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Abstract. Shared-nothing, parallel text retrieval systems require an in-
verted index, representing a document collection, to be partitioned among
a number of processors. In general, the index can be partitioned based on
either the terms or documents in the collection, and the way the partition-
ing is done greatly affects the query processing performance of the parallel
system. In this work, we investigate the effect of these two index partition-
ing schemes on query processing. We conduct experiments on a 32-node
PC cluster, considering the case where index is completely stored in disk.
Performance results are reported for a large (30 GB) document collection
using an MPI-based parallel query processing implementation.

1 Introduction

The basic duty of a text retrieval system is to process user queries and present
the users a set of documents relevant to their queries [1]. For small document
collections, processing of a query can be performed over the original collection
via full text search. However, for efficient query processing over large collections,
an intermediate representation of the collection (i.e., and indexing mechanism)
is required. Until the early 90’s signature files and suffix arrays were the choice
of most text retrieval system designers [2]. In the last decade, inverted index
data structure [3,4] replaced these popular structures and currently appears to
be the only choice for indexing large document collections.

An inverted index is composed of a set of inverted lists L = {I1, I2, . . . , IT },
where T = |T | is the size of the vocabulary T of the indexed document collection D,
and an index pointing to the heads of the inverted lists. The index part is usually
small enough to fit into the main memory, but inverted lists are stored on the
disk. Each list Ii ∈ L is associated with a term ti ∈ T . An inverted list contains
entries (called postings) for the documents containing the term it is associated
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(b) Inverted index structure(a) Toy collection
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Fig. 1. The toy document collection used throughout the paper

with. A posting p ∈ Ii consists of a document id field p.d = j and a weight field
p.w = w(ti, dj) for a document dj in which term ti appears. w(ti, dj) is a weight
which shows the degree of relevance between ti and dj using some metric.

Fig. 1-a shows the document collection that we will use throughout the exam-
ples in the paper. This toy document collection D contains D=8 documents, and
its vocabulary T has T = 8 terms. There are P = 21 posting entries, in the set P
of postings. Fig. 1-b shows the inverted index built for this document collection.

2 Parallel Text Retrieval

In practice, parallel text retrieval architectures can be classified as: inter-query-
parallel and intra-query-parallel architectures. In the first type, each processor
in the parallel system works as a separate and independent query processor.
Incoming user queries are directed to client query processors on a demand-driven
basis. Processing of each query is handled solely by a single processor. Intra-
query-parallel architectures are typically composed of a single central broker
and a number of client processors, each running an index server responsible
from a portion of the inverted index. In this architecture, the central broker
redirects an incoming query to all client query processors in the system. All
processors collaborate in processing of the query and compute partial answer sets
of documents. The partial answer sets produced by the client query processors
are merged at the central broker into a final answer set, as a final step.

In general, inter-query-parallel architectures obtain better throughput while
intra-query-parallel architectures are better at reducing query response times.
Further advantages and disadvantages and a brief comparison are provided in [5].
In this work, our focus is on intra-query-parallel text retrieval systems on shared-
nothing parallel architectures.

3 Inverted Index Partitioning

In a K-processor, shared-nothing, intra-query-parallel text retrieval system, the
inverted index is partitioned among K index servers. The partitioning should be
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performed taking the storage load of index servers into consideration. If there
are |P| posting entries in the inverted index, each index server Sj in the set
S ={S1, S2, . . . , SK} of index servers should keep an approximately equal amount
of posting entries as shown by

SLoad(Sj) � |P|
K

, for 1 ≤ j ≤ K, (1)

where SLoad(Sj) is the storage load of index server Sj . The storage imbalance
should be kept under a satisfactory value.

In general, partitioning of the inverted index can be performed in two different
ways: term-based or document-based partitioning. In the term-based partitioning
approach, each index server Sj locally keeps a subset Lt

j of the set L of all inverted
lists, where

Lt
1 ∪ Lt

2 ∪ . . . ∪ Lt
K = L, and (2)

Lt
i ∩ Lt

j = ∅, for 1 ≤ i, j ≤ K, i �= j. (3)

In this technique, all processors are responsible for processing their own set
of terms, that is, inverted lists are assigned to index servers as a whole. If an
inverted list Ii is assigned to index server Sj (i.e., It

ji =Ii), any index server Sk

other than Sj has It
ki =∅.

Alternatively, the partitioning can be based on documents. In the document-
based partitioning approach, each processor is responsible for a different set of
documents, and an index server stores only the postings that contain the docu-
ment ids assigned to it. Each index server Sj keeps a set Ld

j ={Ij1, Ij2, . . . , IjT }
of inverted lists containing subsets Id

ji of every inverted list Ii ∈L, where

Id
1i ∪ Id

2i ∪ . . . ∪ Id
Ki = Ii, for 1 ≤ i ≤ T, and (4)

Id
ji ∩ Id

ki = ∅, for 1 ≤ j, k ≤ K, j �= k, 1 ≤ i ≤ T, (5)

and it is possible to have Id
ji =∅.

In Fig. 2-a and Fig. 2-b, the term- and document-based partitioning strategies
are illustrated on our toy document collection for a 3-processor parallel system.
The approach followed in this example is to assign the postings to processor in a
round-robin fashion according to term and document ids. This technique is used
in [6].

4 Previous Work

There are a number of papers on the inverted index partitioning problem in
parallel text retrieval systems. We briefly overview three relevant publications.

Tomasic and Garcia-Molina [6] examine four different techniques to partition
an inverted index on a shared-nothing distributed system for different hardware
configurations. The system and disk organizations described in this paper cor-
respond to the term- and document-based partitioning schemes we previously
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a) Term-based inverted index partitioning b) Document-based inverted index partitioning
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Fig. 2. 3-way term- and document-based partitions for our toy inverted index

described, respectively. The authors verify the performance of the techniques
by simulation over a synthetic dataset and use the boolean model for simi-
larity calculations between documents and queries. Their results indicate that
document-based partitioning performs well for long documents, whereas term-
based partitioning is better on short-document collections.

Jeong and Omiecinski [7] investigate the performance of the two partition-
ing schemes for a shared-everything multiprocessor system with multiple disks.
As in [6], they use the boolean ranking model and work on synthetic datasets.
They conduct experiments especially on term skewness. For term-based parti-
tioning, they propose two heuristics for load balancing. In their first heuristic,
they partition the posting file with equal posting sizes instead of equal number
of terms. In their second heuristic, they consider the term frequencies as well as
posting sizes. The results of their simulation show that term-based partitioning
is better when term distribution is less skewed in the document collection, and
document-based partitioning should be preferred otherwise.

Baeza-Yates and Ribeiro-Neto [8] apply the two partitioning schemes on a
shared-nothing parallel system. In their work, they refer to term- and document-
based partitioning schemes as global and local index organizations, respectively.
For document ranking, they use the vector-space model and conduct their ex-
periments on a real-life document collection. Their results show that term-based
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Table 1. A comparison of the previous works on inverted index partitioning

Authors Tomasic and Jeong and Riberio-Neto and
Garcia-Molina Omiecinski Baeza-Yates

Year 1993 1995 1999
Target architecture shared-nothing parallel multi-disk PC shared-nothing parallel
Ranking model boolean boolean vector-space
Partitioning model round-robin load-balanced load-balanced
Dataset synthetic synthetic real-life

partitioning performs better than document-based partitioning in the presence
of fast communication channels. Table 1 summarizes and compares the above-
mentioned works on inverted index partitioning.

All performance results presented so far are based on simulations. In this
work, we investigate the effect of the two partitioning schemes using an actual,
MPI-based, experimental parallel text retrieval system, Skynet1, implemented
on a 32-node PC cluster.

5 Parallel Query Processing

Processing of a query in a parallel text retrieval system follows several steps.
These steps slightly differ depending on whether term-based or document-based
inverted index partitioning schemes are employed. In term-based partitioning,
since the whole responsibility of a query term is assigned to a single processor,
the central broker splits a user query Q = {tq1 , tq2 , . . . , tqQ} into K subqueries.
Each subquery Qi contains the query terms whose responsibility is assigned to
index server Si, that is, Qi = {qj : tqj ∈ Q and Iqj ∈ Lt

i}. Then, the central
broker sends the subqueries over the network to the index servers. Depending
on the query content, it is possible to have Qi =∅, and in that case, no subquery
is sent to index server Si. In document-based partitioning, postings of a term
are distributed on many processors. Hence, unless a K×T -bit term-to-processor
mapping is stored in the central broker, each index server is sent a copy of the
original query, that is, Qi =Q.

Once an index server receives a subquery, it immediately accesses its disk
and reads the inverted lists associated with the terms in the subquery. For each
query term tqj ∈ Qi, inverted list Ij is fetched from the disk. The weight p.w
of each posting p ∈ Ij is used to update the corresponding score accumulator
for document p.d. When all inverted lists are read and accumulator updates are
completed, index server Si transfers the accumulator entries (document ids and
scores) to the central broker over the network, forming a partial answer set Ai

for query Q.
During this period, the central broker may be busy with directing other queries

to index servers. For the final answer set to the query to be generated, all partial

1 Skynet search engine: available at http://skynet.cs.bilkent.edu.tr

http://skynet.cs.bilkent.edu.tr
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answer sets related with the query must be gathered at the central broker. The
central broker merges the received K partial answer sets A1, A2, . . . , AK and
returns the most relevant (highly-ranked) document ids as the complete answer
set to the user submitted query Q.

In term-based partitioning, accessing a term’s inverted list requires a single
disk access, but reading the list (i.e., posting I/O) may take a long time since
the whole list is stored at a single processor. Similarly, the partial answer sets
transmitted by the index servers are long. Hence, the overhead of term-based
partitioning is mainly at the network, during the communication of partial an-
swer sets. Especially, in cases where the partial answer sets are long or inverted
lists keep additional information such as information on term positions, this
communication overhead becomes a bottleneck.

In document-based partitioning, disk accesses are the dominating overhead in
total query processing time, especially in the presence of slow disks and a fast
network. O(K) disk seeks are required in the worst case to read the inverted list
of a term since the complete list is distributed at many processors. However, the
inverted lists retrieved from the disk are shorter in length, and hence posting I/O
is faster. Moreover, in case the user is interested in only the top s documents,
no more than s accumulator entries need to be communicated over the network
(no document with a rank of s+1 in a partial answer set can take place among
the top s documents in the global ranking).

6 Experiments

6.1 Setting

The hardware platform used in the experiments is a 32-node PC cluster intercon-
nected by a Gigabit Ethernet switch. Each node contains an Intel Pentium IV
3.0 GHz processor, 1 GB of RAM, and runs Mandrake Linux, version 10.1. The
sequential query processing algorithm is a term-ordered algorithm with static
accumulator allocation [9]. The parallel query processing code is implemented
in C using the LAM/MPI [10] library.

As the document collection, results of a large crawl performed over the ‘.edu’
domain (i.e., the educational US Web sites) is used. The entire collection is
30 GB and contains 1,883,037 Web pages. After cleansing and stop-word elim-
ination, 3,325,075 distinct index terms remain. The size of the inverted index
constructed using this collection is around 2.7 GB. In term-based (document-
based) partitioning, terms (documents) are alphabetically sorted and assigned
to K index servers in a round-robin fashion using the distribution scheme of [6].

6.2 Results

Table 2 displays the storage imbalance in terms of the number of postings and
inverted lists for the two partitioning schemes with varying number of index
servers, K = 2, 8, 32. This table also shows the total number of disk accesses,
the total volume of disk I/O, and the total volume of communication as well
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Table 2. Performance comparison of the term- and document-based partitioning

term-based document-based
K=2 K=8 K=32 K=2 K=8 K=32

imbal. in posting storage (%) 0.7 6.9 17.5 0.1 0.2 0.7
imbal. in inverted list storage (%) 0.0 0.0 0.0 0.8 1.4 3.2
number of disk accesses 272 272 272 543 2161 8619
imbal. in disk accesses (%) 2.9 20.6 64.7 0.2 0.7 0.2
total volume of I/O (MB) 38.6 38.6 38.6 38.6 38.6 38.6
imbal. in I/O (%) 7.4 38.5 123.7 0.0 0.1 0.5
total comm. volume (MB) 36.1 38.0 38.5 33.3 33.3 33.3
imbal. in comm. volume (%) 7.4 38.5 123.7 0.0 0.1 0.5

as the respective imbalances observed in processing a set of 100 queries (having
1 to 5 terms) over the parallel text retrieval system. As expected, the num-
ber of disk accesses linearly increases with increasing number of index servers
for document-based partitioning and is constant for term-based partitioning.
However, the term-based scheme suffers from a considerable load imbalance in
disk accesses as the number of index servers increases, i.e., some index servers
perform quite more disk accesses than the others. The total volume of com-
munication for transmitting PASs from index servers to the central broker is
slightly higher for the case of term-based partitioning. Also, high imbalance
rates are observed in posting I/O and hence PAS communication in this type of
partitioning.

Fig. 3 shows the query processing performance with increasing number of
query terms for different partitioning techniques and numbers of index servers.
In this experiment, the central broker submits a single query to the index server
and waits for completion of the answer set before submitting the next query.
According to the figure, document-based partitioning leads to better response
times compared to term-ordered partitioning. This is due to the more bal-
anced distribution of the query processing load on index servers in the case
of document-based partitioning. The results show that term-based partitioning
is not appropriate for text retrieval systems, where queries arrive to the sys-
tem infrequently. The poor performance of term-based partitioning is due to the
imbalance in the number of disk accesses as well as communication volumes of
index servers.

Fig. 4 presents the performance of the system with batch query processing.
In these experiments, a batch of 100 queries, each containing between 1 and 5
query terms, was submitted to the system at the same time. The results indi-
cate that term-based partitioning results in better throughput, especially as the
number of index servers increases. This is mainly due to the better utilization of
index servers and the capability to concurrently process query terms belonging
to different queries. For document-based partitioning case, the number of disk
accesses becomes a dominating overhead. In our case, after 8 index servers, the
throughput starts to decrease.
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7 Conclusion

We have conducted experiments to illustrate the performance of two inverted
index partitioning techniques on a recently-built, 32-node PC cluster system.
We have implemented a parallel text retrieval system capable of working with
both document-based and term-based partitioning schemes. We have conducted
experiments to evaluate the response times and throughput of an MPI-based par-
allel query processing implementation. The results indicate that, for batch query
processing, term-ordered partitioning produces superior throughput. However,
for the case where queries are infrequently submitted, document-based parti-
tioning should be preferred.
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