
A NEW MAPPING

HEURISTIC BASED ON

MEAN FIELD ANNEALING�

Tev�k Bultan and Cevdet Aykanat

Department of Computer Engineering and Information Science�
Bilkent University� ����� Bilkent� Ankara� Turkey

�This work is partially supported by Intel Supercomputer Systems Division under Grant SSD�������� and
Turkish Science and Research Council under Grant EEEAG���

�

A NEW MAPPING HEURISTIC BASED ON MFA

Abstract

A new mapping heuristic is developed� based on the recently proposed Mean Field
Annealing �MFA� algorithm� An e�cient implementation scheme� which decreases
the complexity of the proposed algorithm by asymptotical factors� is also given� Per�
formance of the proposed MFA algorithm is evaluated in comparison with two well�
known heuristics� Simulated Annealing and Kernighan�Lin� Results of the exper�
iments indicate that MFA can be used as an alternative heuristic for solving the
mapping problem� Inherent parallelism of MFA is exploited by designing an e�cient
parallel algorithm for the proposed MFA heuristic�

�

� Introduction

Today� with the aid of VLSI technology� parallel computers not only exist in research labora�

tories� but are also available on the market as powerful� general purpose computers� Wide use

of parallel computers in various compute intensive applications makes the problem of mapping

parallel programs to parallel computers more crucial� The mapping problem arises while devel�

oping parallel programs for distributed�memory� message�passing parallel computers which are

usually named as multicomputers� In multicomputers� processors have neither shared memory

nor shared address space� Each processor can only access its local memory� Synchronization

and coordination among processors are achieved through explicit message passing� Processors

of a multicomputer are usually connected by utilizing one of the well�known direct intercon�

nection network topologies such as ring� mesh� hypercube� etc� These architectures have the

nice scalability feature due to the lack of shared resources and the increasing communication

bandwidth with the increasing number of processors� However� designing e�cient parallel al�

gorithms for such architectures is not straightforward� An e�cient parallel algorithm should

exploit the full potential power of the architecture� Processor idle time and the interprocessor

communication overhead may lead to poor utilization of the architecture� hence poor overall

system performance�

Parallel algorithm design for multicomputers can be divided into two steps� First step is

the decomposition of the problem into a set of interacting sequential sub�problems �or tasks�

which can be executed in parallel� Second step is mapping each one of these tasks to an

individual processor of the parallel architecture in such a way that the total execution time is

minimized� The second step� named as the mapping problem �	
� is very crucial in designing

e�cient parallel programs� In general� the mapping problem is known to be NP�hard ���� ��
�

Hence� heuristics giving sub�optimal solutions are used to solve the problem ��� 	� �� ��� ���

��
� Two distinct approaches have been considered in the context of mapping heuristics
 one

phase and two phase ��
� In one phase approaches� referred as many�to�one mapping� tasks of

the parallel program are directly mapped onto the processors of the multicomputer� In two

phase approaches� clustering phase is followed by one�to�one mapping phase� In the clustering

phase� tasks of the parallel program are partitioned into as many equal weighted clusters as the

number of processors of the multicomputer� while minimizing the total weight of the interactions

�

among clusters ���
� The problem solved in the clustering phase is identical to the multi�way

graph partitioning problem� In the one�to�one mapping phase� each cluster is assigned to an

individual processor of the multicomputer such that the total inter�processor communication is

minimized ���
� Kernighan�Lin �KL� ��� �	
 and Simulated Annealing �SA� ���
 heuristics are

two attractive algorithms widely used for solving the mapping problem ��� ��� ��� ��
�

Heuristics proposed to solve the mapping problem are compute intensive� Solving the mapping

problem can be considered as a preprocessing performed before the execution of the parallel

program on the parallel computer� Sequential execution of the mapping heuristic may introduce

unacceptable preprocessing overhead� limiting the e�ciency of the parallel implementation�

E�cient parallel mapping heuristics are needed in such cases� The KL and SA heuristics are

inherently sequential� hence hard to parallelize� E�cient parallelizations of these algorithms

remain as important issues in parallel processing research�

In this work� a recently proposed algorithm� called Mean Field Annealing �MFA� ���� �	� ��
 is

formulated for the many�to�one mapping problem� MFA combines the collective computation

property of Hop�eld Neural Networks �HNN� with the annealing notion of SA� It is originally

proposed for solving traveling salesperson problem� as a working alternative to HNN ���
�

MFA is also a general strategy as SA� and can be applied to di�erent problems with suitable

formulations� Previous works on MFA ��� �� ��� ��� �	� ��
 show that it can be successfully

applied to various combinatorial optimization problems� MFA has the inherent parallelism that

exists in most of the neural network algorithms�

Section � presents a formal de�nition of the mapping problem by modeling parallel program

design process� In Section �� general formulation of the MFA heuristic is presented� Section 	

presents the proposed formulation of the MFA algorithm for the mapping problem� An e�cient

implementation scheme for the proposed algorithm is also described in this section� Section �

presents the performance evaluation of the MFA algorithm for the mapping problem in com�

parison with two well known mapping heuristics
 SA and KL� Finally� e�cient parallelization

of the MFA algorithm for the mapping problem is proposed in Section ��

	

� The Mapping Problem

In various classes of problems� interaction pattern among the tasks is static� Hence� the de�

composition of the algorithm can be represented by a static task graph� Vertices of this graph

represent the atomic tasks and the edge set represents the interaction pattern among the tasks�

Relative computational costs of atomic tasks can be known or estimated prior to the execution

of the parallel program� Hence� weights can be associated with the vertices in order to denote

the computational costs of the corresponding tasks�

Two di�erent models� Task Precedence Graph �TPG� and Task Interaction Graph �TIG�� are

used for modeling static task interaction patterns���� ��
� TPG is a directed graph where

directed edges represent execution dependencies� Each edge denotes a pair of tasks
 source and

destination� The destination task can only be executed after the completion of the execution

of the source task� In general� only the subsets of tasks which are unreachable from each other

in TPG can be executed independently�

In the TIG model� interaction patterns are represented by undirected edges between vertices�

In this model� each atomic task can be executed simultaneously and independently� Each edge

denotes the need for the bidirectional interaction between corresponding pair of tasks at the

completion of the execution of these tasks� Edges may be associated with weights which denote

the amount of bidirectional information exchange involved between pairs of tasks� TIG usually

represents the repeated execution of the tasks with intervening task interactions denoted by

the edges�

The TIG model may seem to be unrealistic for general applications since it does not consider

the temporal interaction dependencies among the tasks ���
� However� there are various classes

of problems which can be successfully modeled with the TIG model� For example� iterative

solution of systems of equations arising in �nite element applications ��� ��
 and power system

simulations ��� ��
� and VLSI simulation programs ���
 are represented by TIGs� In this paper�

problems which can be represented by the TIG model are addressed�

In order to solve the mapping problem� parallel architecture must also be modeled in a way

that represents its architectural features� Parallel architectures can easily be represented by a

�

Processor Organization Graph �POG�� where nodes represent the processors and edges repre�

sent the communication links� In fact� POG is a graphical representation of the interconnection

topology utilized for the organization of the processors of the parallel architecture� In general�

nodes and edges of a POG are not associated with weights since most of the commercially

available multicomputer architectures are homogeneous with identical processors and commu�

nication links�

In a multicomputer architecture� each adjacent pair of processors communicate with each other

over the communication link connecting them� Such communications are referred as single�hop

communications� However� each non�adjacent pair of processors can also communicate with

each other by means of software or hardware routing� Such communications are referred as multi�

hop communications� Multi�hop communications are usually routed in a static manner over the

shortest path of links between the communicating pairs of processors� Communications between

non�adjacent pairs of processors can be associated with relative unit communication costs�

Unit communication cost is de�ned as the communication cost per unit of information� Unit

communication cost between a pair of processors will be a function of the shortest path between

these processors and the routing scheme used for multi�hop communications� For example� in

software routing� the unit communication cost is linearly proportional to the shortest path

distance between the pair of communicating processors� Hence� the communication topology of

the multicomputer can be modeled by an undirected complete graph� referred here as Processor

Communication Graph �PCG�� The nodes of PCG represent the processors and the weights

associated with the edges represent the unit communication costs between pairs of processors�

As is mentioned earlier� PCG can easily be constructed using the topological properties of POG

and the routing scheme utilized for inter�processor communication�

The objective in mapping TIG to PCG is the minimization of the expected execution time of

the parallel program on the target architecture� Thus� the mapping problem can be modeled as

an optimization problem by associating the following quality measures with a good mapping �

�i� interprocessor communication overhead should be minimized� �ii� computational load should

be uniformly distributed among processors in order to minimize processor idle time�

A mapping problem instance can be formally represented with two undirected graphs� Task

Interaction Graph �TIG� and Processor Communication Graph �PCG�� The TIG GT �V�E��

�

has jV j � N vertices labeled as ��� �� � � � � i� j� � � � � N�� Vertices of the GT represent the atomic

tasks of the parallel program� Vertex weight wi denotes the computational cost associated with

task i for � � i � N � Edge weight eij denotes the volume of interaction between tasks i and j

connected by edge �i� j� � E� The PCG GP �P�D�� is a complete graph with jP j � K nodes and

jDj � �
K

�
� edges� Nodes of the GP � labeled as ��� �� � � � � p� q� � � � �K�� represent the processors

of the target multicomputer� Edge weight dpq� for � � p� q � N and p �� q� denotes the unit

communication cost between processors p and q�

Given an instance of the mapping problem with the TIG GT �V�E� and the PCG GP �P�D��

the question is to �nd a many�to�one mapping function M � V � P � which assigns each vertex

of the graph GT to a unique node of the graph GP � and minimizes the total interprocessor

communication cost �CC�

CC �
X

�i�j��E�M�i� ��M�j�

eijdM�i�M�j� ���

while maintaining the computational load �CLp � computational load of processors p�

CLp �
X

i�V�M�i��p

wi� � � p � K ���

of each processor balanced� Here� M�i� � p denotes the label �p� of the the processor that task i

is mapped to� In Eq� ���� each edge �i� j� of the GT contributes to the communication cost �CC��

only if vertices i and j are mapped to two di�erent nodes of the GP � i�e� M�i� �� M�j�� The

amount of contribution is equal to the product of the volume of interaction eij between these

two tasks and the unit communication cost dpq between processors p and q where p � M�i� and

q � M�j�� The computational load of a processor is the summation of the weights of the tasks

assigned to that processor� Perfect load balance is achieved if CLp � �
PN

i�� wi��K for each p�

� � p � K� Computational load balance of the processors can be explicitly included in the cost

function using a term which is minimized when all processor loads are equal� Another scheme

is to include load balance criteria implicitly in the algorithm� Figure � illustrates a sample

mapping problem instance� Figure ��a� shows a TIG with N � � tasks� Figure ��b� shows POG

of a ��dimensional hypercube with K � 	 processors� and Figure ��c� shows the corresponding

PCG� In Figure �� numbers inside the circles denote the vertex labels� and numbers within the

parenthesis denote the vertex or edge weights� Binary labeling of the ��dimensional hypercube

is also given in Figure ��b�� Note that� unit communication cost assignment to edges of PCG

�

1 2

3

6 7

54

8

4

1 2

3 4

1 2

3

(1) (2) (1)

(2)

(2) (1)

(2)

(1)

(2)

(1)

(1)

(3)(2)

(2)

(1)

(3)

(1)

(1) (1)

(1)

(2)

(2)

10 11

00 01

(a)

(b)

(c)

Figure �� A mapping problem instance� with �a� TIG� �b� POG �which represents a ��
dimensional hypercube� and �c� PCG�

is performed assuming software routing protocol for multi�hop communications� A solution to

the mapping problem instance shown in Figure � is

i � � � 	 � � � �
M�i� 	 	 � � � � � �

Communication cost of this solution can be calculated as CC � �� Computational loads of

the processors are CLp � � for � � p � 	� Hence� perfect load balance is achieved� since

�
P�

i�� wi��	 � ��

� Mean Field Annealing

Mean Field Annealing �MFA� merges collective computation and annealing properties of Hop�

�eld Neural Networks �HNN� ��� ��� ��
 and Simulated Annealing �SA� ���
� respectively� to

obtain a general algorithm for solving combinatorial optimization problems� HNN is used for

�

solving various optimization problems and reasonable results are obtained for small size prob�

lems ��
� However� simulations of this network reveals the fact that it is hard to obtain feasible

solutions for large problem sizes� Hence� the algorithm does not have a good scaling property�

which is a very important performance criterion for heuristic optimization algorithms� MFA is

proposed as a successful alternative to HNN ���� ��� �	� ��
� In the MFA algorithm� problem

representation is identical to HNN ��� ��� �	
� but iterative scheme used to relax the system

is di�erent� MFA can be used for solving a combinatorial optimization problem by choosing a

representation scheme in which the �nal states of the spins can be decoded as a solution to the

target problem� Then� an energy function is constructed whose global minimum value corre�

sponds to the best solution of the problem to be solved� MFA is expected to compute the best

solution to the target problem� starting from a randomly chosen initial state� by minimizing

this energy function�

The MFA algorithm is derived by making an analogy to Ising spin model which is used to

estimate the state of a system of particles or spins in thermal equilibrium� This method was

�rst proposed for solving the traveling salesperson problem ���
 and then it is applied to the

graph partitioning problem ��� �� ��� ��
� Here� general formulation of the MFA algorithm ���

is given for the sake of completeness� In the Ising spin model� the energy of a system with S

spins has the following form�

H�s� �
�

�

SX
k��

X
l��k

�klsksl �
SX

k��

hksk ���

Here� �kl indicates the level of interaction between spins k and l� and sk � f�� �g is the value

of spin k� It is assumed that �kl � �lk and �kk � � for � � k� l�� S� At thermal equilibrium�

spin average hski of spin k can be calculated using Boltzmann distribution as follows ���

hski �
�

� � e��k�T
�	�

Here� �k � hH�s�ijsk�� � hH�s�ijsk�� represents the mean �eld e�ecting on spin k� where the

energy average hH�s�i of the system is

hH�s�i �
SX

k��

X
l��k

�klhsksli�
SX

k��

hkhski ���

The complexity of computing �k using Eq� ��� is exponential ���
� However� for large number

�

�� Get the initial temperature T�� and set T 	 T�

�� Initialize the spin averages hsi 	
hs�i� � � � � hski� � � � � hsSi�

�� While temperature T is in the cooling range DO

��� While system is not stabilized for current temperature DO

����� Select a spin k at random�

����� Compute �k� �k 	 �
P

l��k �klhsli � hk

����� Update hski� hski 	 f�
 e��k�Tg��

��� Update T according to the cooling schedule

Figure �� The Mean Field Annealing algorithm�

of spins� mean �eld approximation can be used to compute the energy average as

hH�s�i �
�

�

SX
k��

X
l��k

�klhskihsli �
SX
k��

hkhski ���

Since hH�s�i is linear in hski� mean �eld �k can be computed using the following equation�

�k � hH�s�ijsk�� � hH�s�ijsk�� � �
�hH�s�i

�hsii
� �

�
�X
l��k

�klhsli � hk

�
A ���

Thus� the complexity of computing �k reduces to O�S��

At each temperature� starting with initial spin averages� the mean �eld e�ecting on a randomly

selected spin is computed using Eq� ���� Then� spin average is updated using Eq� �	�� This

process is repeated for a random sequence of spins until the system is stabilized for the current

temperature� The general form of the MFA algorithm derived from this iterative relaxation

scheme is shown in Figure ���� The MFA algorithm is used to �nd the equilibrium point of a

system of S spins using an annealing process similar to SA�

HNN and SA have a major di�erence
 SA is an algorithm implemented in software� whereas

HNN is derived with a possible hardware implementation in mind� MFA is somewhere in

between� it is an algorithm implemented in software� having potential for hardware realiza�

tion ��	� ��
� In this work MFA is treated as a software algorithm� Performance of MFA is

comparable to other software algorithms as SA and KL� conforming this point of view�

��

� Mean Field Annealing for the Mapping Problem

In this section� we propose a formulation of the Mean Field Annealing �MFA� algorithm for

the mapping problem� The TIG and PCG models described in Section � are used to represent

the mapping problem� The formulation is �rst presented for problem instances modeled by

dense TIGs� The modi�cations in the formulation for the mapping problem instances that can

be modeled by sparse TIGs are presented later� In this section� we also present an e�cient

implementation scheme for the proposed formulation�

��� Formulation

A spin matrix� which consists of N task�rows and K processor�columns� is used as the repre�

sentation scheme� That is� N �K spins are used to encode the solution� The output sip of a

spin �i� p� denotes the probability of mapping task i to processor p� Here� sip is a continuous

variable in the range � � sip � �� When the MFA algorithm reaches to a solution� spin values

converge to either � or � indicating the result� If sip converges to �� this means that task i

is mapped to processor p� For example� a solution to the mapping problem instance given in

Figure � can be represented by the following N �K spin matrix�

K Processorsz �� �
� � � �

N Tasks

���������������
�������������	

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

Note that� this solution is identical to the solution given at the end of Section ��

Following energy �i�e�� cost� function is proposed for the mapping problem

H�s� �
�

�

NX
i��

X
j ��i

KX
p��

X
q ��p

eijsipsjqdpq �
r

�

NX
i��

X
j ��i

KX
p��

sipsjpwiwj ���

��

Here� eij denotes the edge weight between the pair of tasks i and j� and wi denotes the weight

of task i in TIG� Edge weight between processors p and q in PCG is represented by dpq� Under

the mean �eld approximation� the expression hH�s�i for the expected value of the cost function

will be similar to the expression given for H�s� in Eq� ���� However� in this case� sip� siq and

sjp should be replaced with hsipi� hsiqi and hsjpi respectively� For the sake of simplicity� sip is

used to denote the expected value of spin �i� p� �i�e�� spin average hsipi��

In Eq� ���� the term sip � sjq denotes the probability that task i and task j are mapped to

two di�erent processors p and q� respectively� Hence� the term eij � sip � sjq � dpq represents

the weighted interprocessor communication overhead introduced due to the mapping of tasks i

and j to di�erent processors� Note that� in Eq� ���� the �rst quadruple summation term

covers all processor pairs in PCG for each edge pair in TIG� Hence� this term denotes the total

interprocessor communication cost for a mapping represented by an instance of the spin matrix�

Then� minimization of the �rst quadruple summation term corresponds to the minimization of

the interprocessor communication overhead�

Second triple summation term in Eq� ��� computes the summation of the inner products of

the weights of the tasks mapped to individual processors� Global minimum of this term occurs

when equal amount of task weights are mapped to each processor� If there is an imbalance

in the mapping� second triple summation term increases with the square of the amount of

the imbalance� penalizing imbalanced mappings� The parameter r in Eq� ��� is introduced to

maintain a balance between the two optimization objectives of the mapping problem�

Using the mean �eld approximation described in Eq� ���� the expression for the mean �eld �ip

experienced by spin �i� p� is

�ip � �
�H�s�

�sip
� �

NX
j ��i

KX
q ��p

ei�jsjqdpq � r
NX
j ��i

sjpwiwj ���

In a feasible mapping� each task should be mapped exclusively to a single processor� However�

there exists no penalty term in Eq� ��� to handle this feasibility constraint� This constraint is

explicitly handled while updating the spin values� As is seen in Eq� �	�� individual spin average

sip is proportional to e�ip�T � i�e� sip � e�ip�T � Then� sip can be normalized as

sip �
e�ip�TPK
q�� e

�iq�T
����

��

This normalization enforces the summation of each row of the spin matrix to be equal to unity�

Hence� it is guaranteed that all rows of the spin matrix will have only one spin with output

value � when the system is stabilized�

Eq� ��� can be interpreted in the context of the mapping problem as follows� First double sum�

mation term represents the increase in the total interprocessor communication cost by mapping

task i to processor p� Second summation term represents the increase in the computational load

balance cost associated with processors p by mapping task i to processor p� Hence� ��ip may

be interpreted as the decrease in the overall solution quality by mapping task i to processor p�

Then� in Eq� ����� sip is updated such that the probability of task i being mapped to processor p

increases with increasing mean �eld �ip experienced by spin �i� p�� Hence� the MFA heuristic

can be considered as a gradient�descent type algorithm in this context� However� it is also a

stochastic algorithm� similar to SA� due to the random spin update scheme and the annealing

process�

In the general MFA algorithm given in Figure �� a randomly chosen spin is updated at a time�

However� in the proposed formulation of MFA for the mapping problem� K spins of a randomly

chosen row of the spin matrix are updated at a time� Mean �elds �ip� �� � p � K� experienced

by the spins at the i�th row of the spin matrix are computed using Eq� ��� for p � �� �� � � � �K�

Then� the spin averages sip� � � p � K are updated using Eq� ���� for p � �� �� � � � �K� Each

row update of the spin matrix is referred as a single iteration of the algorithm�

The system is observed after each spin�row update in order to detect the convergence to an

equilibrium state for a given temperature ��	
� If energy function H does not decrease after a

certain number of consecutive spin�row updates� this means that the system is stabilized for

that temperature ��	
� Then� T is decreased according to the cooling schedule� and iteration

process is re�initiated� Note that� the computation of the energy di�erence �H necessitates the

computation of H �Eq� ���� at each iteration� The complexity of computing H is O�N��K���

which drastically increases the complexity of one iteration of MFA� Here� we propose an e�cient

scheme which reduces the complexity of energy di�erence computation by an asymptotical

factor�

The incremental energy change �Hip due to the incremental change �sip in the value of an

��

individual spin �i� p� is

�H � �Hip � �ip�sip ����

from Eq� ���� Since� H�s� is linear in sip �see Eq� ����� above equation is valid for any amount

of change �sip in the value of spin �i� p�� that is

�H � �Hip � �ip�sip ����

At each iteration of the MFA algorithm� K spin values are updated in a synchronous manner�

Hence� Eq� ���� is valid for all spin updates performed in a particular iteration� Thus� energy

di�erence due to the spin�row update operation in a particular iteration can be computed as

�H �
KX
p��

�ip�sip ����

where �sip � snewip � soldip � The complexity of computing Eq� ���� is only O�K� since mean �eld

��ip� values are already computed for the spin updates�

The formulation of the MFA algorithm for the mapping problem instances with sparse TIGs is

as follows� The expression given for �ip �Eq� ���� can be modi�ed for sparse TIGs as

�ip � �
X

j�Adj�i�

KX
q ��p

ei�jsjqdpq � r
NX
j ��i

sjpwiwj ��	�

Here� Adj�i� denotes the set of tasks connected to task i in the given TIG� Note that� sparsity

of TIG can only be exploited in the mean �eld computations since spin update operations given

in Eq� ���� are dense operations which are not e�ected by the sparsity of TIG�

Figure � illustrates the MFA algorithm proposed for solving the mapping problem� Complex�

ity of computing �rst double summation terms in Eq� ��� and Eq� ��	� are O�N � K� and

O�davg �K� for dense and sparse TIGs respectively� Here� davg denotes the average vertex

degree in the sparse TIG� Second summation operations in Eq� ��� and Eq� ��	� are both

O�N� for dense and sparse TIGs� Then� complexity of a single mean �eld computation is

O�N �K� and O�davg �K � N� for dense �Eq� ���� and sparse �Eq� ��	�� TIGs respectively�

Hence� complexity of mean �eld computations for a spin row is O�N � K�� for dense TIGs�

and O�davg �K� �N �K� for sparse TIGs �step ����� in Figure ��� Spin update computations

�steps ������ ����	 and ������ and energy di�erence computation �step ������ are both O�K�

operations� Hence� the overall complexity of a single MFA iteration is O�N � K�� for dense

TIGs� and O�davg �K� � N �K� for sparse TIGs�

�	

�� Get the initial temperature T�� and set T 	 T�

�� Initialize the spin averages s 	
s��� � � � � sip� � � � � sNK �

�� While temperature T is in the cooling range DO

��� While H is decreasing DO

����� Select a task i at random�

����� Compute mean �elds of the spins at the i�th row

�ip 	 �
PN

j ��i

PK
q ��p ei�jsjqdpq � r

PN
j ��i sjpwiwj for � � p � K

����� Compute the summation
PK

p�� e
�ip�T

����� Compute new spin values at the i�th row

snewip 	 e�ip�T�
PK

p�� e
�ip�T for � � p � K

����� Compute the energy change due to these spin updates

�H 	
PK

p�� �ip�s
new
ip � sip�

����� Update the spin values at the i�th row

sip 	 snewip for � � p � K

��� T 	 �� T

Figure �� The proposed MFA algorithm for the mapping problem�

��� An E�cient Implementation Scheme

As is mentioned earlier� the MFA algorithm proposed for the mapping problem is an iterative

process� The complexity of a single MFA iteration is mainly due to the mean �eld computations�

In this section� we propose an e�cient implementation scheme which reduces the complexity of

the mean �eld computations� and hence the complexity of the MFA iteration� by asymptotical

factors�

Assume that� i�th spin�row is selected at random for update in a particular iteration� The

expression given for �ip �Eq� ���� can be rewritten by changing the order of the �rst double

��

summation as

�ip � �
KX
q ��p

dpq
NX
j ��i

ei�jsjq � r
NX
j ��i

sjpwiwj � �
KX
q ��p

dpq�iq � r	ip ����

where

�iq �
NX
j ��i

ei�jsjq ����

	ip �
NX
j ��i

sjpwiwj ����

Here� �iq represents the increase in the interprocessor communication by mapping task i to

a processor other then q �for the current mapping on processor q�� assuming uniform unit

communication cost between all pairs of processors in PCG� Similarly�	ip represents the increase

in the computational load balance cost associated with processor p� by mapping task i to

processors p �for the current mapping on processor p��

For an e�cient implementation� the overall mean �eld computations involved in a single itera�

tion can be computed using the following matrix equation

�i � �D�	i � r
i � ��i � r
i ����

Here� D is a K �K adjacency matrix representing PCG �i�e� Dpq � dpq�� and �i� 	i
i and

�i � D�	i are column vectors with K elements� where

�i � ��i�� � � � � �ip� � � � � �iK
T 	i � ��i�� � � � � �ip� � � � � �iK
T

i � �	i�� � � � � 	ip� � � � � 	iK
T �i � �
i�� � � � �
ip� � � � �
iK
T ����

The complexity analysis of the proposed implementation scheme for dense TIGs is as follows�

Complexity of computing �iq and 	ip are both O�N�� Complexity of constructing 	i and
i

vectors are both O�N�K�� since both vectors contain K such entries� Complexity of computing

the matrix�vector product required in Eq� ���� is O�K��� Hence� the overall complexity of

computing the �i vector �Eq� ����� reduces to O�N �K � K�� � O�N �K�� since N � K

in general� The complexity of K spin updates and the computation of �H are both O�K��

Thus� the proposed scheme reduces the computational complexity of a single MFA iteration to

O�N �K� for dense TIGs with N � K�

��

The complexity analysis of the proposed implementation for sparse TIGs is as follows� Note

that� the sparsity of TIG can only be exploited in the computation of �iq values since

�iq �
NX

j�Adj�i�

ei�jsjq ����

for sparse TIGs� Hence� the complexity of computing an individual �iq is only O�davg�� Thus�

the complexity of constructing the 	i vector reduces to O�davg � K�� The complexity of

computing the �i vector in Eq� ���� reduces to O�davg �K �K��� However� the complexity of

constructing the
i vector required in Eq� ���� is O�N�K�� dominating the overall complexity

of the mean �eld computations� The complexity of computing the
i vector can be reduced if

the computation of 	ip in Eq� ���� is re�formulated as

	ip �
NX
j ��i

sjpwiwj � wi

NX
j ��i

wjsjp � wi�
NX
j��

wjsjp � wisip�

	ip � wi��p � wisip� ����

where �p �
PN

j��wjsjp� Here� �p represents the computational load of processor p� for the

current mapping on processor p� Note that� computationally� �p represents the weighted sum

of spin values of the p�th column of the spin matrix� At the beginning of the MFA algorithm�

initial �p value for each column p �� � p � K� can be computed for the initial spin values�

Then� �p values can be updated at the end of each iteration �i�e� after spin updates� using

�newp � �oldp � wis
old
ip � wis

new
ip for � � p � K ����

The computation of initial �p values can be excluded from the complexity analysis since they are

computed only once at the very beginning of the algorithm� In this scheme� the computation

of an individual 	ip using Eq� ���� is an O��� operation� Hence� the construction of the
i

vector required in Eq� ���� becomes an O�K� operation� Thus� the complexity of mean �eld

computations involved in a single iteration reduces to O�davg�K �K��� Note that� the update

of an individual �p value �using Eq� ����� at the end of each iteration is an O��� operation�

Hence� the overall complexity of �p updates is O�K� since K weighted column sums should

be updated at each iteration� Complexity of spin updates and energy di�erence computation

are also O�K� for sparse TIGs� Hence� the implementation scheme proposed for sparse TIGs

reduces the complexity of a single MFA iteration to O�davg �K � K���

��

� Performance of Mean Field Annealing Algorithm

This section presents the performance evaluation of the Mean Field Annealing �MFA� algorithm

for the mapping problem� in comparison with two well�known mapping heuristics
 Simulated

Annealing �SA� and Kernighan�Lin �KL�� Each algorithm is tested using randomly generated

mapping problem instances� Following sections brie�y present the implementation details of

these algorithms�

��� MFA Implementation

The MFA algorithm �Figure �� described in Section 	 is implemented in order to evaluate its

performance� Cooling process is started from an initial temperature which is found experi�

mentally� It is not feasible to search for an initial temperature for each problem instance� as

this process may take more time than solving the original problem� In order to avoid this� we

performed experiments for only a small number of instances and chose an initial temperature

which works for each one� For the mapping problem instances used in these experiments� initial

temperature was found to be T� � ���� This value for T� is used for all �� mapping problem

instances involved in the experiments�

Coe�cient r� which determines the balance between two optimization criteria of the mapping

problem� is computed at the beginning of the MFA algorithm� After the spins are initialized

randomly� r is computed using these initial spin values as

r �

PN
i��

P
j ��i

PK
p��

P
q ��p eijsipsjqdpq

K �
PN

i��

P
j ��i

PK
p�� sipsjpwiwj

����

As is seen from the equation� r is used for balancing of the two summation terms in the cost

function� Note that� r is inversely proportional to the number of processors�

At each temperature� iterations continue until �H �
 for L consecutive iterations where

L � N initially� Parameter
 is chosen to be ���� Cooling process is realized in two phases

slow cooling followed by fast cooling� similar to the cooling schedules used for SA ���
� In the

slow cooling phase� temperature is decreased using � � ��� until T is less than T������ Then�

in the fast cooling phase� L is set to L�	 and � is set to ��� and cooling is continued until T is

less then T������ At the end of this cooling process� maximum spin values at each row are set

��

to � and all other spin values are set to �� Then the result is decoded as described in Section 	�

and the resulting mapping is found� Note that� all parameters used in this implementation are

either constants or found automatically� Hence� there is no parameter setting problem�

��� Kernighan�Lin Implementation

Kernighan�Lin heuristic is not directly applicable to the mapping problem since it was originally

proposed for graph bipartitioning� The two phase approach is used to apply the KL heuristic to

the mapping problem� In the �rst phase� TIG is partitioned into K clusters� where K is equal

to the number of processors� These K clusters are then mapped to PCG using a one�to�one

mapping heuristic in the second phase� One�to�one mapping heuristic used in this work is a

variant of the KL heuristic�

For the clustering phase� Kernighan�Lin heuristic is implemented e�ciently as described by

Fiduccia and Mattheyses ��
� Two di�erent schemes are utilized to apply KL to K�way graph

partitioning� First scheme� partitioning by recursive bisection �KL�RB�� recursively partitions

the initial graph into two partitions until K partitions are obtained� Other scheme� partitioning

by pairwise min�cut �KL�PM�� starts with an initial K�way partitioning and then iteratively

minimizes the cutsizes between each pair of partitions until no improvement can be achieved�

In the KL heuristic� computational load balance is maintained implicitly by the algorithm�

Vertex �task� moves causing intolerable load imbalances are not considered�

In the beginning of the second phase� K clusters formed in the �rst phase are mapped to the

K processors of the multicomputer randomly� After this initial mapping� communication cost

is minimized by performing a sequence of cluster swaps between processor pairs�

��� Simulated Annealing Implementation

The SA algorithm� implemented for solving the mapping problem� uses the one phase approach

to map TIG onto PCG� In simulated annealing� starting from a randomly chosen initial con�g�

uration� con�guration space is searched for the best solution using a probabilistic hill climbing

algorithm� A con�guration of the mapping problem is a mapping between TIG and PCG�

which assigns each task in TIG to a processor in PCG� In order the search the con�guration

��

space� neighborhood of a con�guration must be de�ned� For the implementation in this work�

neighborhood of a con�guration consists of all con�gurations which results with moving one

vertex �task� of TIG from the maximum loaded node �processor� of PCG to any other node

of PCG� At each iteration of the simulated annealing algorithm� one of the possible moves is

chosen randomly as a candidate move� Then� the resulting decrease in the total communica�

tion cost caused by the candidate move is calculated without changing the con�guration� If

the candidate move decreases the cutsize� it is realized� If it increases the cutsize� then it is

realized with a probability which decreases with the amount of increase in the total cutsize�

Acceptance probabilities of the moves that increase the cost are controlled with a temperature

parameter T which is decreased using an annealing schedule� Hence� as the annealing proceeds

acceptance probabilities of uphill moves decrease� An automatic cooling schedule is used in the

implementation of the SA algorithm ���
�

��� Experimental Results

In this section� performance of the MFA algorithm is discussed in comparison with the SA and

KL algorithms� These heuristics are experimented by mapping randomly generated TIGs onto

mesh and hypercube connected multicomputers�

Six test TIGs are generated with N � ��� and 	�� vertices� Vertices of these TIGs are weighted

by assigning a randomly chosen integer weight between � and �� to each vertex �� � wi � ���

for � � i � N�� Interaction patterns among the vertices of these TIGs are constructed as

follows� A maximum vertex degree� dmax� is selected for each test TIG �dmax � �� ��� ���� and

degree di of each vertex i is randomly chosen between � and dmax �i�e� � � di � dmax� for

� � i � N�� Then� each vertex i of TIG is connected to di randomly chosen vertices� Resulting

edges are weighted randomly with integer values varying between � and ��� These TIGs are

mapped to ��� 	�� ��dimensional hypercubes and 	 � 	� 	 � � two dimensional meshes� PCGs

corresponding to these interconnection topologies are constructed assuming software routing as

is described in Section ��

Tables �� � and � illustrate the performance results of the KL�RB� KL�PM� SA and MFA

heuristics for the generated mapping problem instances� In these tables� N and jEj denote

the number of vertices and edges in the test TIGs� respectively� and K denotes the number

��

Table �� Total communication cost averages �and standard deviations� of the solutions found
by the KL�RB� KL�PM� SA and MFA heuristics� for randomly generated mapping problem
instances�

PROBLEM SIZE AVERAGE COMMUNICATION COST

N jEj K T KL�RB KL�PM SA MFA

��� ��� � H ������ ������ ������ ������ ������ ������ ������ ������
��� ��� �� H ������ ������ ������ ������ ������ ������ ������ ������
��� ��� �� H ������ ������� ������ ������� ������ ������ ������ ������
��� ���� � H ������ ������ ������ ������ ������ ������ ������ ������
��� ���� �� H ������ ������� ������ ������ ������ ������ ������ ������
��� ���� �� H ������� ������� ������� ������� ������ ������ ������ ������
��� ���� � H ������� ������� ������� ������� ������� ������ ������� �������
��� ���� �� H ������� ������� ������� ������� ������� ������ ������� �������
��� ���� �� H ������� ������� ������� ������� ������� ������� ������� �������
��� ���� � H ������ ������ ������ ������ ������ ������ ������ ������
��� ���� �� H ������ ������ ������ ������ ������ ������ ������ �������
��� ���� �� H ������ ������� ������ ������� ������ ������ ������ ������
��� ���� � H ������� ������� ������� ������� ������� ������ ������� ������
��� ���� �� H ������� ������� ������� ������� ������� ������ ������� �������
��� ���� �� H ������� ������� ������� ������� ������� ������ ������� ������
��� ���� � H ������� ������� ������� ������� ������� ������ ������� �������
��� ���� �� H ������� ������� ������� ������� ������� ������ ������� �������
��� ���� �� H ������� ������� ������� ������� ������� ������� ������� �������

��� ��� �� M ������ ������� ������ ������ ������ ������ ������ ������
��� ��� �� M ������ ������� ������ ������� ������ ������ ������ �������
��� ���� �� M ������ ������� ������ ������� ������ ������� ������ ������
��� ���� �� M ������� ������� ������� ������� ������� ������� ������� �������
��� ���� �� M ������ ������� ������ ������� ������ ������ ������ �������
��� ���� �� M ������� ������� ������� ������� ������ ������ ������� �������
��� ���� �� M ������� ������� ������� ������� ������� ������� ������� ������
��� ���� �� M ������� ������� ������� ������� ������� ������� ������� �������

of processors in the target PCG� Interconnection topology of the target POG is denoted by

T � where H denotes the hypercube interconnection topology and M denotes the mesh inter�

connection topology� Each algorithm is executed �� times for each problem instance starting

from di�erent� randomly chosen initial con�gurations� Averages and standard deviations of the

results are illustrated in Tables �� � and ��

Tables � and � illustrate the quality of the solutions obtained by the KL�RB� KL�PM� SA and

MFA heuristics� Total communication cost averages �and standard deviations� of the solutions

are displayed in Table �� and percent computational load imbalance averages �and standard

deviations� are displayed in Table �� Percent load imbalance for each solution is computed

��

Table �� Percent computational load imbalance averages �and standard deviations� of the
solutions found by the KL�RB� KL�PM� SA� MFA heuristics� for randomly generated mapping
problem instances�

PROBLEM SIZE AVERAGE PERCENT LOAD IMBALANCE

N jEj K T KL�RB KL�PM SA MFA

��� ��� � H ���� ����� ��� ����� ��� ����� ��� �����
��� ��� �� H ���� ����� ��� ����� ��� ����� ��� �����
��� ��� �� H ���� ����� ��� ����� ���� ����� ���� �����
��� ���� � H ���� ����� ��� ����� ��� ����� ��� �����
��� ���� �� H ���� ����� ��� ����� ��� ����� ��� �����
��� ���� �� H ���� ����� ���� ����� ���� ����� ���� �����
��� ���� � H ���� ����� ��� ����� ��� ����� ��� �����
��� ���� �� H ���� ����� ��� ����� ��� ����� ���� �����
��� ���� �� H ���� ����� ��� ����� ���� ����� ���� �����
��� ���� � H ���� ����� ��� ����� ��� ����� ��� �����
��� ���� �� H ���� ����� ��� ����� ��� ����� ��� �����
��� ���� �� H ���� ����� ��� ����� ��� ����� ��� �����
��� ���� � H ���� ����� ��� ����� ��� ����� ��� �����
��� ���� �� H ���� ����� ��� ����� ��� ����� ��� �����
��� ���� �� H ���� ����� ��� ����� ��� ����� ��� �����
��� ���� � H ���� ����� ��� ����� ��� ����� ��� �����
��� ���� �� H ���� ����� ��� ����� ��� ����� ��� �����
��� ���� �� H ���� ����� ��� ����� ��� ����� ��� �����

��� ��� �� M ���� ����� ��� ����� ��� ����� ���� �����
��� ��� �� M ���� ����� ��� ����� ���� ����� ���� �����
��� ���� �� M ���� ����� ��� ����� ��� ����� ���� �����
��� ���� �� M ���� ����� ��� ����� ���� ����� ���� �����
��� ���� �� M ���� ����� ��� ����� ��� ����� ��� �����
��� ���� �� M ���� ����� ��� ����� ���� ����� ��� �����
��� ���� �� M ���� ����� ��� ����� ��� ����� ���� �����
��� ���� �� M ���� ����� ��� ����� ���� ����� ���� �����

proportional to the computational load di�erence between maximum and minimum loaded

processors� Table � displays the execution time averages of the KL�RB� KL�PM� SA and MFA

heuristics� Table 	 is constructed for a better illustration of the overall performance of the MFA

algorithm in comparison with the KL and SA heuristics� For each problem instance� results

given in Tables �� � and � are normalized with respect to the results of the MFA algorithm� The

averages of the normalized results of Table �� Table � and Table � constitute the �rst� second

and fourth rows of Table 	� respectively� The average solution quality for each algorithm is

computed using

SOL�N QUALITY 	 � � �COMM� COST
 LOAD IMBALANCE� ����

Third row of Table 	� illustrates solution quality value of each algorithm normalized with respect

��

Table �� Execution time averages �in seconds� of the KL�RB� KL�PM� SA and MFA heuristics�
for randomly generated mapping problem instances�

PROBLEM SIZE AVERAGE EXECUTION TIMES

N jEj K T KL�RB KL�PM SA MFA

��� ��� � H ��� ��� ���� ���
��� ��� �� H ��� ���� ����� ���
��� ��� �� H ��� ���� ����� ����
��� ���� � H ��� ��� ���� ���
��� ���� �� H ��� ���� ����� ���
��� ���� �� H ��� ���� ����� ����
��� ���� � H ��� ���� ���� ���
��� ���� �� H ��� ���� ����� ���
��� ���� �� H ��� ���� ����� ����
��� ���� � H ��� ���� ����� ���
��� ���� �� H ��� ���� ����� ����
��� ���� �� H ��� ���� ����� ����
��� ���� � H ��� ���� ����� ���
��� ���� �� H ��� ���� ����� ����
��� ���� �� H ��� ���� ����� ����
��� ���� � H ��� ���� ����� ���
��� ���� �� H ��� ���� ����� ����
��� ���� �� H ���� ����� ����� ����

��� ��� �� M ��� ���� ����� ���
��� ��� �� M ��� ���� ����� ����
��� ���� �� M ��� ���� ����� ���
��� ���� �� M ��� ���� ����� ����
��� ���� �� M ��� ���� ����� ����
��� ���� �� M ��� ���� ����� ����
��� ���� �� M ��� ���� ����� ����
��� ���� �� M ��� ���� ����� ����

Table 	� Average performance measures of the KL�RB� KL�PM and SA heuristics normalized
with respect to the MFA heuristic�

KL�RB KL�PM SA MFA

COMM� COST ����� ����� ����� ���
LOAD IMBALANCE ����� ����� ����� ���
SOL�N QUALITY ����� ����� ����� ���
EXECUTION TIME ����� ����� ������ ���

��

to the MFA algorithm�

As is seen in Tables �� � and 	� the quality of solutions obtained by the MFA and SA heuristics

are superior to those of the KL�RB and KL�PM heuristics� Solutions produced by SA are

slightly better compared with the solutions produced by MFA� whereas the MFA algorithm is

signi�cantly faster ��� times on the average�� As is seen in Table � and 	� average execution

time of the MFA algorithm is comparable with that of the e�cient KL heuristic� The MFA

algorithm is ��� times faster than the KL�PM heuristic and ��� times slower than the KL�RB

heuristic on the average� These results indicate that the proposed MFA algorithm is a promising

alternative heuristic for solving the mapping problem�

� Parallelization of Mean Field Annealing Algorithm

As is mentioned earlier� heuristic used for solving the mapping problem is a preprocessing

overhead introduced for the e�cient implementation of a given parallel program on the target

multicomputer� If the mapping heuristic is implemented sequentially� this preprocessing can be

considered in the serial portion of the parallel program which limits the maximum e�ciency of

the parallel program on the target machine� For a �xed parallel program instance� the execution

time of the parallel program is expected to decrease with increasing number of processors in

the target multicomputer� However� as is seen in Table �� for a �xed TIG� the execution

time of all mapping heuristics increase with increasing number of processors in the target

multicomputer� Hence� the serial fraction of the parallel program will increase with increasing

number of processors� Thus� this preprocessing will begin to constitute a drastic limit on the

maximum e�ciency of the overall parallelization due to Amdahl�s Law� Hence� parallelization

of these mapping heuristics on the target multicomputer is a crucial issue for e�cient parallel

implementations�

Unfortunately� parallelization of the mapping heuristics introduces another mapping problem�

The computations of the mapping heuristics should be mapped to the processors of the same

target architecture� However� in this case� the parallel algorithm for the mapping heuristic

should be such that its mapping can be achieved intuitively� Furthermore� the intuitive mapping

should lead to an e�cient parallel implementation of the mapping heuristic� For these reasons�

�	

the target mapping heuristic to be parallelized should involve regular and inherently parallel

computations� The MFA algorithm proposed in Section 	 for the general mapping problem has

such nice properties for an e�cient parallelization� Following paragraphs discuss the e�cient

parallelization of the proposed mapping heuristic for multicomputers�

Assume that� the MFA algorithm is used to map a given parallel program represented with

a TIG having N vertices on a target multicomputer with K processors� The MFA algorithm

will use an N �K spin matrix for the mapping operation� The question is to map the com�

putations of the MFA algorithm to the same target multicomputer �with the same number of

K processors�� As is mentioned earlier� the MFA algorithm is an iterative algorithm� Hence�

the mapping scheme can be devised by analyzing the computations involved in a particular

iteration of the algorithm� Atomic task can be considered as the computations required for

updating an individual spin� Note that� K spin averages at a particular row of the spin matrix

are updated at each iteration� Hence� these K spin updates can be computed in parallel by

mapping each spin in a row of the spin matrix to a distinct processor of the target architecture�

Thus� the N �K spin matrix is partitioned column�wise such that each processor is assigned

an individual column of the spin matrix� That is� column p of the spin matrix is mapped

to processor p of the target architecture� Each processor is responsible for maintaining and

updating the spin values in its local column� Assume that� task�i is selected at random in a

particular iteration� Then� each processor is responsible for updating the probability of task i

being mapped to itself�

A single iteration of the MFA algorithm can be considered as a three phase process� namely�

mean �eld computation phase� spin update phase� and energy di�erence computation phase�

Each processor p should compute its local mean �eld value �ip �Eq� ��� or Eq� ��	�� in the

�rst phase� in order to update its local spin value sip �Eq� ����� in the second phase� As

is mentioned earlier� mean �eld computation phase is the most time consuming phase of the

MFA algorithm� Fortunately� mean �eld computations are inherently parallel since there are no

interactions among the mean �eld computations involved in a particular iteration� However� a

close look to Eq� ��� reveals that each processor needs most recently updated values of all spins

except the ones in the i�th row in order to compute its local mean �eld value� Recall that� each

processor maintains only a single column of updated spin values due to the proposed mapping

scheme� Hence� this computational interaction necessitates global interprocessor communication

��

just prior to the distributed mean �eld computation at each iteration� The volume of global

interprocessor communication is proportional to O�N � K� for dense TIGs� As is seen in

Eq���	�� the volume of global interprocessor communication is proportional to O�davg �K� for

sparse TIGs� The volume of global interprocessor communication can be reduced to O�K� for

both dense and sparse TIGs by considering the parallelization of the matrix equation given in

Eq� �����

Eq� ���� involves the following operations � construction of the 	i and
i vectors� dense matrix

vector product �i � D�	i and vector addition �i � ��i � r
i� Note that� each processor

p only needs to compute the p�th entry
ip of the �i vector� and the p�th entry 	ip of the
i

vector in order to compute its local mean �eld value �ip in parallel� The matrix vector product

can be performed in parallel by employing the scalar accumulation �SA�MVP� scheme� In this

scheme� each processor needs only the p�th row dp of the dense D matrix and the whole column

vector 	i�

Each processor p can concurrently compute the p�th entry �ip of the 	i vector using Eq� ����

or Eq� ���� without any interprocessor communication� Note that� q in these equations should

be replaced by p in these computations� Then� a global collect �GCOL� operation is required

for each processor to obtain a local copy of the 	i vector� The GCOL operation is essentially

appending K local scalars� in order� into a vector of size K and then duplicating this vector

in the local memory of each processor� The GCOL operation requires global interprocessor

communication� Note that� only K local spin values should be collected globally thus reducing

the volume of communication during the GCOL operation by an asymptotical factor�

After the GCOL operation� each processor has a local copy of the global 	i vector� Hence� each

processor p can concurrently compute its local
ip by performing the inner�product
ip � dp�	i�

Then� each processor p should compute the p�th entry 	ip of the
i vector� Note that� each

processor p already maintains the �oldp value� Hence� each processor can concurrently compute

	ip using Eq� ����� Then� each processor p can concurrently compute its local mean �eld value

�ip by performing the local computation �ip � �
ip � r	ip� Note that� these computations are

completely local computations and involve no interprocessor communication�

The second phase of an individual MFA iteration is highly sequential since global interaction

exists among spin updates due to the normalization process indicated by Eq� ����� Fortunately�

��

this global interaction can be relieved by noting the independent exponentiation operations

involved in the numerator of Eq� ����� Hence� each processor p can concurrently compute its

local e�ip�T value� Then� a global sum �GSUM� operation is required for each processor to

obtain a local copy of the global sum of the local exponentiation results� The GSUM operation

requires global interprocessor communication� After the GSUM operation each processor p can

concurrently update its local spin value by computing Eq� ����� After computing snewip � each

processor p should concurrently update its local �p values according to Eq� ���� for the use in

the next iteration�

In the third phase� each processor should compute the same local copy of the global energy

di�erence �H for global termination detection� Each processor p can concurrently compute its

local energy di�erence �Hip � �ip�sip � �ip�snewip � soldip � due to its local spin update� Then�

a GSUM operation� which requires global interprocessor communication� is required for each

processor to compute a local copy of the global sum �H �
PK

p�� �Hip�

Hence� the proposed parallel MFA algorithm necessitates three global communication opera�

tions due to the GCOL operation involved during the �rst phase and two GSUM operations

involved in the second and third phases� In �ne grain multicomputers� the volume of interpro�

cessor communication is the important factor in predicting the complexity of the interprocessor

communication overhead� However� in medium grain multicomputers� the number of communi�

cations is also important since high set�up time overhead is associated with each communication

step� The set�up time is the dominating factor for short messages in such architectures� Note

that� only a single �oating�point variable� representing the running sum� is communicated dur�

ing the GSUM operations involved in the last two phases of the parallel MFA algorithm�

Reducing the number of GSUM operations required in the MFA algorithm will be a valuable

asset in achieving e�cient implementations on medium grain multicomputers� As seen in

Eq� ����� there is an execution dependency between the computation of the energy di�erence

�H and spin�row updates� This execution dependency between the second and the third phase

computations can be relieved by rewriting the expression for �H as follows

��

�H �
KX
p��

�ip�s
new
ip � soldip � �

KX
p��

�ips
new
ip �

KX
p��

�ips
old
ip

�
KX
p��

�ip
e�ip�TPK
q�� e

�iq�T
�

KX
p��

�ips
old
ip �

�

Ai

KX
p��

�ipe
�ip�T � Ci �

Bi

Ai
� Ci ����

where Ai �
PK

p�� e
�ip�T �

PK
p�� aip� Bi �

PK
p�� �ipe

�ip�T �
PK

p�� bip and Ci �
PK

p�� �ips
old
ip �

PK
p�� cip� Hence� after each processor p computes its local aip � e�ip�T � bip � �ipe

�ip�T and

cip � �ips
old
ip values� three global summations Ai �

PK
p�� aip� Bi �

PK
p�� bip and Ci �

PK
p�� cip

can be accumulated in a single GSUM operation� After this single GSUM operation� each

processor p can concurrently update its local spin value and compute the same local copy of

the global energy di�erence as sip � aip�Ai and �H � Bi�Ai�Ci� respectively� Note that� this

scheme reduces the number of GSUM operation from two to one� Three �oating point variables�

representing the running sums Ai� Bi� and Ci� are communicated during the communications

involved in the GSUM operation�

The node program �of processor p� for � � p � K� for a single iteration of the parallel MFA

algorithm proposed for solving the mapping problem is given in Figure 	� Note that� variables

with �ip� and �p� subscripts denote the local variables� Variables with �i� subscripts denote

the global variables which are constructed and duplicated at the local memory of each processor

after performing the indicated global operations� As is seen in Figure 	� the proposed parallel

MFA algorithm exhibits very regular computational structure even for mapping arbitrarily

irregular TIGs� The communication structure is also very regular since it necessitates only

GSUM and GCOL operations� Hence� the proposed parallel MFA algorithm can easily be

implemented on both MIMD and SIMD types of multicomputers�

The parallel communication complexity of a single MFA iteration can be analyzed as follows�

The interconnection schemes used in the processor organization of the multicomputers are usu�

ally symmetric in nature �i�e� POG is symmetric�� Hence� GSUM and GCOL type global

operations in such architectures are usually performed by a sequence of concurrent communi�

cation steps� Each communication step� involves concurrent single�hop communications� The

number of concurrent single�hop communications is proportional to the diameter of POG for

both GSUM and GCOL operations� For example� diameters of hypercube and mesh POGs are

log�K and K���� respectively� The overall volume of concurrent interprocessor communications

��

�� Select a task i at random�

�� Compute �ip 	
P

j�Adj�i� eijsjp

�� Perform GCOL operation to obtain a local copy of

�i 	
�i�� � � � � �ip� � � � � �iK�T

�� Compute the inner product �ip 	 dp
T � �i

�� Compute �ip 	 wi�	p � wisip�

�� Compute the local mean �eld value �ip 	 ��ip � r�ip

�� Compute aip 	 e�ip�T � bip 	 �ipe
�ip�T and cip 	 �ipsip

�� Perform GSUM to compute the local copies of

Ai 	
PK

p�� aip Bi 	
PK

p�� bip and Ci 	
PK

p�� cip

�� Compute snewip 	 aip�Ai and then �sip 	 snewip � sip

��� Compute �H 	 Bi�Ai � Ci

���Update 	p 	 	p
 wi�sip

���Update sip 	 snewip

Figure 	� Node program �of processor p� for � � p � K� for one iteration of the parallel MFA
algorithm for the mapping problem�

is proportional to the diameter and the number of processors �K� of POG for GSUM and

GCOL operations� respectively�

As is seen in Figure 	� the proposed parallel MFA algorithm achieves perfect load balance�

The parallel computational complexity of a single MFA iteration can be obtained as follows�

During the parallel computation of �ip values �step �� each processor performs N � � �di�

multiplication�addition operations for dense �sparse� TIGs� Here� di denotes the degree of

vertex i in TIG� During the parallel SA�MVP computation �step 	�� each processor performs

K multiplication�addition operations for both dense and sparse TIGs since the D matrix is a

dense matrix� Each processor performs the same constant amount of arithmetic operations in

the remaining steps �steps ��� and steps ������ Hence� the parallel computational complexity of

��

the proposed algorithm is O�N �K� and O�davg �K� for dense and sparse TIGs respectively�

Hence� linear speed�up can easily be achieved if communication overhead remains negligible�

Note that� the number of concurrent communications increases with the diameter of POG �e�g�

log�K� K����� whereas� computational granularity per processor increases with the number of

processors �K� of POG� Hence� percent communication overhead will reduce with increasing

number of processors� Thus� the proposed parallel algorithm is expected to scale even on

medium�to�coarse grain multicomputers�

� Conclusion

In this paper� recently proposed Mean Field Annealing �MFA� algorithm is formulated for

the mapping problem� An e�cient implementation scheme is also developed for the proposed

algorithm� The performance of the proposed algorithm is evaluated in comparison with two

well known heuristics �Simulated Annealing �SA� and Kernighan�Lin �KL�� for a number of

randomly generated mapping problem instances� The qualities of the solutions obtained by the

MFA and SA heuristics are found to be superior to the qualities of the solutions obtained by

the KL heuristic� Execution time of the MFA algorithm is comparable to that of the e�cient

KL heuristic� The SA heuristic produces slightly better solutions than the MFA algorithm�

whereas MFA is signi�cantly faster� An e�cient parallel algorithm is also developed for the

proposed MFA heuristic�

References

��
 Arora� R� K�� and Rana� S� P�� Heuristic algorithms for process assignment in distributed

computing systems� Information Processing Letters� vol� ��� no� 	��� pp� �������� �����

��
 Aykanat� C�� �Ozg�uner� F�� Er�cal� F�� and Sadayappan� P� Iterative algorithms for solution of

large sparse systems of linear equations on hypercubes� IEEE Transactions on Computers�

vol� ��� no� ��� pp� ���	������ �����

��
 Behnam�Guilani� K� Fast decoupled load �ow� the hybrid model� IEEE Transactions on

Power Systems� vol� �� no� �� pp� ��	����� �����

��

�	
 Bokhari� S� H� On the mapping problem� IEEE Trans� Comput�� vol� ��� no� �� pp� ������	�

�����

��
 Bultan� T�� and Aykanat� C� Parallel mean �eld algorithms for the solution of combinatorial

optimization problems� Proc� ICANN��	� vol� �� pp� �������� �����

��
 Bultan� T�� and Aykanat� C� Circuit Partitioning Using Parallel Mean Field Annealing

Algorithms� Proc�
rd IEEE Symposium on Parallel Processing� �����

��
 Er�cal� F�� Ramanujam� J�� and Sadayappan� P� Task allocation onto a hypercube by recur�

sive mincut bipartitioning� J� Parallel Distrib� Comput� vol� ��� pp� ���		� �����

��
 Fiduccia� C� M�� and Mattheyses� R� M� A linear heuristic for improving network partitions�

Proc� Design Automat� Conf�� pp� �������� �����

��
 Hop�eld� J� J�� and Tank� D� W� Neural� Computation of Decisions in Optimization Prob�

lems� Biolog� Cybern�� vol� ��� pp� �	������ �����

���
 Hop�eld� J� J�� and Tank� D� W� Computing with neural circuits� a model� Science� Vol�

���� pp� �������� August �����

���
 Hop�eld� J� J�� and Tank� D� W� Collective computation in neuronlike circuits� Scienti�c

American� vol� ���� no� �� pp� ��	���	� �����

���
 Indurkhya� B�� Stone H� S�� and Xi�Cheng� L� Optimal partitioning of randomly generated

distributed programs� IEEE Trans� Software Engrg�� vol� ��� no� �� pp� 	���	��� �����

���
 Kasahara� H�� and Narita� S� Practical multiprocessor scheduling algorithms for e�cient

parallel processing� IEEE Trans� Comput�� vol� ��� no� ��� pp� ���������� ���	�

��	
 Kernighan� B� W�� and Lin� S� An e�cient heuristic procedure for partitioning graphs� Bell

Syst� Tech� J�� vol� 	�� pp� �������� �����

���
 Kirkpatrick� S�� Gelatt� C� D�� and Vecchi� M� P� Optimization by simulated annealing�

Science� vol� ���� pp� �������� �����

���
 Lee� S� Y�� Chiang� H� D�� Lee� K� G�� and Ku� B� Y� Parallel power system transient

stability analysis on hypercube multiprocessors� IEEE Transactions on Power Systems�

vol� �� no� �� pp� �������	��

��

���
 Peterson� C�� and Anderson� J� R� Neural networks and NP�complete optimization prob�

lems
 a performance study on the graph bisection problem� Complex Syst� vol� �� pp� ������

�����

���
 Peterson� C�� and Soderberg� B� A new method for mapping optimization problems onto

neural networks� Int� J� Neural Syst�� vol� �� no� �� �����

���
 Ramanujam� J�� Er�cal� F�� and Sadayappan� P� Task allocation by simulated annealing�

Proc� International Conference on Supercomputing� Boston� MA� May ����� vol� III� Hard�

ware � Software� pp� 	���	���

���
 Sadayappan� P�� and Er�cal� F�Nearest�neighbour mapping of �nite element graphs onto

processor meshes� IEEE Trans� Comput� vol� ��� no� ��� pp� �	����	�	� �����

���
 Sadayappan� P��Er�cal� F�� and Ramanujam� J� Cluster partitioning approaches to mapping

parallel programs onto a hypercube� Parallel Computing� vol� ��� pp� ����� �����

���
 Shield� J� Partitioning concurrent VLSI simulation programs onto a multiprocessor by

simulated annealing� IEEE Proc� Part G� vol� ��	� no� �� pp� �	���� �����

���
 Van den Bout� D� E�� and Miller� T� K� A Traveling Salesman Objective Function That

Works� IEEE Int� Conf� Neural Nets� vol� �� pp� �������� �����

��	
 Van den Bout� D� E�� and Miller� T� K� Improving the performance of the Hop�eld�Tank

neural network through normalization and annealing� Biolog� Cybern�� vol� ��� pp� ��������

�����

���
 Van den Bout� D� E�� and Miller� T� K� Graph partitioning using annealed neural networks�

IEEE Trans� Neural Networks� vol� �� no� �� pp� �������� �����

��

