
An Efficient Parallel Spatial Subdivision Algorithm for

Object-Based Parallel Ray Tracing �

Cevdet Aykanat, Veysi İşler, Bülent Özgüç
Department of Computer Engineering and Information Science

Bilkent University
06533 Ankara, Turkey

Abstract

Parallel ray tracing of complex scenes on multicom-
puters requires distribution of both computations and
scene data to the processors. This is carried out during
preprocessing and usually consumes too much time and
memory. In this paper, we present an efficient paral-
lel subdivision algorithm to decompose a given scene
into rectangular regions adaptively and map the resul-
tant regions to the node processors of a multicomputer.
The proposed algorithm uses efficient data structures to
find out the splitting planes quickly. Furthermore the
mapping of the regions and the objects to the node pro-
cessors is being performed while parallel spatial sub-
division proceeds. The proposed algorithm is imple-
mented on an Intel‘s iPSC/2 hypercube multicomputer
and promising results are obtained.
Keywords : Parallel ray tracing, spatial subdivision,
multicomputers, hypercube interconnection topology.

Introduction

In recent years, research on ray tracing has been mostly
concentrated on speeding up the algorithm by paral-
lelization [1]. There are mainly two approaches to
parallelize ray tracing. One of them is image-space
subdivision in which the computations related to dif-
ferent rays are distributed to the processors. The other
approach is object-space subdivision which should be
adopted for parallelization of ray tracing on distributed-
memory message-passing architectures (multicomput-
ers). Multicomputers are very promising architectures
for massive parallelism due to their nice scalability fea-
tures. In a multicomputer, there is no global mem-
ory, and synchronization and coordination between pro-
cessors are achieved through message exchange. For
an efficient parallelization on a multicomputer (called
object-based parallel ray tracing), the object space data
(scene description with the auxiliary data structure) as
well as computations should be distributed among pro-
cessors of the multicomputer, since the whole object
space data may not fit into the local memory of each
processor for complex scenes.

�This work is partially supported by Intel Supercomputer Sys-
tems Division grant no. SSD100791-2 and Turkish Scientific and
Technical Research Council (TÜBİTAK) grant no. EEEAG-5

The approach taken in this paper is to subdivide the
3-D space containing the scene into disjoint rectangu-
lar subvolumes and assign both computations and the
object data within a subvolume to a single processor.
The proposed subdivision algorithm recursively bipar-
titions the rectangular subregions into two rectangular
subsubregions starting from a given initial window until
P rectangular subregions are obtained where P denotes
the total number of processors in the multicomputer.
The subdivision and mapping should be performed in
such a way that each processor is assigned equal amount
of computational load. Furthermore, the neighboring
objects should be maintained in the local memories
of adjacent node processors to achieve better data co-
herence [1]. The proposed subdivision algorithm also
achieves the mapping of the rectangular subvolumes to
processors during the decomposition process. The sub-
division algorithm has efficient data structures to locate
the splitting planes.

The spatial subdivision problem is a preprocessing
overhead introduced for the efficient implementation of
the object-based parallel ray tracing on the target multi-
computer. If the spatial subdivision algorithm is imple-
mented sequentially, this preprocessing can be consid-
ered in the serial portion of the parallel ray tracing which
limits the maximum parallel efficiency. For a fixed in-
put scene instance, the execution times of the parallel
ray tracing and the sequential subdivision programs are
expected to decrease and increase, respectively, with
increasing number of processors in the target multi-
computer. Thus, this preprocessing will begin to con-
stitute a drastic limit on the maximum efficiency of the
overall parallelization due to Amdahl’s law. Hence,
parallelization of the subdivision algorithm on the tar-
get multicomputer is a crucial issue for efficient object-
based parallel ray tracing. In this work, we propose an
efficient parallel spatial subdivision algorithm to utilize
the processors of the target multicomputer to be used
for object-based parallel ray tracing algorithm. After
an initial random distribution of objects to processors,
objects intermittently migrate during the execution of
the recursive bisection algorithm in accordance with
the mapping strategy such that all objects arrive at their
home processors at the end of the parallel subdivision
process. Each object traverses at most log2 P proces-
sors to reach its home processor.

1

Object-Space Decomposition

The decomposition of object space data can be per-
formed by utilizing the techniques that are developed
to improve the naive ray tracing algorithm. These tech-
niques are hierarchy of bounding volumes [2] and spa-
tial subdivision [3, 4] and can be adapted to parallel ray
tracing as follows. The first technique forms a hierar-
chy of clusters consisting of neighboring objects. In the
parallel processing case there might be two approaches,
namely static and demand-driven, to accomplish a fair
distribution of computations and storage. The former
approach performs a static allocation by partitioning the
entire hierarchy into a set of clusters each of which is
assigned to a node processor. This resembles a graph
partitioning process [5]. The latter approach allocates
object space data and relevant computations to the node
processors on demand. The second technique called
spatial subdivision decomposes the 3-D space contain-
ing the scene into disjoint rectangular prisms. As in
the first technique, the resulting prisms are distributed
to the node processors either statically or on demand
[1, 5, 6, 7].

In this paper, the second technique, spatial subdivi-
sion, is used to decompose the object space data. Spatial
subdivision can be performed in several manners that
give rise to different rectangular volumes. Regular Sub-
division [8], Octree [3] and Binary Space Partitioning
(BSP) [4] are widely used spatial subdivision schemes.

Utilizing BSP in Parallel Ray Tracing

Although both Octree and regular subdivision schemes
have very nice properties when used in conventional
ray tracing algorithm, it is difficult to achieve compu-
tational load balance among processors, if some coher-
ence properties such as object, data, and image coher-
ence are to be utilized. A manifestation of coherence
called data coherence first exploited by Green and
Paddon [1] is a very powerful and useful property that
might reduce the communication overhead. Commu-
nication among the node processors is one of the most
time consuming operations in an object-based parallel
ray tracing system. Therefore, exploiting data coher-
ence is essential in speeding up object-based parallel
ray tracing. In order to exploit data coherence, we
propose a variant of BSP - we call it BBSP (Balanced
Binary Space Partitioning) since a complete binary tree
is generated at the end of the subdivision. The subdivi-
sion is carried out on a window defined over a viewing
plane onto which the objects in the scene are projected
(parallel) (see Figure 1). The subdivision resultantly
produces a set of rectangular regions on the window and
a set of 3-D volumes obtained by extending the rect-
angular regions in the viewing direction. By means of
this subdivision preprocess, the decomposition of both
object space data describing the scene and the image-
space computations associated with the pixels on the
window are performed. It is assumed that the viewing
volume and the produced 3-D volumes have rectangular
(parallepiped) shape rather than pyramid shape.

Object Space

Image Space

DIRECTION
VIEWING

X

Y

Z

Figure 1: A 4-way subdivision of a scene using BBSP.

The proposed BBSP algorithm starts by projecting
all objects in the view volume onto a given windowW .
The window W is the initial rectangular region for the
recursive subdivision process. In the following steps of
the algorithm, each generated rectangular subregion is
subdivided into two subsubregions by a splitting plane
which is parallel to either x-z (horizontal) or y-z (ver-
tical) plane as shown in Figure 1. This recursive subdi-
vision process proceeds in a breadth-first manner until
the number of generated subregions (at the leaves of the
recursion tree) becomes equal to the number of proces-
sors. Here, the number of processors is assumed to be
a power of two.

The proposed algorithm decomposes both the im-
age space and the object space, and meanwhile maps
the resulting image-space subregions and the respective
object-space subvolumes to the processors in one phase.
Each 3-D subvolume is labelled using the label of the
respective 2-D subregion from which the 3-D volume
is obtained. Each 3-D volume and the corresponding
2-D region are then assigned to the node processor that
has the node number equal to the label of the volume.
Finding out the position of the splitting plane (i.e., sub-
division) and labelling of the generated regions (i.e.,
mapping) are key operations in the algorithm.

Finding Out the Optimal Splitting Planes

The subdivision is practically carried out on the screen
since the window is mapped to the viewport that is de-
fined on a display device (screen). A splitting plane thus
divides a given rectangular region of the screen into two
disjoint rectangular subregions consisting of pixels. A
rectangular region on the screen can be subdivided into
two using either a horizontal splitting plane or a ver-
tical splitting plane. Either a vertical or a horizontal
splitting plane with minimum cost is chosen among all
possible vertical and horizontal splitting planes based

2

on an objective (cost) function. Hence, a splitting plane
is characterized by its cost, direction (vertical or hori-
zontal) and its location where the screen is cut.

In BSP trees, the location of the splitting plane is
usually chosen along either object median or spatial
median. MacDonald and Booth [9] have examined
two heuristics for space subdivision using BSP. They
pointed out that the probability of intersection of a given
ray with an object is proportional to the surface area of
the object - called the surface area heuristic. Using this
heuristic, they have also found out that the optimal split-
ting plane lies between the object median and the spatial
median. This result reduces the required search range to
find out the location of the splitting plane. However, it
is still an expensive operation to carry out search within
the reduced search range. Furthermore, the analysis in
[9] neglects the existence of shared objects between the
generated subregions.

In this work, we propose an efficient search algo-
rithm for finding optimal splitting planes during recur-
sive space subdivision. The proposed search algorithm
uses efficient data structures and requires only integer
arithmetic. In the proposed algorithm, the position of
an optimal splitting plane is determined by using an
objective function that considers both the minimization
of the computational load-imbalance and the number of
shared objects between the generated subregions. The
proposed objective function exploits the surface area
heuristic for maintaining the computational load bal-
ance between the generated subregions.

Objective Function

The cost of a vertical splitting plane b on a window W
consisting of n�m pixels (resolution) is defined as

Cv�b� �
jn� b� Lb � n� �m � b�� Rbj

n�m � N
�
Sb

N
(1)

for b� 0� 1� � � � � m, where N denotes the total number
of objects projected onto the window W under consid-
eration. The objective function for a horizontal split-
ting plane can easily be obtained by exchanging n with
m in Equation 1. Here, Lb and Rb denote the num-
ber of objects in the left (below) and right (above) of
the vertical (horizontal) splitting plane b, respectively.
Furthermore, Sb denotes the number of shared objects
straddling across the splitting plane b.

The denominator of the first term in Equation 1 de-
notes the total computational load associated with the
window when only primary rays are considered. Hence,
the first term in Equation 1 represents percent load im-
balance between the two subregions generated by a
particular splitting plane. Similarly, the second term
in Equation 1 denotes percent number of shared ob-
jects between those two subregions. The shared objects
cause several problems. First, the shared objects are
duplicated in the local memories of the processors to
which these objects are assigned. Second, an intersec-
tion test with a shared object might be repeated if the
first intersection point is not inside the subvolume that
is assigned to the processor performing the test. As in

conventional ray tracing, there might be another closer
intersection point within the next subvolume along the
path of the ray.

The objective function in Equation 1 is computed
for all splitting planes in both vertical and horizontal
directions. The splitting plane with the smallest cost
is chosen as the optimal splitting plane. Hence, the
objective function should be efficiently computed. The
objective function for vertical splitting planes can be
simplified as:

Cv�b� �
1

m� N
fjb�Lb��m�b��Rbj�m�Sbg(2)

for b� 0� 1� � � � � m. The simplification for horizontal
splitting planes can be obtained by replacingmwithn in
Equation 2. The parameter 1�N can be neglected since
it is a constant factor common in all cost computations
(both vertical and horizontal). Similarly, the parame-
ters 1�m and 1�n appear as constant factors common
in vertical and horizontal splitting plane computations,
respectively. Hence, it is sufficient to compute the fol-
lowing functions.

Cv�b� � jfb� Lb � �m � b��Rbgj�m � Sb (3)

Ch�b� � jfb� Lb � �n� b�� Rb�gj� n� Sb (4)

for b� 0� 1� � � � � m and b� 0� 1� � � � � n in order to find
the optimal vertical and horizontal splitting planes bmin

v

and bmin
h , respectively. The optimal splitting plane is

then chosen among these two splitting planes by com-
paring Cv�bmin

v ��m with Ch�bmin
h ��n. This formula-

tion enables the use of only integer arithmetic during
the cost computations.

Data Structures

Horizontal and vertical splitting planes subdivide a
given rectangular region in x and y dimensions, re-
spectively. Two integer arrays are defined to hold the
information related to the distribution of objects along
each one of these two dimensions. To form the data
structures, the objects are projected onto the viewing
plane and the projections of the objects are surrounded
by bounding boxes to simplify the computations as seen
in Figure 2. After this operation, each object o in the
scene has four attributes: xmin�o�� xmax�o�� ymin�o�
and ymax�o�. Here, xmin�o� (ymin�o�) and xmax�o�
(ymax�o�) denote the left (bottom) and the right (top)
borders of the bounding box of an object o, respec-
tively. Assuming that the windowW consists of n�m
pixels (resolution), the arrays for x and y dimensions
have sizes of m and n, respectively. The following ma-
jor data structures are constructed and used for the x
dimension: XMinCntr and XMaxCntr, where XMinC-
ntr[b] and XMaxCntr[b] contain the number of objects
whose xmin and xmax values are equal to b, respec-
tively, for b�1� 2� � � � � m. The YMinCntr and YMaxC-
ntr are similar data structures constructed and used for
the y dimension.

Having formed these data structures, prefix sum op-
eration is performed on these integer arrays. These

3

0 0 0 0 1 2 2 3 3 3 3 5 5 5 7 8

0 2 3 3 3 3 3 3 4 5 5 5 7 8 8 8

1

3

6

5
4

2
7

8

XMaxCntr

XMinCntr

Figure 2: A sample scene projected onto the viewing
plane

integer arrays are then used in the computation of the
objective functions in Equation 3 and 4. These equa-
tions need the values of Rb, Lb and Sb for each pos-
sible splitting position b. After prefix sum operations,
XMinCntr[b] and XMaxCntr[b] contain the number of
objects whose xmin and xmax values are equal to or
less than b, respectively. Hence, XMinCntr[b] (YMinC-
ntr[b]) denotes the number Lb of objects in the left
(bottom) subregion of the vertical (horizontal) splitting
plane. Similarly, XMaxCntr[b] (YMaxCntr[b]) denotes
the number of objects in the left (bottom) subregion
which do not straddle across the vertical (horizontal)
splitting plane b. Hence, Sb and Rb can easily be com-
puted as

Sb � Lb �XMaxCntr�b� (5)

Rb � �N � Sb� � Lb (6)

for a vertical splitting plane b. For a horizontal split-
ting plane b, Sb andRb can similarly be computed using
these two equations by replacing XMaxCntr in Equa-
tion 5 with YmaxCntr. Note that the values of Rb� Lb

and Sb are efficiently computed using only 3 integer ad-
ditions which will be performed for all possible splitting
planes.

Mapping

The proposed algorithm achieves the mapping of the
generated subregions during the recursive subdivision
process. Each generated subregion is assigned a la-
bel that corresponds to the processor-group to which
it is assigned. Initially, the window W is assumed to

Q0
Q1

Q11

Q10

Q01Q00

Q00

Q01

Q10

Q11

Q00 Q10Q11Q01

Q

Q0 Q1

or

or

or or

Q00

Q01

Q10 Q11

reverse mapping

Figure 3: Subregion labeling for a sample case.

be assigned to all processors in the parallel architec-
ture. While splitting a region into two subregions, the
processor-group assigned to that region is also split into
two halves and these two halves are assigned those two
subregions, respectively. This recursive spatial subdivi-
sion of the window proceeds together with the recursive
subdivision of the processor interconnection topology.
The recursive subdivision and assignment scheme to be
adopted for the processor interconnection topology is
a crucial factor in achieving the data coherence men-
tioned earlier.

In this work, we propose a recursive labeling scheme
for the generated regions during the recursive subdivi-
sion of the window. This labelling scheme emulates the
recursive definition of the hypercube interconnection
topology as the target architecture for the object-based
parallel ray tracing algorithm. However, the proposed
labeling can easily be adopted to other parallel architec-
tures implementing symmetric and recursive intercon-
nection topologies (e.g., 2D Mesh and 3D Mesh) with
minor modifications.

Here, we will briefly summarize the topological prop-
erties of hypercubes exploited in the proposed label-
ing. A multicomputer implementing the hypercube
interconnection topology consists of P � 2d proces-
sors with each processor being directly connected to d
other neighbor processors. In a d-dimensional hyper-
cube, each processor can be labeled with a d-bit binary
number such that the binary label of each processor
differs from its neighbor in exactly one bit. A chan-
nel c defines the set of P�2 links connecting neigh-
bor processors whose binary labels differ only in bit
c, for c � 0� 1� 2� � � � � d� 1. In the recursive defini-
tion of the hypercube topology, a d-dimensional hyper-
cube is constructed by connecting the processors of two

4

�d�1�-dimensional hypercube in a one-to-one manner.
Hence, a d-dimensional hypercube can be subdivided
into two disjoint �d�1�-dimensional hypercubes, called
subcubes, by tearing the hypercube across a particular
channel (e.g., c�d�1). Each one of these two �d�1�-
dimensional subcubes can in turn be divided into two
disjoint �d�2�-dimensional subcubes by tearing them
across another channel (e.g., c � d� 2). Hence, d
such successive tearings along different channels (e.g.,
c�d�1� d�2� � � � � 1� 0) result in 2d 0-dimensional sub-
cubes (i.e., processors). An h-dimensional subcube in
a d-dimensional hypercube (0 � h � d) can be repre-
sented by a d-tuplet containing h free-coordinates (x’s)
and d�h fixed-coordinates (0’s and 1‘s) [10].

In the proposed mapping scheme, the label Q of
the initial rectangular region (window W) is initial-
ized to null. Consider the subdivision of a particu-
lar subregion labelled as Q by a vertical or horizon-
tal splitting plane. Note that the label Q of this sub-
region is a q-bit binary number where q denotes the
depth of this subregion in the subdivision recursion
tree. Hence, subregion Q is already mapped to the
(d�q)-dimensional subcube Qx...x. The left (below)
and right (above) subsubregions generated by a vertical
(horizontal) splitting plane are labelled as Q0 and Q1,
respectively. This labelling corresponds to tearing the
subcube Qx...x across channel d�q�1 and mapping the
resulting (d�q�1)-dimensional subsubcubes Q0x...x and
Q1x...x to left (below) and right (above) subsubregions,
respectively (see Figure 4). However, if two subregions
Q0 and Q1 generated from the same region by a ver-
tical (horizontal) splitting plane are both splitted again
by vertical (horizontal) planes, then the subsubcube-to-
subsubregion assignment in one of these two subregions
is performed in reverse order. The proposed labeling
scheme tries to maximize the data coherence by map-
ping neighboring subregions to neighboring subcubes,
as much as possible, during the recursive subdivision
process. Figure 3 illustrates the possible labeling com-
binations in a particular subpath of the recursion tree.

Parallel Spatial Subdivision

For complex scenes, spatial subdivision using the pro-
posed BBSP scheme still may take too much time. For
that reason, we can use the node processors of the tar-
get multicomputer to speed up the subdivision process.
Furthermore, these processors are already idle waiting
for the start of the ray-tracing-loop. This approach
increases the utilization of the parallel system. Re-
ducing the spatial subdivision time is also studied by
other researchers. McNeill et al. [11] have suggested
an algorithm for dynamic building of the octree to re-
duce the data structure generation time. In this work,
we propose a parallel subdivision algorithm - a parallel
version of BBSP scheme for hypercube multicomput-
ers. The proposed BBSP algorithm is based on divide-
and-conquer paradigm. Hence, BBSP algorithm is very
suitable for parallelization on hypercubes due to their
recursive structures mentioned earlier. The proposed

0000

0001

0100

0101

0010

0011

0111

0110

1001 1011

1111

1101

1000

1100 1110

1010

0000

0001

0100

0101

0010

0011

0111

0110

1001 1011

1111

1101

1000

1100 1110

1010

0000

0001

0100

0101

0010

0011

0111

0110

1001 1011

1111

1101

1000

1100 1110

1010

0000

0001

0100

0101

0010

0011

0111

0110

1001 1011

1111

1101

1000

1100 1110

1010

Subdivision accross channel c=2

Subdivision accross channel c=3

Subdivision accross channel c=1

Subdivision accross channel c=0

Figure 4: Operation structure of the proposed parallel
BBSP algorithm.

parallel BBSP algorithm has a very regular communi-
cation structure and requires only concurrent single-hop
communications (i.e., communications between neigh-
bor processors) on hypercubes. The proposed parallel
BBSP algorithm may also be adopted to other intercon-
nection topologies. However, multi-hop communica-
tions may be required in other topologies.

In the proposed scheme, host processor randomly
decomposes the object database into P even subsets
such that each subset contains either dN�Pe or bN�Pc
objects and it sends each subset to a different node
processor of the hypercube. Then, the following steps
are performed in a divide-and-conquer manner (d �
log2 P times) for each channel c from c�d�1 down to
c�0.
Step 1 Node processors concurrently construct their
local integer arrays corresponding to their local object
database.
Step 2 Processors concurrently perform prefix-sum op-
eration on their local integer arrays.
Step 3 Processors of each �c�1�-dimensional disjoint
subcube perform global vector sum operation on their
local integer arrays. Note that there exist 2d�c�1 global
vector-sum operations performed concurrently. At the

5

end of this step, processors of each (c�1)-dimensional
subcube will accumulate the same local copies of the
prefix-summed integer-arrays.

Step 4 Replicated integer arrays on x and y dimensions
in each subcube are virtually divided into 2c�1 even
slices and each slice is assigned to a different processor
of that subcube. Then, processors perform the cost
computations of the splitting planes corresponding to
their slices in order to find their local optimal splitting
planes.

Step 5 Processors of each subcube perform a global
minimum operation to locate the optimal splitting plane
corresponding to the subregion mapped to that subcube.

Step 6 Processors of each subcube determine their local
subsubregion assignment, for the following stage c�1,
according to the proposed mapping scheme. Then, pro-
cessors concurrently perform a single pass over their lo-
cal object database to gather and send the objects which
belong to the other subsubregion to their neighbors on
channel c. Hence, two subsubcubes of each subcube ef-
fectively exchange their subset of local object databases
such that each subsubcube collects the object database
corresponding to their subsubregion assignment in the
following stage c�1. Note that 2d�c�1 subsubcube
pairs perform such exchange operation concurrently.

During Step 6, processor pairs also determine their
local shared objects which are not involved in the ex-
change operation. However, processors update either
xmin �ymin� or xmax �ymax� values of their local
shared objects according to their subsubregion assign-
ment for a vertical (horizontal) splitting plane. Hence,
processors maintain and process disjoint rectangular
parts of the bounding boxes corresponding to the shared
objects.

Figure 4 illustrates the operation structure of the pro-
posed parallel BBSP algorithm on 4-dimensional hy-
percube topology. In this figure, links drawn as dashed
lines illustrate the idle links in a particular stage of the
parallel algorithm. Links drawn as solid lines illus-
trate the disjoint subcubes working concurrently and
independently for the subdivision of their subregions at
each stage. That is, processors of each subcube work
in cooperation to determine the optimal subdivision of
the subregion assigned to that subcube. These links
also show the subcubes in which intra-subcube global
vector-sum and global minimum operations are per-
formed. In Figure 4, links drawn as solid lines with ar-
rows illustrate the channel over which object-exchange
operation takes places. These links also illustrate the
subdivision of each subcube into two disjoint subsub-
cubes at the end of each stage. As is also seen in
Figure 4, all objects arrive at their home processors af-
ter log2P concurrent object-exchange operations. Note
that shared objects will have more than one home pro-
cessors and they will be replicated in those processors.

Experimental Results

The proposed parallel subdivision algorithm is imple-
mented on an Intel‘s iPSC/2 hypercube multicomputer
with 16 processors. The performance of the parallel
program is experimented on several scenes containing
different number of objects.

As is mentioned earlier, computational load balance
and communication overhead are two crucial factors
that determine the efficiency of a parallel algorithm.
The recursive spatial bisection scheme employed in the
BBSP algorithm tries to maintain load balance among
the disjoint �c�1�-dimensional subcubes at each sub-
division stage c during the first level of the parallel ray
tracing computations. That is, in a particular subdivi-
sion stage c, the products of the number of local objects
and areas of the rectangular subregions assigned to dis-
joint subcubes are approximately equal to each other.
Note that, at the end of each stage of the parallel sub-
division algorithm (Step 6), objects always migrate to
their destination subcubes for the following stage. That
is, at the beginning of each subdivision stage, each
subcube holds only the local objects which belong to
its respective local rectangular subregion. However,
in the subdivision algorithm, the complexities of local
object-based computations (Steps 1 and 6) and com-
putations on local integer arrays (Steps 2, 3 and 4)
within a subcube are proportional to the number of
local objects and the semi-parameter (height+width),
respectively, of the rectangular subregion assigned to
that subcube. Hence, the complexities of local compu-
tations within a subcube during the parallel ray tracing
and the parallel subdivision algorithms depend on the
same factors; number of local objects, height and width
of the rectangular subregion assigned to that subcube.
However, the dependence is multiplicative in the par-
allel ray tracing, whereas, it is additive in the parallel
subdivision. Hence, this deviation in the load balance
measures of these two parallel algorithms may intro-
duce load imbalance among subcubes during the paral-
lel subdivision since the proposed parallel subdivision
algorithm inherently operates in accordance with the
mapping strategy adopted by the recursive spatial bi-
section scheme which tries to maintain a load balance
during parallel ray tracing. This type of load imbalance
is referred here as inter-subcube imbalance. There ex-
ists no load imbalance among the processors of the
individual subcubes during the local integer computa-
tions at Steps 2, 3 and 4, since each processor of a
subcube operates on local integer arrays of the same
size. However, processors of the same subcube may
hold different number of local objects belonging to the
respective subregion during a particular stage of the al-
gorithm. This type of load imbalance, which is referred
here as intra-subcube imbalance, may introduce imbal-
ance during the concurrent object-based computations
(Steps 1 and 6) between the processors of the same
subcube. Intra-subcube load imbalance may introduce
processor idle time both during the global synchroniza-
tion at Step 3 (global vector-sum operation) and object
exchange synchronization at Step 6 within subcubes.

6

Initial random distribution of objects to processors is
an attempt to reduce intra-subcube load imbalances.

The communication overhead of the proposed paral-
lel algorithm involves two components; number and
volume of communication. In a medium-to-coarse
grain architecture with high communication latency,
the number of communications may be a crucial fac-
tor affecting the performance of the parallel algorithm.
Each one of the intra-subcube global operations at
Steps 3 and 5 require c�1 concurrent exchange com-
munication steps at stage c. Under perfect load balance
conditions, these global communications within differ-
ent subcubes will be performed concurrently. Hence,
the total number of concurrent communications due
to these intra-subcube global operations is d�d� 1�.
Thus, the total number of concurrent communications
becomes d�d�2� since the object exchange operations
(Step 6) require d concurrent communications in total
under perfect load balance conditions. Hence, percent
overhead due to the number of communications is neg-
ligible for sufficiently large granularity �N�P � values.

The volume of concurrent communication during
an individual intra-subcube global minimum operation
(Step 5) is only 2�c�1� integers at stage c. On the other
hand, the volume of the concurrent communication dur-
ing an individual intra-subcube global vector-sum op-
eration (Step 3) is 2�c�1��n�m� integers where n�m
denotes the semi-perimeter of the rectangular subregion
assigned to that subcube at stage c. That is, the total
volume of this type of communications depend on the
semi-perimeter of the initial window and d. Hence,
percent overhead due to these types of integer commu-
nications decreases with increasing scene complexity
for a fixed window size. The total volume of commu-
nication due to the object migrations is a more crucial
factor in the parallel performance of the proposed par-
allel algorithm. Under average-case conditions, half of
the objects can be assumed to migrate at each stage of
the algorithm. Hence, if shared objects are ignored,
the total volume of communications due to object mi-
grations can be assumed to be �N�2� log2 P objects.
Experiments on various scenes yield results very close
to this average-case behavior.

Under perfect load balance conditions, each proces-
sor is expected to holdN�P objects and each processor
pair can be assumed to exchange N�2P objects, at each
stage. Hence, under these conditions total concurrent
volume of communications due to object migrations
will be �N�2P � log2 P objects. Experiments on var-
ious uniform scenes yield results very close to these
expectations. However, results slightly deviate from
these expectations for non-uniform scenes with objects
clustered toward particular positions.

Figure 5 illustrates the efficiency curves for differ-
ent dimensional hypercubes as function of the scene
complexity. Efficiency values on a hypercube with P
processors are computed as Ep � T1�PTp where T1
and Tp denote the execution times of the sequential and
parallel subdivision programs on 1 and P node proces-
sors, respectively. As is seen in Figure 5, efficiency
increases with increasing scene complexity and fixed

5K 10K 20K 30K 40K 50K 60K
Number of Objects (N)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ef
fic

ie
nc

y

P = 2
P = 4
P = 8
P = 16

Figure 5: Efficiency curves with respect to the total
number of objects in the scene

window resolution size. This decrease can be attributed
to two factors. The total number of communications
stays fixed for a fixed hypercube size. Hence, percent
overhead due to the total number of communications
decreases with increasing scene complexity. Similarly,
the volume of integer communications also stays fixed
for fixed hypercube size and window resolution size.
Hence, percent overhead due to the volume of integer
communications also decrease with increasing scene
complexity. As is seen in Figure 5, efficiency values
close to 100% are obtained for P � 2 processors since
initial even distribution of objects entirely avoids both
intra- and inter-subcube load imbalances during the first
stage of the parallel BBSP algorithm. However, for a
fixed scene instance, efficiency decreases considerably
with increasing number of processors. This decrease is
mainly due to the increase in the inter-subcube load im-
balances, since each doubling of the number of proces-
sors introduces an extra stage to the algorithm. There-
fore, load re-balancing algorithms should be developed
for larger number of processors.

Conclusion

An efficient subdivision algorithm based on BSP (called
BBSP) is proposed for object-based parallel ray trac-
ing. The proposed BBSP algorithm tries to minimize
the communication overhead during the object-based
parallel ray tracing by exploiting data coherence. The
other advantage of the proposed BBSP is that subdi-
vision process does not generate empty boxes. Empty
boxes may occupy significantly large space. Besides,
rays may spend time while skipping the empty boxes.
Subdivision of space into the 3-D grid elements and in
the octree fashion suffer from these factors.

The preprocessing due to the subdivision of the 3-
D space may be time consuming for complex scenes.
An efficient parallel BBSP algorithm is proposed and

7

presented to reduce the preprocessing time. The imple-
mentation on an Intel iPSC/2 multicomputer achieved
promising results.

References

[1] S. A. Green and D. J. Paddon. Exploiting coher-
ence for multiprocessor ray tracing. IEEE CG&A,
pages 12–26, November 1989.

[2] J. Goldsmith and J. Salmon. Automatic creation
of object hierarchies for ray tracing. IEEE CG&A,
pages 14–20, May 1987.

[3] A. S. Glassner. Space subdivision for fast ray
tracing. IEEECG&A, pages 15–22, October 1984.

[4] M. R. Kaplan. The use of spatial coherence in ray
tracing. In Techniques for Computer Graphics,
pages 173–193. Springer-Verlag, 1987.

[5] V. İşler, C. Aykanat, and B. Özgüç. Subdivision of
3d space based on the graph partitioning for par-
allel ray tracing. In Proceedings: Second Euro-
graphics Workshop on Rendering. Eurographics,
Spain, May 1991.

[6] H. Kobayashi, S. Nishimura, H. Kubota, T. Naka-
mura, and Y. Shigei. Load balancing strategies
for a parallel ray-tracing system based on constant
subdivision. The Visual Computer, (4):197–209,
1988.

[7] T. Priol and K. Bouatouch. Static load balancing
for a parallel ray tracing. The Visual Computer,
(5):109–119, 1989.

[8] A. Fujimoto, T. Tanaka, and K. Iwata. Arts: Ac-
celerated ray-tracing system. IEEE CG&A, pages
16–26, April 1985.

[9] J. D. MacDonald and K. S. Booth. Heuristics for
ray tracing using space subdivision. The Visual
Computer, (6):153–166, 1990.

[10] F. Özgüner and C. Aykanat. A reconfigura-
tion algorithm for fault tolerance in a hypercube
multiprocessor. Information Processing Letters,
29:247–254, 1988.

[11] M. D. J. McNeill, B. C. Shah, M. P. Hébert, P. F.
Lister, and R. L. Grimsdale. Performance of space
subdivision techniques in ray tracing. Computer
Graphics Forum, 11(4):213–220, 1992.

8

