame-
work that consists of a class of applications, a computing
platform, and a cost model.

2.1 Application Model

The target application is represented as a two tuple
A ¼ ðT ;FÞ. Here, T ¼ ft1; t2; . . . ; tng denotes the set of
n independent tasks, each of which needs a subset of the set
F ¼ ff1; f2; . . . ; fmg of m files as inputs. There is no data
dependency or interprocess communication between the
tasks. The only reason for an interaction among the tasks is
the existence of files that are inputs to several tasks. Files
can have different sizes; the size of a file fk is denoted as
wðfkÞ. The set of files used by a task ti is denoted as filesðtiÞ
and the total size of the files in filesðtiÞ is denoted as
wðfilesðtiÞÞ, i.e., wðfilesðtiÞÞ ¼

P
fk2filesðtiÞ wðfkÞ. Finally, jAj

denotes the total number of file requests in the application
A, i.e., jAj ¼

P
ti2T jfilesðtiÞj.

2.2 Heterogeneous Computing Model

The target computing platform is a heterogeneous system
based on the well-known master-slave paradigm [5]. In this
paradigm, there exists a master/server as a repository for
all files and a set P ¼ fp1; p2; . . . ; ppg of p slaves/processors.
Each processor can be any computing system from a single
processor workstation to a high-performance parallel
architecture. Fig. 1a represents the communication topology
of the network as a graph.

The single-port communication model is assumed for the
file transfers from the server to processors. In this model,
only one processor can download a file from the server and
only one file can be transferred by a processor at a time. The
network heterogeneity is modeled by assigning different
bandwidth values to the links between the server and
processors. In Fig. 1a, the b‘ value, associated with the edge
between the server and processor p‘, represents the
bandwidth from the server to processor p‘, for ‘ ¼ 1; . . . ; p.
Task executions and file transfers can overlap on a
processor. That is, a processor can execute a task while it
is downloading a file needed for another task that is
scheduled for execution on the same processor. Note that
Fig. 1a does not contain any communication links between
processors in order to point out that the framework does
not encapsulate the possibility of file exchange between
processors instead of downloading from the server.

A clustered master-slave platform is also considered as
the target computing environment. The clustered platform
differs from the above-mentioned basic one in the following
aspects: Each processor node of the basic master-slave
platform effectively becomes a cluster of processors, which
is served by a local file storage unit for that cluster. That is,
we have a set CL ¼ fcl1; cl2; . . . ; clcg of c clusters and a set
FS ¼ ffs1; fs2; . . . ; fscg of c local file storage units, where
fsi is the file storage unit of cluster cli. fsi is responsible for
storing the files that are transferred to cluster cli, until the
end of the schedule. Fig. 1b displays the main features of
this framework. The network heterogeneity is modeled by
assigning different bandwidth values to the links between
the server and the file storage units of the clusters. The
intracluster communication costs due to the local file
transfers from a file storage unit are not considered because
intracluster file transfers are assumed to be much faster
than the file transfers from the server.

For both master-slave platforms, the task and processor
heterogeneity are modeled by incorporating different
execution times for each task on different processors. We
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use ci‘ to denote the execution time of task ti on a processor
p‘. The estimated execution-time values of the tasks are
stored in an n� p expected time to compute the (ETC)
matrix. The ETC matrix can be consistent or inconsistent in
terms of the relation between execution times of different
tasks [3]. In a consistent ETC matrix, if a processor executes
a task ti faster than another processor, then it executes all
other tasks faster than that processor. If there is no such
relation between execution times, then the ETC matrix is
said to be inconsistent. We believe that an inconsistent ETC
matrix is a better model for the Grid system since Grid
contains very heterogeneous computing resources with
different task execution characteristics [1].

2.3 Cost Model

The cost of a schedule is the turnaround time, which is the
parallel execution time of the application on the computing
environment. The schedule can be considered as a timeline
which starts with the first file transfer from the server and
ends with the completion of the last task execution. So, the
objective of the target scheduling problem is to assign the
tasks of the target application to suitable processors and
order the inter and intraprocessor task executions in such a
way that the turnaround time is minimized.

For clarity, we give the important definitions and
assumptions only for the basic master-slave platform. These
concepts can be easily modified for the clustered master-
slave platform. The time spent for the transfer of file fk from
the server to processor p‘ is wðfkÞ=b‘. A task ti becomes
ready for execution on a processor p‘ after all its input files
are transferred by the processor from the server. The
transferred files are assumed to be stored by the processors
until the end of the schedule, so, for a pair of tasks ti and tj
assigned to the same processor p‘, a file needed by both ti
and tj is transferred to p‘ only once.

3 EXISTING CONSTRUCTIVE SCHEDULING

HEURISTICS

In this section, we first summarize the structure of existing
constructive scheduling heuristics and then discuss their
flaws.

3.1 Structure

Fig. 2 shows the structure of the heuristics used by
Casanova et al. [8], [9]. In Fig. 2, the completion time
CT ðti; p‘Þ of task ti on processor p‘ is computed by taking
the previously scheduled tasks into account. That is, the file
transfers for unscheduled tasks cannot be initialized before
the file transfers for scheduled tasks and the executions of

unscheduled tasks on a candidate processor cannot be
initialized before the completion of the scheduled tasks on
the same processor. The scheduling objective function f and
the meaning of the “best” characterize these heuristics as
shown in Table 1. As seen in Fig. 2, computing the
completion times for all task-processor pairs takes Oðpnþ
pjAjÞ time for each scheduling decision. As this decision is
made once for each task, the total time complexity of these
heuristics is Oðpn2 þ pnjAjÞ.

After Casanova et al. [8], [9], Giersch et al. [15], [16]
proposed several different heuristics. These heuristics have
better time complexity and their solution quality is
comparable with those of the previous heuristics. Fig. 3
shows the structure of these heuristics. Table 2 displays the
objective functions proposed by Giersch et al. [15], [16] for a
task-processor pair ðti; p‘Þ based on the computation time
Compðti; p‘Þ ¼ ci‘ and communication time Commðti; p‘Þ ¼
wðfilesðtiÞÞ=b‘ values of ti when it is executed on p‘. The
additional policies readiness, shared, and locality proposed by
Giersch et al. [15], [16] are also explained in Table 2. As seen
in Fig. 3, the heuristics construct a task list for each
processor, which is sorted with respect to various objective
values in Step 4. For an efficient implementation, we
compute the total file sizes for all tasks, i.e., wðfilesðtiÞÞ
values, in �ðjAjÞ time in a preprocessing step. In this way,
the objective value computations for all task-processor pairs
take �ðpnþ jAjÞ time, so the construction of all sorted lists
takes Oðpn lognþ jAjÞ time. The while loop for scheduling
tasks in Step 5 takes OðpnjAjÞ time. So, the overall time
complexity becomes Oðpn lognþ pnjAjÞ.

3.2 Flaws

The task-processor pair selection according to the momen-
tary completion time values is the greedy decision criterion
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Fig. 2. Structure of heuristics by Casanova et al. [8], [9].

TABLE 1
Definitions for the Heuristics Proposed by

Casanova et al. [8], [9]

Fig. 3. Structure of heuristics by Giersch et al. [15], [16].



commonly used in all existing constructive heuristics. This
criterion suffers from ineffective use of information about
file sharing among the tasks. This flaw is likely to increase
with the increasing amount of file sharing and can incur
extra file transfers in the resulting schedule. Since total file
transfer amount from the server is a bottleneck under the
single-port communication model, extra file transfers can
deteriorate the quality of the schedule, especially for
communication-intensive tasks. We say a task is commu-
nication-intensive if the file transfer time for the task
dominates its execution time.

Fig. 4 displays a sample communication-intensive
application with three tasks and two large files. As seen
in the figure, MinMin schedules t3 on p2 after scheduling t1
on p1, ignoring the fact that t2 needs both files. This greedy
choice incurs an extra transfer of file f1. However, there is
another schedule without this extra file transfer and with
much less turnaround time, as shown in Fig. 4.

Although extra file transfers constitute crucial bottle-
neck, they can also be necessary for efficient utilization of
computational resources, especially when tasks have
comparable computation and communication times. How-
ever, if initial scheduling decisions create a computational
imbalance, the following greedy decisions may aggravate
this problem. The processors that are computationally
overloaded due to the previous scheduling decisions are
likely to be more favorable for future task assignments
since, in addition to already being favorable, they have lots
of file transfers already scheduled.

Fig. 5 illustrates a sample application with three tasks
and two small files. As seen in the figure, MinMin schedules
t2 on p1 after scheduling t1 on p1 because of the cost of the
extra transfer of file f1 in case of scheduling t2 on p2.
However, MinMin ignores the fact that scheduling t3 on p1

does not require any extra file transfer. After faster
processor p1 is overloaded by these two scheduling
decisions, it becomes more favorable since both f1 and f2

are already transferred to p1. Finally, MinMin schedules t3
on the overloaded processor p1 because of the extra transfer
of file f1 required for the other choice of scheduling t3 on
the empty processor p2. However, there is a much better
schedule that utilizes both processors, as shown in Fig. 5.

4 HYPERGRAPH PARTITIONING AND

ITERATIVE-IMPROVEMENT HEURISTICS

In this section, we present the background material on
hypergraph partitioning and iterative-improvement heur-
istics which are exploited in our proposed scheduling
approach.

4.1 Hypergraph Partitioning Problem

A hypergraphH ¼ ðV; NÞ is defined as a set of verticesV and
a set of nets (hyperedges) N among these vertices [6]. Every
net nk inN is a subset of vertices, i.e., nk � V. The vertices in a
netnk are called its pins. The set of nets that contain vertex vi is
denoted as netsðviÞ. The total number of pins denotes the size
of the hypergraph. Weights can be associated with vertices
and nets. Graph is a special instance of hypergraph such that
each net has exactly two pins.

� ¼ fV1;V2; . . . ;VKg is a K-way vertex partition of H if
each part Vk is nonempty, parts are pairwise disjoint, and
the union of parts gives V. In �, a net is said to connect a
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TABLE 2
Definitions for the Heuristics Proposed by

Giersch et al. [15], [16]

Fig. 4. A flaw of the greedy constructive approach for communication-

intensive tasks.

Fig. 5. Another flaw of the greedy constructive approach.



part if it has at least one pin in that part. The connectivity
set �k of a net nk is the set of parts that nk connects and the
connectivity �k ¼ j�kj of nk is the number of parts it
connects. In �, the weight of a part is the sum of the weights
of the vertices in that part.

The K-way hypergraph partitioning problem is defined
as finding a K-way vertex partition that optimizes a given
objective function while preserving a given partitioning
constraint. The connectivity-1 metric is frequently used in
VLSI circuit partitioning [19] and scientific computing [4],
[10], [23]. The partitioning objective in this metric is the
minimization of CutSizeð�Þ, which is given as:

CutSizeð�Þ ¼
X
nk2N

wðnkÞð�k � 1Þ; ð1Þ

where wðnkÞ denotes the weight of net nk. The partitioning
constraint is to maintain a balance on the part weights, i.e.,

ðWmax �WavgÞ=Wavg � �; ð2Þ

where Wmax is the weight of the part with the maximum
weight, Wavg is the average part weight, and � is a
predetermined imbalance ratio.

4.2 Iterative-Improvement Heuristics

The refinement heuristics proposed in this work are based on
the iterative-improvement heuristics introduced by Kernigh-
an-Lin (KL) [18] and Fidducia-Mattheyses (FM) [13] for
graph/hypergraph partitioning. Both KL and FM are move-
based approaches with the neighborhood operator of swap-
ping a pair of vertices between parts or shifting a vertex from
one part to another, respectively. These heuristics have been
widely used for graph/hypergraph partitioning by the VLSI
[19] and scientific computing [4], [10], [11], [17], [23]
communities because of their effectiveness with good-quality
results and efficiency with short runtimes.

The FM algorithm, starting from an initial bipartition,
performs a number of passes until it finds a locally optimal
partition, where each pass contains a sequence of vertex
moves. The fundamental idea is the notion of gain, which is
the decrease in the cost of a bipartition by moving a vertex
to the other part. Several FM variants were proposed for the
generalization of the approach to K-way refinement [22].

5 PROPOSED REFINEMENT APPROACH

Both the effectiveness and efficiency of FM-based heuristics
depend on “the smoothness” of the objective function over
the neighborhood structure [2], i.e., the neighborhood
operator should be small and local. However, a direct
generalization of FM-based heuristics to the task scheduling
problem suffers from disturbing this smoothness criterion.
Removing a task from a processor and scheduling it among
previously scheduled tasks of another processor incurs a
global perturbation in the schedule because previously
scheduled tasks affect the initialization and completion
times of executions of the waiting tasks. Due to this global
effect of a task move, computing the gain, which is the
change in the turnaround time, is a time consuming work
and its time complexity is as high as computing the
turnaround time of a given schedule.

In order to alleviate the above problem, we consider the
task scheduling problem as involving two consecutive
processes: the task assignment process which determines
the task-to-processor assignment and the execution-order-
ing process which determines the order of inter and
intraprocessor task executions. This view enables the use
of FM-based heuristics effectively and efficiently in the task-
assignment process by proposing smooth assignment
objective functions that are closely related to the turnaround
time of a schedule. This refined task-to-processor assign-
ment can then be used to generate better schedules during
the execution-ordering process.

5.1 Hypergraph Partitioning Models for Task
Assignment in Heterogeneous Environments

We propose using a hypergraphHA ¼ ðT ;FÞ to represent the
interaction among tasks in the target applicationA ¼ ðT ;FÞ.
In this model, the vertices of the hypergraph represent the
tasks and the nets represent the files. The pins of a net
correspond to the tasks that use the respective file. Because of
this natural correspondence between a target application and
a hypergraph, we describe our algorithms using the problem-
specific notation of Section 2 instead of hypergraph-specific
notation, as much as possible, for clarity of presentation. For
example, we will use filesðtiÞ instead of netsðtiÞ. The size of a
file is the weight of the corresponding net. A p-way vertex
partition � ¼ fT 1; T 2; . . . ; T pg of HA can be decoded as
inducing a task-to-processor assignment for a target sche-
dule. That is, all tasks in a part T ‘ will be executed by
processor p‘ in the target schedule.

Successful hypergraph partitioning formulations have
recently been proposed for solving the task-to-processor
assignment problem arising in the parallelization of several
applications on homogeneous platforms [4], [10], [11], [23].
If the master-slave platform is homogeneous, i.e., proces-
sors are identical and server-to-processor bandwidth values
are equal, the partitioning objective given in (1) and the load
balancing constraint given in (2) can be used effectively and
efficiently for the refinement. However, the heterogeneity of
the environment brings difficulties to the formulation of the
task assignment problem. For this reason, we propose new
assignment objectives, which can be generalized as parti-
tioning objectives of the hypergraph partitioning problem
for heterogeneous environments.

In a given task-to-processor assignment �, each file will
be transferred at least once since it is used by at least one
task. Consider a cut net nk with connectivity �k in �. It is
clear that �k � 1 denotes the number of additional transfers
of file fk incurred by �. Hence, wðfkÞð�k � 1Þ represents the
additional transfer volume, whereas wðfkÞ�k denotes the
total transfer volume for file fk. That is, the connectivity
metric is the correct metric, rather than the connectivity-1
metric, for encoding the total file transfer volume in a given
task-to-processor assignment, as shown below:

CommV olð�Þ ¼
X
fk2F

wðfkÞ�k: ð3Þ

Note that minimizing CommV olð�Þ is equal to minimizing
CutSizeð�Þ since CommV olð�Þ ¼ CutSizeð�Þþ

P
fk2F wðfkÞ

and the second term is only a constant factor.
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If the network is homogeneous, (3) can also be used to
represent the total transfer time by normalizing file sizes

with respect to the bandwidth values. That is, minimization
of total file transfer volume and total file transfer time is

equivalent in the homogeneous case. To encapsulate the
network heterogeneity of the target master-slave platform,

we need to modify the conventional definition of the
connectivity �k of a net nk in which different parts

connected by nk make equal contribution to �k. Since we
want total file transfer time as the real communication cost

and bandwidth values of the links are different, we define a
heterogeneous connectivity �0k of a file fk as:

�0k ¼
X
p‘2�k

1

b‘
; ð4Þ

where �k denotes the set of processors that have at least one
task needing fk as input.

Then, total communication time, i.e., total file transfer
time, can be defined as:

CommTimeð�Þ ¼
X
fk2F

wðfkÞ�0k: ð5Þ

The computational cost of a task-to-processor assign-
ment � to the environment is the load of the maximally
loaded processor since computations are done in parallel.
That is,

CompTimeð�Þ ¼ max
‘

X
ti2T ‘

ci‘

 !
: ð6Þ

The processor heterogeneity creates difficulties in modeling
the computational cost of a task-to-processor assignment �.
In homogeneous environments, the average part weight
(Wavg in (2)) can be considered as a lower bound for
CompTimeð�Þ if a vertex weight represents a computa-
tional cost to its part. Similarly, Wmax can be considered as
CompTimeð�Þ, which is the exact parallel computational
cost of the partition. So, in homogeneous environments, the
load balancing constraint given in (2) can be used for
minimizing CompTimeð�Þ. However, in heterogeneous
environments, since the same task incurs different compu-
tational costs to different processors, a lower bound for
parallel computational cost of � cannot be treated as a
balancing constraint as in the hypergraph partitioning
formulation for homogeneous environments. So, we should
rather include CompTimeð�Þ explicitly in the assignment
objective function as well as CommTimeð�Þ.

Here, we propose two novel assignment objective
functions. The first one represents an upper bound for the
turnaround time of a schedule with a pessimistic view that
assumes no overlap between communication and computa-
tion. We call it a pessimistic view since it excludes the
possibility of communication-computation overlap between
different processors as well as on the same processor. For
example, a schedule in which all task executions commence
only after the completion of all file transfers from the server
constitutes a typical schedule for this pessimistic view.
Under this pessimistic view, the turnaround times of all
possible schedules that can be derived from a given task-to-
processor assignment � are bounded above by

UBTimeð�Þ ¼ CommTimeð�Þ þ CompTimeð�Þ: ð7Þ

Note that this upper bound is independent of the order of
task executions for a given task-to-processor assignment �.

The second assignment objective function represents a
lower bound for the turnaround time of a schedule. As
mentioned in Section 2, a processor can execute a task while
it or another processor is transferring a file from the server,
so computation and communication can overlap. Even with
an optimistic view that assumes complete overlap between
communication and computation, the turnaround times of
all possible schedules that can be derived from a given task-
to-processor assignment � are bounded below by

LBTimeð�Þ ¼ maxfCommTimeð�Þ; CompTimeð�Þg: ð8Þ

Note that this lower bound is also independent of the order of
task executions for a given task-to-processor assignment �.
This bound is unreachable because of the nonoverlapping
cases at the very beginning and end of a schedule. A schedule
must begin with a file transfer and the respective task
execution cannot be initialized until the completion of this file
transfer. A schedule must also end with a task execution on its
bottleneck processor. All file transfers from the server to all
processors should be completed before the completion of the
execution of this task. The length of these nonoverlapping
intervals is negligible compared to the turnaround time of a
schedule due to the large number of tasks.

These two assignment objectives are closely related to the
turnaround time of a schedule and their minimization can
generate good task-to-processor assignments which can be
used to obtain schedules with better turnaround times.
Instead of one objective, as in hypergraph partitioning
problem, we have two assignment objectives and there are
various options to improve them. The details of our
approach are given in the following section.

5.2 Structure of the Refinement Heuristics

It is clear that the effectiveness of the refinement phase
depends on considering both objective functions simulta-
neously. Since the objective functions represent upper and
lower bounds for the turnaround time, the overall objective
should be closing the gap between these two objective
functions while minimizing both of them. For this purpose,
we propose using an alternating refinement scheme in
which refinement according to one objective function
follows refinement according to the other one in a repeated
pattern. The refinement of a task-to-processor assignment �

according to UBTimeð�Þ or LBTimeð�Þ is referred to here
as the UB-Refinement or LB-Refinement stage, respectively.

In the alternating scheme, using FM-based heuristics
separately and independently for the minimization of the
respective objective function is only a partial remedy for
satisfying the overall objective. While choosing the best
move according to one objective function, the effect of the
move according to the other one should also be considered
indirectly since the minimization of one objective function
may degrade the value of the other one. For this purpose,
we propose modifying the move selection policy of the FM-
based approach accordingly in the LB-Refinement stage
and/or in the UB-Refinement stage.
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In the general FM-based approach, the best move

associated with a task corresponds to reassigning the task
to another processor that incurs maximum decrease in the
respective objective function. In the proposed modification,
a two-level gain scheme is applied to determine the best
move associated with a task through considering the
respective objective function as the primary one while
considering the other objective function as the secondary
one. For the first level, a good move concept is introduced
which selects the moves that decrease the primary objective
function. In the second level, the best move associated with
that vertex is selected among these good moves that incurs
the minimum increase to the secondary objective function.

In this work, we recommend applying the proposed two-
level gain computation scheme either to both refinement
stages or only to the LB-Refinement stage. The reasons for
the latter choice are as follows: First, the variations in the
task-move gains are expected to be larger in UBTimeð�Þ
compared to LBTimeð�Þ. Second, UBTimeð�Þ is a relatively
loose bound compared to LBTimeð�Þ. So, providing more
freedom in the minimization of the loose upper bound
while incorporating the constraint to the minimization of
the relatively tight lower bound is expected to be more
effective for reducing the gap between these two bounds.
Based on these two reasons, we also recommend starting
the alternating refinement sequence with the UB-Refine-
ment stage. Our experimental results given in Section 8
verify our expectations.

Here, we describe the implementation scheme which
adopts the two-level gain computation scheme in only the
LB-Refinement stage for the sake of presenting the use of
both the conventional and proposed gain computation
schemes. Both the UB and LB-Refinement stages contain
multiple FM-like passes. In each pass, all tasks are visited in
random order. The best move associated with each visited
task is computed according to the adopted gain computa-
tion scheme and this move is realized if it incurs a positive
gain according to the respective objective function. Note
that each task is visited exactly once in a pass and these
passes are repeated until a stopping criterion is met. Fig. 6
shows the general structures of the UB and LB-Refinement
stages, respectively. In this figure, MapðtiÞ denotes the
processor to which task ti is currently assigned.

For the sake of runtime efficiency of move gain
computations, a task move is considered as a two-step
process: A task leaves the source processor to which it is
assigned and arrives at the destination processor as a
reassignment. So, the move gain can be considered as the
leave gain minus arrival loss. The leave gain of a task ti may
include two subgains. The first subgain can be obtained in
case of a decrease in CompTimeð�Þ due to a leave from a
processor with maximum computational load. The second
subgain can be obtained in case of a decrease in
CommTimeð�Þ due to the existence of some files that are
needed by ti and critical to the source processor. We say a
file is critical to a processor if it is an input to a single task
assigned to that processor. This critical file concept
corresponds to the critical net concept used in hypergraph
partitioning.

After computing the leave gain of task ti, an arrival loss

value is computed for each destination processor p‘. This

value represents the increase in the objective function when

ti is assigned to p‘. Such a loss can occur due to the increase

in CommTimeð�Þ and/or CompTimeð�Þ. Clearly, if the

leave gain of ti is negative, it is impossible to obtain a

positive gain in total since an arrival cannot increase the

total move gain. In Fig. 6, ‘b denotes the index of the best

processor selected for the move of the visited task.
The main data structures needed for the implementations

are as follows: � is a 2D file-to-processor counter array, where
�ðfk; p‘Þ denotes the number of tasks that need file fk and are
assigned to processor p‘. Note that, if �ðfk; p‘Þ ¼ 1, then fk is
critical to p‘. Load is a 1D array used to maintain the
computational loads of processors in terms of time units.Map
is a 1D array used to represent task-to-processor assignment.
A linked-list �k is used for each file fk to maintain the set of
processors that need fk. ‘1 and ‘2 are used to maintain the
indices of the processors with the maximum and second
maximum computational loads, respectively. Fig. 7 displays
the pseudocode for the global update operations common to
both UB and LB-Refinement stages.

Fig. 8 displays the algorithms used for leave gain and
arrival loss computations in the UB-Refinement stage.
Recall that the conventional gain computation scheme is
adopted in this stage. As seen in Fig. 8, both gains due to a
decrease in total file transfer time and maximum computa-
tional load are added to the leave gain of task ti because
they are both included in the objective function. While
computing the gain due to the decrease in CompTimeð�Þ,
the maximum computational load in case of removal of ti
from processor MapðtiÞ is calculated and saved in a variable
called leaveMaxLoad. This information will be used for
computing arrival losses for ti.
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Fig. 6. Structure of the UB and LB-refinement stages.



Fig. 9 displays the algorithms used for leave gain and

arrival loss computations in LB-Refinement stage. Recall

that the proposed two-level gain computation scheme is

adopted in this stage. If CommTimeð�Þ > CompTimeð�Þ,
then LB-Refinement tries to minimize the total file

transfer time, otherwise it tries to minimize the maximum

computational load. In this stage, the good moves are the

ones with a positive gain for the primary objective

function LBTimeð�Þ and the best move is the one that

gives minimum degradation to the secondary objective

function UBTime ð�Þ.

6 IMPLEMENTATION CHOICES

The proposed scheduling heuristic involves three phases:
initial task assignment, refinement, and execution ordering. In
this section, we briefly describe each phase and give a
complexity analysis for the overall approach.

6.1 Initial Task Assignment Phase

In this phase, initial task-to-processor assignments are
derived from the schedules created by some of the existing
constructive scheduling heuristics. We prefer this approach
to a direct task-to-processor assignment heuristic because
the proposed refinement heuristics are developed by taking
the flaws of existing constructive scheduling heuristics into
account. For this purpose, we use the heuristics proposed
by Giersch et al. [15], [16] because of their short runtimes.
The additional policies are not used, but all five of the
heuristics, each having a different objective function, are
used since their relative performances vary with the
computation-to-communication ratio characteristics of ap-
plications. Each one of the five initial task-to-processor
assignments obtained in this way is fed to the next two
phases to obtain five schedules. At last, the best schedule in
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Fig. 7. Global update operations for the UB and LB-refinement stages.

Fig. 8. UB-refinement heuristics: leave gain computation for task ti;

arrival loss computations and best processor selection for task ti.

Fig. 9. LB-refinement heuristics: leave gain computation for task ti;

arrival loss computations and best processor selection for task ti.



terms of the turnaround time is taken as the schedule for the
target application.

6.2 Refinement Phase

Experiments show that the main improvement in the
turnaround time of a schedule can be obtained within only
a few passes, whereas the following passes incur negligible
improvement. Because of this reason, we allow at most five
passes in the UB and LB-Refinement stages. Likewise, the
main improvement in the turnaround time of a schedule
can be obtained within the first two alternating sequences of
UB and LB-Refinement stages, whereas the following
alternating sequences incur negligible improvement. For
this reason, we allow at most three alternating sequences of
UB and LB-Refinement stages.

6.3 Execution Ordering Phase

Each task-to-processor assignment � obtained in the second
phase is preserved while determining the inter and
intraprocessor ordering of the task executions in this phase.
Note that CommTimeð�Þ, CompTimeð�Þ and, hence, the
improved values of both objective functions remain the
same as determined in the second phase. Fig. 10 shows the
structure of the execution ordering heuristic used in this
phase. As seen in the figure, the structure of the execution
ordering heuristic is similar to the scheduling heuristics
proposed by Giersch et al. [15], [16]. However, the proposed
execution ordering heuristic is asymptotically faster since
the same task-to-processor assignment � is used during the
course of the heuristic. For each �, the execution ordering
heuristic in Fig. 10 is run five times by using each one of the
five objective functions proposed by Giersch et al. [15], [16]
and the best schedule is selected for this �.

6.4 Overall Complexity Analysis

As the heuristics proposed by Giersch et al. [15] are used in the
initial task assignment phase, the time complexity of the first
phase is Oðpn lognþ pnjAjÞ. In the refinement phase, each
task is visited exactly once in each pass of the UB and LB-
Refinement stages. Each vertex visit involves a leave gain and
p arrival loss computations. The leave gain computations in
each pass take �ðjAjÞ time since each file request of all tasks
must be checked for being a critical file request or not. The
arrival loss computations in each pass take OðpjAjÞ time
because of the doubly-nested for loop at Steps 4-6 of best
move selection heuristics in Fig. 8 and Fig. 9. The update
operations within a pass takeOðpjAjÞ time because of theOðpÞ
cost of removing processor ids from the connectivity sets (i.e.,

� linked lists) of files. As constant number of passes are
involved in the refinement phase, the overall complexity of
the second phase is OðpjAjÞ.

In the execution ordering phase, computing all objective
values takes �ðnþ jAjÞ time, constructing sorted processor
lists takes Oðn lognÞ time, and finally ordering task
executions takes Oðpnþ jAjÞ time. So, the overall time
complexity of the third phase is Oðn lognþ jAj þ pnÞ.

The time complexity of the initial task assignment phase
dominates the overall complexity, so the proposed three-
phase scheduling approach takes Oðpn lognþ pnjAjÞ time.

7 MODIFICATIONS FOR THE CLUSTERED

FRAMEWORK

In this section, we briefly explain the modifications needed
for adapting both the existing and the proposed scheduling
heuristics to the clustered master-slave framework.

7.1 Existing Constructive Scheduling Heuristics

In addition to the heuristics given in Table 1, Casanova et al.
[8] also proposed a new heuristic called XSufferage for the
clustered master-slave platforms. Unlike the other three
scheduling heuristics, XSufferage computes cluster-based
minimum completion times for each task ti from CT ðti; p‘Þ
values. The scheduling objective function f is the difference
between the second minimum and the minimum of these
minimum completion times and “best” is defined as
maximum.

The communication related calculations for a task, such
as objective values and file transfer completion times, need
not be performed for all processors because these values are
the same for all processors in a cluster. It is sufficient to
perform these calculations for each cluster and this reduces
the time complexity of the existing scheduling heuristics by
replacing the term pnjAj with cnjAj. Thus, the overall
complexities of the heuristics proposed by Casanova et al.
[8] and Giersch et al. [15] become Oðpn2 þ cnjAjÞ and
Oðpn lognþ cnjAjÞ, respectively.

For adapting the readiness policy [15] to the clustered
platform, a task is called ready for a cluster if all of the input
files of the task are available at that cluster. Similarly, for
adapting the locality policy, the assignment of a task to a
processor of a cluster is avoided if some of the input files of
that task were already transferred to another cluster.

7.2 Proposed Scheduling Heuristic

The existence of local file storage units changes the
hypergraph model slightly. Instead of processors, clusters
are defined as parts in the original hypergraph partitioning
problem so that the connectivity set �k of each file fk
contains clusters instead of processors. So, the definition of
the heterogeneous connectivity �0k of a net fk becomes
�0k ¼

P
cli2�k

1=bi, which can be used in (5) to compute the
total communication time.

There are also some modifications needed in the
definitions and global data used. We say a file is critical to
a cluster if it is an input to a single task assigned to a
processor in that cluster. As global data, we use �ðfk; cliÞ to
keep the number of tasks that use file fk and are assigned to
any processor in cluster cli.
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Fig. 10. Execution ordering phase.



The time complexity of the initial task assignment phase
becomes Oðpnlognþ cnjAjÞ. In the refinement phase, the
cost of leave gain computations remains the same, but the
time complexity of the arrival loss computations and
update operations become OðcjAjÞ. So, the time complexity
of the refinement phase reduces from OðpjAjÞ to OðcjAjÞ.
The complexity of the execution ordering phase remains the
same, so the total complexity of the proposed scheduling
heuristic is Oðpnlognþ cnjAjÞ for clustered master-slave
platform.

8 EXPERIMENTAL RESULTS

We tested the performance of the proposed scheduling
heuristic in comparison with the existing constructive
heuristics by running a large number of experiments on
synthetically generated heterogeneous master-slave plat-
forms. The proposed and existing heuristics were imple-
mented in C language on a Linux platform. All experiments
were performed on a PC equipped with a 2.4 GHz Intel
Pentium-IV processor and 2 Gbytes RAM. A total of
250 applications were created, each consisting of n ¼
2; 000 tasks and m ¼ 2; 000 files. Each task in an application
uses a random number of files between 1 and 10. The file
sizes are randomly selected to vary between 100 Mbytes
and 200 Gbytes.

The experiments vary with the computation-to-commu-
nication ratio r ¼ Compavg=Commavg of the target applica-
tion. Here, Compavg ¼ ð1=pÞ

Pn
i¼1

Pp
‘¼1 ci‘ and Commavg ¼

ð1=bavgÞ
Pn

i¼1 wðfilesðtiÞÞ. Note that bavg ¼ ð1=pÞ
Pp

‘¼1 b‘ and
bavg ¼ ð1=cÞ

Pc
‘¼1 b‘ denote the average server-to-processor or

server-to-cluster bandwidth in the basic and clustered
master-slave platforms, respectively. We experimented with
the heuristics of five different r values from 10 to 0:1 as
r ¼ 10; 5; 1; 0:2; 0:1. For each r value, 50 randomly created
applications were scheduled by all heuristics. For each
scheduling instance, the relative performance of every
heuristic was calculated by dividing the turnaround time of
the schedule it generates to that of the best schedule. Then, the
average of these relative performances for all 50 applications
was displayed in the following tables as the performance of
the respective heuristic for a specific r ratio.

8.1 Heterogeneous Master-Slave Platform Creation

We used the GridG topology generator [20] for creating a
heterogeneous master-slave platform with p ¼ 32 proces-
sors as follows: We created a Grid topology with 32 hosts
and nine routers. One of the routers was randomly selected
as the server. The resulting topology contains 82 commu-
nication links with bandwidth values varying between
20 Mbit/s and 1 Gbit/s. Each server-to-processor band-
width value is selected as the bandwidth value of the fastest
path from the server, where the slowest link along a path
determines the bandwidth value of that path. The clustered
master-slave platform is created in a similar way. It contains
a total of 48 processors in five clusters, where four clusters
contain eight processors each and the remaining cluster
contains 16 processors. The bandwidth value of a cluster is
computed as the average of the bandwidth values of the
processors it contains.

8.2 Task Execution Time Estimation

We used the Top500 supercomputer list, maintained by
Dongarra et al. [12], to estimate the task execution times as
follows: We randomly chose our processors from midrank
supercomputers, i.e., the ones ranked between the first and
second hundred, with sufficient mutual performance
variation. As the Top500 list depends on the LINPACK

benchmark, we assumed that the individual tasks are
instances of the same problem approximately incurring
ð2=3ÞN3 floating-point operations for an instance size N as
in [12]. The benchmark values Rmax, Nmax, and N1=2

provided in [12] for each supercomputer were exploited
to make realistic approximations for task execution times in
a heterogeneous Grid system. Here, Rmax denotes the
maximum processor performance in terms of FLOPS that
can be achieved for a task with an instance size � Nmax. N1=2

represents the instance size for which half of the Rmax is
achieved. Each task has a problem size selected from a
uniformly distributed interval. This interval was selected
judiciously to achieve a specific r value. So, the performance
variation of a task with instance size N can be represented
approximately with a piecewise linear function RðNÞ, as
shown in Fig. 11. The execution time of a task ti with
instance size N on a processor p‘ was estimated as
ci‘ ¼ ð2=3ÞN3=R‘ðNÞ.

8.3 Results

Table 3 shows the effects of the proposed two-level gain
computation scheme and the refinement order of the
alternating scheme on the overall scheduling performance.
As seen in the table, the two-level gain computation scheme
leads to better scheduling performance with the same
ordering in the alternating scheme. As expected, the UB-LB
ordering leads to better scheduling performance than the
LB-UB ordering in the alternating scheme. Comparison of
the third and seventh rows, as well as the fourth and eighth
rows, shows that adopting the two-level gain computation
scheme only in the LB-Refinement stage suffices to achieve
the same performance with that of adopting it in both
stages. Note that the third row corresponds to the proposed
scheme. The proposed iterative-improvement scheduling
heuristic will be referred to as IIS here and hereafter.

Table 4 summarizes the results of the experiments
conducted to validate the relation between the proposed
assignment objective functions and the actual schedule cost,
which is the turnaround time of a schedule. The values in
the table are derived by using scheduling heuristics
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Fig. 11. Piecewise linear approximation for task-execution time

estimation.



individually in the initial task assignment phase as follows:
For each heuristic used, the amount of decrease achieved in
both the UBTime and LBTime during the refinement phase
are normalized with respect to the amount of the resulting
decrease in the actual schedule cost. That is, these values
display the amount of improvements needed in UBTime
and LBTime, simultaneously to attain one time unit of
improvement in the actual schedule cost. Note that
performance results are also given for MinMin and
Sufferage, which are not adopted in IIS, in the last two rows
of the table. As seen in Table 4, close to one time-unit
(between 0.92 and 1.00) of improvements are needed in
LBTime, which is a rather tight bound, whereas a large
variation (between 0.16 and 1.95) can be seen for the
improvements needed in UBTime which is a loose bound.

Table 5 displays the results of the experiments conducted
to justify the use of cheap scheduling heuristics Commu-

nication, Computation, Advance, Duration, and Payoff in the
initial task assignment phase instead of the expensive but
more successful heuristics MinMin, Sufferage, and XSuffer-

age. In the table, the “No” column represents the relative
performances of the expensive heuristics and IIS without
refinement. In this case, IIS reduces to selecting the best
schedule out of the five schedules generated by the cheap
heuristics. The “Yes” column represents the relative

performances of these heuristics when they are used in
the initial task assignment phase of the proposed three-
phase scheduling approach. In the table, the refinement
ratio is the ratio of the improvement obtained by applying
the refinement and execution ordering phases to the initial
schedule generated by each heuristic. Note that IIS
corresponds to the actual proposed heuristic in this case.

As seen in Table 5, choosing the best result of the cheap
heuristics does not suffice to obtain a better performance
than a single run of the expensive MinMin and Sufferage
heuristics. However, as also seen in the table, much higher
improvement ratios are obtained in the refinement of the
cheap heuristics in IIS compared to those of the expensive
heuristics. As a result, IIS outperforms the refined version of
MinMin, Sufferage, and XSufferage as seen in the “Yes”col-
umns. These experimental findings confirm our rationale
behind using the cheap scheduling heuristics in the initial
task assignment phase.

Table 6 summarizes the results of the experiments
conducted to compare the performance of the proposed
IIS heuristic with the existing constructive heuristics.
Besides IIS, 36 heuristics given in [15] and all four heuristics
given in [8] were implemented. Table 6 displays the relative
scheduling performances of the 10 best scheduling heur-
istics ranked according to the their average performances.
The last column of the table also shows the relative runtime
performances of these 10 heuristics. For each scheduling
instance, the relative runtime performance of every heur-
istic was calculated by dividing the execution time of the
heuristic to that of the fastest heuristic.

As seen in Table 6, the proposed IIS heuristic performs
significantly better than all existing heuristics on the
average. For example, Sufferage and XSufferage, which are
the second best heuristics for the basic and clustered
master-slave platforms, produce 25.1 percent and 16.4 per-
cent worse schedules than IIS on the average, respectively.
This relative performance gap is much higher for computa-
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TABLE 3
Effects of the Implementation Choices in the Refinement Phase

UB and LB denote the upper bound and lower bound refinement stages
and the order denotes the refinement sequence. The table shows the
averages of the relative performances of every implementation choice
normalized with respect to the best schedule generated for each
scheduling instance.

TABLE 4
Effectiveness of the Proposed Assignment Objective Functions

The table shows the improvements in the UB and LB stages required to
obtain one unit improvement in the execution time.

TABLE 5
Effectiveness of the Refinement

The table shows the averages of the relative performances of every
heuristic normalized with respect to the best schedule generated for
each scheduling instance.



tion-intensive applications so that IIS produces at least

30 percent better schedules than all other heuristics for r ¼
10 and 5. In fact, IIS is always the best heuristic for all

scheduling instances except the communication-intensive

ones in the clustered master-slave platform with r ¼ 0:2 and

0.1. That is, IIS achieves the actual relative performance

exactly equal to 1 except for those scheduling instances.
The above findings are in concordance with the experi-

mental results given in [15], which state that the scheduling
performances of the existing heuristics become far from
optimal when the r value increases. Although the experi-

mental framework in this work differs in the generation of
the experimental data and calculation of the r value,
experimental results in both works can be interpreted as
to point out the sensitivity of the computation-intensive
applications to the greedy constructive structure of the
existing scheduling heuristics.

As seen in Table 6, the performance gap between IIS and
existing heuristics decreases in scheduling communication-
intensive applications (r ¼ 0:2 and 0.1) on the clustered
master-slave platform. Although not seen in the table, a
similar pattern is also observed in the basic platform for
much smaller r values (r ¼ 0:01). This common behavior
can be attributed to the fact that communication from the
master becomes a serious bottleneck for all heuristics with
decreasing r. This bottleneck occurs earlier in the clustered
platform since the number of file storage units, which can
be considered as p in the basic platform, is much smaller in
the clustered platform. In fact, the performances of all
existing heuristics become very close to each other for these
scheduling instances, as also stated in [15].

As seen in the last column of Table 6, IIS is an order of
magnitude faster than the successful but slow heuristics [8],
whereas it is an order of magnitude slower than the fast
heuristics [15]. IIS produces approximately 25-30 percent
better schedules while being 13-14 times faster than MinMin
and Sufferage in the basic master-slave platform. Similarly,
IIS produces approximately 16-24 percent better schedules
while being 11-12 times faster than MinMin, Sufferage, and
XSufferage in the clustered master-slave platform.

Fig. 12 displays the dissection of the execution time of the

IIS heuristic into phases. For the basic master-slave frame-

work, all phases take comparable time while the refinement

phase takes more time than the others. On the other hand,

the initial task assignment phase dominates the total

execution time for the clustered master-slave framework.

These experimental findings are in accordance with the

complexity analysis given in Sections 6.4 and 7. Comparing

Fig. 12 and Table 6 shows that, while r is changing from 10

to 0.1, the refinement time is correlated with the amount of

the performance improvement of IIS with respect to the

second best scheduling heuristic. This correlation indicates

that more time spent in the refinement phase is likely to

incur more improvement in the resulting schedule. This

experimental finding also strengthens our claim about the
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TABLE 6
Relative Performances of 10 Best Heuristics

The table shows the averages of the relative performances of every
heuristic normalized with respect to the best/fastest heuristic for each
scheduling instance. Comp: Computation, Comm: Communication,
S: Shared, and R: Readiness.

Fig. 12. Execution times of the phases of the IIS heuristic in seconds: (a) basic master-slave platform and (b) clustered master-slave platform.



direct relation between the proposed objective functions

and the actual schedule cost.

9 CONCLUSION

We investigated the problem of scheduling independent but

file-sharing tasks on heterogeneous master-slave platforms.

We considered the task scheduling problem as involving two

consecutive processes: task assignment, which determines

the task-to-processor assignments, and execution ordering,

which determines the order of inter and intraprocessor task

executions. This approach enabled the use of iterative-

improvement heuristics effectively and efficiently in the task

assignment process by proposing smooth assignment objec-

tive functions that are closely related to the cost of a schedule.

This refined task-to-processor assignment was then used to

generate a better schedule during the execution ordering

process. We implemented a scheduling heuristic based on the

proposed approach and tested its performance in comparison

to the existing constructive heuristics by running large

number of experiments on synthetically generated hetero-

geneous master-slave platforms. Our scheduling heuristic

outperformed the existing constructive heuristics in all of the

experiments, thus verifying the validity of the proposed

approach. The proposed hypergraph-partitioning-like model

together with the two objective functions can also be used to

map unstructured computations to heterogeneous parallel

systems.
With recent advances in optical networking technology,

server-to-cluster and intracluster file transfer times are

expected to be comparable in the very near future. This

advancement will open a new research direction for

scheduling in clustered master-slave frameworks since

existing and our approaches rely on the assumption that

intracluster file transfer times are negligible. A possible

adaptation of our approach to this problem might be

applying the proposed hypergraph model to the server-to-

clusters and intraclusters scheduling problem and subpro-

blems separately in a hierarchical manner.
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