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Abstract. Scalable multicomputers are based upon interconnection net-
works that typically provide multiple communication routes between any
given pair of processor nodes. Routes must be selected for communica-
tion so that the load is distributed evenly among the links and switches
to prevent congestion in the network. We describe the route selection
algorithm used in the IBM 9076 SP1 multicomputer. We then describe
a new algorithm for reducing network congestion and compare the two
algorithms.

1 Introduction

Scalable multicomputers are based upon interconnection networks that typi-
cally provide multiple communication routes between any given pair of processor
nodes. Multiple routes provide low latency, high bandwidth, and reliable inter-
processor communication. In such networks, the selection of the routes is an
important problem because of its impact on the communication performance.
Routes must be selected so that the communication load is distributed evenly
among the links and switches to prevent congestion in the network. In this paper
we describe the route selection algorithm used in the IBM 9076 SP1 multicom-
puter. We then describe an experimental algorithm for reducing network conges-
tion and compare the two algorithms. In the next section we give an overview
of the SP1 network architecture. In Section 2 we describe the SP1 routing algo-
rithm. In Section 3 we describe the experimental routing algorithm and compare
the two algorithms in Section 4.

1.1 The SP1 Network Architecture

The 9076 SP1 is a commercially available multicomputer whose communication
architecture is based upon the Vulcan architecture [1]. The SP1 processor nodes
attach to a multistage interconnection network consisting of 8 input 8 output
non-blocking switches [1]. The switch chip shown in Fig.3 consists of 8 receiver
and 8 transmitter modules, an unbuffered 8 x 8 crossbar, and a 1-KByte large
central queue. Each input and output port consists of 8 data lines and 2 control
lines. Processor nodes communicate by sending and receiving message packets.
Packets are variable length with up to 255 bytes in size. The method of packet



transfer is similar to wormhole routing [2], with the difference in that when a
packet is blocked the packet bytes are not buffered in place but they are tem-
porarily transferred to the central queue until the blocked output port is cleared
up. The method of packet transfer also differs from virtual cuit-through tech-
nique [3, 2] in that flow control is byte based, not packet based. When there is
no output contention packet bytes pass through the switch chip via crossbar in
5 clock cycles. Packets are formatted such that the first byte of each packet indi-
cates the packet length, followed by a number of routing bytes, followed by data.
The source routing technique is used for routing packets [4]. In this technique,
the source processor node determines the complete route and puts the respective
route bytes in the packet. As the packet proceeds to its destination, each switch
chip examines the first route byte of the packet and determines the destination
output port. The switch chip also strips off the portion of the routing informa-
tion pertaining to itself. The packet has no route bytes remaining upon arriving
at the destination node. In the SP1 implementation, the switch chip operates at
40 MHz, resulting in a peak bandwidth of 40 MB/s per port and ports may be
interconnected with cables over 100 feet in length enabling construction of large
networks very easily.

In the network implementations, the switch chip input port ¢ and output
port ¢ are paired together to form a full duplex bidirectional channel. The re-
sulting 4 x 4 bidirectional switch element can forward a packet to any of the 8
output ports, including the output ports on the same side with the input port
(called “turn-around routing”). In that respect, the SP1 network topologies differ
from more commonly known unidirectional multistage interconnection networks
(MIN) such as the Omega and indirect binary n-cube [5, 6]. Bidirectionality
enhances the modularity, fault-tolerance, and diagnosis of the network as de-
scribed in [1]. Eight switches placed in a 2-stage configuration interconnected
with a shuffle form the switch board as shown in Fig. 4. The switch board pro-
vides full connectivity; it can route a packet from any 32 input ports to any 32
output ports. Switch boards may be interconnected in various ways to construct
larger networks. A 16 node network is constructed using only one switch board
with the 16 processor nodes attached to the left hand side of the board and
the 16 ports on the right hand side unused. A 32 node network is constructed
using two switch boards whose right hand sides are interconnected with straight
wires. 128 node and 256 node network examples are shown in Fig. 5 and Fig. 6.
Custom network topologies of any size can be constructed very easily due to the
interconnect technology used.

2 The SP1 Routing Algorithm

We developed the SP1 routing algorithm originally for the Vulcan prototype [1].
A modified version of the algorithm is also being used in IBM’s recently an-
nounced SP2 multicomputer. The SP1 routing algorithm is a simple algorithm
that selects a single shortest path between each pair of processor nodes, al-
though multiple shortest paths may exist. In that respect, the SP1 routing al-



gorithm is comparable to the commonly known XY routing algorithm for 2-
dimensional meshes and the e-cube routing algorithm for hypercubes [2]. In a
2-dimensional mesh, the XY routing algorithm uses the single route that goes
along the X dimension first and then along the Y dimension, although two nodes
have (hz 4 hy)!/h'h,! different shortest paths from one to another, where A,
and h, are the internode distances in the X and Y dimensions, respectively. In
the hypercube topology, the e-cube algorithm uses the single route that goes
along the increasing order of dimension, although two nodes with a Hamming
distance of k have k! shortest paths from one to another.

The shortest path routing is not necessarily the best choice for all commu-
nication patterns [7]. However, in the absence of any information on communi-
cation patterns, we decided to use the shortest paths since fewer switches and
links would be used. We use the modified Breadth-First Search algorithm shown
in Fig. 1 for building a breadth-first spanning (BFS) tree rooted at each source
node (src), and then we follow the spanning tree paths to find the shortest paths
from the source node to the rest of the processor nodes. The algorithm is origi-
nally due to [8] and uses a first-in, first-out (FIFO) queue @ for the breadth-first
search. We added a simple static load balancing strategy to ensure that links
are included in the selected routes in a balanced manner. The network graph
G = (V, A) is represented by a linked list of vertices. Each vertex v € V repre-
sents a processor node or a switch, and each arc e € A represents a half duplex
link. Only the non-faulty links and switches are represented in G. The direction
of an arc indicates the direction of message transmission. Each switch vertex has
a maximum in-degree of 8 and out-degree of 8, and each processor vertex has
an in-degree of 1 and out-degree of 1. The u.parent field indicates the parent of
vertex w in the spanning tree, and u.distance indicates the distance of vertex u
to the root (the source node) of the tree. The u.port[i] field indicates the vertex
attached to the output port 7 of vertex u, hence also represents the arc from
vertex u to vertex u.port[i].

Load balancing is facilitated by the u.portusageli] field which indicates how
many times an output port has been used during route generation. While build-
ing a spanning tree from a given source node, each time a source—destination
path is found, portusage field is incremented for each output port in that path.
Usage count of the ports determine the order of breadth-first search from the
next source node, such that from a given vertex v we first visit the vertices ad-
jacent to the least frequently used output ports (i.e. with the smallest counts),
which is accomplished by sorting the port usage counts in lines 10-17.

The routes are stored in a route table in each processor’s memory. The route
table approach enables routing to be done in a topology independent fashion.
Note also that by design the SP1 routing algorithm does not assume a topol-
ogy, whereas the e-cube and the XY routing algorithms assume hypercube and
2-dimensional mesh topologies, respectively. Topology independence property is
important for fault-tolerance and scalability; missing links and switches are han-
dled properly by the SP1 routing algorithm, and larger networks of different
topological properties can be implemented easily without having to change the



RTG(G) /* Route Table Generator */
1 for each vertex u € V[G]
for :=0 to7
w.portusage[i] «— 0
for each vertex src € V[G]
BFS_RTG(G, src)

T W N

BFS_RTG(G, src)
1 for each vertex u € V[G]

2 u.visit «— WHITE

3 u.distance «— 0

4 w.parent «— NIL

5 src.visit «— GRAY

6 ENQUEUE(Q, src)

7 while Q # 0

8 u +— head[Q]

9 if w.type = SWITCH then

10 for 1 =0 to 7

11 indez[i] «— 1

12 for =7 to 1

13 for :=0 to j—1

14 if w.portusageli] > u.portusage[i + 1] then
15 tmp «— indez[]

16 indez[i] «— indez[s + 1]
17 indez[i + 1] « tmp

18 for j=0 to 7

19 1 «— indez[]]

20 v — u.port[i]

21 if v# NIL AND v.wisit = WHITE then
22 v.visit «— GRAY

23 v.distance «— u.distance + 1
24 v.parent «— u

25 v.parentport « 1

26 ENQUEUE(Q, v)

27 if u.type = PROCESSOR then

28 TRACEBACK(G, u)

29 DEQUEUE(Q)

30 uw.visit «— BLACK

TRACEBACK(G, )
1 while wu.distance # 0

2 v «— u.parent

3 1 «— w.parentport

4 v.portusage[t] « v.portusage[i] + 1
5 U — v

Fig.1. The SP1 algorithm for route selection



routing hardware or the algorithm. Although, the SP1 routing algorithm at-
temps to include the links in the routes in a balanced manner, it does not base
the routing decisions on any measured or estimated network traffic. Therefore,
the SP1 routing algorithm is non-adaptive as the e-cube and the XY routing al-
gorithms are. Adaptive routers are known to perform better than non-adaptive
routers in general with somewhat increased switch complexity [9, 7]. However,
in the experiments we observed that the SP1 routing algorithm realizes many
commonly used communication patterns without link conflicts for some network
topologies.

In the SP1 multicomputer, network topologies are generally designed to be
deadlock-free [2] with shortest path routes. For example, all the topologies used
in the experiments reported in this paper are deadlock-free with shortest path
routes. However, we have some experimental topologies that may cause deadlock
cycles due to “turn-around routing” where a packet enters and leaves a switch
from the same side. ® In such cases we eliminate the deadlock causing routes by
putting routing restrictions on some switches while generating the routes.

3 An Experimental Routing Algorithm

We developed an experimental algorithm for adaptive route selection in SP1
networks. We were motivated by the fact that although the SP1 switch is not
designed for adaptive routing, multiplicity of routes between any pair of nodes
would allow us to make better routing decisions if estimates of the network traf-
fic were available. We assume that the network traffic is represented by a Node
Interaction Graph (NIG). NIG is a directed graph whose vertices represent the
processor nodes and arcs represent interprocessor communication. NIG arcs may
have weights that denote the amount of information transmitted from the source
node to the destination node. The NIG model may appear unrealistic for gen-
eral applications since it does not model the temporal interactions between the
processor nodes. However, a large class of applications such as iterative solution
of systems of equations that arise in numerical computing may be represented
with NIGs. See [10, 11] for examples. When all vertices of NIG have an in-degree
and out-degree of 1, then it is called a permutation routing. NIGs may be ob-
tained in several ways, such as the users or compilers supplying NIGs based on
the expected program behavior, or the operating system supplying NIGs based
on the history of system workload.

In the experimental algorithm, the route selection problem is formulated as
minimization of the cost function

cost = > W7 +K> W? (1)

LeL sES

where L is the set of all links, W, is the total flow through link 2, S is the
set of all switches, and W, is the total flow through switch s. The nonlinear

® Craig Stunkel: private communication



cost function penalizes the links and switches with higher flow. For example, n
messages each with a unit flow routed over one link will contribute n? units to
the cost, whereas the n messages routed over n different links will contribute
n units to the cost. K > 0 is the weight of the total switch penalty and it is
a hardware dependent constant. K # 0 is used to minimize switch sharing. In
some switch designs, messages sharing the switch resources such as a central
queue may impact the performance and this may be taken into account in the
cost function by a nongero constant K that is derived empirically or by analysis.
A cost function similar to Eq. 1 was used in [12] for routing in networks with
virtual cut-through capability. However, Eq. 1 differs from that of [12] such that
the second term due to switch sharing does not exist in [12]. Furthermore, the
distance metric that we use in our algorithm is based on number of network
hops, whereas in [12] it is based on the link utilization.

ROUTER(NIG,G)
1 Let R be the set of all routes, where R[7][J]

is a set of routes from node ¢ to j

for each arc e = (src,dst, flow) € NIG
Select an initial route r € Rle.src][e.dst]
Add e.flow to the links and switches on the path of route r
Update cost

Pprevious_cost «— oo

n_trials «— NTRY « 2
(to try the same cost a number of times)

8 while previous_cost > cost OR n_trials £ 0

= O TR W N

9 previous_cost «+ cost

10 for each arc e = (sr¢,dst, flow) € NIG

11 cost —« ROUTE_ONE_EDGE(e, G, R)
12 if cost = previous_cost then

13 n_trials «— n_trials — 1

14 else

15 n_trials — NTRY

ROUTE_ONE_EDGE(e, G, R)
1 Rip up previously selected route for e and update cost
2 Find a route r € R[e.src][e.dst] with the smallest incremental cost.
If there are multiple such routes, then select one randomly

3 Update G and cost

Fig. 2. The adaptive algorithm for route selection

A brief sketch of the adaptive algorithm is given in Fig. 2. The objective is to
minimize the cost. For each communication arc (s,d, f) € NIG an initial route
is selected, where f is the required amount of flow from node s to node d. After
the initial selection of routes, the total cost is calculated. Then, sequentially for



each arc (s,d, f) € NIG, the previously selected route is ripped up and a new
route with smaller incremental cost is selected from the set of routes R[s][d]. The
procedure is repeated iteratively until the cost converges to a local minimum.
The algorithm is guaranteed to converge because the cost is monotonically non-
increasing. If the cost from previous iteration does not change, the algorithm
does not terminate immediately but allows a different set of routes with the
same cost be tried a bounded number of times (NTRY = 2 in this case) in
anticipation of further cost reduction in the next iteration. For the topologies
we used, the route set R[s][d] consists of all deadlock-free shortest-path routes
from node s to node d. However, in richer topologies a restricted subset of the
routes between nodes s, d may also be considered, because the number of routes
may get quite large increasing the execution time.

4 Results and Conclusions

We have implemented the experimental route selection algorithm and compared
its performance with the SP1 routing algorithm using a set of communication
workloads. Results given in Tables 1 through 3 show how well the two algorithms
deal with the network congestion.

4.1 Workloads and Methods

In the experiments, we used standard network topologies available from IBM for
16, 32, 64 node systems. For 128, 256, and 512 node networks we used topologies
shown in Figs. 5, 6. The 256 node topology has all the nodes connected to the left
hand side of the network with the right hand side ports remaining unconnected.
The 512 node topology is constructed from two 256 node networks shown in
Fig. 6 whose right hand sides are interconnected with straight wires. Not shown
in the figures is the 256-A topology which consists of 8 second stage boards
instead of the 16 used in Fig. 6.

We used different communication workloads (NIGs): in the RANDOM-F
workload each node i sends a unit size message to a randomly selected node
j- RANDOM-V is similar except that message sizes randomly vary between 1
and 10. DOLOOP refers to a commonly used communication pattern in parallel
programs coded in Fortran. Each node executes

1 DOI=1,N-1

2 each node J =0...N — 1 sends message to node (I + J)(modN)
3 where N is the number of processors

4 CONTINUE

Note that each iteration of the loop corresponds to one NIG graph. EXOR refers
to a communication pattern that provides conflict free routing in hypercubes as
shown in [13]. It is similar to the DOLOOP, except that order of communication
1s different as shown below



1 fori=1to N -1
each node 7 = 0...N — 1 sends message to node : EXOR j
3 where N is the number of processors

[\

NCUBE refers to a commonly used communication pattern in divide and conquer
type algorithms. Given 2™ processor nodes, each node sends to n other nodes

1 fori=0ton—1
2 each node (Jp—1...7:.-.Jo)
3 sends message to node (jp—1...;--.jo0)

where (jn_1...Ji...jo) is the binary representation of the node number and
(jn—1---Ji---jo) is the node number with the i-th bit complemented. The re-
maining workload are derived from Harwell-Boeing sparse matrix collection. We
mapped task graphs obtained from the sparse matrices to processor graphs using
Kernighan-Lin heuristic to minimize communication [14]. Then, we assumed that
the resulting communication workload would be executed using the DOLOOP
communication pattern. Thus, the workloads BCSPWR10, BCSSTK9, BLCK-
HOLE, and JAGMESH, resemble DOLOOP with the exception that arcs of the
resultant NIGs have variable weights.

In the tables, the COST column refers to the minimum cost obtained by the
algorithms as given by Eq. 1. We set the constant K = 0 in the experiments since
switch sharing does not incur any penalty in the SP1 switch. As a performance
metric we also included the maximally loaded link in the network given in the
FLOW column. Note that smaller cost does not necessarily mean smaller max-
imum link flow. However, in practice we have not observed a case of maximum
link flow increasing with decreasing cost.

4.2 Results

The main result of the paper is shown in Table 1 which indicates that the SP1
routing algorithm generates conflict free routes for 16, 32, and 512 node topolo-
gies for DOLOOP, EXOR, and NCUBE workloads. FLOW columns show that
the maximum link load is 1.0 indicating conflict free routing. The experimental
routing algorithm was most effective with the RANDOM workloads; the maxi-
mum link load was a smaller by a factor of 2 to 3 compared to the SP1 routing
algorithm. For BCSPWR10, BCSSTK9, BLCKHOLE, and JAGMESH work-
loads the difference between the two algorithms were negligible most probably
due to the fact that the NIGs were sparse and used the DOLOOP pattern, thus
messages rarely shared any links or switches. In the 16 and 32 node DOLOOP
cases the experimental algorithm performed worse than the SP1 routing algo-
rithm pointing us to a weakness of the experimental algorithm: since it is a local
minimization heuristic, the quality of results depend very much on the initial
selection of the routes. To fix this problem we modified the experimental rout-
ing algorithm such that instead of selecting the initial routes randomly, we used



routes generated by the SP1 routing algorithm as the initial routes. Results of
this experiment are reported in Table 2 which show that the experimental rout-
ing algorithm always performs better than or equal to the SP1 routing algorithm.

We performed a third set of experiments reported in Table 3 to test the ef-
fects logical to physical node mapping. In SP1 a user is presented with a logical
sequence of node numbers from 0 to N-1. The logical node number observed by
a user program is not necessarily equal to the physical node number of the un-
derlying node. A logical to physical node number mapping is performed by the
system. This is necessary because some nodes may already have been allocated
to other users, and some nodes may be down, therefore cannot be allocated. To
test the effect of this mapping on routing, we randomly interchanged the node
numbers. When mapped randomly DOLOOP, EXOR, and NCUBE communica-
tion patterns could not use the conflict-free routes anymore. The experimental
routing algorithm performed much better than the SP1 routing algorithm in this
case.

4.3 Conclusions

Our results show that the experimental router is most advantageous when the
node interactions are spatially random. The main advantage of the SP1 routing
algorithm is its simplicity. While the experimental routing algorithm performs
better than the SP1 routing algorithm on a number of cases, it leaves many sys-
tem level issues unaddressed: It is not clear how to obtain the node interaction
graphs (NIG), and it is not clear whether the system or the user should run the
routing algorithm, and whether to store the routes in the system space or user
space, etc. It is probably too much to ask a user to provide NIGs. Compiler pro-
vided NIGs would be most convenient. Another issue that needs to be addressed
1s the parallelization of the route selection algorithms, since networks are getting
larger.
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Fig. 4. The Switch Board consisting of 8 Switch Chips
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This article was processed using the INTEX macro package with LLNCS style



# NODES 16 NODES 32 NODES 64 NODES 128 NODES

WORKLOAD |FLOW| COST|FLOW| COST|FLOW| COST|FLOW| COST
RANDOM-F SP1 2.10 30.4| 250 86.0 3.20 250.2| 3.50] 712.0
RANDOM-F EXP| 1.20 25.2| 1.70 73.2|  2.00 198.0| 2.00| 571.6
RANDOM-V SP1 | 15.30| 1169.8| 18.50| 3348.7| 22.00| 9469.4| 27.50|26914.1
RANDOM-V EXP| 9.30| 947.8| 10.20| 2836.3| 13.00| 7384.2| 10.90|21566.7
DOLOOP SP1 1.00 25.6| 1.00 74.3|  3.19 2477 3.87| 863.2
DOLOOP EXP| 1.13 26.1| 1.55 77.5| 2.73 244.6| 1.93| 5754
EXOR SP1 1.00 32.0, 1.00 82.3| 3.40 307.2| 2.55| 949.7
EXOR EXP| 1.00 32.0, 1.00 82.3| 3.40 302.9] 1.52| 571.9
NCUBE SP1 1.00 32.0, 1.00 747 2.50 236.0{ 1.60| 588.8
NCUBE EXP| 1.00 32.0, 1.00 747  2.50 234.0 1.20] 4424

BCSPWRI10 SP1 | 12.13| 1025.6/ 8.00| 535.2| 5.02 210.9| 3.43| 139.7
BCSPWRI10 EXP| 12.13| 1025.6/ 8.00| 535.2| 4.86 208.3| 3.38] 138.5
BCSSTK9 SP1 | 61.71|21521.7| 36.31|11841.4| 28.67| 6225.3| 13.37| 2183.5
BCSSTK9 EXP| 61.71|21521.7| 36.31|11841.4| 26.88| 6077.8| 12.15| 2080.8
BLCKHOLE SP1 | 19.77| 2108.9| 13.55| 1144.6| 9.51 614.2| 6.32| 402.3
BLCKHOLE EXP| 19.77| 2108.9| 13.55| 1144.6| 9.39 610.0 6.30| 400.7
JAGMESH9 SP1 | 18.67| 1621.0/ 10.17| 798.6| 7.30 387.5| 5.24] 309.3
JAGMESH9 EXP| 18.67| 1621.0/ 10.17| 798.6| 6.91 380.3| 5.16] 307.1

# NODES 256 NODES-C|256 NODES-A| 512 NODES
WORKLOAD |FLOW| COST|FLOW| COST|FLOW| COST|FLOW| COST
RANDOM-F SP1 450 1874.8| 4.20| 1741.0| 4.80| 4348.8
RANDOM-F EXP| 2.00| 1503.8| 2.00| 1374.0{ 2.00| 3504.2
RANDOM-V SP1 | 33.80(67670.2| 30.00({62225.3| 32.30{158898.9
RANDOM-V EXP| 14.00|53969.6| 16.20(47799.3| 17.20{126871.5
DOLOOP SP1 1.96| 1421.3| 3.03| 1521.3| 1.00| 3166.2
DOLOOP EXP| 1.95| 1503.8| 3.07| 1633.7| 2.01| 3498.2
EXOR SP1 1.76| 1438.5| 3.29| 1779.8| 1.00| 3184.9
EXOR EXP| 1.76] 1406.0| 3.29| 1804.2| 1.88| 3222.2
NCUBE SP1 1.33| 1045.3| 2.00| 1194.7 1.00| 2267.4
NCUBE EXP| 1.33] 1032.0/ 2.00| 1205.3| 1.43| 2282.3

BCSPWR10 SP1 2.29 80.6| 2.30 75.4| 1.63 47.8
BCSPWRI10 EXP| 2.29 80.6| 2.29 75.3| 1.63 47.8
BCSSTK9 SP1 5.00 584.2| 4.96| b561.2| 238 219.5
BCSSTK9 EXP| 4.96| 583.7| 4.96| 561.2| 2.38 219.6
BLCKHOLE SP1 4.06| 226.6] 4.11f 217.0f 2.01 83.1
BLCKHOLE EXP| 4.06| 226.6/ 4.06] 216.8] 2.01 83.1
JAGMESH9 SP1 2.53| 116.4| 2.53| 113.2| 1.74 114.0
JAGMESH9 EXP| 2.53| 116.4| 2.53| 113.2| 1.74 114.0

Table 1. Comparison of the SP1 routing algorithm and the experimental routing
algorithm which uses random initial routes.



# NODES 16 NODES 32 NODES 64 NODES 128 NODES

WORKLOAD |FLOW| COST[FLOW| COST|FLOW| COST|FLOW| COST
RANDOM-F SP1 2.10 30.4| 250 86.0 3.20 250.2| 3.50] 712.0
RANDOM-F EXP| 1.30 26.2| 1.90 75.4| 2.00 199.0| 2.00| 572.6
RANDOM-V SP1 | 15.30( 1169.8| 18.50| 3348.7| 22.00| 9469.4| 27.50|26914.1
RANDOM-V EXP| 9.90| 957.0| 10.50| 2839.7| 14.00| 7437.0| 11.70|21584.7
DOLOOP SP1 1.00 25.6| 1.00 74.3| 3.19 2477 3.87| 863.2
DOLOOP EXP| 1.00 25.6| 1.00 74.3|  2.92 241.5| 1.83| 552.6
EXOR SP1 1.00 32.0, 1.00 82.3| 3.40 307.2| 2.55| 949.7
EXOR EXP| 1.00 32.0, 1.00 82.3| 3.40 302.9] 1.52| 560.5
NCUBE SP1 1.00 32.0, 1.00 747  2.50 236.0{ 1.60| 588.8
NCUBE EXP| 1.00 32.0, 1.00 747 2.50 234.0 1.20] 438.0

BCSPWRI10 SP1 | 12.13| 1025.6| 8.00| 535.2| 5.02 210.9| 3.43| 139.7
BCSPWRI10 EXP| 12.13| 1025.6| 8.00| b535.2| 4.86 208.3| 3.38] 138.5
BCSSTK9 SP1 | 61.71(21521.7| 36.31|11841.4| 28.67| 6225.3| 13.37| 2183.5
BCSSTK9 EXP| 61.71(21521.7| 36.31|11841.4| 26.88| 6077.8| 12.15| 2080.8
BLCKHOLE SP1 | 19.77| 2108.9| 13.55| 1144.6] 9.51 614.2| 6.32| 402.3
BLCKHOLE EXP| 19.77| 2108.9| 13.55| 1144.6| 9.39 610.0 6.30| 400.7
JAGMESH9 SP1 | 18.67| 1621.0| 10.17| 798.6| 7.30 387.5| 5.24] 309.3
JAGMESH9 EXP| 18.67| 1621.0| 10.17| 798.6| 6.91 380.3| 5.16] 307.1

# NODES 256 NODES-C|256 NODES-A| 512 NODES
WORKLOAD |FLOW| COST|FLOW| COST|FLOW| COST|FLOW| COST
RANDOM-F SP1 450 1874.8| 4.20| 1741.0| 4.80| 4348.8
RANDOM-F EXP| 2.00| 1503.8| 2.00| 1376.8| 2.10| 3512.6
RANDOM-V SP1 | 33.80(67670.2| 30.00(62225.3| 32.30{158898.9
RANDOM-V EXP| 15.00(54114.4| 17.00({47788.7| 17.10{126901.1
DOLOOP SP1 1.96| 1421.3| 3.03| 1521.3| 1.00| 3166.2
DOLOOP EXP| 1.09| 1373.8| 3.02| 1521.3| 1.00| 3166.2
EXOR SP1 1.76| 1438.5| 3.29| 1779.8| 1.00| 3184.9
EXOR EXP| 1.00| 1389.7| 3.29| 1779.8| 1.00| 3184.9
NCUBE SP1 1.33| 1045.3| 2.00| 1194.7| 1.00| 2267.4
NCUBE EXP| 1.00| 1024.0/ 2.00| 1194.7| 1.00| 2267.4

BCSPWRI10 SP1 2.29 80.6| 2.30 75.4| 1.63 47.8
BCSPWRI10 EXP| 2.29 80.6| 2.29 75.3| 1.63 47.8
BCSSTK9 SP1 5.00| 584.2| 4.96| 561.2| 2.38 219.5
BCSSTK9 EXP| 4.96| 583.7| 4.96| 561.2| 2.38 219.5
BLCKHOLE SP1 4.06| 226.6| 4.11| 217.0f 2.01 83.1
BLCKHOLE EXP| 4.06| 226.6| 4.06| 216.8| 2.01 83.1
JAGMESHY9 SP1 2.53| 116.4| 2.53| 113.2| 1.74 114.0
JAGMESH9 EXP| 2.53| 116.4| 2.53| 113.2| 1.74 114.0

Table 2. Comparison of the SP1 routing algorithm and the experimental routing
algorithm which uses the initial routes selected by the SP1 routing algorithm.



# NODES 16 NODES 32 NODES 64 NODES | 128 NODES

WORKLOAD |[FLOW| COST|FLOW| COST|FLOW| COST|FLOW|COST
DOLOOP SP1 2.00 30.4| 2.74 92.5| 3.21| 240.3| 3.74| 7123
DOLOOP EXP| 1.13 25.9| 1.87 78.1| 2.00| 191.5| 2.00| 565.0
EXOR SP1 2.13 30.9 2.81 92.0 3.13| 240.2| 3.63| 714.1
EXOR EXP| 1.67 27.3| 1.94 80.1| 2.00| 193.2| 2.00| 566.5
NCUBE SP1 2.25 30.5| 3.00 92.0 3.00| 253.3| 3.71| 728.6
NCUBE EXP| 1.50 26.0 2.00 78.0 2.00f 201.3| 2.00| 572.6

BCSPWRI10 SP1 | 17.20| 2099.5| 10.32| 1066.4| 6.27| 588.3| 3.76| 424.3
BCSPWRI10 EXP| 15.33| 1977.9| 8.42| 970.5| 5.40| 509.5| 3.49| 394.4
BCSSTK9 SP1 | 82.08(41564.3| 51.46|30824.4| 30.25(15574.1| 14.49(6979.4
BCSSTK9 EXP| 76.83|40468.7| 44.21/28000.8| 28.02(13817.9| 12.38(6158.5
BLCKHOLE SP1 | 22.60| 3173.2| 18.00| 2825.9| 11.00| 1641.3| 7.13|1281.2
BLCKHOLE EXP| 22.33| 3065.6| 15.40| 2521.4| 9.67| 1415.9| 6.45|1165.4
JAGMESHY9 SP1 | 20.17| 3119.7| 13.62| 1967.1| 8.55| 1185.1| 6.17|1018.9
JAGMESH9 EXP| 18.67| 2955.7| 10.92| 1722.1| 7.29| 1043.5| 5.21| 928.3

# NODES 256 NODES-C|256 NODES-A| 512 NODES
WORKLOAD |[FLOW| COST|FLOW| COST|FLOW| COST|FLOW|COST
DOLOOP SP1 4.26| 1850.6| 4.21| 1705.7| 4.76| 4319.3
DOLOOP EXP| 2.00| 1488.5| 2.02| 1359.2| 2.03| 3487.1
EXOR SP1 4.24| 1850.0| 4.24| 1706.6| 4.73| 4311.7
EXOR EXP| 2.01] 1493.1| 2.01| 1362.1| 2.03| 3495.4
NCUBE SP1 4.25| 1862.5| 4.25| 1719.0| 4.78| 4322.0
NCUBE EXP| 2.00| 1496.2| 2.00| 1375.5| 2.00| 3487.8

BCSPWRI10 SP1 2.52| 295.6| 2.53| 257.2| 1.72| 181.9
BCSPWRI10 EXP| 2.34| 269.1| 2.34| 229.5| 1.64| 165.2
BCSSTK9 SP1 5.87| 2791.8| 5.88| 2477.2| 2.69| 646.2
BCSSTK9 EXP| 5.10| 2396.8| 5.10| 2075.1| 2.39| b564.0
BLCKHOLE SP1 4.36| 793.8| 4.36| 700.2| 2.24| 836.8
BLCKHOLE EXP| 4.07| 713.5| 4.08] 615.5| 2.09| 717.1
JAGMESH9 SP1 3.18| 1518.7| 3.15| 1326.4| 1.92| 465.5
JAGMESH9 EXP| 2.68| 1299.1| 2.71| 1109.5| 1.75| 402.1

Table 3. Comparison of the SP1 routing algorithm and the experimental routing
algorithm with random mapping of tasks onto processors



