
448 IEEE Transactions on Powa Systems, Vol. 10. No. 1, February 1995

ALGORITHMS FOR EFFICIENT VECTORIZATION OF
REPEATED SPARSE POWER SYSTEM NETWORK COMPUTATIONS

Cevdet Aykanat, Member Ozlem Ozgu
Computer Engineering Department

Bilkent University
Ankara, Turkey

Abstract - Standard sparsity-based algorithms used in power sys-
tem appllcations need to be restructured for efficient vectorization
due to the extremely short vectors processed. Further, intrinsic
architectural features of vector computers such as chaining and
sectioning should also be exploited for utmost performance. This
paper presents novel data storage schemes and vectorization also-
r i m that resolve the recurrence problem, exploit chaining and
minimize the number of indirect element selections in the repeated
solution of sparse linear system of equations widely encountered
in various power system problems. The proposed schemes are
also applied and experimented for the vectorization of power mis-
match calculations arising in the solution phase of FDLF which in-
volves typical repeated sparse power network computations. The
relative performances of the proposed and existing vectorization
schemes are evaluated, both theoretically and experimentally on
IBM 3090ArF.

I . INTRODUCTION

The solutionof randomly sparse linear system of algebraic q u a -
tions is one of the most challenging problems for vectorization
and parallelization. Many compute-intensive and time-critical
power system problems such as load-flow, contingency analysis,
state estimation, transient stability, optimal power flow, etc., re-
quire the solution of this form of equations. Therefore, speeding
up the solution of such equations by exploiting the state-of-the-
artcomputerarchitecturesis acrucial topicin power systems[l].
Problems of this form are most effectively solved in two phases;
triangular factorization phase and Fonvarmackward Substitu-
tion (FBS) phase. The vectorization and parallelization of each
individual phase have been the topic of many recent research
efforts [2-111.

In vector/parallel processing technology, it is a well known
fact that the best sequential algorithms may not lead to the best
vectodparallel algorithms. The existing algorithms should be
restructured or new algorithms need to be developed for utmost
efficiency on vector/parallel computers. In this context. standard
sparsity based algorithms used in power system network com-
putations need to be restructured for efficient vectorization due
to the extremely short vectors processed. W-matrix formulation
is a good example for restructuring the conventional methods
for the sake efficient vectorization and parallelization of FBS
computations [2, 4, 61. Similarly, power system applications
which involve svuctural network changes require special atten-
tion since efficient vectorization is only possible with the use of

94 SM 594-2 PwRs
by the IEEE Power System Engineering Committee of the
IEEE Power Engineering Society f o r presentation a t
the IEEE/PES 1994 Summer Meeting, San Francisco, CA,
July 24-28, 1994. Manuscript eubmitted January 4 ,
1994; made available f o r printing June 10, 1994.

A paper recommended and approved

Nezih Giiven, Member
Electrical Engineering Department
Middle East Technical University

Ankara, Turkey

static data structures. Bus type changes enforced by Q-limit
check in Fast Decoupled Load Flow (FDLF) 1121, can be con-
sidered as a typical example to such applications. Approaches
which model such changes as structural modifications in B"
and perform complete refactorization of the modified B" are
notsuitable for vectorization since such structural modifications
in B" necessitate re-forming the reactive W matrix. However,
there exist efficient formulations which enable the use of the
original (in value) triangular factors and hence the same reactive
W-matrix for the solution of modified reactive load flow equa-
tions by avoiding complete and partial refactorization [I l , 13).
Furthermore, formulations which model Q-limit enforcement as
non-structural modifications to B" and perform partial refactor-
ization [I41 can also be exploited in vectorization since they do
notdisturbthestructureoftbe reactive W matrix. Incontingency
analysis, post compensation can be effectively exploited in order
to utilize the original real and reactive W matrices to account for
the structural changes corresponding to branch outages [I 1. 131.

In this work, we propose efficient data storage schemes
and vectorization algorithms for the repeated FBS computa-
tions. The solution phase of FDLF, which involves typical sparse
power network computations. is used as the benchmark for the
proposed algorithms. The proposed data storage schemes are
exploited to develop efficient vectorization algorithms for the
repeated realheactive mismatch computations which constitute
the most time consuming part of the solution phase of FDLF.
Data storage schemes and vectorization algorithms proposed in
this paper resolve the recurrence problem, exploit chaining and
minimize the number of indirect element selections to attain ut-
most vector performance. This paper also provides a general
overview of the improvements that can be expected by means of
vector processing and of the guidelines that must be followed to
achieve efficient vectorization of power system problems.

2. OVERVIEW OF VECTOR PROCESSING

Vector processing achieves improvement in system through-
put by exploitingpipelining. To achieve pipelining, an operation
is divided into a sequence of subtasks, each of which is executed
by a specialized hardware stage that operates concurrently with
other stages in the pipeline. Successive tasks are streamed into
the pipe and executed in an overlapped fashion at the subtask
level. In FORTRAN, pipelining can be exploited during the ex-
ecution of DO-loops. Vectorizing compilers convert each vec-
torizable DO-loop into a loop consisting of vector instructions.
Each vector instruction is associated with a start-up rime over-
head which corresponds to the time required for the initiationof
the vector instruction execution, plus the time needed to f i l l the
pipeline. Hence, optimizing an application for a vector com-
puter involves arranging the data structures and the algorithm in
a way to produce long vectorizable DO-loops.

Vectors processed during the execution of a vectorizable
DO-loop may be of any length that will fit in storage. How-
ever, each vector computer is identified with a section-size X

0885-8950/95/$04.00 0 1994 IEEE

~~

449

Diagonal Scaling OS) step (3.b) is suitable for vectorization
since it can be formulated as the multiplication of two dense
vectors (of sizes N) by storing the reciprocals of the diagonal
elements. The loops of Forward Substitution (FS) step (3.a) and
Backward Substitution (B S) step (3.c) can be vectorized on a
vector computer with hardware support for scatter/gather oper-
ations. Unfortunately, in power system applications, these vec-
torized inner loops yield considerably poor performance since
average vector length is very short.

Instead of performing the conventional FS and BS elimina-
tion processes, solution of A 2 = 6 can be computed as

(b) y = D-I z ; (4)

Here, W = L- ' is called the inverse-factor. The advantage of
(4) over (3) is that inherently sequential FS and BS computations
are replaced by sparse matrix-vector products. However, exper-
imental results show that the inverse-factor M' may have many
more non-zero entries compared with the factor L. Partitioning
is proposed to reduce the I Y matrix fill-ins (41.

In partitioning schemes, the factor L is expressed as L =
L I . . . L N , where the elemental factor matrix Li is an identity
matrix except for the i-th column which contains the correspond-
ing column of L . Thus. I \ ' = CVK . . . LVI where the elemental
inverse-factor matrix It', = L;' is simply L , with the negated
off-diagonal entries. Consider gathering successive elemental
L, matricesintoL,,. L,,:, . . . L,, sothat C%. = W,, ...LV,,LV,,.
Hence, Eq. (4) is transformed into:

(a)z=L%,;..I\;,,b: (b) y = D - ' z ; (c) r = l t ~ ~ ; . ~ l t " y F k . (5)

Various algorithms have been proposed for \\.-matrix partition-
ing which produce zero or only a prefixed maximum number of
fill-ins 14. 61. The simplest algorithm that produces no fill-ins
exploits the Fu'ucronxtiott Path Graph (FPG) concept. In this
scheme, nodes at the same level of FPG are gathered into the
same partition so that the number of partitions is equal to the
depth of the FPG. Various ordering algorithms such as MD-
MNP, MD-ML. ML-MD, etc., have also been proposed to
reduce the total number of levels in the resulting FPG [15, 161.

Data storage schemes for the off-diagonal non-zero elements
in the W-partition matrices determine the structure of the vec-
torization algorithm to be used in the FBS phase. According
to the number of vectors maintained for each partition, data
storage schemes can be broadly classified as: (i) Single Vec-
tor Per Partition (SVPP), and (ii) Multiple Vectors Per Partition
(MVPP) schemes. SVPP (MVPP) methods treat the non-zero
elements of each partition as a single (multiple) vector(s) for a
particular operation in each partition. MVPP methods introduce
more start-up time overhead than SVPP methods. Neverthe-
less, MVPP methods can be exploited to reduce the number of
recurrences and indirections as will be explained later.

(a) z = W b; (c) z = It' ' y.

3. I . Single Vector per Partition Methods

In this data storage scheme, non-zero elements of 14'-partition
matrices are stored (column-wise), in partition order, in WV
vector together with their row and column indices in RIX and
CIX arrays, respectively. The partition pointer array PP con-
tains pointers to the beginning indices of \%"-partition matrices
in WV, RIX and CIX. The schemes proposed by Gomez and
Betancoun [S] and Granelli et al. [8] utilize this data storage
scheme which is illustrated in Fig. 2(a) for the second level of
the L factor of the B' matrix for the IEEE-14 network in Fig. 1.
Columns of L given in Fig. I are permuted in level order. Since
each partition is taken as one level of the FF'G, Fig. 1 illustrates
the sparsity structure of W-partition matrices as well.

which denotes the length of the vector registers in that computer
(e.g., K= 64,128,256). Vectors of length greater than K are
sectioned, and only K elements are processed at a time, except
for the last section which may be shorter than K. Vectorizing
compilers generate a sectioning loop for each vectorizable DO-
loop. Hence, each section is associated with an overall start-up
time overhead which is equal to the sum of the start-up time
overheads of the individual vector instructions in the loop.

Vector computers provide the chaining facility to further
improve the performance of pipelining. Chaining allows the
execution of two successive vector instructions to be overlapped
where vector elements produced by as the result of one instruc-
tion pipeline are passed on-the-fly to a subsequent instruction
pipeline which needs them as operand elements. In vector com-
puters, advantages of instruction chaining are obtained by pro-
viding several of the most important combinations of operations
with singlecompound vector instructions, such as Multiply-Add
instruction. When both multiplication and addition pipelines
become full, one result of the compound operation will be deliv-
ered per machine cycle. The following DO-loop illustrates the
chaining of multiplication with addition:

DO j = j s t a r t , j end

ENDDO
BVG) = BVG) + V(lX(j)) x WV(j)

Vector computers load, store or process vectors in storage in
one of two ways: by sequential addressing (contiguously or with
stride), or by indirect element selection. Indirect element selec-
tion, or gather-scatter, permits vector elements to be loaded,
stored or processed directly in an arbitrary sequence. In indirect
addressing, the memory locations of the vector elements to be
accessed are indicated by a vector of integer indices, which must
be previously stored in a vector register. In DO-loop (I), vec-
tors WV, BV and IX are accessed sequentially, whereas vector
V is accessed indirectly with addresses specified by the IX vec-
tor. The performance of vector computers degrades drastically
during indirect vector accesses. Hence, the number of indirect
vector accesses should be minimized for efficient vectorization.

Unfortunately, vectorizing compilers generate scalar code
for the following type of DO-loops:

D O j = js tar t , jend

ENDDO
BVClXG)) = BV(1Xb)) + WVG)

This DO-loop contains apparent dependence due to indexing of
the BV array by the 1X array in both sides of the statement in (2).
There can be a recurrence if two elements of the IX array have the
same value. These recurrences make the result of one j iteration
to be dependent on the results of the previous ones and hence
scalar execution is mandatory to obtain correct results. Since
such DO-loops are widely encountered during the vectorization
of sparse power network computations, the recurrence problem
is a crucial bottleneck for efficient vectorization. The DO-loop
(2) can be executed in vector mode by enforcing the compiler
to vectorize this DO-loop through the use of ignore-dependence
type directives. However, a scheme should be developed to
prevent the incorrect results that can occur due to recurrences.

3. FORWARDlBACKWARD SUBSTITUTION

The FBS phase in the solution of linear system of equations
Az = 6 , with an N x N coefficient matrix factorized in LDL'
form, consists of the following steps:

(Q) L L = b; (b) D y = z ; (c) L' I = y . (3)

450

The FS phase of the approach proposed by Gomez and Be-
tancourt [5] involves the following two DO-loops for each par-
tition i:

D O j =PP(i),PP(i + 1) - 1

ENDDO
WVR(j) = WVg’) x BV(CIX6)) (6.a)

DOj=PP(i) ,PP(i+l) - 1
BV(RIXG)) = BV(RIX6)) + WVR(j) (6.b)

ENDDO

Here, WVR, of size M, denotes a real working array which is
used to keep the multiplication results and M denotes the total
number of off-diagonal non-zero elements in the W-partition
matrices. The real array BV, of size N , is the right hand side
vector (b in 5.a) on which the solution (2 in 5.a) is rewritten.
DO-loops (6.a) and (6.b) perform the multiplication and addi-
tion operations involved in each sparse matrix-vector product
in (5.a). respectively. The DO-loop structure of the BS phase
can easily be obtained by interchanging CIX with RIX in (6). In
the FS(BS) phase, the addition DO-loop (6.b) is not vector id
by the compiler because of the possible recurrent indices in the
RIX(CIX) array. Hence, only multiplications involved in the
FBS phase are vectorized in this scheme, which will be referred
to as GB hereafter.

The scheme proposed by Granelli et al. [8] is an improve-
ment to scheme GB to vectorize the addition operations. In this
scheme, recurrence-free row and column index vectors RIXRF
and ClXRF are generated by replacing all partirion-basisrecur-
rences in w(and CIX vectors, respectively, by N + I . The
partition-basis recurrent row indices replaced by N + 1 ’S in RIX
are stored in RRIX together with their location indices in RRIXIX.
Pointers to the beginning indices of partition-basis recurrence
sets in RRIX and RRlXlX are stored in RRPP. The recurrences
in the CIX array are maintained by similar integer arrays RCIX,
RCIXIX and RCPP. This data storage scheme is illustrated in
Fig. 2(b) for the second level of the L factor of the E’ matrix
in Fig. 1. Using this storage scheme, the implementation of
Granelli’s method for the FS phase can be obtained by replacing
the addition DO-loop (6.b) by the following two DO-loops.

BV(R1XRFG)) = BV(R1XRFG)) + WVRG)
DO j = PP(i), PP(i + I) - 1

ENDDO
DO r = RRPP(i), RRPP(i + 1) - I

ENDDO

The DO-loop structure of the BS phase is similar. This
schemewill bereferred to as GRl hereafter. Note that, N+I is the
only partition-wise recurrent index in.RIXRF and CIXRF arrays.
This ensures that all incorrect addition results with recurrent row
indices will only contaminate BV(N+l). Thus, the compiler can
safely be enforced to vectorize DO-loop (7.a). However, after a
particular execution of this DO-loop, the addition phase of the
corresponding partition is not completed since multiplication
results corresponding to the recurrent row indices have not yet
been considered for addition. These results are processed for
addition in the scalar DO-loop (7.b).

Although scheme GR1 is a successful attempt to vector-
ize the addition operations, it does not exploit chaining since
the multiplication and addition operations are vectorized in two
different DO-loops. Chaining in this application can only be ex-
ploited by combining the multiplication and addition DO-loops
into a single vectorizable DO-loop. However, this requires a
new solution to the recurrence problem. In the following sec-
tion, we propose an efficient scheme to resolve the recurrence
problem which also enables chaining.

(7 4

BV(RRIX(r)) = BV(RRIX(r)) + WVR(RRIXIX(r)) (7.b)

1 2 3 4 5 6 1 8 9 0 1 2 3 f-jq-j 7 r

i l l l

I3 / I / . .
Figure 1: The sparsity structure of the factor and Il.-partition
matrices of the f?‘ matrix for the IEEE- 14 network.

10 I1 I? I 3 I 4 I S 16 17
CM . i 6 6 7 7 8 8 9 9 1
RIX . I 1 0 I1 I1 13 12 I 3 12 13 I 1

10 I1 I? 13 14 I 5 16 17 1
1 10 I1 I 4 13 I2 14 I 4 14 I RlXRF I

Figure 2: The single-vector per partition data storage schemes
fortheFSphase: (a) G B . (b)GRI,(c)ProposedPRI.

The Proposed SVPP Scheme (PRI)

In scheme GRI. all multiplicationresulls are saved in atem-
porary array WVR so that multiplication results Corresponding to
the recurrent elements can be selected from this array for scalar
additions in a later step. However, the use of WVR should be
avoided to achieve chaining. In the absence of WVR. multipli-
cation results corresponding to the recurrent elements should be
stored in theextended BV locations. BV(N+l), BV(h’+2).
BV(N+R), for scalar additions in a later step. Here, R denotes
the total number of recurrences in the RIX and CIX arrays.

In the proposed scheme PRI , partition-wise recurrence-free
row (RIXRF) and column (CIXRF) index vectors are constructed
in a different manner. Each recurrence in the RIX (CIX) array
is replaced with IV+r in the RIXRF (CIXRF) array where r de-
notes the index of the next available recurrence location i n the
extended BV array. The partition-wise recurrence-free index
arrays RIXRF, CIXRF and recurrence arrays RRK, RRPP. RCIX
and RCPP can easily be constructed, in linear time. Figure 2(c)
illustrates the proposed data storage scheme for the FS phase of
the W-partition matrices given in Fig. 1. The proposed scheme
avoids the use of WVR. RRIXIX and RCIXIX arrays required i n
the GR1 scheme. In this scheme, chaining in the FS phase is
achieved by the following DO-loops for each partition i:

DO j = PP(i). PP(i+ 1) - I

ENDDO
DO r = RRPP(i). RRPP(I+ I) - I

ENDDO

BV((RIXRFC1)) = BV(RIXRF6)) i W V b) x BV(C1Xb)) (8.a)

BV((RRIX(7)) = BV(RRIX(r)) + BV(N + r) (8.b)

451

The DO-loop structure of the BS phase is similar. The DO-
loop (8.a) achieves the chaining of addition and multiplication
operations. Due to chaining in this DO-loop, correct multiplica-
tion results corresponding to the recurrent elements are added,
on-thefly, to the appropriate extended BV locations. Hence,
extended BV locations should contain zeroes at the beginning of
computations. This initialization loop is a vectorizable DO-loop
with relatively long vector length equal to R.

Thecompound DO-loop (8.a) contains two types of apparent
dependencies. The first is through indexing of the BV array
by the RIXRF vector in both sides of (8.a). This dependence
does not constitute any problem since RIXRF is a partition-
wise recurrence-free array. The second type is through the use
of the indices of the RIXRF and CIX arrays as pointers to the
elements of the BV array in opposite sides of (8.a). Fortunately,
all row indices associated with non-zero elements in each level
are strictly greater than all column indices associated with those
elements. That is, there is no level-basis recurrence between
RIXRF and CIX arrays. Hence, the latter type of recurrences can
be avoided by adopting level-wise partitioning. Consequently,
the compiler can safely be enforced to vectorize DO-loop @.a)
to achieve chaining.

In partitioned scheme W, it is not mandatory for elements in
apartition to be picked from the same level in the FPG. Neverthe-
less, adopting level-wise partitioning prevents cross recurrences
between RIXRF and CIX (CIXRF and RIX) during the FS (BS)
phase in DO-loop (84, and hence, substantially reduces the
total number of scalar additions. In general, initial levels of the
FPG already consist of long vectors enabling efficient vector-
ization. On the contrary, levels towards the bottom of the tree
contain short vectors with large recurrence ratios. Hence, the
relative advantages of GRI and PRI over GB decline in those
levels. In this work, we gather those last levels into a single
multi-level last panition. This last partition concept is also dis-
cussed for efficient parallelization in [IO]. Adopting multi-level
last partition enables a considerably long vector but results in
a substantially large number of recurrences. Therefore, in the
last partition, we have chosen to utilize scheme GB which vec-
torizes only the multiplication operations and avoids redundant
addition operations. The last partition approach is adopted in all
FS vectorization schemes discussed in this paper.

The proposed scheme PRI achieves substantial performance
improvement in vectorization over scheme GRI through chain-
ing. For example, on IBM 3090/VF, PRI reduces the number
of delivery cycles by 18% and start-up time overhead by 25%.
Chaining achieves this performance increase by avoiding the
store and load operations for multiplication results. In the scalar
DO-loop (8.b) of the proposed scheme, extended locations of
the BV array are accessed in an orderly fashion for processing
recurrent elements. However, in the scalar DO-loop (7.b) of
GRI scheme, WVR array is accessed indirectly with addresses
specified by the elements of the RRlXlX array. Thus, the scalar
performance of the proposed scheme is also expected to be
slightly better than that of GRI scheme in processing the recur-
rent elements.

Intra- / Inter- Section Recurrences

Consider a multi-section level with s > 1 sections. The vector
facility creates a sectioning loop which iterates s times to vector-
ize DO-loop (8.a). In different iterations of the sectioning loop,
ekments belonging to different sections of RIXRF (CIXRF) will
be used as address pointers to access the elements of the BV
array. So, recurrences in RIX and CIX arrays can be classified
as inter-section and intra-section. Inter-section recurrences are
the recurrences between different sections whereas intra-section

recurrences are the recurrences within the same section. Inter-
section recurrences do not have any potential to yield incorrect
results since. they are processed in different iterations of the sec-
tioning loop. Hence, only intra-section recurrences should be
considered while generating the RIXRF and CIXRF arrays.

Here, we propose an efficient round-robin re-ordejng al-
gorithm which exploits this intra-section recurrence concept to
minimize the number of redundant scalar operations. The pro-
posed algorithm collects (in linear time) the non-zero elements
with the same row (column) indices in a level and scatters them
to the successive sections of that level in a modular sequence for
the FS (BS) phase. During this re-ordering process. i - lh appeu-
ances of a recurrent row (column) index i n different sections of
the RIXRF (CIXRF) array are replaced by the same extended BV
location index N+r+t-I for i > 1 . Note that. first appearances of
a recurrent index in different sections remain unchanged. The
number of extended BV location assignments for a recurrent
index determines the number of redundant scalar addition oper-
ations associated with that index. Hence. this scheme reduces
the number of scala additions required for a recurrent index
iz with recurrence degree d,, from d,, - I of PR I scheme to
[d i l / s] - 1 in a level with s sections. The proposed algorithm
concurrently constructs the arrays required to maintain unavoid-
able recurrences during the re-ordering process. Note that. both
W and W‘ partition matrices are stored in this scheme.

3.2 Multiple Vector Per Partition Methods

In these data storage schemes. each sparse H’-partition matrix is
compressed into a relatively dense matrix. This compression is
such that the off-diagonal non-zero elements of the Il.-partition
matrices are allocated to contiguous locations of the columns
of the compressed matrices. The number of columns in the
compressed matrices are much less than those of the original
ones.

Granelli et al. introduced the pseudwolumn concept. or
shortly pscol, in generating the compressed 11’ matrices [I I] .
The main objective behind their pscol scheme. referred here
as GR2, is to avoid the recurrence problem totally. In scheme
GR2, the elements of an individual partition matrix whose row
(column) indices appear for the i-th time are temporarily stored
in the i-th psrol of a scratch compressed matrix for the FS (BS)
phase. Fig. 3 illustrates this scheme for the first two levels of
the matrix in Fig. I where “x”,“c” and “z” denote the non-zero
elements compressed into the first, second and third pscol’s.
respectively. Partition matrices condensed i n this manner may
contain pscol‘s with intervening zeros as is the case for the
first W-partition of Fig. 3. Scheme GR2 further compresses
each pscol in order to avoid the processing of intervening zero
entries. Compressed pscol’s of I t ’ and \I“ partition matrices
are stored in two different vectors together with their row and
column indices.

Scheme GRZ executes only one multiplication DO-loop,
similar to DO-loop (6.a). for each partition in both FS and BS
phases. However, i t executes one addition DO-loop. similar
to DO-loop (6.b). for each pscol of the partition. Thus, GR2
scheme can be considered as a hybrid scheme. I n this scheme,
the addition DO-loops can be safely enforced for vectorization
since the pscol’s of I.V and 11.‘ partition matrices are already
recurrence free. Hence, this scheme totally avoids the redundant
scalar addition operations.

The Proposed MVPP Schemes (PR2-4)

In this section, we propose three MVPP schemes. The first
one, PR2, incorporates chaining into Granelli’s pscol scheme,

452

1 2 3 4 5 6 7 8 9 0 1 2 3
I ’ ’ I phase is deferred. The BS phase is vectorized by executing the

following DO-loop for each psdcol i:

DO j = PSCBS(:), PSCBS(i + 1) - 1

ENDDO
BVG-A) = BV(j-A) + WVBS(j) x BV(CIXBS(j)) (9)

Here, A = PSCBS(i) - RPBS(i) denotes the constant offset be-
tween the indices of the elements in WVBS array and their re-
spective row indices. That is, index j - A denotes the row index
of wVBS(j). This offset enables the wuential load/store of

Figure 3: Granelli’s pseudo-column data storage scheme for the
first two levels of the E’ matrix given in Fig. 1.

GR2. Multiplication and addition DO-loops for each pscol can
be safely chained in both FS and BS phases by adopting level-
wise partitioning as mentioned earlier for PRI. Note that, the
proposed PR2 scheme is truly a MVPP approach.

The aim behind MVPP approach utilized in GR2 and PR2
schemes is to avoid redundant scalar additions. However, these
MVPP schemes still require extensive use of indirections thru
both row and column indexing as in the S W P approaches. The
other proposed schemes PR3 and PR4 aim at minimizing the
number of indirections besides avoiding redundant scalar addi-
tions and exploiting chaining. Recall that row indices of succes-
sive entries in each column of a dense matrix are consecutive.
However, pscol‘s in scheme GR2 do not cany this property. In
proposed schemes PR3 and PR4, rows of W and W‘ partition
matrices are sorted (in linear time) in ascending order. Then,
i-th off-diagonal non-zero element in each row of a particular
partition matrix is stored into the i-th pscol of that partition.
Due to sorted row ordering, these pscol’s do not contain any
intervening zeros thus avoiding the need for further compres-
sion. Furthermore, the row indices of the non-zero elements in
each pscol appear in sequence. Hence. we call pseudo-columns
obtained in this manner as pseudo-dense-columns, or psdcol
shortly. Fig. 4 illustrates the proposed psdcol scheme for the
first two levels of the matrix in Fig. 1 where “x” and “c” de-
note the non-zero elements compressed into the first and second
psdcol‘s, respectively.

I
2
3
d

6 IO
7 6
8 7
Y R

10 li
I1 12
12 9
I3 13

Figure 4: The proposed pseudo-dense-column data storage
scheme for the first two levels of the E’ matrix given in Fig. 1.

In the proposed data storage scheme, psdcol’s of W and W‘
partition matrices are stored consecutively, in partition order,
in two different vectors WVFS and WVBS together with their
column indices in CIXFS and CIXBS vectors, respectively. Two
pointer arrays PSCFS and PSCBS contain beginning indices of
successive psdcol’s. It is sufficient to store only the row indices
of the first elements of successive psdcol’s in RPFS and RPBS
vectors since the row indices in eachpsdcol are successive. New
vectorization schemes PR3 and PR4 are developed based on this
psdcol concept. Since the vectorization of the BS phase is the
same in both schemes, it is discussed first and discussion of FS

the BV array elements for update. DO-loop (9) shows that the
proposed PR3 and PR4 schemes totally avoid the recurrence
problem in the BS phase as in PR2 by adopting level-wise par-
titioning. Moreover. these two schemes reduce the total number
of indirect element selections from 3m of PR2 to m in a parti-
tion with m elements. Hence. PR3-4 is surely the most efficient
MVPP scheme for the BS phase.

Note that, the original row indices of different 11.‘ partition
matrices are disjoint. Unfortunately, this is not true for the
W partition matrices. Hence. different row orderings among
different W partition matrices complicate the vectorization for
the FS phase. The original row indices of the permuted non-zero
rows of W partition matrices are stored, in partition order, in
the row permutation array bPM. Hence, each block of indices
in RPM holds the original row indices of the successive non-
zero elements in the first psdcol of each partition. Similarly,
successive blocks of a real scratch vector SB are used to compute
the results of the successive partition matrices. A partition
pointer array RPMPP contains pointers to the beginning indices
of partition blocks in RPM and SB vectors.

Appropriate entries of the BV vector are gathered into the
scratch SB vector for update just before starting the sparse
matrix-vector product for each partition. The non-zero ele-
ments of the first psdcul’s of each partition make contributions
to all BV vector entries needed and updated in the respective
partition matrix-vector product. in scheme PR3, we incorporate
this gather operation into the update computations by executing
the following DO-loop for the 6rst psdcol f of partition p:

DO j = PSCFS(f). PSCFS(f+ I) - I

ENDDO

SBb-AI) = B V (R P M W)) +
WVFSb) x BV(CIXFS(J)) (IO)

where the constant offset AI = PSCFS(/) - RPMPP(p). Then.
the contributions of the remaining psdcol’s can be computed
and added into the scratch SB vector by executing the following
DO-loop for each psdcol i that remains in partition p:

DO j = PSCFS(I). PSCFS(1 + 1) - I
SBb-A?) = SBb-A?) + WVFSb) x BV(C1XFSb)) (I I)

ENDDO

where the constant offset A? = PSCFS(z + 1) - RPMPP@ + I) .
Finally, results in the scratch SB vector are scattered into the
appropriate locations of the BV vector as follows:

DO j = RPMPPW). RPMPP@+ I) - I

ENDDO
BV(RPMb)) = SBb) (12)

As seen in DO-loops (10-12). PR3 redllces the number of
indirect vector accesses compared to the FS phase of PR2 while
achieving recurrence-free DO-loops with chaining. Consider a
partition with d psdcol’s. and in non-zero elements such that
rn = E:=, R ; where n; denotes the number of non-zero ele-
ments in the i-th psdrol of that partition. Since the lengths of
DO-loops (IO) and (12) are both r i l , PR3 scheme drastically
reduces the number of indirect element selections from 3m of
PR2 to m + 2711 in the FS phase. However, a careful analysis

reveals the fact that sequential stores/loads to/from the SB vec-
tor in (lo)/(12) are redundant compared to PR2. Hence, scheme
PR3 can be considered as introducing 2711 redundant sequential
load/stores for the sake of efficient vectorization.

Here., we propose another scheme PR4 which avoids these
redundant operations. Consider the execution of DO-loop (1 1)
for a particularpsdcol i, 1 < i < d, of a partition with d psdcol's.
The first ni - n,+l updates stored into SB correspond to the
final update results of that partition, because ni 2 n,+l. Thus,
these updates can be immediately scattered to the BV vector
by indexing thru RPM vector, avoiding the redundant sequential
stores to SB. The rest n,+l entries of the i-th psdcol can be
handled by a second DO-loop similar to (1 I). DO-loop (IO) for
the firstpsdcol can similarly be decomposed into two DO-loops.
Since updates caused by the last psdcol are final updates, only
one DO-loop is sufficient. The PR4 scheme achieves the same
number of indirections as PR3 while eliminating the redundant
load/stores in PR3 and thus resulting in no redundancy likePR2.
The only drawback of PR4 over PR3 is the increase in the total
start-up time overhead due to the execution of two DO-loops for
each psdcol except the last ones.

4. POWER MISMATCH COh4PUTATIONS

This section presents the application of the proposed data storage
schemes and algorithms for the vectorization of repeated power
mismatch computations encountered in the solution phase of
FDLF. The following formulation is adopted here for computing
the right hand side vectors of the FDLF equations:

M k F k = 4 / V k - G k k v k - Y k h V h C 0 S a I . h (13)
h f k

dQ&k = &"JCk + B t k C k - Y k h V h s i n a k h (14)
h # k

where Q k h = 01, - o h - 6 k h . In this formulation diagonal and
off-diagonal non-zero elements of the matrix are stored in

tively. Here, v k and 01. denote the magnitude and phase angle
of bus k voltage. In the right hand sides of Eqs. (13) and (14).
the second and third terms denote the normalized contributions
to the d r e a c t i v e powers of bus k due to the diagonal and off-
diagonal non-zero elements of the YB matrix, referred here as
diagonal contributions and off-diagonal contributions, respec-
tively. By this formulation, normalized bus mismatch powers
are computed directly instead of computing bus powers first and
then the respective normalized mismatch powers.

Power mismatch computations in FDLF utilize the non-zero
elements of YE. The diagonal contribution computations can be
efficiently vectorized by performing operations on dense vec-
tors. However, the data storage scheme used for storing the
off-diagonal non-zero entries of the YB matrix is a crucial factor
in the vectorization process. These schemes can also be broadly
classified as Single Vector and Multiple Vector schemes. In the
scheme proposed by Gomez and Betancourt [SI, non-zero ele-
ments in the upper half of the symmetric Ye matrix are stored
as a single vector. In the two schemes proposed by Granelli
et al. [8, 111, the off-diagonal non-zero elements of the YB are
stored as multipleconsecutive vectors such that each vector cor-
responds to apscol of the YB matrix. One of these two schemes
exploit the symmetry of the YB matrix whereas the other does
not. These three schemes utilize the single-vector approach for
the vectorization of the contribution computations. In Gomez's
scheme, the addition of computed power contributions to ap-
propriate entries of a reahactive power vector is performed

rectangular (G k k + J B k k) and P O h (Y k h forms, reSpeC-

453

by a single efficient scalar DO-loop based on loop unrolling.
Granelli et al. exploit theirpscol concept to vectorize these addi-
tion operations by avoiding redundant scalar operations. Hence,
Gomez's scheme is a single-vector scheme whereas Granelli's
schemes can be considered as hybrid schemes. Unfortunately,
all these schemes require two auxiliary integer vectors to store
the row and column indices of the respective YE elements, thus
necessitating extensive use of indirect addressing.

In this work, we propose a truly multiple-vector scheme
based on our psdcol concept. Our scheme aims at minimiz-
ing the number of indirect vector accesses while achieving the
vectorized addition of contributions to mismatch vectors. The
proposed scheme exploits chaining whenever possible.

Permuting the buses in ascending degree order prevents in-
tervening zeros in the resulting psdcol's. Since Eq. (14) is com-
puted only for the PQ buses whereas Eq. (1 3) is computed for all
buses, computation of Eq. (14) will necessitate extra indirection
overhead to locate the entries of the PQ buses in the psdcol'b.
The proposed solution is to order such that all PQ buses
are permuted in ascending degree order before the PV buses are
permuted in descending degree order. Then. i-th off-diagonal
non-zero elements of successive rows constitute the i-th psdcol.
Fig. 5 shows the resulting structure after applying the proposed
ordering on \ E of IEEE-14 network. Note that, the proposed
scheme does not exploit the symmetry of YB.

Figure 5: The proposed pseudo-dense-column data storage
scheme for the bus admittance matrix of IEEE- 14 network.

In the proposed data storage scheme, magnitude and angle
psdcol's of the ,'B matrix are stored. consecutively, in vectors
YM and 6, respectively, together with their column indices in
YCIX. A pointer array PSC contains pointers to the beginning
indices of successive psdcol's. It is sufficient to store the row
indices of only the first element of each psdcol in RPSC. The
off-diagonal non-zero elements belonging to the PQ-rows can
be accessed as sub-psdcol's by keeping an appropriate pointer
vector PQPE which contains pointers to the last non-zero PQ-
element of each psdcol. These sub-psdcol's, referred here as
PQ-psdcol's. will be exploited in the vectorized computation of
Eq. 14. For example. in Fig. 5. there are 5 psdcol's of lengths
13,12,7,5, I and5 PQ-psdcol'soflengths9,9,5,3,1. Thereal
and imaginary pans of the diagonal elements are stored in arrays
G and B permuted according to the proposed ordering. Vectors
V and 0 maintain thecurrent bus voltage magnitudes and angles,
respectively. according to the new bus ordering. Permutations
to E' and E" bus orderings from the YB bus ordering are stored
in vectors PI and P2, respectively. Vectors PS and QS hold
the specified real and reactive powers, permuted according to
the new ordering. Thus, the last NPV (number of PV buses)
entries of the PS vector are constants with values P l p k - c ' k k v k

(see Eq. 13). Arrays a and YMV are scratch arrays used to
maintain the arguments of cos / sin factors and \j;h v h products,
respectively. Vectors SP and SQ are also scratch arrays used for
real and reactive mismatch computations.

454

Using this data storage scheme, normalized bus power resid-
ual computations can be fully vectorized as follows. In the
reactive half-iteration (after solving B’W=dQ/V) voltage mag-
nitudes of PQ buses are updated and normalized power mismatch
vectors are initialized as follows:

D o i = l , N P Q
V(i) = V(i) + AV(PZ(i))
SP(i) = PS(i) / V(i) - G(i) x V(i)
SQ(i) = QS(i) / V(i) + B(i) x V(i)

E N D W
D O I = NPQ+I.NBL’S

D o i = l , N P Q
V(i) = V(i) + AV(PZ(i))
SP(i) = PS(i) / V(i) - G(i) x V(i)
SQ(i) = QS(i) / V(i) + B(i) x V(i)

E N D W
D O I = NPQ+I.NBL’S

DO-loop (15) exploits the vector register re-use capability of
vector computers in order to eliminate the re-loading of just
stored V values. Then, real off-diagonal contributions are com-
puted and added to the vector SP by executing the following
sequence of two DO-loops for each psdcol i:

DO j = PSC(i), PQPE(i)

ENDDO

YMVG) = YMb) x V(YCIXG))
SPG-A) = SPb-A) - YMVG) x C O S (W (~)) (17)

DOJ = PQPE(2). PSC(t + I) - 1
SPb -A) = SPb -A) - YMb) x V(YC1Xb)) x

COS(O(~ -A) - WYCIXb)) - S(J)) (18)
ENDDO

where A = PSC(i) - RPSC(i) denotes the constant offset between
the indicesof the off-diagonal elements in YM, 6 arrays and their
respective row indices. DO-loops (17) and (18) exploit vector
register re-use for the sections of the YMV and YCIX vectors,
respectively. The y k h v h products corresponding to the entries
of PQ-rows are saved in the YMV array for re-use in the real
half-iteration. Normalized real power residuals computed in
SP are scattered to the appropriate locations of the real power
mismatch vector by a single vectorizable scatter DO-loop.

After solving B ’ B = @/V, bus voltage angles are updated
in 0 vector by a single vectorizable addition DO-loop involving
gather operation from A@ vector indexing thru permutation vec-
tor PI. Then, in the reactive half-iteration, reactive off-diagonal
contributions are computed and added, on-the-fly, to SQ by ex-
ecuting the following DO-loop for each PQ-psdcol i:

DO j = PSC(i), PQPE(i)
a (j) = O(j - A) - O(YCIX(j)) - S (j)
SQG-A) = SQb-A) - YMVb) x sin(a(j)) (19)

The angle arguments of the cos / sin factors corresponding to
the entries of the PQ-rows are saved for re-use in the real half-
iteration. DO-loop (19) exploits vector register re-use for each
section of the LY vector. Final results accumulated in the SQ
vector are scattered to the appropriate locations of the reactive
power mismatch vector by a single vectorizable scatter DO-loop.

As seen in DO-loops (l5-19), the proposed vectorization
scheme minimizes the number of indirect accesses. DO-loops
(17-19) verifies that the proposed psdcol approach enables the
sequential processing of 0, SP and SQ vectors by avoiding row
indexing. During the contribution computations, indirect vector
accesses occur only due to the indexing of the 0 and V vectors
thru the column index vector YCIX. As seen in DO-loops (15)
and (17-19). the proposed vectorization scheme achieves the
chaining of contribution computations with the addition of these
contributions to SP and SQ vectors. DO-loops (15-16) and (19)
show that the proposed PQ-psdcol concept avoids the redundant
contributioncomputations for the PV buses without introducing
any extra indexing. The same concept is employed to avoid
vhndant stores into the YMV and LY vectors.

ENDDO

In those iterations in which Q-limit enforcement is to be
applied, PV buses which violate the reactive power limits are
switched to PQ bus type. Hence, a slightly modified version of
the proposed vectorization scheme should be executed in those
iterations. The sizes of SQ and QS vectors are increased to
NBUS- I from NPQ. A new QL vector of size NBUS- I is intro-
duced. The last NPV entries of QS and QL vectors contain the
constant BLLV; values and the reactive loads, respectively, for
the PV buses. As for the DO-loop modifications. DO-loops (17)
and (19) are executed for all psdcol’s and DO-loop (I 8) is re-
moved. The assignment SQ(i) = Q S (i) is added to DO-loop (I 6).
The appropriate locations of SP and SQ vectors corresponding
to PV buses violating the Q-limits computed incorrectly in the
modified DO-loop f 16) have to be re-computed in scalar mode.
The amount of scalar updates is negligible since the number
of such PV buses is much smaller than NBUS in a particular
iteration. The modified version of DO-loop (19) accumulates
reactive off-diagonal contributions to all buses. Due to the mod-
ifications in DO-loops (16) and (19). the last NPV locations 0 1
the SQ vector now contain the normalized reactive powers in-
jected to the PV buses. Thus, reactive generations of PV buses
are computed in QC by the following vectorizable DO-loop:

DO i = N P Q + I , .V 01:s - I

ENDDO
QG(i) = QLII I - SQ(1) x V(i) (20)

Then, reactive power limit check is achieved by performing a
single scalar pass over the QC vector. DO-loop (20) shows
that the proposed scheme vectorizes the computation of reactive
power generations for PV buses without any extra indexing.

5 . EXPERIMENTAL RESULTS

In this section. relative pertormances of the proposed and ex-
isting vectorization algorithms on IBM 3090NF 180s are dis-
cussed. These vectorization algorithms are tested using IEEE-
118 standard power network and four synthetically generated
larger networks with 354, 590. 1180 and 1770 buses. These
networks are all obtained by interconnecting the IEEE- I 18 net-
work.

Table 1 shows the structural properties of the I\.-partition
matrices for B’ of the sample networks. We have adopted level-
wise partitioning(except the last partition)to benefit from chain-
ing in the FS and BS phases of the proposed vectorization algo-
rithms. ML-MD 151 ordering scheme is used to obtain longer
vectors by decreasing the number of levels. Other approaches to
increase vector lengths by allowing multi-level partitions with
controlled fill-ins after MD-ML, MD-MNP type of orderings
make chaining difficult. In Table I , AI, denotes the percent in-
crease in level-wise partitioned W fill-ins introduced by ML-MD
ordering with multi-level last partition instead of MD ordering.
Table 1 shows that the adopted partitioning scheme introduces
roughly 10% fill- in increase for the sake of efficient vectoriza-
tion. In the same table, nt and np denote the number of levels
and partitions, respectively.

The total amount of start-up time overhead is proportional to
the number of sections processed. Table 1 confirms the expec-
tation that SVPP schemes process considerably smaller number
of sections than MVPP schemes. Note that, the same number
of sections is processed in both FS and BS phases in SVPP
schemes. By construction. the lengths ofpsdcol‘s in a particular
W‘ partition is limited to the number of buses in that partition.
However, W partition matrices may have much longer psdcol’s.
That is why the number of sections in the BS phase of MVPP
methods is considerably greater than that of the FS phase as
illustrated in Table I . The increase in the number of sections

455

Table 3 confirms the expectation that the BS phase of PR3-4
schemes is the best among all methods due to the minimized
number of indirections. Table 4 illustrates that the proposed
S W P method PRI is the best method among all schemes in
the FS phase due to the considerably smaller vector lengths in
M W P methods for the small-to-medium size networks (I 18.
354, 590). The proposed MVPP scheme PR2 performs bet-
ter in the FS phase for the larger networks (I 180. 1770) due
to increased vector lengths. In the FS phase, the proposed PR3
scheme does not perform as expected because of the redundancy
mentioned earlier. The relative performance of PR4 over PR2
in the FS phase is expected to increase with increasing problem
size due to its smaller number of indirections and larger num-
ber of sections. Unfortunately. on IBM 3090, PR4 causes more
cache misses than PR2 for large size networks due to increased
number of vectors used in the data storage scheme. Hence, PR4
scheme must be experimented against PR2 on vector computers
which do not utilize cache hierarchy such as Cray.

Network

processed in the FS phase of PR4 scheme compared to PR2-3
schemes results from the doubling of the number of DO-loop
executions as explained earlier. Experimental results show that
vectorizable DO-loops of length shorter than some critical num-
ber yield better performance if executed in scalar mode rather
than vector mode. Current implementation detects last sections
of length shorter than 20 and enforces them to scalar execution.
In this work, level-wise vector lengths are checked against this
critical number (20). starting from the first level towards the last
one until a vector of smaller length is encountered. Then, the
current level and the rest are included in the last partition.

Table 2 illustrates the number of redundant scalar addi-
tions introduced in order to vectorize the addition operations in
SVPP methods. Comparison of GRl and PRI columns reveals
that the proposed round-robin re-ordering algorithm exploiting
intra-section recurrence concept reduces the number of scalar
additions drastically. The proposed re-ordering algorithm is
expected to yield much better performance for smaller section
sizes, e.g., Ii=64, as is shown in parenthesis in this table. The
number of scalar additions in the FS phase is much smaller than
that of the BS phase due to greater number of recurrent column
indices than recurrent row indices in partition matrices. Among
all MVPP methods, the only redundancy occurs in the FS phase
of PR3. Recall that PR3 introduces this redundancy in order to
reduce the number of indirect element selections. Table 2 shows
that the redundancy in PR3 which is equal to twice the sum of
the length of first psdcol in each partition, is larger than M.
However, this corresponds to a delivery cycle overhead of only
% 13% compared to PR2.

Table 1: The number of off-diagonal non-zero elements, levels,
partitions, and sections for B’ matrices for sample networks.

Execution times in microseconds
U U

Table 2: The number of redundant operations in the FS and BS
phases of different schemes.

SVPP I (MVPP
)I vectorized

Tables 3 and 4 illustrate the performances of various vector-
ization schemes for the FBS phase. The last column of Table 3
shows the execution time of DS phase for all schemes. As seen
in Tables 3 and 4, PRI outperforms GRI due to both the chain-
ing and the substantial reduction in the number of redundant
scalar additions achieved by the proposed re-ordering algorithm.

Table 3: Execution times in microseconds for the BS and DS
phases of different schemes for the solution of B’dD = P/ L ’ .

Network Execution times in microseconds
MVPP II DS

NBUS 11 GRI I PRI 11 GR2 I PR2 I PR3-4

Table 4: Execution times in microseconds for the FS phase of
different schemes for the solution of B’dD = P/L’.

NBUS)I GRI I PRI 11 GR2 1 PR2 [PR3 I PK4

Table 5 provides the execution times for one iteration of the
mismatch computation phase using two different approaches.
The symmetric version (sym), which exploits the symmetry of
the YE matrix. corresponds to the implementation of the scheme
proposed by Granelli et al. [I I] . The one which does not exploit
the symmetry (no sym) corresponds to the implementation of
the proposed scheme explained in Section 4 . Table 5 confirms
the expectation that the symmetric approach performs better in
scalar mode due to the considerably smaller number of expensive
cos / sin computations. However, the scalar performance differ-
ence between these two approaches is substantially small due
to larger number of indirections i n the symmetric method. The
proposed vectorization scheme performs better than the symmet-
ric one except for the smallest network. The proposed scheme
achieves this good performance by minimizing the number of
indirections which is very important in efficient vectorization.
As seen in Table 5. the proposed vectorization scheme outper-
forms the symmetric approach, in the absence of Q-limit check,
by avoiding redundant computations for PV buses without intro-

456

ducing any extra indexing overhead. The proposedvectorization
scheme still performs better than the symmetric one in the pres-
ence of Q-limit check. Table 5 confirms the general fact that best
scalar algorithm may not lead to the best vectorization algorithm.

The timing results illustrated for the vector performance of
FBS phase in Table 6 are calculated from the best attained results
of FS and BS phases for each network. The scalar FBS timing
results correspond to the scalar execution of PRI without redun-
dant additions where MD scheme is adopted. The scalar and
vector mismatch computation timing results correspond to the
best scalar and vector executions in the absence of Q-limitcheck,
respectively. Table 6 illustrates that the speed-up increases with
increasing problem size.

Table 5: Execution times in microseconds for the mismatch
computation phase for different schemes.

NBUS

Scalar Vector
Q-limit check

sym sym sym sym sym sym
no no no

Table 6: Execution times in microseconds of the best scalar and
vectorized schemes and the speed-up for the FBS and mismatch
computation phases.

r FBS (B‘dD=Af’p’) Mismatch Computation T.

NBUS Sca Vec Speedup Sca Vec Speedup
118 268 212 1.26 1340 786 1.70
354 845 495 1.71 I 4070 1971 2nh

6. CONCLUSION

This paper presents novel data storage schemes and algo-
rithms for the efficient vectorization of repeated sparse power
system network computations. The proposed algorithms re-
solve the recurrence problem,’exploit chaining and sectioning,
and minimize the number of indirect element selections to attain
utmost vector performance. The solution phase of FDLF, which
involves the repeated solution of linear system of equations and
power mismatch computations, is used for benchmarking the
proposed vectorization schemes. The relative performances of
the proposed and existing vectorization schemes are evaluated,
both theoretically and experimentally on IBM 3090NF. Results
demonstrate that the proposed schemes perform better than the
existing vectorization schemes,

REFERENCES

[11 IEEE Committee Report, “Parallel Processing in Power
Systems Computation.” IEEE Trans. on Power Systems,
Vol. 7, No. 2, pp. 629-638, May 1992.

[21 Betancourt. R., and Alvarado, EL., “Parallel Inversion of
Sparse Matrices:’ IEEE Trans. on Power Sysrems, Vol. 1,
No. 1, pp. 74-81, February 1986.

U - ..
590 1392 769 I81 6708 3086 2 17
1180 2990 1462 205 13654 5866 233
1770 4469 1865 240 20914 8188 2 5 5

[31 Abur,.A.: “A Parallel Scheme for the ForwardlBackward
Substltutlons in Solving Sparse Linear Equations,” IEEE
Trans. on Power Systems, Vol. 3 , No. 4, pp. 1471-1478,
November 1988.

[4) Enns. M. K., linney, W. F., and Alvarado. F. L.. “Sparse
Matrix Inverse Factors,” IEEE Trans. on Power Systems.
Vol. 5 , No. 2, pp. 466-472, May 1990.

[5] Gomez, A., and Betancourt, R., “Implementation of the
Fast Decoupled Load Flow on a Vector Computer,” IEEE
Tmns. on Power Svsrem. DD. 977-983. Feb. 1990. ...
Alvarado, EL., Yu. D.C., and Betancourt, R.. “Partitioned
Sparse .4-’ Methods:’ IEEE Trans. on Power Systems.
Vol. 5 , No. 2, pp. 452459, May 1990.
Granelli, G. P.. Montagna. M.. and Pasini, G.L.. ‘‘Efficient
Factorization and Solution Algorithms on Vector Comput-
ers ,” Electric PowerSysrems Research. Vol. 20, No. 2, pp.

Granel1i.G. P.. Montagna. M., Pasini, G. L.. Marannino, P..
“Vector Computer Implementation of Power Flow Outage
Studies,” IEEE Trans. on Power Svsrems. Vol. 7, No. 2, pp.

Lau, K.. Tylavsky. D. J.. and Bose. A.. “Coarse Grain
Scheduling in Parallel Triangular Factorization and Solu-
tion of Power System Matrices,.’ IEEE Trans. on Power
Systems, Vol. 6. No. 2, pp. 708-7 14, May 199 1 .
Padilha. A.. and Morelato. A., “A W-Matrix Methodology
for Solving Sparse Network Equations on Multiprocessor
Computers,” IEEE Trans. on Power Sysrems. Vol. 7 , No. 3.

Granelli, G. P.. Montagna. M.. Pasini. G. L., and Maran-
nino. P.. “A W-Matrix Based Fast Decoupled Load Flow for
Contingency Studieson Vector Computer,” IEEE Trans. on
Power Sysrems. Vol. 8. No. 3. pp. 946-953. August 1993.
Stott, B., and Alsac. 0.. “Fast Decoupled Load Flow,”
IEEE Trans. on Power App. Sysr.. Vol. 73. pp. 859-867.
MaylJune 1974.
Anderson. D. M., and Wollenberg, B. F.. “Power System
Steady State Security Analysis Using Vector Processing
Computers.” IEEE Tmns. on Power Sysrems. Vol. 7, No. 4.
pp. 1451-1355. November 1992.
Chan. S. M.. and Brandwajn. V.. “Pmial Matrix Refactor-
ization,” IEEE Trans. on PowerSystems. Vol. I , No. I , pp.
193-200. February 1986.
Betancourt. R.. “An Efficient Heuristic Ordering Algo-
rithm for Partial Matrix Refactorization,” IEEE Trans. on
PowerSvsrents. VoI.B.No.3.pp. 1181-1187.August 1988.

121-136.1991.

798-804, May 1992.

pp. 1023-1030. August 1992.

(161 Gomez.. A., and Franquela,’L. G., ’An Efficient Order-
ing Algorithm to Improve Sparse Vector Methods,” IEEE
Trans. on Power Systems. Vol. 3, No. 4. pp. 1538-1544.
November 1988.

Cevdet Aykanat reccivedthe B.S. and M.S. degrees from the Mid-
dle East Technical University. Ankara. Turkey, and Ph.D. degree from
The Ohio State University. Columbus. all in EE. He was a Fulbright
scholar during his Ph.D. studies. He worked at Intel Supercomputer
Systems Division. Oregon. Since 1988 he has been with the Computer
Engineering Dept.. Bilkent University. Ankara, hrkey. His research
interests include parallel computer architectures and algorithms. neural
algorithms.

Ozlem Ozpii received the BS(1987) and MS(1990) degrees from
[he Middle East Technical University, Ankara, Turkey. all in Com-
puter Engineering. Since 1990, she has been a research assistant with
the Computer Engineering Dept.. Bilkent University. Ankara. Turkey.
Her research interests include parallel computer architectures and al-
gorithms.

Nezih Giiven(M’86) received the BSEE(IY79) degree from Mid-
dle East Technical University. Ankara, Turkey and MS(1981) and
Ph.D.(1984) degrees in EE from The Ohio State University. Columbus.
From 1984 to 1985. he was with the Dept. of Electrical Engineering
and Systems Science at Michigan State University. Since 1986. he has
been at Middle East Technical University. His research interests include
computer applications in power systems and distribution automation.

