
Hypergraph-Partitioning-Based Remapping
Models for Image-Space-Parallel Direct

Volume Rendering of Unstructured Grids
Berkant Barla Cambazoglu and Cevdet Aykanat, Member, IEEE

Abstract—In this work, image-space-parallel direct volume rendering (DVR) of unstructured grids is investigated for distributed-

memory architectures. A hypergraph-partitioning-based model is proposed for the adaptive screen partitioning problem in this context.

The proposed model aims to balance the rendering loads of processors while trying to minimize the amount of data replication. In the

parallel DVR framework we adopted, each data primitive is statically owned by its home processor, which is responsible from

replicating its primitives on other processors. Two appropriate remapping models are proposed by enhancing the above model for use

within this framework. These two remapping models aim to minimize the total volume of communication in data replication while

balancing the rendering loads of processors. Based on the proposed models, a parallel DVR algorithm is developed. The experiments

conducted on a PC cluster show that the proposed remapping models achieve better speedup values compared to the remapping

models previously suggested for image-space-parallel DVR.

Index Terms—Direct volume rendering, unstructured grids, ray casting, image space parallelization, hypergraph partitioning, screen

partitioning, remapping.

Ç

1 INTRODUCTION

1.1 Direct Volume Rendering

DIRECT volume rendering (DVR) is a popular volume
visualization technique [17], employed in exploration

and analysis of 3D data grids used by scientific simulations.
DVR applications are rather important in that they foster
research studies by letting scientists have better visual
understandings of the problems under investigation. In the
last decade, DVR research has been accelerated due to the
ever-growing size and use of numeric simulations and the
need for fast and high-quality rendering. Today, DVR finds
application in a wide range of research fields that require
interpretation of large volumetric data.

In many scientific simulations, data values are located at
the vertices (data points) of a 3D grid that represents a
physical phenomena. The connectivity between vertices
shapes volumetric primitives (cells) of the grid and forms a
volumetric data set to be visualized. Unstructured data sets,
which are mainly used in disciplines such as fluid
dynamics, shock physics, and thermodynamics, are a
special type of grid-based volumetric data sets. The data
points in unstructured grids are irregularly distributed. The
lack of implicit adjacency information between cells, the
high amount of cell size variation, and the large size of the
data sets make rendering these grids a challenging problem.

The aim of DVR is to map a set of scalar or vectorial
values (e.g., pressure, temperature, and velocity) defined
throughout a 3D data grid to some color values, which form

a 2D image on the screen. Unlike surface-based rendering
techniques, no intermediate representations are generated
for the data. Instead, the volume is treated as a whole, and
the color is formed by a series of sampling and composition
operations performed within the volume. In general, the
image is generated by iterating over the object space (data
space) or image space (screen space) primitives. Object
space (OS) methods [6], [18] visit volumetric data primitives
and compute their color contributions on the screen. Image
space (IS) methods [26], [29] visit screen pixels and assign a
color value to each pixel by compositing the samples taken
along the rays fired from the pixels into the volume.

In this work, a slightly modified version of Koyamada’s IS
DVR algorithm [26] is used as the underlying sequential DVR
algorithm. In this algorithm, projected areas of all front-facing
external faces of grid cells (in our case, tetrahedral cells) are
scan converted to find the pixels covered on the screen. From
each such pixel, a ray is shot into the volume, and a ray
segment is generated between a front-facing external face and
a back-facing external face (Fig. 1). Ray segments are
traversed using the adjacency information between cells.
While traversing a ray segment, intersection tests are
performed between the ray segment and cell faces to find
the points where the ray segment leaves the cells. The exit
points found are used as the entry points for the following
cells. After the entry and exit points of a cell are computed,
some sampling points are determined along the ray segment
within the cell. The number and location of the sampling
points depend on the sampling technique used. In midpoint
sampling, which is frequently used for unstructured grids, a
single sampling point, located in the middle of the entry and
exit points, is used.

At each sampling point, new sampling values are
computed by interpolating the data values at the data points

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 1, JANUARY 2007 3

. The authors are with the Computer Engineering Department, Bilkent
University, 06800, Ankara, Turkey.
E-mail: {berkant, aykanat}@cs.bilkent.edu.tr.

Manuscript received 28 Feb. 2005; revised 9 Jan. 2006; accepted 24 Jan. 2006;
published online 28 Nov. 2006.
Recommended for acceptance by G. Karypis.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0193-0205.

1045-9219/07/$20.00 � 2007 IEEE Published by the IEEE Computer Society

of the cell which contains the sampling point. The sampling
values are passed from transfer functions, and corresponding
color and opacity values are calculated. These values are
composited in visibility order, and the color generated for the
ray segment is put in the respective pixel’s buffer. Due to the
concavity of the volume, there may be more than one ray
segment generated for the same pixel and, hence, more than
one color value may be stored in the same pixel buffer. After
all ray segments are traversed, the colors in pixel buffers are
composited in visibility order, and the final colors on the
screen are generated. Since the rays shot from nearby pixels of
the screen are likely to pass through the same cells, IS
coherency is utilized by this algorithm. Since the adjacency
information between cells is used, OS coherency is also
utilized.

1.2 Parallel DVR

Due to the excessive amount of sampling and composition
operations, DVR algorithms suffer from a considerable
speed limitation. Moreover, memory needs of recent data
sets are beyond the capacities of today’s conventional
computers. These render sequential DVR algorithms in-
adequate for practical use. In the literature, parallel DVR
algorithms exist for shared-memory [47], [48], distributed-
memory [4], [27], [31], [32], [38], and distributed-shared-
memory [12], [13], [19], [21] architectures. Our work
considers distributed-memory parallel DVR, in which OS
or IS parallelization approaches can be followed.

OS-parallel methods [4], [31], [32] partition the data into
subvolumes and assign them to processors. Each processor
locally renders its subvolume and produces a full-screen but
partial image. IS-parallel methods [27], [38] partition the
screen into subscreens and assign the subscreens to proces-
sors. Each processor locally renders its subscreen and
produces a small but complete portion of the final image.
Both OS and IS parallelizations require a communication step
in which IS primitives (pixels) or OS primitives (cells) are
transferred between processors, respectively. In OS paralle-
lization, communication is performed after the local render-
ing to merge the partial images into a final image. In
IS parallelization, communication is performed before the
local rendering to replicate some OS primitives so that each
processor has all OS primitives that it needs in rendering its
subscreen. In this respect, OS and IS parallelizations can be,
respectively, classified as sort-last and sort-first by the
taxonomy of [33]. This work focuses on IS-parallel DVR.

In IS-parallel DVR, visualization parameters (such as
view point and viewing direction) determine the computa-
tional structure in rendering since they affect both the
rendering load distribution on the screen and the interac-
tion between OS and IS primitives. In successively visualiz-
ing a data set with different visualization parameters,
existing screen partitions turn into poor partitions that
cause a rendering load imbalance among processors. Hence,
pixel-to-processor mapping is important for balancing
rendering loads of processors and minimizing the commu-
nication overhead during data replication.

Three approaches can be followed in pixel-to-processor
mapping: static, dynamic, and adaptive. In the static
approach, nearby pixels are scattered among processors
with the assumption that adjacent pixels have similar
rendering loads. The advantage of this scheme is simplicity.
However, since IS coherency is disturbed, it causes high
amounts of data replication. In the dynamic approach,
pixels are remapped to processors on a demand-driven
basis. This approach solves the load balancing problem in a
natural way, but it suffers from disturbing IS coherency
since nearby pixels may be processed by different proces-
sors. Moreover, each pixel assignment incurs communica-
tion on distributed-memory architectures. The adaptive
approach, also adopted in this work, rebalances the
rendering load explicitly by repartitioning the screen at
the beginning of each visualization instance (i.e., a render-
ing cycle, which generates an image frame) in a series of
visualizations on the data. In this approach, current
visualization parameters are utilized to maintain the load
balance, and nearby pixels are mapped to the same
processors to preserve IS coherency.

1.3 Previous Work on IS Parallelization

Challinger [12], [13] presented IS parallelizations of a
hybrid DVR algorithm [14]. In [12], scanlines on the screen
were assigned to processors using the static and dynamic
approaches in two different algorithms. In [13], pixel blocks
were considered as atomic tasks for dynamic assignment.
Wilhelms et al. [47] presented IS parallelization of a
hierarchical DVR algorithm for multiple grids. A survey
on parallel DVR can be found in [49].

In the literature, several IS-parallel polygon rendering
works exist [30], [39], [40], [41]. Samanta et al. [39]
developed an IS-parallel rendering system for a multi-
projector display wall. For dynamic load balancing, they
developed three screen partitioning algorithms. In [40],
they developed a hybrid polygon rendering algorithm on a
PC cluster. In [41], they investigated a replication strategy
for this algorithm. Lin et al. [30] followed the adaptive
approach in their polygon rendering algorithm using a
binary tree for screen partitioning.

In DVR, the adaptive approach was investigated in
two different works [27], [38]. Palmer and Taylor [38]
presented adaptive IS parallelization of a ray-casting-
based DVR algorithm. Kutluca et al. [27] presented and
discussed 12 screen partitioning algorithms for adaptive
IS-parallel DVR of unstructured grids. All of those
algorithms are common in that they try to rebalance the
rendering load but have no explicit attempt on minimiz-
ing the data replication overhead. This work aims to fill
this gap in the literature.

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 1, JANUARY 2007

Fig. 1. Ray-casting-based DVR of unstructured grids with midpoint

sampling.

1.4 Proposed Work

In this work, we propose a novel model, which formulates
the adaptive screen partitioning problem as a hypergraph
partitioning problem. In this model, the interaction between
OS and IS primitives is represented as a hypergraph. By
partitioning this interaction hypergraph into equally
weighted parts, the proposed model partitions the screen
into subscreens that have similar rendering loads. Also, by
minimizing the cost of the partition, the model aims to
minimize the total amount of data replication in the parallel
system. In this model, minimizing the total replication
amount also corresponds to minimizing the upper bound
on the total volume of communication during the data
replication.

In the parallel DVR framework we adopted, OS primitives
are statically owned by their home processors, responsible for
sending them to the processors where they are needed and,
hence, must be temporarily replicated. As another contribu-
tion, the above model is enhanced, and two remapping
models are proposed to accurately formulate the commu-
nication requirement in this framework: two-phase and one-
phase remapping models.

The two-phase model aims to find a screen partition and
a pixel-to-processor remapping that minimize the total
volume of communication and balance the rendering load
distribution. Partitioning and mapping form the two
consecutive phases of our two-phase model, in which a
screen partition is obtained by partitioning the interaction
hypergraph and then subscreens are mapped to processors
by the maximum weight matching algorithm for weighted
bipartite graphs [15]. The one-phase model directly obtains
a remapping by partitioning the remapping hypergraph,
which is formed by augmenting the interaction hypergraph.
This model tries to balance the sum of the local rendering
and communication volume loads of processors while
minimizing the total communication volume.

Based on the proposed models and Koyamada’s sequen-
tial DVR algorithm [26], an adaptive IS-parallel DVR
algorithm is developed. Experiments were conducted using
well-known data sets, and the performance was tested on a
32-node PC cluster. Comparisons with jagged partitioning,
which was found by [27] to be the best screen partitioning
algorithm in minimizing data replication, show that the
proposed models achieve better speedups by incurring less
communication volume and obtaining better load balance.

The rest of the paper is organized as follows: Section 2
discusses the issues in adaptive IS parallelization and the
preprocessing techniques we developed. Section 3 presents
the proposed models in detail. Section 4 describes our parallel
DVR algorithm. Section 5 presents experimental results,
which validate the work. Section 6 concludes the paper.

2 ADAPTIVE IS PARALLELIZATION ISSUES AND

PROPOSED SOLUTIONS

2.1 Screen Partitioning

In the adaptive screen partitioning approach, to be able to
partition the screen in a balanced manner, the rendering
load distribution on the pixels must be calculated in a view-
dependent preprocessing step at the beginning of each

visualization instance. The rendering load of a pixel may be
assumed to be equal to the number of samples that will be
taken along the ray fired from the pixel into the volume. In
unstructured tetrahedral grids, with midpoint sampling,
this is equal to the number of front-facing faces intersected
by the ray and, hence, the screen workload can be
calculated as follows: First, the sampling load of each pixel
is set to zero. Then, all cells are traversed. The pixels under
the projected area of each front-facing face of a cell are
found by scan conversion, and sampling loads of those
pixels are increased by one. Consequently, after all of the
projected areas of front-facing faces are scan converted,
rendering loads of all screen pixels are estimated.

After the screen workload is computed, the screen is
partitioned into subscreens such that the estimated render-
ing loads of subscreens are similar. The number of
subscreens is chosen equal to the number of processors so
that each processor is assigned the task of rendering one of
the subscreens. In the literature, several screen partitioning
techniques exist. Quad trees, recursive bisection, and jagged
partitioning are among such techniques [27], [34]. In these
techniques, the subscreens are always isothetic rectangles.
This restriction decreases the flexibility in partitioning and
prevents getting further performance.

In this work, for implementation efficiency in screen
partitioning, anM �M coarse mesh, which formsM2 square
pixel blocks, is imposed on the screen. An individual pixel
block constitutes an atomic rendering task, assigned to a
single processor. The set of pixel blocks assigned to a
processor forms a subscreen for that processor. In the extreme
case of using a too-fine mesh, a single pixel corresponds to a
single pixel block. This allows the partitioning algorithm to
have the highest flexibility in determining subscreen bound-
aries. However, the increasing preprocessing overhead
makes this approach practically infeasible. On the contrary,
the use of a too-coarse mesh may restrict the solution space of
the partitioning algorithm and prevent having a satisfactory
load balance. A better approach is to trade off between the
preprocessing overhead and the size of the solution space by
varying M according to the current parallelization and
visualization parameters.

2.2 Cell Clustering

Scan converting all front-facing faces for calculation of the
screen workload is a costly operation. To reduce the scan
conversion cost, in a view-independent preprocessing
phase, we apply a top-down, graph-partitioning-based
clustering on the data. The motivation behind this cluster-
ing is grouping close tetrahedral cells to form cell clusters
with small surface areas so that the total surface area to be
scan converted during the workload calculations is smaller.
The clustering is independent of visualization parameters
and is performed just once at the very beginning of the
series of visualization instances. Hence, the preprocessing
overhead introduced is almost negligible. The proposed
parallel DVR algorithm and models work on cell clusters
throughout the succeeding view-dependent preprocessing
and data replication phases instead of working on
individual cells.

In our graph-partitioning-based clustering approach,
cells correspond to tasks to be partitioned, and cell clusters

CAMBAZOGLU AND AYKANAT: HYPERGRAPH-PARTITIONING-BASED REMAPPING MODELS FOR IMAGE-SPACE-PARALLEL DIRECT... 5

correspond to parts to be formed. In the clustering graph
G ¼ ðV; EÞ, each vertex in V represents a tetrahedral cell. An
edge in E exists between two vertices if and only if a face is
shared by the cells corresponding to those vertices. Vertices
and edges are associated with weights. As the weight of
each vertex, a unit cost of 1 is assigned. The area of a face
shared between two neighbor cells is assigned as the weight
of the respective edge connecting the vertices correspond-
ing to those two cells.
C-way partitioning [24] of the clustering graph G creates a

mutually disjoint and exhaustive set fC1; C2; . . . ; CCg of
C nonempty cell clusters. In partitioning, since part weights
are balanced, clusters contain almost equal number of cells
and, hence, their communication costs will be similar in data
replication. Minimizing the weighted edge cut corresponds
to minimizing the total surface area of cell clusters. This
clustering scheme, illustrated in Fig. 2, aims to minimize both
the interaction between adjacent cell clusters and the average-
case interaction between cell clusters and the screen. This
means smaller projected areas for cell clusters and, hence, less
scan conversion cost in workload calculations.

In this approach, the total number C of generated
clusters must be chosen carefully. In one extreme, C can
be chosen to be equal to the number of processors. In such a
case, the solution space of the partitioning algorithm is
severely restricted. On the other extreme, each cluster can
be made up of a single tetrahedral cell, in which case we
face with an extremely high preprocessing overhead. In this
work, C is chosen empirically.

During the view-dependent screen workload calcula-
tions at the beginning of each visualization instance, the
rendering load of a cell cluster C is estimated as the sum of
the projected areas of all front-facing faces (FC) in the cell
cluster and is calculated as

CCloadðCÞ ¼
X

f2FC
af ; ð1Þ

where the projected area of a face f is af ¼ jx1ðy2 � y3Þ þ
x2ðy3 � y1Þ þ x3ðy1 � y2Þj. Here, xi and yj are the coordinates
(in normalized projection coordinate system) of vertices of
face f . To determine the pixel blocks whose sampling loads
are affected, each cell cluster’s projected area is computed by
scan converting projected areas of front-facing faces on the
surface of the cell cluster. To calculate the screen workload,

the estimated rendering load of each cell cluster (1) is
distributed evenly among the pixel blocks that are over-
lapped by the projected area of the cell cluster. In this
approach, since each pixel block affected by the cell cluster is
assigned equal rendering load, estimation errors are intro-
duced. Also, since cell clusters are replicated as a whole,
communication volume slightly increases. However, cell
clustering brings the benefit of reduced preprocessing cost
during the screen workload calculations. Furthermore, in the
implementation, it simplifies housekeeping, decreases the
number of iterations in some loops, and simplifies some data
structures.

2.3 Remapping and Data Replication

As visualization parameters change, the rendering load
distribution on the screen and, hence, on processors
change. In adaptive IS-parallel DVR, the screen is
repartitioned at the beginning of each visualization
instance, and pixels are remapped to processors for load
rebalancing. Since OS primitives need to be shared among
processors, they must be replicated via communication
between processors. For an efficient parallelization, novel
remapping models are needed. These models should
rebalance the load distribution in the parallel system
while minimizing the communication overhead due to
data replication.

In the literature, several graph-partitioning-based re-
mapping models exist for the problems in other contexts.
These models may be classified as scratch-remap [36], [43]
or diffusion-based [37], [42], [43], [46]. Scratch-remap
models work in two phases. In the first phase, tasks are
partitioned into parts, which have similar computational
loads. In the second phase, parts are mapped to processors
such that the data migration overhead is as low as possible.
Diffusion-based models move tasks from heavily loaded to
lightly loaded processors and interleave minimization of
the migration overhead with load balancing.

3 SCREEN PARTITIONING AND REMAPPING MODELS

3.1 Hypergraph Partitioning Problem

A hypergraphH ¼ ðV;NÞ consists of a set of vertices V and a
set of netsN [5]. Each netnj inN connects a subset of vertices
in V, which are said to be the pins of nj. Each vertex vi has a

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 1, JANUARY 2007

Fig. 2. (a) A tetrahedral data set. (b) The graph representation of the data set. (c) A partition obtained by 6-way graph partitioning. (d) The resulting

set of six cell clusters.

weight wi, and each net nj has a cost cj. � ¼ fV1;V2; . . . ;VKg
is a K-way vertex partition if each part Vk is nonempty, parts
are pairwise disjoint, and the union of parts givesV. In �, a net
is said to connect a part if it has at least one pin in that part. The
connectivity set �j of a net nj is the set of parts connected by
nj. The connectivity�j ¼ j�jjof a netnj is equal to the number
of parts connected by nj. If �j ¼ 1, then nj is an internal net. If
�j > 1, then nj is an external net and is said to be cut. In �, the
weight Wk of a part Vk is equal to the sum of the weights of
vertices in Vk, i.e.,

Wk ¼
X

vi2Vk
wi: ð2Þ

The K-way hypergraph partitioning problem [1] is
defined as finding a vertex partition � for a given
hypergraph H ¼ ðV;NÞ such that part weights are balanced
while a cost defined on nets is optimized. In this work, the
connectivity�1 metric

�ð�Þ ¼
X

nj2N
cjð�j�1Þ ð3Þ

is used as the cost to be minimized. In this metric, which is
frequently used in VLSI [16], [28] and recently used in
scientific computing [3], [11], [45] communities, each net nj
contributes cjð�j � 1Þ to the cost �ð�Þ of a partition �.

3.2 Adaptive Screen Partitioning Model

We model the computational structure of a visualization
instance as a hypergraph and formulate the screen partition-
ing problem in adaptive IS-parallel DVR as a hypergraph
partitioning problem. In the proposed model, an interaction
hypergraph HI ¼ ðV;NÞ represents the interaction between
OS primitives (cell clusters) and IS primitives (pixel blocks).
InHI, a vertex vi in vertex setV represents a pixel block bi in set
S of pixel blocks. As the weightwi of a vertex vi, the rendering
load PBloadðbiÞ, estimated during the screen workload
calculations for the corresponding pixel block bi, is assigned.
A net nj in net setN represents a cell cluster Cj. Vertex vi is a
pin of a net nj if the projected area of cell cluster Cj overlaps
pixel block bi. As the cost cj of a net nj, the storage cost

CostðCjÞof the corresponding cell cluster Cj is assigned. Here,
CostðCjÞ is the number of bytes needed to store (or send) the
Cj cluster’s data.

Fig. 3a illustrates a sample visualization instance. To
simplify the drawing and ease understanding, 3D cell
clusters are illustrated as 2D regions. Similarly, the
2D screen is replaced with a single row of pixel blocks.
The dotted vertical lines show the view volume boundaries
of pixel blocks, assuming parallel projection. Throughout
the examples, unit rendering loads and storage costs are
assumed for pixel blocks and cell clusters, respectively.
Fig. 3b shows the interaction hypergraph HI constructed to
represent the sample interaction of Fig. 3a. In HI, nets and
vertices are represented by circles and squares, respectively.
In Fig. 3b, for example, vertices v1 and v2 are the pins of net
n2 since the projected area of cell cluster C2 overlaps both
pixel blocks b1 and b2.

After constructing HI, the screen partitioning problem
reduces to the hypergraph partitioning problem of finding a
vertex partition � ¼ fV1;V2; . . . ;VKg, where each part Vk
corresponds to a subscreen Sk to be rendered by a single
processor. In the proposed model, a vertex partition � is
obtained by applying K-way hypergraph partitioning on
HI. As a result, since the weights of the parts in � are
balanced, the screen is partitioned into K subscreens
S1;S2; . . . ;SK , which have similar rendering loads. Hence,
after the subscreens are assigned to processors, each
processor performs almost the same amount of rendering.

In a partition �, if a net nj has a pin on a part Vk (i.e.,
Vk 2 �j), then cell cluster Cj is needed in rendering at least
one pixel block in subscreen Sk and, hence, must be
replicated on the processor responsible from Sk. Each cell
cluster Cj is replicated on �j different processors, incurring
�jcj bytes of replication in the parallel system. Hence, the
total connectivity cost �0ð�Þ ¼

P
nj2N cj�j exactly corre-

sponds to the total amount of cell cluster replication. By
minimizing �0ð�Þ, the proposed model correctly minimizes
this amount. Due to (4), there is a constant factor CF
between the total connectivity cost �0ð�Þ and the conven-
tional connectivity�1 cost �ð�Þ of a partition �, i.e.,

CAMBAZOGLU AND AYKANAT: HYPERGRAPH-PARTITIONING-BASED REMAPPING MODELS FOR IMAGE-SPACE-PARALLEL DIRECT... 7

Fig. 3. (a) A sample visualization instance with 15 cell clusters and eight pixel blocks. (b) The interaction hypergraph HI representing the interaction

between the cell clusters and pixel blocks in (a).

�0ð�Þ ¼
X

nj2N
cj�j ¼

X

nj2N
cjð�j�1Þ þ

X

nj2N
cj ¼ �ð�Þ þ CF:

ð4Þ

Therefore, minimizing �ð�Þ (3) during the partitioning also
minimizes �0ð�Þ, enabling the use of existing hypergraph
partitioning tools [10], [25] without any modification.

Depending on the parallel DVR framework employed,
some cell clusters may already have a copy on one or more
processors in the parallel system. If a cell cluster Cj is
already replicated on a processor where it is needed, then
no communication is necessary for transferring Cj to that
processor. Hence, the total replication amount �0ð�Þ forms
an upper bound on the total volume of communication,
whose worst case occurs when no cell clusters have a copy
in any of the processors where they must be replicated. As a
result, minimizing the total connectivity cost �0ð�Þ also
corresponds to minimizing the upper bound on the total
volume of communication. In the case that cell clusters are
not stored within the parallel system, but retrieved from a
central data server outside the parallel system, the model
exactly minimizes the total volume of communication.

Fig. 4a shows a 3-way vertex partition � found for a 3-
processor system by applying hypergraph partitioning onHI

of Fig. 3b. In �, cut net n8 has all three vertex parts in its
connectivity set �8 ¼ fV1;V2;V3g. This means that cell cluster
C8 is needed in rendering all three subscreens and, hence, it
must be replicated on all processors. Similarly, �6 ¼ �7 ¼
�10 ¼ 2 for cut nets n6, n7, and n10 and, hence, cell clusters C6,
C7, and C10 are each replicated on two processors. All of the
remaining 11 nets are internal and, hence, replicated on a
single processor. Therefore, the total replication amount is
equal to �0ð�Þ ¼ 1� 3þ 3� 2þ 11� 1 ¼ 20. Fig. 4b illus-
trates subscreens S1, S2, and S3, formed according to vertex
partition �.

3.3 Remapping of Pixel Blocks

After the screen is partitioned and subscreens are found, a
one-to-one subscreen-to-processor mapping MS must be
created in order to assign each subscreen S‘ to a processor
Pk ¼MSðS‘Þ. This process remaps all pixel blocks in a

subscreen to a processor for rendering. The many-to-one
remappingMb indicates the assignment of a pixel block bi to a
processor Pk ¼MbðbiÞ. A subscreen-to-processor mapping
MS can be created arbitrarily (e.g.,Pk ¼MSðSkÞ). UsingMS ,
Mb can be obtained as

Pk ¼MbðbiÞ , bi 2 S‘ ^ Pk ¼MSðS‘Þ: ð5Þ

A vertex partition � and a mapping MS together induce a
replication pattern RC for cell clusters. A cell cluster Cj is
replicated on a set RCðCjÞ of processors as

RCðCjÞ ¼ fPk : 9V‘;V‘ 2 �j ^ Pk ¼MSðS‘Þg: ð6Þ

In our parallel DVR framework, each processor statically
keeps a subset of cell clusters throughout the visualization.
That is, at the beginning of a visualization instance, a single
copy of each cell cluster Cj is available only on its home
processor Pk ¼ HomeðCjÞ. Home processors are responsible
from temporarily replicating their cell clusters on the
processors that need them. In the following sections, we
propose two remapping models that aim to minimize the
total volume of communication within this framework.

3.3.1 Two-Phase Remapping Model

The two-phase model [8] has two consecutive phases. The
first phase produces K subscreens, using partition � found
by K-way partitioning ofHI, as described in Section 3.2. The
objective of this phase is to minimize the upper bound on
the total volume of communication. The second phase
assigns the subscreens formed in the first phase to
processors by finding a mapping MS that achieves the
maximum saving in the total communication volume
relative to the upper bound. Without the second phase,
each subscreen S‘ may be assigned to a processor Pk
arbitrarily, as mentioned in Section 3.3. However, this may
lead to a communication volume as high as the upper
bound set by the first phase.

Fig. 5a shows an initial processor mapping for cell clusters.
In the figure, the fill pattern of a cell cluster Cj indicates its
home processor HomeðCjÞ. Processors P1, P2, and P3 initially
store cell clusters filled with vertical lines, horizontal lines,
and color, respectively. Fig. 5b shows a 3-way vertex partition

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 1, JANUARY 2007

Fig. 4. (a) A 3-way vertex partition � of HI in Fig. 3b. (b) The corresponding screen partition.

� found by the first phase. In this example, consider the trivial
MðS1Þ ¼ P1, MðS2Þ ¼ P2, MðS3Þ ¼ P3 mapping. With this
mapping, processorsP1,P2, andP3 need eight, five, and seven
cell clusters, but store only one, one, and two of the cell
clusters they need, respectively. Hence, the total commu-
nication volume incurred by this mapping is ð8� 1Þ þ
ð5� 1Þþð7� 2Þ¼16. However, theMðS1Þ¼P3,MðS2Þ¼P2,
and MðS3Þ ¼ P1 mapping incurs a total communication
volume of only ð8� 2Þ þ ð5� 1Þ þ ð7� 5Þ ¼ 12. This de-
crease in the communication volume is mostly because
subscreen S3 is assigned to processor P1, which already
stores most of the cell clusters needed by subscreen S3.

Taking this observation into account, we formulate the
problem of finding the best subscreen-to-processor map-
ping, which achieves the highest saving in the total volume
of communication, as a maximum weight bipartite match-
ing problem. In this second phase, the K subscreens,
obtained using vertex partition � of the first phase, and the
K processors in the parallel system form the two partite
vertex sets fs1; s2; . . . ; sKg and fp1; p2; . . . ; pKg of a bipartite
graph B. That is, each subscreen vertex s‘ and processor
vertex pk represents subscreen S‘ and processor Pk,
respectively. A cell cluster Cj incurs an edge e‘k between
vertices s‘ and pk with weight CostðCjÞ if Pk ¼ HomeðCjÞ
and Cj is needed by subscreen S‘. Multiple edges between
the same pair of vertices are contracted into a single edge,
whose weight is equal to the sum of the weights of each
contracted edge.

In this model, finding the maximum-weighted matching
in B corresponds to finding a subscreen-to-processor
mapping that achieves the highest saving in the total
communication volume relative to the upper bound set by
the first phase. Each edge e‘k in the maximum-weighted
matching assigns subscreen S‘ to processor Pk, generating a
subscreen-to-processor mapping MS . The subscreen-to-
processor mapping found by the second phase is an
optimum solution, which minimizes the total volume of
communication for the given initial cluster-to-processor
mapping and the screen partition supplied by the first
phase. Using the subscreen-to-processor mappingMS in (5)
and (6), the remapping Mb of pixel blocks and the
replication pattern RC of cell clusters can be calculated.

Fig. 6a shows bipartite graph B constructed for the
sample case of Fig. 5. In the figure, bold edges indicate the
maximum-weighted matching, composed of edges e12, e23,
and e31 with weights 5, 3, and 5, respectively. The
subscreen-to-processor mapping corresponding to this
matching is MðS1Þ ¼ P2, MðS2Þ ¼ P3, and MðS3Þ ¼ P1.
With this mapping, the total volume of communication is
ð8þ 5þ 7Þ � ð5þ 3þ 5Þ ¼ 7 with a saving of 13 over the
upper bound 20, set by the first phase. Fig. 6b shows the
remapping of pixel blocks to processors. Replicated cell
clusters are illustrated by the square-filled pattern.

3.3.2 One-Phase Remapping Model

An important point not considered by the first-phase of the
two-phase model is that, in our framework, each cell cluster
Cj is originally owned by a home processor Pk ¼ HomeðCjÞ
and no communication is necessary to replicate Cj on Pk.
Consider net n9 in Fig. 5b. If S2 is assigned to P1, C9 must be
transferred from its home processor P3 to P1 introducing
some communication overhead. However, if S2 is assigned
to P3, no data transfer is necessary for replication at P3 since
P3 already has C9 in its memory.

In order to accurately model the total volume of commu-
nication within our framework, the initial cluster-to-proces-
sor mapping must be supplied into the model. In the one-
phase model, we use a remapping hypergraph ~HR ¼ ð ~V;NÞ,
which is obtained by augmenting the interaction hypergraph
HI, proposed earlier in Section 3.2, with some vertex and pin
additions. Vertex set ~V of the remapping hypergraph ~HR is
formed by introducing a set P ¼ fp1; p2; . . . ; pKg of K
processor vertices intoHI, that is, ~V ¼ V [P. Each processor
vertex pk represents a processor Pk belonging to the parallel
system and has no weight. Also, new pins are added to the pin
set ofHI such that a processor vertex pk is a pin of a netnj if cell
cluster Cj is initially assigned to processor Pk, that is,
HomeðCjÞ ¼ Pk.

In the proposed model, a K-way vertex partition ~� ¼
f ~V1; ~V2; . . . ; ~VKg of ~HR is said to be feasible if it satisfies the
mapping constraint

~V‘
\
P

���
��� ¼ 1 ; for ‘ ¼ 1; 2; . . . ; K; ð7Þ

CAMBAZOGLU AND AYKANAT: HYPERGRAPH-PARTITIONING-BASED REMAPPING MODELS FOR IMAGE-SPACE-PARALLEL DIRECT... 9

Fig. 5. (a) An initial, static cluster-to-processor mapping. (b) A 3-way vertex partition � of HI.

that is, each part ~V‘ contains exactly one processor vertex pk.
A feasible partition ~� induces a remapping Mb for pixel
blocks such that all pixel blocks represented by the
nonprocessor vertices in a part are remapped to the
processor represented by the unique processor vertex in
that part. That is, a pixel block bi, whose corresponding
vertex vi is in ~V‘, is remapped to processor Pk if processor
vertex pk is in ~V‘.

Another point omitted by the two-phase model is that
communication overheads of processors vary during the
data replication and some processors spend more time on
communication. Taking this fact into consideration, the one-
phase model aims to balance the estimated time for
incoming data communication plus the time for local
rendering of each processor. In this model, each vertex vi
is assigned a weight wi which is equal to the estimated time
PBloadðbiÞ � tr for rendering pixel block bi. Here, tr is the
time cost for taking a single sample within a data cell. As
the cost cj of a net nj, the estimated communication time
CostðCjÞ � tc of cell cluster Cj is assigned. Here, tc is the per-
byte cost for receiving a cell cluster, unpacking it, and
creating the necessary data structures.

In this model, we modify the conventional part weight

definition (2) and define the weightW 0
k of a part ~Vk as the sum

of the weights of vertices within ~Vk plus the sum of the costs of

cut nets that connect ~Vk but not processor vertex pk, i.e.,

W 0
k ¼

X

vi2 ~Vk

wi þ
X

~Vk2�j^pk=2nj

cj; ð8Þ

where the second summation term is the incoming message
volume overhead of processor Pk. Note that we prefer to
balance this overhead since, in our framework, outgoing
message volume overheads of processors are already
balanced.

After this setting, the remapping problem reduces to the
problem of finding a feasible K-way partition ~� ¼ f ~V1; ~V2;
. . . ; ~VKg of ~HR, satisfying the mapping constraint. Maintain-
ing the balance among parts corresponds to maintaining the
time balance among processors during the replication plus
local rendering phases. In ~�, consider a netnj which connects

processor vertex pk. In this model, net nj indicates that
processor Pk should replicate cell cluster Cj on all processors
responsible from each subscreen corresponding to a vertex
part in �j, excluding the processor itself, i.e., processor Pk.
Since cell cluster Cj must be replicated on �j � 1 processors,
the communication volume incurred by net nj is cjð�j � 1Þ.
Note that internal nets incur no communication. Hence, by
minimizing the cost �ð~�Þ (3) of partition ~�, the model exactly
minimizes the total volume of communication.

Fig. 7 shows the remapping hypergraph ~HR, constructed

for a 3-processor system by augmenting the interaction

hypergraphHI of Fig. 5b. In ~HR, triangles represent processor

vertices, corresponding to processors. A dotted line, connect-

ing a processor vertex pk and a net nj, indicates that

Pk ¼ HomeðCjÞ. Fig. 7 also shows a 3-way vertex partition ~�

of ~HR, where vertex parts ~V1, ~V2, and ~V3 contain processor

vertices p2, p3, and p1, respectively. In Fig. 7, consider cut net

n8 with connectivity set �8 ¼ f ~V1; ~V2; ~V3g. Processor vertex p1,

corresponding to home processor P1 ¼ HomeðC8Þ of cell

cluster C8, is in vertex part ~V3. Hence, processor P1 is

responsible from replicating cell cluster C8 on processors P2

andP3, determined by processor verticesp2 andp3 in the other

two vertex parts ~V1 and ~V2. There are five cut nets n5, n6, n7,

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 1, JANUARY 2007

Fig. 6. (a) Bipartite graph B created using the initial cluster-to-processor mapping and vertex partition � in Fig. 5. (b) Mapping of subscreens to

processors, using the maximum-weighted matching in (a).

Fig. 7. A 3-way partition ~� of the remapping hypergraph ~HR.

n10, and n15 with connectivity 2, each incurring a commu-

nication cost of 1. The other nine nets are internal and incur no

communication. Hence, the total communication volume is

accurately calculated as �ð~�Þ ¼ 9� 0þ 5� 1þ 1� 2 ¼ 7.

Existing hypergraph partitioning tools can be enhanced

to maintain the mapping (7) and balancing constraints in

the model. The mapping constraint can also be maintained

by using the state-of-the-art hypergraph partitioning tools

that support the fixed vertices feature [10], [45]. This widely

used feature [2] allows prespecified vertices to be fixed to

given parts and can be exploited to fix each vertex pk to a

part ~Vk, for k ¼ 1; 2; . . . ; K.

4 IS-PARALLEL DVR ALGORITHM

The proposed parallel DVR algorithm (Fig. 8) starts with
view-independent preprocessing. This phase is followed by
three consecutive phases, repeated for each visualization
instance: view-dependent preprocessing, cell cluster repli-
cation, and rendering.

4.1 View-Independent Preprocessing

This phase, performed just once at the very beginning of the
whole visualization process, carries out the view-indepen-
dent operations, which include reading the data set from
the disk, clustering data cells, and mapping cell clusters to
processors. Since most scientific simulations are carried out
on parallel systems, we assume that each local disk stores a
contiguous portion of the data. Hence, processors read
subvolumes in parallel.

After reading their data, each processor concurrently
creates the view-independent clustering graph of its local
data using the adjacency information between cells. Then,
the clustering scheme of Section 2.2 is applied on the local
graphs, and each processor obtains a set of cell clusters.
Since the volume is currently stored in a distributed
manner, creation and partitioning of a global visualization
graph may be expensive. Hence, a local cell clustering
scheme, which reduces the overhead of clustering, is
preferred. We use the state-of-the-art graph partitioning
tool MeTiS [23] for partitioning the clustering graphs.

After cell clustering, an initial cluster-to-processor map-
ping is found. This mapping is important in that all
following remapping phases use this initial data mapping.
Even if a cell cluster may be temporarily replicated on other
processors after remapping, it is statically owned by only its

home processor. This static owner keeps the cell cluster
throughout the whole visualization process. The reason for
this static assignment scheme is the drastic variation in
preprocessing costs of cell clusters, which requires balan-
cing the preprocessing overhead of processors. During the
initial cell cluster distribution step, cell clusters are assigned
to processors such that processors have roughly equal scan
conversion costs. The best-fit-decreasing heuristic used in
solving the K-feasible bin-packing problem [22] is adapted
to obtain such an initial distribution. Cell clusters are
assigned to K processors in decreasing scan-conversion cost
order, where best-fit criterion corresponds to assigning a
cell cluster to a processor which currently has the minimum
total scan-conversion cost.

4.2 View-Dependent Preprocessing

This phase contains the steps that try to adapt the
computational structure according to changing view-
dependent visualization parameters: calculation of the
screen workload, partitioning of the screen, and remapping
of pixel blocks. During the screen workload calculations,
the interaction between the volume and the screen is
computed, and the rendering load distribution on the
screen is estimated. That is, the interaction between cell
clusters and pixel blocks is found, and the rendering loads
of pixel blocks are computed.

The screen partitioning and remapping steps use the
proposed models. The interaction between a processor’s
local data and the screen is stored as a local hypergraph on
the processor. Since each processor owns a portion of the
whole volume, only the local hypergraphs can be created.
These hypergraphs are then merged into a global hyper-
graph, which represents the interaction of the whole
volume with the screen. For this purpose, an all-to-all
broadcast operation, in which each processor sends its local
hypergraph to others, is performed among processors. By
combining the common vertices in local hypergraphs, a
global hypergraph, which is replicated on all processors, is
obtained. During the global hypergraph creation, the pixel
blocks having no sampling load are discarded from the
hypergraph. The fixed vertices in the one-phase model are
also added at this step.

Finally, a pixel-to-processor remapping is found using
one of the proposed remapping models. In the implementa-
tion, the sequential hypergraph partitioning tool PaToH [10]
is used for partitioning the global hypergraph. Since this
hypergraph is small in size, the multilevel paradigm is
abandoned and the flat hypergraph is partitioned without

CAMBAZOGLU AND AYKANAT: HYPERGRAPH-PARTITIONING-BASED REMAPPING MODELS FOR IMAGE-SPACE-PARALLEL DIRECT... 11

Fig. 8. The proposed adaptive IS-parallel DVR algorithm.

further coarsening. This considerably decreases the pre-
processing overhead due to hypergraph partitioning. The
solution qualities are not affected much since we run the
partitioner at each processor with a different seed and pick
the best solution (i.e., the lowest imbalance rate or the
smallest total communication volume) for remapping. In
the two-phase model, a maximum-weighted matching is
obtained using the Kuhn-Munkres algorithm [15].

4.3 Cell Cluster Replication

Before the rendering starts, cell clusters are temporarily
replicated in the parallel system according to the replication
patternRC, induced bythe pixel-to-processor remapping. The
replication is performed by sending cell clusters from their
home processors to the processors where they are needed via
point-to-point communication between processors.

4.4 Rendering

After cell clusters are replicated, processors are ready to
locally render their assigned pixel blocks in parallel. A ray
is shot from each pixel covered by the projected areas of
front-facing external faces of cell clusters only if the pixel
belongs to the subscreen assigned to the processor. The rays
are followed through the volume by utilizing the adjacency
information stored in cells and cell clusters, eliminating the
need to scan convert all front-facing faces on surfaces of cell
clusters. Although it is possible to have nonconvex cell
clusters as a result of the clustering algorithm, this does not
cause an increase in the number of ray segments created.

Existence of such nonconvexities is eliminated due to data
replication and, hence, processors act as if rendering a
whole and convex subvolume.

However, because of the nonconvexities in the nature of
the volumetric data, the use of ray buffers is still required. The
generated ray segments are accumulated in the correspond-
ing ray buffers. For each pixel, a separate ray buffer is kept.
The accumulated color and opacity values are inserted into
their corresponding ray buffers in the sorted order of their
increasing z coordinates. Later, the values in ray buffers are
composited using the traditional composition formulas in a
separate local pixel merging phase. Since, at this stage, all
processors have a subimage, an all-to-one communication
operation is performed, and the whole and final image for the
current visualization instance is generated in one of the
processors. After the rendering, each processor deallocates
the memory reserved for the temporarily replicated cell
clusters for which it is not a home processor.

5 EXPERIMENTAL RESULTS

Experiments are conducted on three data sets (Blunt Fin,
Combustion Chamber, and Oxygen Post), obtained from
NASA Ames Research Center [35]. These data sets are the
results of CFD simulations and are originally curvilinear.
The unstructured data sets used in the experiments are
obtained using the tetrahedralization techniques described
in [20] and [44]. Properties of the data sets are summarized
in the caption of Fig. 9, which displays our renderings and

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 1, JANUARY 2007

Fig. 9. Example renderings of the data sets and the 16-way screen partitions produced by the jagged-partitioning-based and hypergraph-partitioning-
based screen partitioning models. (a) Blunt fin (40,960 vertices, 187,395 cells), (b) combustion chamber (47,025 vertices, 215,040 cells), and
(c) oxygen post (109744 vertices, 513,375 cells).

the screen partitions produced by different models. In each
row, the first image is the rendering obtained using the
standard viewing parameters. The second and third images
illustrate the 16-way screen partitions produced by the
jagged-partitioning-based model [27] and the proposed
hypergraph-partitioning-based model, respectively. In
these images, each color represents a subscreen, rendered
by a distinct processor.

The rendering platform is a 32-node PC cluster inter-
connected by a Gigabit Ethernet switch. Each node contains
an Intel Pentium IV 2.6 GHz processor, 1 GB of RAM, and
runs Debian/GNU Linux. The DVR algorithms are im-
plemented in C using LAM/MPI [7].

In the experiments, each of the three data sets is rendered
using five different viewing parameter sets. Hence, the
values reported for an experiment represent the averages of
the values obtained from 15 different executions of the
parallel DVR algorithm. The viewing parameter sets contain
different view-point coordinates and viewing directions.
These values are selected such that different computational
characteristics of the data sets are reflected as much as
possible. In each experiment, processors are assigned C ¼
10 cell clusters, which is an empirically found number. As
mentioned, to make the view-dependent preprocessing
overhead affordable, coarse meshes of varying sizes are
imposed on the screen. Three different remapping models
are compared: jagged-partitioning-based (JP2), two-phase
hypergraph-partitioning-based (HP2), and one-phase hy-
pergraph-partitioning-based (HP1) models. The JP2 model
is implemented as a two-phase model, in which the jagged
partitioning algorithm is used in the first phase for screen
partitioning while the matching algorithm is used in the
second phase for subscreen-to-processor matching, similar
to the second phase of the HP2 model. Hence, it is an
enhanced version of the model in [27].

Two sets of experiments are conducted. The first set of
experiments tests solution qualities of the remapping models
in load balancing and minimization of the total communica-
tion volume. These experiments are carried out at large
numbers of virtual processors by assigning more than one
executable to available processors. In the second set of
experiments, practical aspects of our parallel implementation
are investigated. Execution time of a single visualization
instance and view-dependent preprocessing time are dis-
sected into their components, and speedup values are
recorded at the available numbers of processors.

5.1 Experiments on Remapping Quality

These experiments are conducted on 16, 32, 48, 64, 80, and
96 virtual processors using a screen resolution of
S � S ¼ 1; 200� 1; 200. Two coarse mesh resolutions, M �
M ¼ 30� 30 and M �M ¼ 60� 60, are tried. Fig. 10 shows
the predicted and actual load imbalances in sampling
amounts of processors for JP2 and HP2, respectively. The
predicted imbalance values are the ones expected by the
partitioning algorithm. The actual imbalance values are the
sampling imbalance values observed in parallel rendering.
No results are displayed for HP1 since this model tries to
directly balance processors’ total rendering time including
the communication overhead. According to Fig. 10, the
actual values are always higher than the predicted values in
both models. This is due to the estimation errors made in
screen workload calculations. As the number of processors
increases, the predicted values get closer to the actual
values. This is because of the increase in the workload
estimation quality, which is caused by the increase in the
number of cell clusters and, hence, the decrease in cell
cluster volumes. In general, HP2 performs significantly
better than JP2 in terms of load balancing. For example,
with a mesh resolution of M �M ¼ 60� 60 and 96 virtual
processors, JP2 results in a load imbalance of 38.1 percent.
With the same parameters, the load imbalance for HP2 is
17.3 percent. As expected, the imbalance values almost
linearly increase with increasing number of processors.
When the mesh resolution is decreased from M �M ¼
60� 60 to M �M ¼ 30� 30, both models perform worse in
load balancing due to the decrease in the number of pixel
blocks and, hence, the size of the solution space.

Fig. 11 displays the total volume of communication in cell
cluster replication for varying numbers of processors and
mesh resolutions. With a mesh resolution of M �M ¼
60� 60, using 96 virtual processors, HP2 and HP1 result in
around 30 percent and 27 percent less total communication
volume than JP2, respectively. When the number of proces-
sors is increased from 16 to 96, the volume almost doubles.
This points out the importance of minimizing this overhead at
large numbers of processors. If the mesh resolution is reduced
toM �M ¼ 30� 30, there occurs a slight decrease in the total
volume of communication. This is due to the decrease in the
total length of subscreen boundaries and, hence, the amount
of overlaps between cell clusters and subscreen boundaries.
Since coarse mesh resolution affects both the load imbalance

CAMBAZOGLU AND AYKANAT: HYPERGRAPH-PARTITIONING-BASED REMAPPING MODELS FOR IMAGE-SPACE-PARALLEL DIRECT... 13

Fig. 10. Averages of the predicted and actual sampling load imbalance

values.
Fig. 11. Averages of the total communication volumes in cell cluster

replication.

and communication volume, it can be used to trade off

between these two parallelization overheads. In general, JP2

incurs the highest total volume of communication, while HP2

is the best at minimizing this overhead. Although HP1

accurately calculates the total volume of communication, it

produces results inferior to HP2. This is basically due to the

fact that the recursive bisection paradigm employed in

PaToH is not well-suited to handle a hypergraph with fixed

vertices.

5.2 Experiments on Parallel Performance

Experiments verifying the practical performance of the

models are carried out on the available numbers of processors

8, 16, 24, and 32. In the figures related with time dissection of

different phases, averages of the maximum execution times of

processors in each phase are shown. In Fig. 12, the average

parallel execution time for a single visualization instance is

dissected into three components as view-dependent pre-

processing, cell cluster replication, and rendering. The two

cases examined are S � S ¼ 900� 900 and S � S ¼ 1; 500�
1; 500 with M �M ¼ 30� 30. According to Fig. 12, view-

dependent preprocessing and rendering times increase with

increasing screen resolution. The cell cluster replication time

is not affected much from the variation in the screen

resolution. The rendering time falls with increasing number

of processors, whereas the replication time remains almost

the same. At 32 processors, for the S � S ¼ 900� 900

resolution case, the replication time takes more than one

third of the total visualization time. This indicates that the

replication step has the potential to form a bottleneck on the

scalability at large numbers of processors.

In Fig. 13, the view-dependent preprocessing time is
dissected into three components as screen workload calcula-
tions, model formation, and partitioning/remapping. In HP2
and HP1, the model formation step represents creation of the
global hypergraph from local hypergraphs via communica-
tion among processors. In JP2, this step represents the
distributed global sum operation on local screen workloads
of processors. With increasing number of processors, the
duration of screen workload calculations tends to decrease
since the total surface area to be scan converted per processor
gets smaller, whereas partitioning/remapping times increase
and are affected from the coarse mesh resolution. Decreasing
the mesh resolution from M �M ¼ 60� 60 to M �M ¼
30� 30 decreases the number of pixel blocks and, hence, the
partitioning/remapping time. The partitioning time for HP1
is slightly less than that of HP2 since the partitioning
heuristics in HP1 converge earlier.

Fig. 14 shows the speedups achieved at 2, 4, 8, 16, and
32 processors. On 32 processors, with a screen resolution of
S � S ¼ 900� 900 and a coarse mesh resolution of
M �M ¼ 30� 30, speedups are 14.44, 15.41, and 16.85 for
JP2, HP2, and HP1, respectively. At the same number of
processors and coarse mesh resolution, with a screen
resolution of S � S ¼ 1; 500� 1; 500, speedups are respec-
tively 18.96, 21.34, and 22.30. HP1 is able to render an image
with a resolution ofS � S ¼ 900� 900 in 1.135 seconds on the
average, i.e., 14.3 percent faster than JP2. Moreover, it is
observed that the increasing screen resolution and number of
processors favor the proposed models. It should be noted that
HP1 achieves better speedups than HP2 although the sum of
the execution times for individual phases of HP1 are higher
than that of HP2 (Fig. 12). This is because HP1 tries to assign
less communication volume overhead to computationally
loaded processors and vice versa. The speedup gap between
the HP-based models and JP2 are less than the ones suggested
by the theoretical results. This is mainly due to the implicit
tendency of JP2 toward creating screen partitions that induce
low concurrent communication volume.

5.3 Comparison with an OS-Parallel DVR Algorithm

In this section, we compare the performance of HP1 with
our recently proposed adaptive, OS-parallel DVR algorithm
(OS) [4]. In this model, the computational structure in the
data space is represented as a graph, where the clusters of
cells correspond to vertices and faces shared between cell
clusters correspond to edges. The remapping problem in
OS parallelization is formulated as a graph partitioning

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 1, JANUARY 2007

Fig. 12. Dissection of the average execution time of a single visualization

instance.

Fig. 13. Dissection of the average view-dependent preprocessing time.

Fig. 14. Average speedups achieved by JP2, HP2, and HP1 in parallel

rendering.

problem by introducing a set of fixed processor vertices into

the graph. Our enhanced version of MeTiS is used to

minimize the communication volume overheads in data

remapping and global pixel merging while balancing the

rendering loads of processors. The details can be found in

[4]. Fig. 15 provides the speedups achieved by OS and HP1.

In all executions of HP1, coarse mesh resolution is

M �M ¼ 30� 30. According to Fig. 15, for low screen

resolutions, OS achieves better speedups than HP1. For

example, at a resolution of S � S ¼ 600� 600 with 32 pro-

cessors, speedups are 17.47 and 11.48 for OS and HP1,

respectively. At S � S ¼ 1; 200� 1; 200, both algorithms

display a similar performance. As the resolution is further

increased, HP1 begins to achieve better speedups. For

example, at a resolution of S � S ¼ 2; 400� 2; 400 with

32 processors, speedups are 21.86 and 24.57 for OS and

HP1, respectively. The scalability problem of OS at high

screen resolutions is due to the global pixel merging

overhead. This overhead, which proportionally increases

with the screen resolution, is not present in HP1. We report

further experiments and observations in [9].

6 CONCLUSION

The experiments show that, compared to the previous

models, the HP-based remapping models yield superior

speedup values by obtaining better load balance and

incurring less total communication volume. We believe

that as new partitioning heuristics are developed and

existing hypergraph partitioning tools are improved, solu-

tion qualities of the proposed models will also improve. We

should also note that the final target in parallel DVR is a

hybrid, adaptive algorithm in which both IS and OS will be

partitioned for higher scalability. In this respect, the

proposed work is a good frontier for this hybrid algorithm.

ACKNOWLEDGMENTS

This work is partially supported by the Scientific and

Technological Research Council of Turkey under projects

EEEAG-103E028 and EEEAG-105E065.

REFERENCES

[1] C.J. Alpert and A.B. Kahng, “Recent Directions in Netlist
Partitioning: A Survey,” VLSI J., vol. 19, nos. 1-2, pp. 1-81, 1995.

[2] C.J. Alpert, A.E. Caldwell, A.B. Kahng, and I.L. Markov,
“Hypergraph Partitioning with Fixed Vertices,” IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, vol. 19,
no. 2, pp. 267-272, 2000.

[3] C. Aykanat, A. Pinar, and Ü.V. Çatalyürek, “Permuting Sparse
Rectangular Matrices into Block-Diagonal Form,” SIAM J. Scien-
tific Computing, vol. 25, no. 6, pp. 1860-1879, 2004.

[4] C. Aykanat, B.B. Cambazoglu, F. Findik, and T.M. Kurç,
“Adaptive Decomposition and Remapping Algorithms for Ob-
ject-Space-Parallel Direct Volume Rendering of Unstructured
Grids,” J. Parallel and Distributed Computing, in press.

[5] C. Berge, Graphs and Hypergraphs. North-Holland, 1973.

[6] H. Berk, C. Aykanat, and U. Güdükbay, “Direct Volume
Rendering of Unstructured Grids,” Computers & Graphics,
vol. 27, no. 3, pp. 387-406, 2003.

[7] G. Burns, R. Daoud, and J. Vaigl, “LAM: An Open Cluster
Environment for MPI,” Proc. Supercomputing Symp. ’94, pp. 379-
386, 1994.

[8] B.B. Cambazoglu and C. Aykanat, “Image-Space-Parallel Direct
Volume Rendering on a Cluster of PCs,” Proc. 18th Int’l Symp.
Computer and Information Sciences, pp. 457-464, 2003.

[9] B.B. Cambazoglu and C. Aykanat, “Hypergraph-Partitioning-
Based Remapping Models for Image-Space-Parallel Direct Volume
Rendering of Unstructured Grids,” Technical Report, BU-CE-0503,
Dept. of Computer Eng., Bilkent Univ., 2005.

[10] Ü.V. Çatalyürek and C. Aykanat, “PaToH: Partitioning Tool for
Hypergraphs,” technical report, Dept. of Computer Eng., Bilkent
Univ., 1999.

[11] Ü.V. Çatalyürek and C. Aykanat, “Hypergraph-Partitioning-
Based Decomposition for Parallel Sparse-Matrix Vector Multi-
plication,” IEEE Trans. Parallel and Distributed Systems, vol. 10,
no. 7, pp. 673-693, July 1999.

[12] J. Challinger, “Parallel Volume Rendering for Curvilinear Vo-
lumes,” Proc. IEEE Scalable High Performance Computing Conf.,
pp. 14-21, 1992.

[13] J. Challinger, “Scalable Parallel Volume Raycasting for Nonrecti-
linear Computational Grids,” Proc. IEEE/ACM Parallel Rendering
Symp., pp. 81-88, 1993.

[14] J. Challinger, “Scalable Parallel Direct Volume Rendering for
Nonrectilinear Computational Grids,” PhD thesis, Univ. of
California, 1993.

[15] G. Chartrand and O.R. Oellermann, Applied and Algorithmic Graph
Theory. McGraw-Hill, 1993.

[16] A. Dasdan and C. Aykanat, “Two Novel Multiway Circuit
Partitioning Algorithms Using Relaxed Locking,” IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, vol. 16,
no. 2, pp. 169-178, 1997.

[17] T.T. Elvins, “A Survey of Algorithms for Volume Visualization,”
ACM SIGGRAPH Computer Graphics, vol. 26, no 3, pp. 194-201,
1992.

[18] R. Farias, J. Mitchell, and C.T. Silva, “ZSWEEP: An Efficient and
Exact Projection Algorithm for Unstructured Volume Rendering,”
Proc. ACM/IEEE Volume Visualization and Graphics Symp., pp. 91-
99, 2000.

[19] R. Farias and C.T. Silva, “Parallelizing the ZSWEEP Algorithm for
Distributed-Shared Memory Architectures,” Proc. Int’l Volume
Graphics Workshop ’01, pp. 181-192, 2001.

[20] M.P. Garrity, “Ray-Tracing Irregular Volume Data,” ACM
SIGGRAPH Computer Graphics, vol. 24, no. 5, pp. 35-40, 1990.

[21] C. Hofsetz and K.-L. Ma, “Multi-Threaded Rendering Unstruc-
tured-Grid Volume Data on the SGI Origin 2000,” Proc. Third
Eurographics Workshop Parallel Graphics and Visualization, pp. 91-99,
2000.

[22] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms.
Potomac: Computer Science Press, 1978.

[23] G. Karypis and V. Kumar, “MeTiS: A Software Package for
Partitioning Unstructured Graphs, Partitioning Meshes and
Computing Fill-Reducing Orderings of Sparse Matrices,“ technical
report, Dept. of Computer Science, Univ. of Minnesota, 1998.

[24] G. Karypis and V. Kumar, “Multilevel k-Way Partitioning Scheme
for Irregular Graphs,” J. Parallel and Distributed Computing, vol. 48,
no. 1, pp. 96-129, 1998.

[25] G. Karypis and V. Kumar, “hMETIS: A Hypergraph Partitioning
Package,“ technical report, Dept. of Computer Science, Univ. of
Minnesota, 1998.

CAMBAZOGLU AND AYKANAT: HYPERGRAPH-PARTITIONING-BASED REMAPPING MODELS FOR IMAGE-SPACE-PARALLEL DIRECT... 15

Fig. 15. Average speedups achieved by OS and HP1 in parallel

rendering.

[26] K. Koyamada, “Fast Traversal of Irregular Volumes,” Visual
Computing, Integrating Computer Graphics with Computer Vision,
T.L. Kunii, ed., pp. 295-312, Springer-Verlag, 1992.

[27] H. Kutluca, T.M. Kurç, and C. Aykanat, “Image-Space Decom-
position Algorithms for Sort-First Parallel Volume Rendering of
Unstructured Grids,” J. Supercomputing, vol. 15, no. 1, pp. 51-93,
2000.

[28] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout.
John Wiley and Sons, 1990.

[29] M. Levoy, “Display of Surfaces from Volume Data,” IEEE
Computer Graphics and Implementations, vol. 8, no. 3, pp. 29-37,
1988.

[30] W.-S. Lin, R.W.H. Lau, K. Hwang, X. Lin, and P.Y.S. Cheung,
“Adaptive Parallel Rendering on Multiprocessors and Work-
station Clusters,” IEEE Trans. Parallel and Distributed Systems,
vol. 12, no. 3, pp. 241-258, Mar. 2001.

[31] K.-L. Ma, “Parallel Volume Ray-Casting for Unstructured-Grid
Data on Distributed Memory Multicomputers,” Proc. Parallel
Rendering Symp., pp. 23-30, 1995.

[32] K.-L. Ma and T.W. Crockett, “A Scalable Parallel Cell-Projection
Volume Rendering Algorithm for Three-Dimensional Unstruc-
tured Data,” Proc. Parallel Rendering Symp., pp. 95-104, 1997.

[33] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs, “A Sorting
Classification of Parallel Rendering,” IEEE Computer Graphics and
Applications, vol. 14, no. 4, pp. 23-32, 1994.

[34] C. Mueller, “The Sort-First Rendering Architecture for High-
Performance Graphics,” Proc. Symp. Interactive 3D Graphics, pp. 75-
84, 1995.

[35] NASA Data Set Archive, http://www.nas.nasa.gov/Research/
Datasets/datasets.html, 2004.

[36] L. Oliker and R. Biswas, “PLUM: Parallel Load Balancing for
Adaptive Unstructured Meshes,” J. Parallel and Distributed
Computing, vol. 52, no. 2, pp. 150-177, 1998.

[37] C.-W. Ou and S. Ranka, “Parallel Incremental Graph Partition-
ing,” IEEE Trans. Parallel and Distributed Systems, vol. 8, no. 8,
pp. 884-896, 1997.

[38] M.E. Palmer and S. Taylor, “Rotation Invariant Partitioning for
Concurrent Scientific Visualization,” Proc. Parallel Computational
Fluid Dynamics, 1994.

[39] R. Samanta, T. Funkhouser, K. Li, and J.P. Singh, “Sort-First
Parallel Rendering with a Cluster of PCs,” Proc. SIGGRAPH
Technical Sketches, 2000.

[40] R. Samanta, T. Funkhouser, K. Li, and J.P. Singh, “Hybrid Sort-
First and Sort-Last Parallel Rendering with a Cluster of PCs,” Proc.
SIGGRAPH/Eurographics Workshop Graphics Hardware, pp. 99-108,
2000.

[41] R. Samanta, T. Funkhouser, and K. Li, “Parallel Rendering with K-
Way Replication,” Proc. IEEE Symp. Parallel and Large-Data
Visualization and Graphics, pp. 75-84, 2001.

[42] K. Schloegel, G. Karypis, and V. Kumar, “Multilevel Diffusion
Schemes for Repartitioning of Adaptive Meshes,” J. Parallel and
Distributed Computing, vol. 47, no. 2, pp. 109-124, 1997.

[43] K. Schloegel, G. Karypis, and V. Kumar, “Wavefront Diffusion
and LMSR: Algorithms for Dynamic Repartitioning of Adaptive
Meshes,” IEEE Trans. Parallel and Distributed Systems, vol. 12, no. 5,
pp. 451-466, May 2001.

[44] P. Shirley and A. Tuchman, “A Polygonal Approximation to
Direct Scalar Volume Rendering,” ACM SIGGRAPH Computer
Graphics, vol. 24, no. 5, pp. 63-70, 1990.

[45] B. Ucar and C. Aykanat, “Encapsulating Multiple Communica-
tion-Cost Metrics in Partitioning Sparse Rectangular Matrices for
Parallel Matrix-Vector Multiplies,” SIAM J. Scientific Computing,
vol. 25, no. 6, pp. 1837-1859, 2004.

[46] C. Walshaw, M. Cross, and M.G. Everett, “Parallel Dynamic
Graph Partitioning for Adaptive Unstructured Meshes,” J. Parallel
and Distributed Computing, vol. 47, no. 2, pp. 102-108, 1997.

[47] J. Wilhelms, A.V. Gelder, P. Tarantino, and J. Gibbs, “Hierarchical
and Parallelizable Direct Volume Rendering for Irregular and
Multiple Grids,” Proc. IEEE Visualization Conf. ’96, pp. 57-64, 1996.

[48] P.L. Williams, “Interactive Direct Volume Rendering of Curvi-
linear and Unstructured Data,” PhD thesis, Univ. of Illinois at
Urbana-Champaign, 1992.

[49] C.M. Wittenbrink, “Survey of Parallel Volume Rendering Algo-
rithms,” Proc. Int’l Conf. Parallel and Distributed Processing
Techniques and Applications, pp. 1329-1336, 1998.

Berkant Barla Cambazoglu graduated from
Bursa Erkek Lisesi. He received the BS, MS,
and PhD degrees, all in computer engineering,
from the Computer Engineering Department of
Bilkent University in 1997, 2000, and 2006,
respectively. He has worked in two research
projects funded by The Scientific and Technolo-
gical Research Council of Turkey and a project
funded by the European Union Sixth Framework
Program. His research interests include parallel

computing, scientific visualization, information retrieval, data mining, and
grid computing.

Cevdet Aykanat received the BS and MS
degrees from the Middle East Technical Uni-
versity, Ankara, Turkey, both in electrical en-
gineering, and the PhD degree from The Ohio
State University, Columbus, in electrical and
computer engineering. He was a Fulbright
scholar during his PhD studies. He worked at
the Intel Supercomputer Systems Division,
Beaverton, Oregon, as a research associate.
Since 1989, he has been affiliated with the

Department of Computer Engineering, Bilkent University, Ankara,
Turkey, where he is currently a professor. His research interests mainly
include parallel computing, parallel scientific computing and its
combinatorial aspects, parallel computer graphics applications, parallel
data mining, graph and hypergraph-partitioning, load balancing, neural
network algorithms, high-performance information retrieval systems,
parallel and distributed Web crawling, parallel and distributed data-
bases, and grid computing. He has (co)authored about 40 technical
papers published in academic journals indexed in SCI. He is the
recipient of the 1995 Young Investigator Award of The Scientific and
Technological Research Council of Turkey. He is a member of the ACM,
the IEEE, and the IEEE Computer Society. He has been recently
appointed as a member of IFIP Working Group 10.3 (Concurrent
Systems) and INTAS Council of Scientists.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

16 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 1, JANUARY 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

