
Information Processing and Management 43 (2007) 609–623

www.elsevier.com/locate/infoproman
Architecture of a grid-enabled Web search engine

B. Barla Cambazoglu, Evren Karaca, Tayfun Kucukyilmaz, Ata Turk,
Cevdet Aykanat *

Computer Engineering Department, Bilkent University, 06800 Bilkent, Ankara, Turkey

Received 1 January 2006; received in revised form 10 October 2006; accepted 13 October 2006
Available online 11 December 2006
Abstract

Search Engine for South-East Europe (SE4SEE) is a socio-cultural search engine running on the grid infrastructure. It
offers a personalized, on-demand, country-specific, category-based Web search facility. The main goal of SE4SEE is to
attack the page freshness problem by performing the search on the original pages residing on the Web, rather than on
the previously fetched copies as done in the traditional search engines. SE4SEE also aims to obtain high download rates
in Web crawling by making use of the geographically distributed nature of the grid. In this work, we present the architec-
tural design issues and implementation details of this search engine. We conduct various experiments to illustrate perfor-
mance results obtained on a grid infrastructure and justify the use of the search strategy employed in SE4SEE.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Search engine; Web crawling; Text classification; Grid computing
1. Introduction

In this age of information, search engines act as important services, providing the community with the
information hidden in the Web and, due to their frequent use, stand as an integral part of our lives. The last
decade has witnessed design and implementation of several state-of-the-art search engines (Page & Brin, 1998).
Today, there are search engines that have indexed more than four billion Web pages, processing millions of
user queries per day over their local index.

A traditional search engine is typically composed of three pipelined components (Arasu, Cho, Garcia-
Molina, & Raghavan, 2001): a crawler, an indexer, and a query processor. The crawler component is responsible
for locating, fetching, and storing the content residing within the Web. The downloaded content is concurrently
parsed by an indexer and transformed into an inverted index (Tomasic, Garcia-Molina, & Shoens, 1994; Zobel,
Moffat, & Sacks-Davis, 2002), which represents the downloaded collection in a compact and efficiently query-
able form. The query processor is responsible for evaluating user queries and returning to the users the pages
0306-4573/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ipm.2006.10.011

* Corresponding author. Tel.: +90 312 290 1625; fax: +90 312 266 4047.
E-mail addresses: berkant@cs.bilkent.edu.tr (B.B. Cambazoglu), ekaraca@cs.bilkent.edu.tr (E. Karaca), ktayfun@cs.bilkent.edu.tr

(T. Kucukyilmaz), atat@cs.bilkent.edu.tr (A. Turk), aykanat@cs.bilkent.edu.tr (C. Aykanat).

mailto:berkant@cs.bilkent.edu.tr
mailto:ekaraca@cs.bilkent.edu.tr
mailto:ktayfun@cs.bilkent.edu.tr
mailto:atat@cs.bilkent.edu.tr
mailto:aykanat@cs.bilkent.edu.tr

610 B.B. Cambazoglu et al. / Information Processing and Management 43 (2007) 609–623
relevant to their query. Despite the fact that many research efforts were spent, effectiveness and efficiency still
remain as the two major challenges in the Web search problem.

The effectiveness problem appears in both Web crawling and query processing. In Web crawling, effective-
ness is related to the freshness of the indexed pages (Cho & Garcia-Molina, 2000), which is highly correlated
with the crawling efficiency, i.e., if pages are more frequently downloaded, it is more probable that the cached
copies of the pages are fresh. In query processing, effectiveness refers to the precision and recall measures,
which evaluate the accuracy and coverage of the results, respectively (Clarke, Cormack, & Tudhope, 2000;
Can, Altingovde, & Demir, 2004; Wilkinson, Zobel, & Sacks-Davis, 1995).

In addition to the effectiveness problem, both Web crawling and query processing have an efficiency prob-
lem. The efficiency problem in Web crawling (Cambazoglu, Turk, & Aykanat, 2004) is due to the large scale of
the Web as well as the Web’s constantly evolving nature, which require pages to be downloaded and indexed
frequently. According to the results reported by Google, it takes around a month to recrawl the same page
again on the average. The efficiency problem in query processing is due to the need to quickly evaluate a query
over a rather large index (Cambazoglu & Aykanat, 2006; Can et al., 2004; Long & Suel, 2003), in the presence
of many user queries being submitted concurrently. The state-of-the-art search engines attack this second
problem using some algorithmic optimizations that may trade effectiveness for improved efficiency (Moffat,
Zobel, & Sacks-Davis, 1994; Wong & Lee, 1993; Turtle & Flood, 1995) (e.g., short-circuit evaluation) or pro-
gramming improvements (e.g., trying to keep the whole Web index in the volatile memory). But, in general,
the primary method to cope with both problems is to employ parallel/distributed computing systems, which
execute multiple crawler agents to crawl the Web (Cho & Garcia-Molina, 2002) and multiple query engines to
evaluate queries over replicated/partitioned copies of the Web index (Baeza-Yates & Ribeiro-Neto, 1999;
Ribeiro-Neto & Barbosa, 1998), increasing both page download rates and query processing throughput.

In this work, we present the design and implementation details of a grid-enabled search engine, Search
Engine for South-East Europe1 (SE4SEE), which somewhat differs from the above-mentioned, traditional
search engines in both its design philosophy and functionality. In short, SE4SEE is a personalized, on-demand,
country-specific, category-based search engine running on the grid infrastructure. It provides a Web search
facility which combines crawling and classification. SE4SEE primarily addresses the page freshness and effi-
ciency problems in Web crawling by utilizing the computational power and high bandwidth inherently available
in the grid and the grid’s geographically distributed nature. In this work, we conduct experiments to illustrate
the performance of grid-enabled Web search and justify the features specific to SE4SEE.

The organization of the paper is as follows. In Section 2, we provide background information on Web
crawling and text classification, which are the basic building blocks of SE4SEE, while justifying the use of
the grid. In Section 3, we give a brief survey of the previous work on Web crawling, text classification, and
distributed/gridified Web search. Section 4 presents the architecture of SE4SEE and its implementation
details. We report the results of the conducted experiments in Section 5. Finally, in Section 6, we conclude
and discuss some future work.
2. Preliminaries

2.1. Web crawling

Web crawling is the process of locating, fetching, and storing Web pages. A typical Web crawler, starting
from a set of seed pages, locates new pages by parsing the downloaded pages and extracting the hyperlinks
within. Extracted hyperlinks are stored in a FIFO fetch queue for further retrieval. Crawling continues until
the fetch queue gets empty or a satisfactory number of pages are downloaded. Usually, many crawler threads
execute concurrently in order to overlap network operations with CPU processing, thus increasing the
throughput.

Although it seems to be a simple task, there are many challenges in Web crawling. The two important issues
are coverage and freshness. The coverage refers to the size of the set of pages retrieved within a certain period
1 SE4SEE homepage, http://se4see.grid.org.tr

http://se4see.grid.org.tr

B.B. Cambazoglu et al. / Information Processing and Management 43 (2007) 609–623 611
of time. A successful crawler tries to maximize its coverage in order to provide a larger, searchable collection
to the users. Similarly, the freshness of the collection is important in order to minimize the difference between
the cached copies of pages and the originals on the Web, thus keeping the served information up-to-date.

Another important issue in Web crawling is the need for a large amount of computational resources. First,
a high amount of processing power is necessary to parse the crawled pages, extract the hyperlinks, and index
the pages’ content. Second, a large amount of volatile memory is required to store and manage the data struc-
tures that grow quickly and continuously during the crawl. The final and most important resource requirement
is a high network bandwidth. The network bandwidth determines the page download rate and affects the craw-
ler’s coverage as well as the page freshness.

We believe that all these computational requirements make Web crawling a suitable target for grid comput-
ing (Foster & Kesselman, 2003). In general terms, the grid can be defined as ‘‘a type of a parallel and distrib-
uted system that enables sharing, selection, and aggregation of geographically distributed autonomous
resources dynamically at runtime depending on their availability, capability, performance, cost, and users’
quality-of-service requirements’’.2 The grids contain computationally powerful nodes, which have the
resources necessary for running a Web crawling application. Furthermore, in cases where the spatial locality
of the pages is important, the geographically distributed nature of the grid can be utilized to increase page
download rates, as is the case in the design of SE4SEE.
2.2. Text classification

Informally, text classification is the problem of assigning a category to a document from a predefined set of
categories. In the literature, various machine learning techniques are employed to solve this problem. Most of
these techniques are based on the supervised learning approach, where the classifier is trained by a set of pre-
viously labeled set of documents and then is used to predict categories for unseen test documents. The accu-
racy of the classification depends on the choice of the underlying machine learning algorithm as well as the
quality of the documents used for training the classifier.

Most search engines rely on keyword-based search, where a query, consisting of a number of keywords, is
evaluated over an inverted index, and the top k documents are returned to the user in decreasing order of their
similarity to the query (Lee, Chuang, & Seamons, 1997). However, there are also approaches employing text
classification in querying of document collections and/or presentation of the results. The use of text classifi-
cation in search engines is mainly in the form of pre-classification (e.g., engines providing topic directories
manually created by human experts) or post-classification (e.g., engines providing automated classification
of the query results). While the former of these increases precision, the latter enhances the presentation of
the results. SE4SEE adopts the post-classification approach, where the crawled pages are classified under
several topic categories before being presented to the user.
3. Related work

In this section, we survey the previous works on Web crawling, text classification, and search engines. In the
literature, there are many research studies concentrating on different issues in Web crawling, such as URL
ordering for retrieving high-quality pages earlier (Baeza-Yates, Castillo, Marin, & Rodriguez, 2005; Cho, Gar-
cia-Molina, & Page, 1998; Najork & Wiener, 2001), partitioning the Web for efficient multi-processor crawling
(Cambazoglu et al., 2004; Teng, Lu, Eichstaedt, Ford, & Lehman, 1999), distributed crawling (Boldi, Code-
notti, Santini, & Vigna, 2002; Zeinalipour-Yazti & Dikaiakos, 2002), and focused crawling (Altingovde &
Ulusoy, 2004; Chakrabarti, van den Berg, & Dom, 1999; Diligenti, Coetzee, Lawrence, Giles, & Gori,
2000). Despite this large amount of effort, due to the commercial value of the developed applications, it is hard
to obtain robust and customizable crawling software (Heydon & Najork, 1999; Shkapenyuk & Suel, 2002).

For text classification (Lam, Ruiz, & Srinivasan, 1999), an abundance of machine learning algorithms
(Sebastiani, 2002; Yang, 1999) such as k-nearest neighbor (Han, Karypis, & Kumar, 2002), naive Bayesian
2 Grid Computing Info Centre, http://www.gridcomputing.com/gridfaq.html

http://www.gridcomputing.com/gridfaq.html

612 B.B. Cambazoglu et al. / Information Processing and Management 43 (2007) 609–623
(McCallum & Nigam, 1998), neural networks (Ng, Goh, & Low, 1997), decision trees (Lewis & Ringuette,
1994), and support vector machines (Sun, Lim, & Ng, 2002) are used in the literature. In Web page classifi-
cation (Kan, 2004), due to its performance and quality, naive Bayesian classifier is usually preferred. A num-
ber of machine learning tools such as Weka (Witten & Frank, 2005), Grid Weka (Khoussainov, Zuo, &
Kushmerick, 2004), and the Harbinger machine learning toolkit (Cambazoglu & Aykanat, 2005) are readily
available for use in text classification.

Although there are many different Web search engines,3 the market is dominated by three major engines.4

These engines have huge multi-processor computing infrastructures consisting of thousands of PCs. However,
they are mostly centralized systems, not suitable for crawling geographically distributed Web sites. There are a
number of information retrieval works on peer-to-peer environments (Bender, Michel, Triantafillou, Weikum,
& Zimmer, 2005), distributed systems (Melnik, Raghavan, Yang, & Garcia-Molina, 2001), and the grid
(Scholze, Haya, Vigen, & Prazak, 2004).

MINERVA (Bender et al., 2005) is a peer-to-peer Web search engine, in which each peer independently
executes a Web crawler. This peer-to-peer system lacks a central coordinator, and hence there is no control
over the coverage of each peer. Consequently, the same pages may be crawled multiple times by different peers,
resulting in an overlap of pages. This overlap is a crucial problem in peer-to-peer Web search. MINERVA
offers techniques that aim to solve this overlap problem and tries to aggregate the results of independent
crawls to generate a global result.

The use of the grid for information retrieval is relatively new. To the best of our knowledge, GRACE5 is the
only attempt to develop a grid-enabled search engine (Scholze et al., 2004). The aim of GRACE is to build a
search and categorization tool over the grid. GRACE can use both local directories and the query results of
other search engines as a knowledge repository. The main objective of GRACE is to analyze the search results
and categorize them via linguistic analysis. In this perspective, GRACE is an unsupervised categorization tool
rather than a search engine. In GRACE, the utilization of the grid resources is achieved via parallelism based
on the distributed nature of the grid. A user can concurrently run multiple queries over the grid. GRACE, in
turn, analyzes the query results, categorizes them, and aggregates the results of multiple queries.

Although GRACE and SE4SEE architectures both aim to utilize the grid resources, their motivations are
different. While GRACE categorizes the query results that are based on the results obtained from other search
engines, SE4SEE does not depend on the results of other search engines. Instead, the query results are
retrieved directly from the Web utilizing geographical closeness in country-specific search. Furthermore,
GRACE does not provide a facility for category-specific search, whereas SE4SEE allows users to select
and search in a specific category as well as perform a keyword-based search.

4. The SE4SEE Architecture

4.1. Features

Search Engine for South-East Europe (SE4SEE) is an attempt towards developing a grid-enabled search
engine that specifically targets the countries in the South-East Europe. It is one of the two selected regional
applications developed as a part of the EU-funded SEE-GRID FP6 project,6 which is the primary initiative
for establishing a grid infrastructure in the South-East European countries. As stated in Section 1, SE4SEE
is a personalized, on-demand, country-specific, category-based, grid-enabled search engine, currently running
on the grid infrastructure formed by the SEE-GRID project. Below, we briefly describe the distinguishing fea-
tures of SE4SEE.

� Personalized crawling: In traditional search engines, the entire Web is crawled, and the pages are indexed for
public search. In SE4SEE, a different crawling approach is taken. For each user query, an individual crawl is
3
http://www.searchenginewatch.com

4
http://www.google.com, http://search.yahoo.com, http://search.msn.com

5 Grace project homepage, http://www.grace-ist.org
6 SEE-GRID project homepage, http://www.see-grid.org

http://www.searchenginewatch.com
http://www.google.com
http://search.yahoo.com
http://search.msn.com
http://www.grace-ist.org
http://www.see-grid.org

B.B. Cambazoglu et al. / Information Processing and Management 43 (2007) 609–623 613
started over the Web, and the relevant pages are selected from the fresh copies on the Web. This way, up-to-
date versions of the pages are evaluated and accuracy of the resulting answer set of pages is enforced.
� On-demand crawling: Unlike traditional search engines, which crawl the Web continuously, in SE4SEE, the

crawling task is initiated upon the arrival of a user query. Depending on various factors, this type of on-
demand crawling may be time-consuming. However, we believe that this approach is acceptable if (1) the
information sought for is fresh and is not indexed yet by traditional search engines (e.g., querying the result
of a sport event that finished just 5 min ago) or (2) the user initiating the crawl has no time constraints (e.g.,
looking for some computer graphics papers to be cited in a PhD thesis).
� Category-based search: SE4SEE has support for category-based search in addition to keyword-based

search. In this approach, pages downloaded by the crawler are categorized using a previously trained text
classifier. At the completion of the crawl, only the set of pages relevant to the topic category selected by the
user is presented.
� Country-specific search: Since one of the initial motivations behind SE4SEE is to develop a socio-cultural

search engine, SE4SEE provides country-specific search. In general, country-specific search can be per-
formed based on the language of the page, the country domain of the page URL, or the geographical local-
ity of the hosting site. Currently, in SE4SEE, the pages are resolved according to the top-level domain
names, e.g., the user may request only the links in the ‘‘.tr’’ domain to be downloaded during the crawl.
� Gridification: SE4SEE is fully enabled to the grid. The computational burden of Web crawling to an indi-

vidual user is alleviated by the utilization of resources (computational power, storage capacity, and the net-
work bandwidth) available in the grid. In particular, SE4SEE runs on the grid infrastructure established as
a part of the SEE-GRID project. By submitting country-specific queries to the servers residing in the target
country, SE4SEE aims to exploit the geographical locality of Web pages and grid sites, thus increasing the
page crawling throughput.
4.2. Overview of query processing over the grid

Basically, there are two alternatives for parallelism in grid-enabled Web crawling: intra-query or inter-
query parallelism. In intra-query parallelism, a query is submitted to multiple grid nodes, and a crawling task
is started at the nodes, each crawling a portion of the Web. The crawled pages are than merged into a global
answer set. Although this approach offers good performance in reducing the crawling time, issues such as
avoiding overlap in local answer sets or communicating inter-node links between crawlers must be addressed
(Cho & Garcia-Molina, 2002). Inter-query parallelism, on the other hand, is a coarse-grain parallel approach,
targeting high throughput in query processing. In this approach, each computing node completes the whole
crawling task on its own. Although we have an ongoing work on intra-query parallelism, the inter-query par-
allelism approach is currently employed in SE4SEE.

SE4SEE uses the Globus7 and LCG8 middleware to interact with the grid infrastructure. As the underlying
grid middleware is able to distribute the work evenly, load balancing is not an issue for the current system.
Unfortunately, this distribution is only based on the availability of computational resources in the system. Ide-
ally, we also want it to take the maximum and currently available network bandwidths into consideration.
Such a distribution is not possible as the middleware is not network-aware. Unless this difficult problem
has been solved, a better, bandwidth-based load distribution mechanism is not possible for our application.

The deployment diagram of the SE4SEE application is given in Fig. 1. A user requires a computer with a
browser to connect to the Web portal running on the SE4SEE server. In order to prevent the misuse of grid
resources, the user is expected to have a valid SE4SEE account, which is verified by the authentication module
in the server. The Web portal acts as a mediator between the user and the grid. That is, it converts the user
query into a grid job and submits it through a user interface node (UI) to a worker node (WN). UI nodes in
the LCG architecture are entry points to the grid; jobs are submitted and their results are received from these.
WNs, on the other hand, are responsible for executing the jobs. The crawler and the classification tasks are
executed on the WN and the generated crawling/classification output is stored in the resource broker (RB),
7 Globus homepage, http://www.globus.org/
8 LCG middleware homepage, http://lcg.web.cern.ch/LCG/activities/middleware.html

http://www.globus.org/
http://lcg.web.cern.ch/LCG/activities/middleware.html

GRID UI

MySQL ServerPHP

Web Pages

Crawler

Data
Internal

Web Browser

USER NODE

SE4SEE Web Portal

Authentication Service

Error Logging

Portal File Repository

SE4SEE Server

SEE-GRID

GRID WN

Classifier

GRID RB

J2SDK

Fig. 1. Deployment diagram of SE4SEE describing the relationship between software and hardware components.

614 B.B. Cambazoglu et al. / Information Processing and Management 43 (2007) 609–623
a computer which not only coordinates the jobs and handles their assignments, but is also responsible for the
temporary storage of the jobs’ input and output. After a time period, the user may transfer the output from
the RB to the result repository in the SE4SEE server so that the results can be visualized and permanently
stored.

In Fig. 2, we exemplify the job execution in SE4SEE. In the figure, edges show the data flow over the network
between different computing systems. In our sample scenario (indicated by bold edges), a user living in Romania
performs a search for the hotels located in Croatia. The user connects to the SE4SEE portal located in Ankara
through her Web browser and submits the query. The portal transforms the query into an executable grid job
and submits the job to an available computing node located in Zagreb, which is highly likely to be geographically
close to the target Web pages. A number of hotel pages in the Croatian Web space are located, fetched, and
stored in the grid node. When the crawling and classification jobs terminate, the resulting set of pages are
retrieved back to the portal. At any time, the user can connect to the Web portal and access the results.
Turkey

AdanaSE4SEE

Servers

Portal

Web

Pages

Web

Bulgaria

Ankara

Browsers

Web

Istanbul Ankara

Zagreb

Sofia

Varna

Croatia

Romania Greece FYR of Macedonia Turkey Croatia

Fig. 2. A sample search scenario over the SE4SEE architecture.

B.B. Cambazoglu et al. / Information Processing and Management 43 (2007) 609–623 615
4.3. Components

SE4SEE is composed of three main components: a crawling component, a text classification component,
and a Web portal. We provide the details of these components in the following sections.
4.3.1. Web crawler

Since SE4SEE is a ‘‘personal’’ search engine, which serves a large number of users each with specific, per-
sonal crawling needs, an easily customizable crawler is required. Furthermore, in order to be able to adapt to
the heterogeneous nature of the grid infrastructure, a platform independent crawler should be preferred. Such
a crawler is capable of executing on different architectures, thus preventing the recompilation overhead and
compatibility issues.

The Web crawling component of SE4SEE is implemented in Java utilizing the WebSPHINX9 interactive
development environment for Web crawlers. WebSPHINX is designed to enable and ease the development
of personally customized, Web-site-specific, relocatable crawlers and also provides libraries for HTML pars-
ing, pattern matching, and common Web transformations.

The crawler in SE4SEE retrieves the pages in a breadth-first manner (Najork & Wiener, 2001). This
approach is more suitable for processing category-based queries, compared to depth-first traversal of pages.
Unless a seed URL is provided by the user, the crawls are started from seed pages which contain links to rel-
evant pages for each topic category. Seed pages are selected by human experts from the sites that provide up-
to-date links to pages specific to each topic category. The stopping conditions for the crawls are determined by
the user, who may specify either the duration of the download or the maximum number of pages crawled.
4.3.2. Text classifier

The Harbinger machine learning toolkit10 (Cambazoglu & Aykanat, 2005) is used as the text classifier in
SE4SEE. This toolkit provides implementations for a number of machine learning algorithms, readily avail-
able for use in text classification. There is also built-in support for instance selection, feature selection, and
class balancing, which all help in improving the accuracy of classification. In particular, SE4SEE uses the
naive Bayesian classifier in this toolkit for Web page classification.

The naive Bayesian classifier tries to capture the global properties of a dataset. It operates on input attri-
butes, which is the vocabulary of the set of training pages in our case. In the training phase of the classifier, the
probability of an input attribute being observed in each category is calculated. In the test phase, for each
crawled page, the probability of the page belonging to a certain category is determined using the word distri-
bution. For each page and category pair, the classifier generates a probability indicating the degree of rele-
vance between the page and the category. The category with the highest probability is chosen as the
category of a page. Despite its assumption that words appear independent of each other, naive Bayesian per-
forms well for Web page classification (Kan, 2004).

The searchable categories in SE4SEE are mostly socio-cultural in nature. The currently provided topic cat-
egories are Banks, Dining, Festivals, Hotels, Politics, Sports, Transportation, and Universities. An important
issue in successful classification is the selection of high quality Web pages for training. In order to train the
classifier, for each category, an equal number of training pages are manually collected from the Web by
human experts. Currently, the training pages are only available for Turkey and Croatia, but the training sets
for several other countries are expected to be added to the system.

During the training, training pages are passed through several filters. First, whitespace, non-alphanumeric
characters, and all HTML tags are eliminated from the pages. Language-specific stemmers were not available
at the time of the implementation; hence, no stemming is applied. But, since stopword lists were available for each
supported country, stopwords are eliminated. To further reduce the number of non-representative terms in the
training pages, feature selection (Lewis, 1992) based on the Chi-square technique is applied. The naive Bayesian
classifier is trained with the remaining terms, and a classification model is generated. This classification model is
9 WebSPHINX homepage, http://www.cs.cmu.edu/~rcm/websphinx
10 Harbinger homepage, http://bmi.osu.edu/~barla/coding/HMLT

http://www.cs.cmu.edu/~rcm/websphinx
http://bmi.osu.edu/~barla/coding/HMLT

616 B.B. Cambazoglu et al. / Information Processing and Management 43 (2007) 609–623
used during the tests to predict a category for each downloaded page whose category is unknown. The pages in a
category are ranked in decreasing order of the probabilities before being displayed to the user.

The execution of the classifier is pipelined with the crawler. The crawled pages are passed to the classifier for
classification. The classifier is concurrently executed as a separate process, which wakes up regularly and
checks if there are pages to be classified. The classifier terminates if there are no new pages after a period
of time. The concurrent execution allows the network-bound operation of the crawler to be overlapped by
the CPU-bound execution of the classifier, thus reducing the total query execution times.

4.3.3. Web portal

As the only interaction point between the user and the SE4SEE back-end, the Web portal is a major com-
ponent of the search engine. It has to be user-friendly, even though it requires a more complex interface than
classic search engines due to the application’s added capabilities. There are several SE4SEE-specific issues that
are addressed in the design of the Web portal. The concept of multiple users and jobs has led to the implemen-
tation of an authentication system. The inherent batch-like behavior of the crawling task resulted in the addi-
tion of a result maintenance mechanism. Finally, the nature of the grid environment led to the introduction of
error checking and logging mechanisms.

The long execution times of a typical crawling session, especially when combined with the high task initi-
ation costs of the grid environment, prevent the creation of a real-time search engine. A significant amount of
time passes between the submission of a query and the availability of the result, making it impractical for a
user to wait for that amount of time. Furthermore, since crawling is a time-consuming task which requires
a significant amount of network resources, the retrieved results should be stored for later access. To address
this issues, SE4SEE implements a job management system.

There are two types of queries that can be submitted: category- and keyword-based queries. These differ in
the seed page selection and page acceptance methodologies. Category-based queries aim to gather pages rel-
evant to a certain topic category by starting from a set of category-specific seed pages, performing classifica-
tion on all retrieved pages, and returning those whose similarity to the training pages exceed a certain
threshold. Keyword-based queries are similar to those in traditional search engines; here, the crawl starts from
a user-entered URL and returns the pages that contain the keywords given by the user. No classification is
performed on keyword-based queries. Both query types are restricted to user-specified top-level domains to
ensure that the crawler stays within a country’s Web space. A stopping condition is given along with the query;
the procedure continues either until a specified time has passed since the beginning of the crawl or a specified
number of pages have been processed.

After a user query is submitted to the portal, the job management system creates an appropriate JDL (Job
Description Language) file and a shell script containing the statements to be executed. A copy of the query
parameters are saved for future reference. Then, the system locates a computing node where the query can
be processed. In country-specific queries, the closest grid nodes are tried to be selected by the system. Once
a grid node is determined, the executables of the crawler and text classifier are transferred to the target node.
The crawler and text classifier binaries are executed at the target grid node until the user-specified stopping
criterion is met. When the job execution completes, the crawled pages are automatically retrieved from the
resource broker to the Web portal. The user can then view the results of the search. The results can be saved
and recalled multiple times later on, thereby preventing the waste of grid resources by re-querying.

To prevent the extensive use of grid resources, an authorization-based system is implemented. Users need to
log on to the system before any grid interaction takes place. A user, once authorized, has the ability to submit
queries, manage the crawling tasks and view the results of completed crawls. Both category- and keyword-
based queries result in the submission of grid jobs that can be examined and, if desired, aborted. The results
for completed crawls are presented in a manner similar to common search engines, along with an option to
view the page in the form it was retrieved by the crawler, effectively forming a time-stamped local cache of
the results. A keyword search can also be performed in the crawled results, allowing the refinement of pre-
sented results without having to resort to additional searches.

Finally, to ensure the durability and security of the system, additional considerations are made. A robust
authentication mechanism is implemented, preventing the unprotected storage of passwords. All queries and
database accesses are logged. We have mechanisms for intercepting and handling both the errors due to the

B.B. Cambazoglu et al. / Information Processing and Management 43 (2007) 609–623 617
failures in the grid infrastructure, reported by the grid middleware, and the errors generated by the application
itself. Constraints are placed on certain parameters of the application to prevent misuse of resources and to
make the application behave like a ‘‘good citizen’’ of the grid community. Hence, the number of crawl jobs
that can be performed by a user has been restricted and the stopping conditions of the crawls are capped
at sane values.

The pages of the Web portal are prepared using PHP, user actions on these pages invoking external appli-
cations that perform the desired tasks. All grid-interaction is over command-line utilities, relying on the
robustness of these utilities in unforeseen circumstances. This method also provides a layer of abstraction
between the grid and the application code, preventing any changes on grid side having an immediate effect
on the application. Any data used in the invocation of these utilities is stored in a regularly backed-up MySQL
database, again providing a robust solution for critical information.
5. Experiments

5.1. Platform

As the hardware platform, SE4SEE utilizes the resources available in the grid infrastructure established
throughout the SEE-GRID project. These resources, in conformance with the grid philosophy, is composed
of a variety of heterogeneous, geographically distributed computational resources. The SEE-GRID infrastruc-
ture is essentially a large network of computers that, although located in different regions of South-East Eur-
ope, work together to perform a common task. All of our experiments presented in this section are conducted
utilizing this infrastructure.

Table 1 summarizes hardware/software characteristics of the grid sites available in the SEE-GRID infra-
structure, used in our experiments. In general, it is hard to mention a typical configuration as the individual
sites that form the grid have a variety of hardware resources, sometimes even having different configurations
within a site. However, broadly speaking, we can say that experiments are conducted computers with an x86
processor clocked at 2.4 GHz or higher, and having at least 512 MB RAM. Although reported in the table,
disk capacity is not much of a concern in the experiments since all nodes met the minimum requirement, which
has been determined to be 2 GB.11 Network connectivity of the grid sites was uncertain and had to be mea-
sured through experiments. The grid site at the last row of the table is tagged as UI since this site provides the
primary interface to the SEE-GRID infrastructure. All other sites are tagged according to their geographical
locality.
5.2. Setup

The experiments were performed using the application’s command-line back-end. The typical approach of
letting the grid infrastructure decide at which site the application runs is avoided for supervised experimenta-
tion. Instead, specific sites were chosen manually and jobs are directly submitted to them. Running times for
the crawler and classifier were measured by utilizing the executing system’s measurement mechanisms and are
typically accurate to the millisecond. Scheduling times for the task were derived from the timestamps found on
the execution logs provided by the grid middleware. As the nodes on the grid are synchronized using the Net-
work Time Protocol, the derived times are accurate to the order of seconds.
5.3. Results

Five sets of experiments are conducted, where each experiment tries to justify or investigate one of the
search features provided by SE4SEE (Section 4.1). First, efficiency of personalized crawling is investigated
11 According to our experiments, a typical page is 20 KB on the average. For a 100,000-page crawl, this translates to a maximum of 2 GB
temporary disk space. However, in practice, this value is much lower since, after fetching, pages are concurrently processed by the text
classifier and most are discarded.

Table 1
Characteristics of the grid sites used in the experiments

Tag Grid site CPU (GHz) RAM (GB) Disk (TB) Middleware OS

BA grid01.pmf.unsa.ba Intel P4 2.4 0.5 0.036 SL 3.0.5 LCG-2.6.0
HR grid1.irb.hr Intel Xeon 2 · 2.8 2 0.03 SL 3.0.3 LCG-2.4.0
MK grid-ce.ii.edu.mk Intel P4 3.0 0.5 0.12 SL 3.0.3 LCG-2.4.0
BG ce001.grid.bas.bg Intel P4 2.4 0.5 0.1 SL 3.0.3 LCG-2.6.0
TR grid2.cs.bilkent.edu.tr Intel P4 3.0 1 0.08 SL 3.0.3 LCG-2.3.0
UI ce.ulakbim.gov.tr Intel P4 3.0 1 0.2 SL 3.0.3 LCG-2.6.0

618 B.B. Cambazoglu et al. / Information Processing and Management 43 (2007) 609–623
via experiments to have an understanding of the overhead that crawling introduces. Second, experiments are
carried out on page freshness to justify the on-demand crawling strategy employed in SE4SEE. Third, we con-
ducted experiments to reveal the benefits of geographically distributed Web crawling. Fourth, we experi-
mented on the overheads introduced by grid-enabled Web search. Finally, we investigated the effectiveness
of the category-based search provided by SE4SEE. The following sections present these experiments.

5.3.1. Efficiency

Personalized Web search requires a different crawling/classification task to be initiated over the Web. This
is a computationally costly and time-consuming task. In this set of experiments, we try to investigate the effi-
ciency of personalized Web crawling. For this purpose, we crawled and classified varying numbers of pages
from the ‘‘.edu.tr’’ domain (Turkish educational sites) and The University of Split. In the experiments, the
classifier is executed separately after the crawler finished downloading pages, thus enabling us to measure
the relative overheads of the two components more accurately.

Fig. 3 displays the times obtained in crawling and classifying varying number of pages using the grid site
denoted with tag UI. The times for archiving/compressing the resulting set of pages are relatively negligible
and hence not displayed. According to the figure, although the crawling and classification components have
similar overheads at low number of pages, the crawling overhead dominates as the number of pages increases.
The results show that personalized search is practical for crawling a fair number of pages. Moreover, in
SE4SEE, the crawler and classifier are concurrently executed in a pipelined fashion. Hence, the classification
is overlapped with network transfer; the actual total execution time is bounded from above by the sum of the
reported execution times of these two components and from below by the maximum of the two values. As also
illustrated by this experiment, crawling multiple sites is usually faster than crawling a single site.
C
ra

w
le

r

C
la

ss
if

ie
r

C
ra

w
le

r

C
la

ss
if

ie
r

C
ra

w
le

r

C
la

ss
if

ie
r

C
ra

w
le

r

C
la

ss
if

ie
r

C
ra

w
le

r

C
la

ss
if

ie
r

C
ra

w
le

r

C
la

ss
if

ie
r

C
ra

w
le

r

C
la

ss
if

ie
r

C
ra

w
le

r

C
la

ss
if

ie
r

Component

0

50

100

150

200

250

300

E
xe

cu
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

10 pages 100 pages 1000 pages 1 page 10 pages 100 pages 1000 pages1 page

Universities in Turkey (*.edu.tr) University of Split (*.unist.hr)

Fig. 3. Performance of Web crawling/classification with increasing number of pages.

da
y

0

da
y

1

da
y

7

da
y

0

da
y

1

da
y

7

da
y

0

da
y

1

da
y

7

da
y

0

da
y

1

da
y

7

da
y

0

da
y

1

da
y

7

da
y

0

da
y

1

da
y

7

Time

0

25

50

75

100

P
ag

e
fr

es
h

n
es

s
(%

)

CNN SportsFestivals
(*.tr)(*.cnn.com) (*.tr) (*.tr)

Univ. in U.S.
(*.edu)

Bilkent Univ.
(*.bilkent.edu.tr)

Politics

Fig. 4. The variation of page freshness in time for different sites or topic categories.

B.B. Cambazoglu et al. / Information Processing and Management 43 (2007) 609–623 619
5.3.2. Page freshness

Since obtaining high page freshness is the one of the motivations behind SE4SEE, we tried to figure out the
importance of page freshness via experiments and observed the rate of change in the textual material found in
the Web pages (ignoring the HTML content and other information). For this purpose, we first made an initial
crawl over a set of Web sites to obtain an initial collection. Throughout a week, the pages in the initial col-
lection were daily recrawled. The freshness F(t) of a crawl at time t is measured by the F(t) = 100 · (I �M(t))/
I formula, where I is the number of pages in the initial collection and M(t) is the number of pages whose con-
tent is modified (i.e., updated or deleted) and hence differs from the initial download.

Fig. 4 displays the change of page freshness after t = 1 and t = 7 days. At the top of the figure, the sites or
topic categories are given. The topic categories include sites picked from the training set of pages we manually
created. According to Fig. 4, a considerable portion of the pages seems to be modified frequently. Especially,
in the CNN Web site, only 12.50% of the pages remain the same after a day. Similarly, after a week, almost
half of the educational pages are modified. A similar behavior is not observed in the crawl made over the Bil-
kent University since this crawl includes pages deep in the directory hierarchy, which have a tendency to be
modified less frequently.

Page freshness also shows variation among the topic categories, i.e., while pages belonging to a category
remain untouched, pages in some other category may be modified frequently. For example, according to
our experiments, the festival pages remain rather static, whereas sports pages are updated more frequently.
Overall, we believe that these experiments justify the need for the on-demand crawling strategy employed
in SE4SEE, but not available in the traditional search engines.
5.3.3. Geographical locality

A primary benefit of the use of the grid infrastructure in SE4SEE is the geographically distributed nature of
the grid sites. Hence, experiments are conducted to investigate the effect of utilizing the grid for geographically
distributed Web crawling, where pages are tried to be downloaded by geographically closer servers. Specific
sites were chosen as test sites based on their location, and jobs were directly submitted to them. In the exper-
iments, crawling tasks were initiated at five different grid sites, located in Bosnia-Herzegovina (BA), Bulgaria
(BG), Croatia (HR), FYROM (MK), and Turkey (TR).

Fig. 5 displays the page crawling throughput (number of pages crawled per minute) achieved by the grid
sites for different sets of pages. In this experiment, we first aimed to figure out the typical bandwidth of the
individual sites. Note that a closer site with a low network bandwidth might perform worse than a site that
is geographically far to the pages, even though the latter has a higher latency with respect to the crawled pages.
To avoid misinterpretation of the other results due to the differences in the bandwidth, an approximation of
the bandwidth is required. To obtain such a value, a crawl was performed on a Website geographically distant

Fig. 5. Effect of geographical locality on crawling throughput.

620 B.B. Cambazoglu et al. / Information Processing and Management 43 (2007) 609–623
to all sites, far enough to make any advantages due to the proximity negligible. For this purpose, the CNN
site, located in US, is chosen and crawled by all grid sites. This experiment shows that the network capacity
of the grid site BA is problematic, whereas the TR site performs relatively better than the rest. However, we
must note that even these approximate bandwidths may be misleading since there is a possibility that some
sites may have direct satellite connection to target sites, rendering geographical proximity less important.

According to Fig. 5, as expected, each grid site performs well in downloading the pages geographically
nearby. Even the BA site, which has a limited bandwidth, achieves a fair throughput in crawling pages from
the Web server of the University of Sarajevo. Similarly, the BG and TR sites achieve the highest throughput in
crawling pages located Bulgaria and Turkey, respectively. Note that, if the throughputs were normalized with
respect to the estimated site bandwidths, in the third experiment (the University of Sofia), the throughput gap
between the BG site and the others would be more significant in favor of the BG site. These experimental
results indicate that the spatial proximity between the crawling sites and the target pages plays an important
role in the crawling throughput, thus justifying the geographically distributed crawling approach of SE4SEE.

5.3.4. Gridification

The overhead of the grid architecture had to be determined to be able to make time-comparisons to classic
search engines. To this effect, several crawls of different sizes were made from the same grid site. Execution
times for four job phases were extracted from the grid logs: ready, scheduled, running, and fetching. The ready
time is the time it takes for a job to be assigned to a site once it has been submitted to the system. The sched-
uled time indicates how long the job waits at the grid node. The running time is the execution time of the appli-
cation, and the fetching time is the time it takes for the output to be retrieved form the resource broker. Note
that the time it takes for the output to be transmitted from the grid node to the resource broker could not be
timed.

The results in Fig. 6 demonstrate the high start-up costs of the grid infrastructure. The startup overhead of
the jobs take a dominating amount of time for smaller crawls and are still a significant source of delay even for
the larger crawls sizes. Most of this overhead comes from the delays introduced at the crawling nodes. The
time to fetch the results form the resource broker is negligible, but increases linearly with the number of
fetched pages, as expected.

5.3.5. Effectiveness

One of the benefits provided by the SE4SEE application is that it assigns categories to the retrieved pages.
Selection of good seed pages for topic categories is important, as the crawling task is started from these pages
and continued in a breadth-first manner. In this set of experiments, we try to investigate the quality of seed page
selection and the behavior of classification. For this purpose, 100-page and 1000-page crawls are initiated for two
different topic categories (banks and sports) and the distribution of pages into categories are investigated.

Fig. 7. Effect of seed page selection in classification of crawled pages.

R
ea

dy

Sc
he

du
le

d

R
un

ni
ng

F
et

ch
in

g

R
ea

dy

Sc
he

du
le

d

R
un

ni
ng

F
et

ch
in

g

R
ea

dy

Sc
he

du
le

d

R
un

ni
ng

F
et

ch
in

g

R
ea

dy

Sc
he

du
le

d

R
un

ni
ng

F
et

ch
in

g

Job status

0

25

50

75

100

P
er

ce
n

t
o

ve
rh

ea
d

 (
%

)

5 pages 50 pages 5000 pages500 pages

Fig. 6. The percent dissection of duration for different phases of query execution on the grid.

B.B. Cambazoglu et al. / Information Processing and Management 43 (2007) 609–623 621
Fig. 7 shows the results obtained in these experiments. As expected, as the pages are more distant in the link
structure from the starting set of seed pages, the probability of classifying pages into categories other than the
target category increases. This is because either the classification accuracy degrades or pages belonging to irrel-
evant categories are crawled. For example, in the 100-page crawl performed over the sports pages, 72.0% of
the to pages are classified as sports pages, whereas the rate of relevance is 67.7% in the 1000-page crawl case.
The behavior of the classification also depends on the characteristics of the topic category. For example, the
bank pages are more easily distinguished (a similar behavior is also observed for the politics and universities
categories) even though some portion of them are classified as politics pages. Accurately classifying sports
pages seems to be harder, probably because textual features identifying sports pages overlap with the features
identifying other categories.
6. Conclusion and future work

In the current version of SE4SEE, the usage of grid resources is via an inter-query-parallel approach. One
other perspective could be to use an intra-query-parallel approach where each query is decomposed into

622 B.B. Cambazoglu et al. / Information Processing and Management 43 (2007) 609–623
subqueries running on multiple machines. As an improvement over the current SE4SEE architecture, the
future direction of the SE4SEE infrastructure is to support intra-query parallelism to make a better use of
the grid resources.

One of the assets of the SE4SEE is its socio-cultural value. Grid, by its very nature is a domain of cultural
integration. As a part of the grid infrastructure, SE4SEE aims to promote the establishment of the cultural
foundations of the grid infrastructure and serve as a basis for socio-cultural interaction and integration. In
order to achieve its goal, SE4SEE provides the grid community with tools for country- and category-specific
search options. Hence, the categories selected so far are picked according to their emphasis on the cultural
variations within the grid community. We hope this to be a good opportunity to enhance the inter-cultural
relations in South-East European region.
Acknowledgements

This publication is based on the work performed in the framework of the FP6 project SEE-GRID, which is
funded by the European Community. The SEE-GRID consortium consists of eleven contractors: ten repre-
sentatives or incubators of National Grid Initiatives (NGIs) from SE European countries and CERN. The
consortium contractors that represent NGIs are: GRNET (Greece), SZTAKI (Hungary), ICI (Romania),
CLPP (Bulgaria), TUBITAK (Turkey), ASA (Albania), BIHARNET (Bosnia Herzegovina), UKIM a(FYR-
oM), UOB (Serbia-Montenegro), RBI (Croatia).

This work is also partially supported by The Scientific and Technological Research Council of Turkey un-
der grant EEEAG-106E069.
References

Altingovde, I. S., & Ulusoy, O. (2004). Exploiting interclass rules for focused crawling. IEEE Intelligent Systems, 19(6), 66–73.
Arasu, A., Cho, J., Garcia-Molina, H., & Raghavan, S. (2001). Searching the Web. ACM Transactions on Internet Technologies, 1(1), 2–43.
Baeza-Yates, R., Castillo, C., Marin, M., & Rodriguez, A. (2005). Crawling a country: better strategies than breadth-first for Web page

ordering. In Special interest tracks and posters of the 14th international conference on World Wide Web. Chiba, Japan.
Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information retrieval. New York: Addison-Wesley.
Bender, M., Michel, S., Triantafillou, P., Weikum, G., & Zimmer, C. (2005). Improving collection selection with overlap awareness in P2P

search engines. In Proceedings of the 28th annual international ACM SIGIR conference on research and development in information

retrieval (pp. 67–74). Salvador, Brazil.
Boldi, P., Codenotti, B., Santini, M., & Vigna, S. (2002). Ubicrawler: a scalable fully distributed Web crawler. In Proceedings of

AusWeb02, the eighth Australian World Wide Web conference.
Cambazoglu, B. B., & Aykanat, C. (2005). Harbinger machine learning toolkit manual. Technical Report, BU-CE-0502, Bilkent

University, Department of Computer Engineering. Ankara, Turkey.
Cambazoglu, B. B., & Aykanat, C. (2006). Performance of query processing implementations in ranking-based text retrieval systems using

inverted indices. Information Processing & Management, 42(4), 875–898.
Cambazoglu, B. B., Turk, A., & Aykanat, C. (2004). Data-parallel Web crawling models. Lecture Notes in Computer Science, 3280,

801–809.
Can, F., Altingovde, I. S., & Demir, E. (2004). Efficiency and effectiveness of query processing in cluster-based retrieval. Information

Systems, 29(8), 697–717.
Chakrabarti, S., van den Berg, M., & Dom, B. (1999). Focused crawling: a new approach to topic-specific Web resource discovery.

Computer Networks, 31(11–16), 1623–1640.
Cho, J., & Garcia-Molina, H. (2000). The evolution of the Web and implications for an incremental crawler. In Proceedings of the 26th

international conference on very large data bases (pp. 200–209). Cairo, Egypt.
Cho, J., & Garcia-Molina, H. (2002). Parallel Crawlers. In Proceedings of the seventh World-Wide Web conference (pp. 124–135).
Cho, J., Garcia-Molina, H., & Page, L. (1998). Efficient crawling through URL ordering. In Proceedings of the 7th international World

Wide Web conference (pp. 161–172). Brisbane, Australia.
Clarke, C. L. A., Cormack, G. V., & Tudhope, E. A. (2000). Relevance ranking for one to three term queries. Information Processing and

Management, 36(2), 291–311.
Diligenti, M., Coetzee, F., Lawrence, S., Giles, C. L., & Gori, M. (2000). Focused crawling using context graphs. In Proceedings of the 26th

international conference on very large data bases (pp. 527–534). Cairo, Egypt.
Foster, I., & Kesselman, C. (2003). The grid 2: Blueprint for a new computing infrastructure. San Francisco: Morgan Kaufman.
Han, E., Karypis, G., & Kumar, V. (2002). Text categorization using weight adjusted k-nearest neighbor classification. In Proceedings of

the 5th Pacific-Asia conference on knowledge discovery and data mining (pp. 53–65).
Heydon, A., & Najork, M. (1999). Mercator: a scalable, extensible Web crawler. World Wide Web, 2(4), 219–229.

B.B. Cambazoglu et al. / Information Processing and Management 43 (2007) 609–623 623
Kan, M.-Y. (2004). Web page categorization without the Web page. In Proceedings of the 13th international World Wide Web conference

(pp. 262–263).
Khoussainov, R., Zuo, X., & Kushmerick, N. (2004). Grid-enabled Weka: a toolkit for machine learning on the grid. ERCIM News 59.
Lam, W., Ruiz, M. E., & Srinivasan, P. (1999). Automatic text categorization and its applications to text retrieval. IEEE Transactions on

Knowledge and Data Engineering, 11(6), 865–879.
Lee, D. L., Chuang, H., & Seamons, K. (1997). Document ranking and the vector-space model. IEEE Software, 14(2), 67–75.
Lewis, D. D. (1992). Feature selection and feature extraction for text categorization. In Proceedings of speech and natural language

workshop (pp. 212–217).
Lewis, D. D., & Ringuette, M. (1994). A comparison of two learning algorithms for text categorization. In Proceedings of the third annual

symposium on document analysis and information retrieval (pp. 81–93).
Long, X., & Suel, T. (2003). Optimized query execution in large search engines. In Proceedings of the 29th international conference on very

large databases. Berlin, Germany.
McCallum, A., & Nigam, K. (1998). A comparison of event models for naive bayes text classification. In AAAI-98 Workshop on learning

for text categorization.
Melnik, S., Raghavan, S., Yang, B., & Garcia-Molina, H. (2001). Building a distributed full-text index for the Web. ACM Transactions on

Information Systems, 19(3), 217–241.
Moffat, A., Zobel, J., & Sacks-Davis, R. (1994). Memory efficient ranking. Information Processing and Management, 30(6), 733–744.
Najork, M., & Wiener, J. L. (2001). Breadth-first crawling yields high-quality pages. In Proceedings of the 10th international conference on

World Wide Web (pp. 114–118). Hong Kong, Hong Kong.
Ng, H. T., Goh, W. B., & Low, K. L. (1997). Feature selection, perceptron learning, and a usability case study for text categorization.

In Proceedings of the 20th international conference on research and development in information retrieval (pp. 67–73).
Page, L., & Brin, S. (1998). The anatomy of a large-scale hypertextual Web search engine. In Proceedings of the seventh World-Wide Web

conference (pp. 107–117).
Ribeiro-Neto, B. A., & Barbosa, R. A. (1998). Query performance for tightly coupled distributed digital libraries. In Proceedings of the

third ACM conference on digital libraries (pp. 182–190).
Scholze, F., Haya, G., Vigen, J., & Prazak, P. (2004). Project GRACE: a grid based search tool for the global digital library. In 7th

international conference on electronic theses and dissertations. Lexington, KY.
Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing Surveys, 34(1), 1–47.
Shkapenyuk, V., & Suel, T. (2002). Design and implementation of a high-performance distributed Web crawler. In International conference

on data engineering (pp. 357–368).
Sun, A., Lim, E. P., & Ng, W. K. (2002). Web classification using support vector machine. In Proceedings of the 4th international workshop

on Web information and data management (pp. 96–99).
Teng, S., Lu, Q., Eichstaedt, M., Ford, D., & Lehman, T. (1999). Collaborative Web crawling: information gathering/processing over

Internet. In 32nd Hawaii international conference on system sciences.
Tomasic, A., Garcia-Molina, H., & Shoens, K. (1994). Incremental updates of inverted lists for text document retrieval. In Proceedings of

the 1994 ACM SIGMOD international conference on management of data (pp. 289–300). Minneapolis, Minnesota.
Turtle, H., & Flood, J. (1995). Query evaluation: strategies and optimizations. Information Processing and Management, 31(6), 831–850.
Wilkinson, R., Zobel, J., & Sacks-Davis, R. (1995). Similarity measures for short queries. In Fourth text retrieval conference (TREC-4)

(pp. 277–285). Gaithersburg, Maryland.
Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learning tools and techniques (2nd ed.). San Francisco: Morgan

Kaufman.
Wong, W. Y. P., & Lee, D. K. (1993). Implementations of partial document ranking using inverted files. Information Processing and

Management, 29(5), 647–669.
Yang, Y. (1999). An evaluation of statistical approaches to text categorization. Journal of Information Retrieval, 1(1/2), 67–88.
Zeinalipour-Yazti, D., & Dikaiakos, M. D. (2002). Design and implementation of a distributed crawler and filtering processor. In

Proceedings of the next generation information technologies and systems (pp. 58–74).
Zobel, J., Moffat, A., & Sacks-Davis, R. (1992). An efficient indexing technique for full-text database systems. In Proceedings of the 18th

international conference on very large databases (pp. 352–362). Vancouver, Canada.

	Architecture of a grid-enabled Web search engine
	Introduction
	Preliminaries
	Web crawling
	Text classification

	Related work
	The SE4SEE Architecture
	Features
	Overview of query processing over the grid
	Components
	Web crawler
	Text classifier
	Web portal

	Experiments
	Platform
	Setup
	Results
	Efficiency
	Page freshness
	Geographical locality
	Gridification
	Effectiveness

	Conclusion and future work
	Acknowledgements
	References

