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Abstract

Mean field annealing (MFA) algorithm, proposed for solving combinatorial optimization problems,

combines the characteristics of neural networks and simulated annealing. Previous works on MFA

resulted with successful mapping of the algorithm to some classic optimization problems such

as traveling salesperson problem, scheduling problem, knapsack problem and graph partitioning

problem. In this paper, MFA is formulated for the circuit partitioning problem using the so called

net-cut model. Hence, the deficiencies of using the graph representation for electrical circuits are

avoided. An efficient implementation scheme, which decreases the complexity of the proposed

algorithm by asymptotical factors is also developed. Comparative performance analysis of the

proposed algorithm with two well-known heuristics, simulated annealing and Kernighan-Lin,

indicates that MFA is a successful alternative heuristic for the circuit partitioning problem.
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1 Introduction

Partitioning of an electrical circuit, defined by its components and signal nets, is an extensively studied problem

arising in various applications. Partitioning means to divide the components of a circuit into two or more evenly

weighted partitions in such a way that the cost of the connections among the partitions is minimized. The cost

of the connections can be measured by the set of nets that connect cells in different partitions, called the cut-set.

The aim is to minimize the size of the cut-set while keeping the size of the partitions balanced. This problem,

called the circuit partitioning problem, arises while dividing a circuit into parts that will be implemented

separately. Also, divide-and-conquer algorithms, used in some VLSI layout problems as placement and floor-

planning, necessitate dividing the circuits hierarchically into parts with different minimization criteria. Since

the circuit partitioning is extensively used in these algorithms [10], the problem becomes more important.

A heuristic for circuit partitioning is given in the seminal paper by Kernighan and Lin [7]. In this

work, the circuits are represented as graphs and the problem is treated as graph partitioning problem. Later

Schweikert and Kernighan [13] showed the deficiencies of using the graph model for representing electrical

circuits, and proposed a new model called the net-cut model. In the net-cut model circuits are represented by

hypergraphs instead of graphs. The net-cut model represents the actual interconnection cost of distributing a

circuit to different parts, whereas the graph model gives an approximation to the interconnection cost. This

approximation gets worse as the sizes of the nets increase [13]. Hence, treating circuit partitioning problem as

graph partitioning problem can decrease the performance of the algorithm used for partitioning. Modification

of the Kernighan-Lin algorithm from the graph model to the net-cut model is extensively studied [3, 13].

Since the circuit partitioning problem is NP-hard [10], finding efficient heuristics is an important research

issue. In recent years, new neurocomputing approaches as maximum neural network and mean field annealing

are successfully applied to several NP-hard problems such as bipartite subgraph problem [9, 14], module ori-

entation problem [14], traveling salesperson problem [12, 15], scheduling problem [4], knapsack problem [11],

mapping problem [1], and graph partitioning problem [5, 12, 16]. In this work, mean field annealing (MFA)

is formulated for solving circuit partitioning problem using the net-cut model. Yih and Mazumder used the

net-cut model when they applied Hopfield neural network model to the circuit partitioning problem [17]. MFA

combines the collective computation property of Hopfield neural network model [6] with the annealing notion

of simulated annealing [8] in order to form a better algorithm [15]. In MFA, discrete variables called spins (or

neurons) are used for encoding the combinatorial optimization problems. An energy function written in terms

of spins is used for representing the cost function of the problem. Then, using the expected values of these

discrete variables, a gradient descent type relaxation scheme is used to find a configuration of the spins which

minimizes the associated energy function. MFA is also a general strategy as simulated annealing, and can be

applied to different problems with suitable formulations. We show that formulating the MFA algorithm for the

net-cut model is not trivial but achievable, and the resulting algorithm is efficient both in solution quality and

execution time.

The organization of the paper is as follows. Section 2 presents a formal definition of the circuit partitioning

problem. The graph and the net-cut model representations of circuits and the deficiencies of the graph model

are also discussed in Section 2. Section 3 presents the proposed formulation of the MFA algorithm for the

circuit partitioning problem using the net-cut model. An efficient implementation scheme is also described

in this section. Section 4 presents the experimental performance evaluation of the proposed MFA algorithm
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for the circuit partitioning problem in comparison with two well-known heuristics : simulated annealing and

Kernighan-Lin.

2 Circuit Partitioning Problem

An instance of the circuit partitioning problem consists of a circuit that is to be partitioned and an integer K

representing the number of partitions. A circuit can be represented by a set of components called cells, and a

list of nets which defines the connection relationships among the cells. Cells may represent different electrical

components as transistors, standard cells or logic gates. Nets represent the connections among the cells that can

be realized using different types of conductors depending on the application (e.g., wires, metal layers). Cells

incident to a net are called the terminals of that net. Both cells and nets of a circuit have an attribute called the

weight of a cell or a net. Weights of the cells may represent their areas if the partitioning is used for placement.

Nets can be weighted due to their effect on the total delay of the circuit. An example circuit with 10 cells and

5 nets is given below.

components (weights) :

c1 (4), c2 (1), c3 (4), c4 (3), c5 (4), c6 (2), c7 (3), c8 (2), c9 (1), c10 (2)

nets (weights) :

n1 : c4 - c5 - c9 (2) n2 : c1 - c4 - c6 - c9 (3) n3 : c2 - c5 - c7 - c10 (1)

n4 : c3 - c8 (2) n5 : c1 - c3 - c4 - c6 - c9 (1)

A circuitΩ can be formally represented by a set of cellsC, a set of netsN , a cell weight functionwcell : C � N ,

and a net weight function wnet : N � N , where N represents the set of natural numbers. Each element in

the set N is a subset of set C, i.e., N is a multiset such that N � 2C .

Given a circuit as defined above, the problem is to divide the cells of the circuit into K �K � 2� evenly

weighted partitions while minimizing the cost of the external connections (i.e., cut-set size) among partitions.

The difference between the net-cut and graph models is in the computation of the cost of external connections.

In the graph representation of a circuit, each cell of the circuit is represented by a vertex and each net of

the circuit is represented by a clique of vertices corresponding to its terminals. Cell weight function becomes

the vertex weight function of the graph. Weights of the edges are equal to the weights of the nets that they

represent. The graph representation of the circuits can be restricted to simple graphs. All edges between two

vertices are represented by a single edge of which weight is the summation of the weights of the edges it

represents. This simplification has no effect as far as the partitioning is concerned. If an edge between two

vertices is in the cut set of a partitioning then all other edges between these two vertices are also in the cut set

and vice versa. Therefore, a single edge with a weight equal to the summation of the weights of these edges can

represent their contribution to the cost. Figure 1(a) illustrates the graph representation of the example circuit.

Formally, a circuit Ω�C�N� is represented by a graph G�V�E�, where V � C, and wvertex � wcell. The edge

set E is formed using the net set N as, uv � E if and only if there exists an n � N such that u � n and v � n.

The weight function wedge is computed as wedge�uv� �
P

u�v�n�n�N wnet�n� for all uv � E. In the graph

model, the connection cost is computed by simply adding the weights of the edges that have their vertices in

different partitions.
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Figure 1: (a) Graph and (b) hypergraph representations of the example circuit. Weights of the edges in the
graph representation are shown in parentheses.

In the net-cut model, electrical circuits are represented with hypergraphs. A hypergraph consists of a set

of vertices V and a multisetE � 2V . MultisetE is the set of hyperedges. Hyperedges can be incident to more

than two vertices. Note that, hypergraphs can represent the circuits exactly by representing cells by vertices

and nets by hyperedges. Cell and net weight functions of the circuit become the vertex and hyperedge weight

functions of the hypergraph. Hence, a circuit Ω�C�N� can be considered as a hypergraph where C is the set

of vertices and N is the set of hyperedges. Figure 1(b) illustrates the hypergraph representation of the example

circuit.

In the net-cut model, the connection cost for K-way partitioning may be computed as follows. If the

vertices incident to an hyperedge are in � different partitions, then that hyperedge contributes ��� 1�we to the

connection cost, where we is the weight of the hyperedge. There are also some other alternatives for computing

the connection cost. One of them is adding we to the connection cost if and only if � � 2. Another one is

adding ����� 1��2�we. Note that, all choices are equivalent for bipartitioning.

The problem with the graph model is that it treats a net with s terminals as s�s� 1��2 two terminal nets.

This strategy exaggerates the importance of the nets that have more than two terminals and the exaggeration

grows with the square of the size of the net [13], where the size of a net denotes the number of terminals of a net.

For example, the actual cost of a unit weight net of size 4 in the cut-set of a bipartitioning is 1 since such a net

will cause a single connection between the two partitions. In the graph model, the same situation contributes

a cost of 3 or 4 according to the distribution of the terminal cells of the net between the two partitions. This

cost contribution in the graph model is far from the actual cost. In general, the actual cost contribution of a unit

weight net across a cut of a bipartitioning is 1, but the cost contribution of a clique, which is evenly split across

a cut, rises quadratically with the size of the clique [10]. This quadratic growth does not adequately reflect the

costs arising in practice. In fact, heuristics using the graph model for representing circuits will try to remove

all nets with large sizes from the cut-set and try to put the smaller ones. This situation can cause performance

degradation if the actual cut size is minimized when the nets with large sizes are in the cut-set. Experimentation

shows that this occurs in most of the cases [13]. For example, using the net-cut model instead of the graph

model increases the performance of the Kernighan-Lin heuristic drastically, reducing the connection costs by

19 to 50% [13].

Figure 1(a) and (b) illustrate two bipartitionings of the example circuit. The bipartitioning, P1 �

fc1� c3� c4� c6� c9g and P2 � fc2� c5� c7� c8� c10g with sizes jP1j � 14 and jP2j � 12, illustrated in Figure 1(a) is
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the global minimum of the graph model if the sizes of the two partitions are restricted to be between 12 and 14.

The bipartitioning, P1 � fc1� c4� c5� c6� c9g and P2 � fc2� c3� c7� c8� c10g with sizes jP1j � 14 and jP2j � 12,

illustrated in Figure 1(b) is the global minimum of the net-cut model with the same restrictions on the partition

sizes. Here, size of a partition denotes the summation of the weights of the cells assigned to that partition.

As explained earlier, actual connection cost is the cost of the cut computed using the net-cut model. Hence,

to compute the actual cost of the cut in Figure 1(a) we transform it to the net-cut model and observe that the

size of the cut is 4, whereas the size of the cut in Figure 1(b) is 2. Note that, the global minimum solution of

the graph model cuts two nets (n1 and n4) with smaller sizes (3 and 2, respectively) although their weights are

high (2 for both of the nets). However, the global minimum solution of the net-cut model cuts two nets (n3 and

n5) with larger sizes (4 and 5, respectively) but smaller weights (1 for both of the nets). Although both cuts

give the global minimum according to the model used, min-cut bipartitioning using the graph model yields a

suboptimal solution because of the incorrect representation of the problem. This demonstrates that even if one

computes the global optimum using the graph model, the computed solution can be a suboptimal solution of

the actual problem. It can be argued that some other representation scheme can be used to represent circuits

with graphs which can give better approximations to the actual cost, but it can be shown that there is no good

way of mapping a circuit instance into a graph [10].

3 Applying MFA to the Circuit Partitioning Problem

Mean field annealing (MFA) merges collective computation and annealing properties of Hopfield neural

networks [6] and simulated annealing [8], respectively, to obtain a general algorithm for solving combinatorial

optimization problems. MFA can be used for solving a combinatorial optimization problem by choosing a

representation scheme in which the final states of the spins (neurons) can be decoded as a solution to the target

problem. Then, an energy function is constructed whose global minimum value corresponds to an optimum

solution of the problem to be solved. MFA is expected to compute the optimum solution to the target problem,

starting from a randomly chosen initial state, by minimizing this energy function. Steps of applying mean field

annealing technique to a problem can be summarized as follows :

1) Choose a representation scheme which encodes the configuration space of the target optimization problem

using spins. In order to get a good performance, number of possible configurations in the problem domain

and the spin domain must be equal, i.e., there must be a one-to-one mapping between the configurations of

spins and the problem.

2) Formulate the cost function of the problem in terms of spins, i.e., derive the energy function of the system.

Global minimum of the energy function should correspond to the global minimum of the cost function.

3) Derive the mean field theory equations using this energy function, i.e., derive equations for updating

averages (expected values) of spins.

4) Minimize the complexity of update operations in order to get an efficient algorithm.

5) Select the energy function and the cooling schedule parameters.

The proposed formulation and implementation of the MFA algorithm for the circuit partitioning problem

following these steps are presented in the following sections.
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3.1 Encoding

The MFA algorithm is derived by analogy to Ising and Potts models which are used to estimate the state of a

system of particles, called spins, in thermal equilibrium. In Ising model, spins can be in one of the two states

represented by 0 and 1, whereas in Potts model they can be in one of the K states. For the circuit partitioning

problem, Ising model can be used for bipartitioning whereas Potts model is suitable for K-way partitioning.

In this work, we use Potts model which is more general, but for the case K � 2, it is easy to convert the

formulations derived for Potts model to Ising model.

In theK state Potts model ofS spins, the states of spins are represented usingSK-dimensional vectors [12]

Si � �si1� � � � � sik� � � � � siK �t for 1 � i � S�

where “t” denotes the vector transpose operation. The spin vector Si is allowed to be equal to one of the

principal unit vectors e�� � � � � ek� � � � � eK, and can not take any other value. Principal unit vector ek is defined

to be a vector which has all its components equal to 0 except its k’th component which is equal to 1. Spin Si
is said to be in state k if it is equal to ek. Hence, a K state Potts spin Si is composed of K two state variables

si1� � � � � sik� � � � � siK , where sik � f0� 1g, with the following constraint

KX
k�1

sik � 1 for 1 � i � S� (1)

In our encoding of the circuit partitioning problem, each spin vector corresponds to a cell in the circuit

Ω�C�N�. Hence, number of spin vectors is S � jCj. Dimension K of the spin vectors is equal to the number

of partitions. If a spin is in state k we say that the corresponding cell is assigned to partition k. Hence, sik � 1

means that cell i is assigned to partition k. For example, a 4 way partitioning of the circuit given in Section 2

can be represented by the following spin matrix S � �S�� � � � �Si� � � � �SjCj�
t which consists of 10 spin vectors

of dimension 4 representing the 10 cells in the example circuit.

K Partitionsz �� �
� � � �

jCj Cells

������������������
�����������������

� 0 0 1 0
� 0 1 0 0
� 0 0 0 1
� 1 0 0 0
� 0 1 0 0
� 0 0 1 0
� 1 0 0 0
� 0 0 0 1
� 1 0 0 0
�	 0 1 0 0

If this spin matrix is decoded as described above, the resulting partitioning is P1 � fc4� c7� c9g, P2 �

fc2� c5� c10g, P3 � fc1� c6g and P4 � fc3� c8g where P1, P2, P3, P4 are the sets representing partitions. Sizes

of the partitions are jP1j � 7, jP2j � 7, jP3j � 6 and jP4j � 6. The size of partition k is defined to be

jPk j �
P

c�Pk
wc where wc denotes the weight of cell c. The interconnection cost computed according to the

net-cut model is 8. This encoding is similar to the encodings used for graph partitioning problem [2, 5, 12, 16]

and bipartite subgraph problem [9, 14] in the previous works. Although we have proposed a hypergraph
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partitioning formulation using this encoding in an earlier work [2], its energy function formulation was an

approximation to the net-cut model as is the case for graph partitioning formulation. In the next section, we

propose an energy function formulation according to the net-cut model using the encoding described above.

3.2 Energy Function Formulation

In the MFA algorithm, the aim is to find the spin values minimizing the energy function of the system. In order

to achieve this goal, the average (expected) valueVi � hSii of each spin vector Si is computed and iteratively

updated until the system stabilizes at some fixed point. Hence, we define

Vi � hSii for 1 � i � jCj

[vi1� � � � � vik� � � � � viK]t �
�
hsi1i� � � � � hsiki� � � � � hsiKi

�t for 1 � i � jCj

i.e., vik � hsiki, for 1 � i � S and 1 � k � K. Note that, sik � f0� 1g, i.e., sik can take only two values 0

and 1, whereas vik � �0� 1�, i.e., vik can take any real value between 0 and 1. When the system is stabilized,

vik values are expected to converge to 0 or 1. As the system is a Potts glass we have the following constraint

similar to Eq. (1)
KX
k�1

vik � 1� for 1 � i � jCj� (2)

This constraint guarantees that each Potts spin Si is in one of the K states at a time, and each cell is assigned

to only one partition for our encoding of the circuit partitioning problem.

In order to construct an energy function it is helpful to associate the following meaning to the values vik,

vik � Pfcell i is in partition kg for 1 � i � jCj� 1 � k � K

i.e., vik is the probability of finding spin i at state k. If vik � 1 then spin i is in state k and the corresponding

configuration is Si � Vi.

Now, we formulate the interconnection cost of the circuit partitioning problem for the circuit Ω�C�N� as

an energy term (EC)

EC�V� �
X
n�N

wn

	
KX
k�1

Pfone or more cells of net n is in partition kg � 1



(3)

�
X
n�N

wn

	
KX
k�1

�1�Pfno cell of net n is in partition kg�� 1



(4)

�
X
n�N

wn

	
KX
k�1

�1�
Y
i�n

Pfcell i is not in partition kg�� 1



(5)

�
X
n�N

wn

	
KX
k�1

�1�
Y
i�n

�1� vik��� 1



(6)

where V � �V�� � � � �Vi� � � � �VjCj�
t is the spin average matrix consisting of jCjK-dimensional spin vectors.

Here, i � n and wn denote a terminal cell and the weight of net n respectively. In this formulation, cost

of each net is computed one by one and added to the total interconnection cost. According to the net-

cut model, as discussed in the Section 2, cost contribution of a net n to the total interconnection cost is

�� � 1�wn if the net is distributed to � different partitions. Equation (3) follows by the observation � �PK
k�1 Pfone or more cells of net n is in partition kg. The ��1� term in Eq. (3) is a constant term and can

6



be eliminated. Another observation is Pfcell i is not in partition kg � �1 � vik� which follows from the

probability interpretation of variables vik. Hence,
Q

i�n�1� vik� denotes the probability that no cell of net n

is in partition k and �1�
Q

i�n�1 � vik�� denotes the probability that at least one cell of net n is in partition

k. Note that, minimization of EC corresponds to minimization of the actual interconnection cost of the circuit

partitioning problem.

Another term of the energy function is the term for penalizing imbalanced partitions. We formulate this

term (EB) similar to the formulation of balance term proposed for the mapping problem [1].

EB�V� �
1
2

jCjX
i�1

X
j ��i

KX
k�1

vikvjkwiwj (7)

where wi andwj denote the weights of cells i and j. This triple summation term computes the summation of the

inner products of the weights of the cells assigned to individual partitions. Global minimum of this term occurs

when equal amounts of cell weights are assigned to each partition. If there is an imbalance in the partitioning,

EB term increases with the square of the amount of the imbalance, penalizing imbalanced partitionings.

The total energy function E can be defined in terms of EC and EB as

E�V� � EC�V� � r �EB�V�

�
X
n�N

wn

	
KX
k�1

�1�
Y
i�n

�1� vik��� 1



�

r

2

jCjX
i�1

X
j ��i

KX
k�1

vikvjkwiwj (8)

where parameter r is introduced to maintain a balance between the two optimization objectives of the circuit

partitioning problem. Hence, minimization of the energy function E corresponds to evenly distributing cells

among K partitions while minimizing the interconnection cost among the partitions computed according to the

net-cut model.

3.3 Derivation of the Mean Field Theory Equations

Mean field theory equations, needed to minimize the energy function E, can be derived as [12, 16]

�ik � �
�E�V�

�vik
(9)

� �
X
n�Ni

wn

Y
j�n�j ��i

�1� vjk�� r

jCjX
j ��i

vjkwiwj for 1 � i � jCj� 1� k � K (10)

where Ni is defined to be the set of nets connected to cell i. The quantity �ik represents the k’th element of the

mean field vector effecting on spin i. Using the mean field values �ik , average spin values vik can be updated

using the following equation [12, 16]

vik �
e�ik�TPK
l�1 e

�il�T
for 1 � i � jCj� 1� k � K (11)

where T is the temperature parameter which is used the relax the system iteratively. Equation (11) enforces

the summation of each row of the spin matrix to be unity, handling the constraint given in Eq. (2). Hence, it

is guaranteed that all rows of the spin matrix will have only one spin with output value 1 when the system is

stabilized.
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Mean field �ik can be interpreted as the increase in the energy function E�V� when spin i is assigned to

state k. Note that in Eq. (10), first summation term represents the increase in the total interconnection cost by

assigning cell i to partition k. Second summation term represents the increase in the imbalance cost associated

with partition k by assigning cell i to partition k. Hence, ��ik may be interpreted as the decrease in the overall

solution quality by assigning cell i to partition k. Then, in Eq. (11), vik is updated such that the probability of

assigning cell i to partition k increases with increasing mean field �ik.

After the mean field theory equations (Eq. (10), Eq. (11)) are derived, mean field annealing algorithm

can be summarized as follows. First an initial, high temperature spin average is assigned to each spin, and

an initial temperature is chosen. In general vik is initialized to 1�K plus a disturbance term (note that,

limT�� vik � 1�K). In each iteration the mean field vector effecting on a randomly selected spin is computed

using Eq. (10). Then, spin average vector is updated using Eq. (11). This process is repeated for a random

sequence of spins until the system is stabilized for the current temperature. The system is observed after each

spin vector update in order to detect the convergence to an equilibrium state for a given temperature. If energy

function E does not decrease in most of the successive spin vector updates, this means that the system is

stabilized for that temperature. Then, T is decreased according to the cooling schedule, and iterative process

is re-initiated. Note that, the computation of the energy difference ∆E necessitates the computation of E

(Eq. (8)) at each iteration. In general, the computation of the total energy (Eq. (8)) is much more expensive

than the computation of the mean field vector. Hence, the computation of E at each iteration drastically

increases the complexity of a MFA iteration. For example, the complexity of computing the energy function

E is Θ�jN jKsavg� jCj2K� for the proposed formulation (Eq. (8)). Here, savg denotes the average number of

cells of a net (i.e., average size of a net). We present an efficient scheme [1] which reduces the complexity of

energy difference computation by asymptotical factors.

The incremental energy change �Eik due to the incremental change �vik in the value of vik is �E �

�Eik � �ik�vik from Eq. (9). Since E�V� is linear in vik (see Eq. (8)), this equation is valid for any amount

of change ∆vik in the value of vik , that is

∆E � ∆Eik � �ik∆vik (12)

At each iteration of the MFA algorithm, K vik values in the same spin average vector are updated in a

synchronous manner, and Eq. (12) is valid for all updates performed in a particular iteration. Thus, energy

difference due to the spin vector update operation in a particular iteration can be computed as

∆E �
KX
k�1

�ik∆vik (13)

where ∆vik � v
�new�
ik � v

�old�
ik . The complexity of computing Eq. (13) is only Θ�K� since mean field (�ik)

values are already computed for the spin updates.

The MFA algorithm derived from the proposed formulation of the circuit partitioning problem is shown

in Figure 2. The complexity analysis of one iteration of this algorithm (from step 3.1.1 to step 3.1.6 in

Figure 2) is as follows. The complexity of computing the first summation term in Eq. (10) is Θ�davgsavg�

where davg denotes the average number of nets incident to a cell (i.e., average degree of a cell). The second

summation in Eq. (10) is a Θ�jCj� operation. Thus, the complexity of a single mean field (�ik) computation

is Θ�davgsavg � jCj�. Hence, the complexity of computing a mean field vector corresponding to a selected
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1. Get the initial temperature T0, and set T � T0

2. Initialize the spin averagesV � �v11� � � � � vik� � � � � vjCjK �

3. While temperature T is in the cooling range DO

3.1 While E is decreasing DO

3.1.1 Select a cell i at random.

3.1.2 Compute mean field vector corresponding to the i-th spin

�ik � �
P

n�Ni
wn

Q
j�n�j ��i�1� vjk�� r

PjCj

j ��i vjkwiwj for 1 � k � K

3.1.3 Compute the summation
PK

l�1 e
�il�T

3.1.4 Compute new spin average vectorVi as v�new�ik � e�ik�T �
PK

l�1 e
�il�T for 1 � k � K

3.1.5 Compute the energy change ∆E �
PK

k�1
�ik�v

�new�
ik � vik�

3.1.6 Update the spin average vectorVi as vik � v
�new�
ik for 1 � k � K

3.2 T � �� T

Figure 2: The proposed MFA algorithm for the circuit partitioning problem.

spin (step 3.1.2) is Θ�davgsavgK � jCjK�. Spin update computations (steps 3.1.3, 3.1.4 and 3.1.6) and energy

difference computation (step 3.1.5) are both Θ�K� operations. Hence, the overall complexity of a single MFA

iteration is Θ�davgsavgK � jCjK�.

3.4 An Efficient Implementation Scheme

As mentioned earlier, the MFA algorithm proposed for the circuit partitioning problem is an iterative process.

The complexity of a single MFA iteration is mainly due to the mean field vector computation. In this section,

we propose an efficient implementation scheme which reduces the complexity of the mean field computations,

and hence the complexity of the MFA iteration, by asymptotical factors.

Assume that, cell i is selected at random for updating the spin average vector Vi in a particular iteration.

The expression given for �ik (Eq. (10)) can be rewritten as

�ik � �
X
n�Ni

�nik � r�ik for 1 � k � K (14)

where

�nik � wn

Y
j�n�j ��i

�1� vjk� for 1 � k � K (15)

�ik �
jCjX
j ��i

vjkwiwj for 1 � k � K� (16)

For the sake of clarity of the representation, the overall mean field computations involved in a single iteration
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can be expressed using vector representation as


i � �
X
n�Ni

�
n
i � r�i� (17)

Here, �n
i

and �i are column vectors with K elements, where


i � ��i1� � � � � �ik� � � � � �iK�t �i � ��i1� � � � � �ik� � � � � �iK�t

�
n
i

� ��ni1� � � � � �
n
ik� � � � � �

n
iK�t for n � Ni�

The complexity of computing the �i vector can be reduced asymptotically [1] if the computation of �ik
in Eq. (16) is re-formulated as

�ik �

jCjX
j ��i

vjkwiwj � wi�

jCjX
j�1

vjkwj � vikwi� � wi�	k � vikwi� for 1 � k � K (18)

where 	k �
PjCj

j�1 vjkwj . Here, 	k represents the current size of partition k prior to the update of the spin

average vector Vi. Computationally 	k represents the weighted sum of the individual vik values of the k-th

column of the spin matrix. At the beginning of the MFA algorithm, the initial 	k value for each column k

(1 � k � K) can be computed using the initial spin values. Then 	k values can be updated at the end of each

iteration (i.e. after spin average vector Vi is updated) using

	
�new�
k � 	

�old�
k � v

�old�
ik wi � v

�new�
ik wi � 	

�old�
k � wi∆vik for 1 � k � K� (19)

This formulation proposed for the efficient computation of the �i vector, which is needed in Eq. (17), can be

represented in vector notation as

�i � wi�
�old� � wiVi

�old�� (20)


�new� � 

�old� � wi�Vi (21)

where  � �	1� � � � � 	k� � � � � 	K�t and �Vi � �∆vi1� � � � �∆vik� � � � �∆viK�t. The computation of initial 	k
values can be excluded from the complexity analysis since they are computed only once at the very beginning

of the algorithm. In this scheme, the computation of an individual �ik using Eq. (18) is a Θ�1� operation.

Hence, the construction of the �i vector becomes a Θ�K� operation (Eq. (20)). The update of an individual

	k value (using Eq. (19)) at the end of each iteration is a Θ�1� operation. Thus, the overall complexity of 	k
updates is Θ�K� since K weighted column sums should be updated (Eq. (21)). Hence, the proposed scheme

reduces the complexity of computing the �i vector (needed in Eq. (17)) from Θ�jCjK� to Θ�K�.

The complexity of computing�n
i

vector can be reduced asymptotically if the computation of an individual

�nik value in Eq. (15) is reformulated as

�nik � wn

Y
j�n�j ��i

�1� vjk� �
1

�1� vik�
wn

Y
j�n

�1� vjk� �
1

�1� vik�

nk for 1 � k � K (22)

where
nk � wn
Q

j�n�1�vjk�. Here, 
nk represents the probability that no cell of netn is in partitionkmultiplied

by the weight of the net n. At the beginning of the MFA algorithm, the initial �n � �
n1 � � � � � 

n
k � � � � � 


n
K�t

vector for each net can be computed using the initial spin averages. Then, 
nk values can be updated at the end

of each iteration (i.e., after the spin average vector Vi is updated) using



n�new�
k �

�1� v
�new�
ik �

�1� v
�old�
ik �



n�old�
k for 1 � k � K and �n � Ni� (23)
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This formulation proposed for the efficient computation of an individual�n
i

vector, which is needed in Eq. (17),

can be represented in vector notation as

�
n
i

� Ui ��
n�old� for �n � Ni (24)

�
n�new� � Ri ��

n�old� for �n � Ni� (25)

Here, Ui � �ui1� � � � � uik� � � � � uiK�t and Ri � �ri1� � � � � rik� � � � � riK�t are column vectors with K elements

where uik � 1��1 � v
�old�
ik � and rik � �1 � v

�new�
ik ���1 � v

�old�
ik � for 1 � k � K, and the operation “�”

represents element-by-element multiplication of two column vectors. The computation of initial �n vectors

can be excluded from the complexity analysis since they are computed only once at the very beginning of the

algorithm. In this scheme, the computation of an individual �nik value for a particular net n using Eq. (22) is a

Θ�1� operation. Hence, the construction of a �n
i

vector becomes a Θ�K� operation (Eq. (24)). The update of

an individual 
nk value for a particular net n at the end of each iteration is a Θ�1� operation (Eq. (23)). Thus,

the overall complexity of updating a particular�n vector is a Θ�K� operation (Eq. (25)). Hence, the proposed

scheme reduces the complexity of computing an individual �n
i

vector (needed in Eq. (17)) from Θ�snK� to

Θ�K� where sn denotes the size of the net n.

The first summation term in Eq. (17) requires the addition of di �ni vectors where di denotes the degree of

cell i. Furthermore, the proposed scheme necessitates the update of di �n vectors since cell i is connected to

di different nets. Thus, the proposed scheme reduces the complexity of computing the first summation term in

Eq. (17) from Θ�K
P

n�Ni
sn� � Θ�Kdis

i
avg� to Θ�Kdi�. Here, siavg � �

P
n�Ni

sn��di denotes the average

size of the nets connected to cell i. The final addition of vectors �i � �
P

n�Ni
�
n
i

and ��r� � �i is a

Θ�K� operation. Hence, the proposed scheme reduces the overall complexity of mean field vector computation

in a single MFA iteration from Θ�davgsavgK � jCjK� to Θ�davgK�. Recall that spin update computations

and energy difference computation involved in a MFA iteration are Θ�K� operations. Hence, the proposed

implementation scheme reduces the overall complexity of an individual MFA iteration to Θ�davgK�.

4 Performance of the MFA Algorithm

This section presents the performance evaluation of the proposed Mean Field Annealing (MFA) algorithm

for the circuit partitioning problem. To evaluate the performance of the proposed algorithm two well-known

circuit partitioning heuristics are used: simulated annealing (SA) and Kernighan-Lin (KL). Each algorithm is

tested using randomly generated circuit partitioning problem instances. Hypergraphs representing circuits are

generated using two different schemes, resulting with two families of hypergraphs referred here as random

hypergraphs and geometric hypergraphs.

Random hypergraphs are generated using the following parameters: number of cells (jCj), number of nets

(jN j), maximum cell weight (Wc), maximum net weight (Wn), and maximum net size (smax). Each net is

generated by randomly selecting a net size between 2 and smax. Then, that many cells are selected randomly

from the cell set to form the net. If a new generated net contains exactly same cells with another net generated

earlier, then it is discarded and another net is generated instead of it. Each cell or net is weighted randomly by

choosing a number between 1 and Wc or 1 and Wn, respectively.

Geometric hypergraphs are generated using an algorithm similar to the one used for generating geometric

graphs. Geometric hypergraphs may represent electrical circuits better than random hypergraphs as they present
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Figure 3: An example geometric hypergraph.

clustering and local connectivity properties. Parameters used for generating geometric hypergraphs are number

of cells (jCj), number of nets (jN j), maximum cell weight (Wc), maximum net weight (Wn), and average net

size (savg). A geometric hypergraph is generated using these parameters by randomly distributing jCj cells and

jN j nets in a unit square. Then, the nets are formed using the following rule: a cell is incident to a net if it is

contained in the bounding box of that net. Bounding box of a net is a square with the net in its center. Sizes of

the bounding boxes are fixed and computed using the input parameters savg and jCj as b �
q
savg�jCj, where

b denotes the length of the sides of the bounding box. Nets of which bounding boxes contain less than 2 cells

are discarded. Also, as in the generation of random hypergraphs, if two or more nets have the same subset of

cells, only one of them is accepted and all others are discarded. New nets are generated instead of the discarded

ones. Note that, the average size of the nets in the resulting hypergraph may be slightly different than the input

parameter savg as the nets near the borders of the unit square will have smaller sizes than expected, but also

nets having less than 2 terminals are discarded which may compensate this effect. Each cell or net is weighted

randomly by choosing a number between 1 and Wc or 1 and Wn, respectively. Figure 3 illustrates a geometric

hypergraph with 10 cells and 5 nets which corresponds to the example circuit given in Section 2.

4.1 MFA Implementation

The MFA algorithm proposed for the circuit partitioning problem is implemented efficiently as described in

Section 3. At the very beginning of the algorithm spin averages are initialized to 1�K plus a random disturbance

term, so that the initial spin averages are uniformly distributed in the range

0�9�
1
K

� v
�initial�
ik � 1�1�

1
K

for 1 � i � jCj� 1 � k � K�

The initial temperature T0 and the parameter r used in the mean field computations (Eq. (10)) are estimated

using these initial random spin average values. Recall that, the parameter r is introduced in the energy function

formulation (Eq. (8)) in order to determine a balance between the two optimization objectives of the circuit

partitioning problem. Hence, in the mean field computations (Eq. (10)), the parameter r determines a balance

between the terms

�Cik � �
X
n�Ni

wn

Y
j�n�j ��i

�1� vjk� and �Bik � �
jCjX
j ��i

vjkwiwj
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where �ik � �Cik � r � �Bik. We compute the averages h�Ciki � �
PjCj

i�1
PK

k�1 �
C
ik���jCjK� and h�Biki �

�
PjCj

i�1
PK

k�1 �
C
ik���jCjK� of these two terms using the initial vik values and compute r as r � 8h�Ciki�h�

B
iki.

Our experiments show that computing r using this method is sufficient for obtaining balanced partitions.

Selection of T0 is crucial for obtaining good quality solutions. In previous applications of MFA [12, 16],

it is experimentally observed that spin averages tend to converge at a critical temperature. It is suitable to

choose T0 close to this critical temperature. Although there are some methods proposed for the estimation

of critical temperature [12, 16] we prefer an experimental way for computing T0 which is easy to implement

and successful as the results of the experiments indicate. After the parameter r is fixed, average mean

field h�iki � �
PjCj

i�1
PK

k�1 �ik���jCjK� is computed using initial vik values. Then, T0 is computed as

T0 � ch�iki�K. Our experiments indicate that it is suitable to choose the parameter c as 100 for geometric

hypergraphs, and as 60 for random hypergraphs. Note that, T0 is inversely proportional to the number

of partitions (K) which is also observed for the critical temperature formulations presented in the other

implementations of MFA [12, 16].

After the spin averages (vik values) and the parameters T0 and r are initialized, the cooling schedule of the

algorithm proceeds as follows. At each temperature a random sequence is generated for the spins that are not

converged yet. Then, averages of these spins are updated iteratively according to this random sequence. The

number of iterations with energy decrease (�∆E) less than � is counted in each random sequence, where � is

chosen as 0�1 and 0�001 for random and geometric hypergraphs, respectively. If this count is more than 90% of

the number of unconverged spins, temperature is decreased according to T � �� T where � is the parameter

for adjusting the rate of the cooling. Average spin values are tested for convergence at the end of each random

sequence. If one of the vik terms of the spin average vector Vi is greater than 0�999, it is assumed that spin

i is converged to state k and its average is not updated in the future iterations. Cooling process is realized in

two phases; slow cooling followed by fast cooling. In the slow cooling phase, temperature is decreased using

� � 0�95 until T is less than T0�1�5. Then, in the fast cooling phase, � is set to 0�7 and cooling is continued

until T is less then T0�5�0. At the end of this cooling process, maximum element in each spin average vector is

set to 1 and all other spin average values are set to 0. Then, the result is decoded as described in Section 3.1, and

the resulting partitioning is found. Note that, all parameters used in this implementation are either constants or

found automatically except the parameters c and �. The parameters c and � are also constants for each family

of hypergraphs but differ for random and geometric hypergraphs.

Figure 4 illustrates the evolution of interconnection and total energy terms (EC and E, respectively)

with MFA iterations for partitioning two random hypergraphs ((a) jCj � 200, jN j � 200, (b) jCj � 400,

jN j � 400) into K � 8 partitions. Figure 4 is constructed by computing the EC (Eq. (6)) and E (Eq. (8))

terms at each 10 MFA iterations for the given two circuit partitioning problem instances. The displayed energy

values are normalized with respect to the initial energy values. The vertical solid lines in each curve denote

the temperature changes according to the cooling schedule. As is seen in Figure 4, interconnection energy

(EC ) monotonically decreases as the iterations proceed. The oscillatory decrease of the total energy term (E)

is due to the balance term (EB given in Eq. (7)) oscillations superimposed on the monotonically decreasing

EC term. As is seen in Figure 4, the major decrease in the energy terms occur during a single temperature

which corresponds to the critical temperature mentioned earlier. Note that, the number of iterations performed

during the critical temperature is substantially greater than the numbers of iterations performed during other

temperatures. The decrease in the energy terms during the last two temperatures demonstrate the merits of the
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Figure 4: Evolution of interconnection and total energy terms with iterations for partitioning two random
hypergraphs ((a) jCj � 200, jN j � 200, (b) jCj � 400, jN j � 400) into K � 8 partitions.

fast cooling phase mentioned earlier. The horizontal dashed lines in the interconnection energy curves denote

the normalized actual interconnection costs of the solutions decoded from the final spin matrices. Note that,

interconnection energy terms (EC) converge to the final actual interconnection costs confirming the correctness

of the proposed formulation (Eq. (6)).

4.2 Simulated Annealing Implementation

In simulated annealing, starting from a randomly chosen initial configuration, configuration space is searched

for the best solution using a probabilistic hill climbing algorithm [8]. A configuration of the circuit partitioning

problem is a partitioning of the circuit toK partitions. In order to search the configuration space, neighborhood

of a configuration must be defined. For the implementation in this work, neighborhood of a configuration

consists of all configurations which results with moving one cell of the circuit from the partition with maximum

size to any other partition. At each iteration of the simulated annealing algorithm, one of the possible moves

is chosen randomly as a candidate move. Then, the resulting decrease in the total interconnection cost caused

by the candidate move is calculated without changing the configuration. If the candidate move decreases the

interconnection cost, it is realized. If it increases the interconnection cost, then it is realized with a probability

which decreases with the amount of increase in the total interconnection cost. Acceptance probabilities of

the moves that increase the cost are controlled with a temperature parameter T which is decreased using an
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Table 1: Interconnection cost averages (and standard deviations) normalized with respect to the MFA heuristic
and percent imbalance ratio averages (and standard deviations) of the solutions found by the MFA, KL, and SA
heuristics for random hypergraphs.

Problem Size Average Interconnection Cost Average Percent Imbalance Ratio

jCj jN j K MFA KL SA MFA KL SA

200 100 4 1�00 (0�08) 1�04 (0�09) 1�00 (0�08) 8�08 (3�60) 7�43 (1�00) 1�58 (0�70)
200 200 4 1�00 (0�04) 1�03 (0�04) 1�01 (0�04) 5�55 (2�13) 8�32 (0�68) 1�73 (0�70)
200 400 4 1�00 (0�02) 1�03 (0�02) 1�02 (0�02) 7�72 (2�65) 8�52 (0�43) 1�62 (0�77)
400 200 4 1�00 (0�06) 1�03 (0�06) 0�98 (0�06) 13�16 (5�50) 7�77 (1�42) 0�87 (0�36)
400 400 4 1�00 (0�03) 1�02 (0�03) 0�99 (0�03) 4�29 (1�88) 9�15 (0�50) 0�93 (0�41)
400 800 4 1�00 (0�03) 1�03 (0�03) 1�01 (0�03) 6�90 (1�80) 9�26 (0�22) 0�83 (0�37)

200 100 8 1�00 (0�08) 1�07 (0�09) 1�00 (0�08) 4�35 (1�53) 7�65 (0�48) 3�81 (1�03)
200 200 8 1�00 (0�05) 1�05 (0�05) 1�02 (0�05) 6�09 (1�75) 7�71 (0�50) 3�69 (1�24)
200 400 8 1�00 (0�03) 1�04 (0�03) 1�02 (0�03) 8�00 (1�62) 7�99 (0�45) 3�74 (1�25)
400 200 8 1�00 (0�07) 1�06 (0�07) 1�00 (0�07) 3�95 (1�16) 8�60 (0�27) 1�81 (0�56)
400 400 8 1�00 (0�03) 1�05 (0�03) 1�01 (0�03) 4�91 (1�37) 8�81 (0�31) 1�82 (0�58)
400 800 8 1�00 (0�03) 1�05 (0�03) 1�03 (0�03) 7�45 (1�44) 9�11 (0�60) 1�78 (0�60)

200 100 16 1�00 (0�09) 1�10 (0�10) 0�98 (0�09) 5�25 (1�55) 6�16 (0�44) 7�34 (2�13)
200 200 16 1�00 (0�05) 1�06 (0�07) 0�98 (0�04) 6�43 (1�60) 6�06 (0�95) 7�89 (2�10)
200 400 16 1�00 (0�07) 1�02 (0�03) 0�98 (0�03) 6�65 (1�57) 6�33 (0�30) 8�22 (1�94)
400 200 16 1�00 (0�07) 1�04 (0�08) 0�97 (0�07) 3�51 (1�04) 7�96 (0�38) 3�73 (1�01)
400 400 16 1�00 (0�03) 1�03 (0�03) 0�99 (0�03) 5�21 (1�21) 8�25 (0�87) 3�79 (1�07)
400 800 16 1�00 (0�03) 1�02 (0�03) 1�00 (0�03) 6�77 (1�42) 8�34 (0�67) 3�84 (0�99)

annealing schedule. Hence, as the annealing proceeds acceptance probabilities of uphill moves decrease. An

automatic cooling schedule is used in the implementation of the SA algorithm [12]. Note that, the SA algorithm

implemented in this work implicitly achieves the balance among the sizes of the partitions by selecting the

neighbor configurations as defined above. This increases computationally efficiency of the algorithm but

decreases its flexibility since the amount of imbalance among the partitions can not be controlled.

4.3 Kernighan-Lin Implementation

Kernighan-Lin (KL) heuristic is implemented efficiently as described by Fiduccia and Mattheyses [3]. In order

to apply the KL heuristic to K-way partitioning a two phase approach is used which consists of recursive

bisection and pairwise min-cut phases. In recursive bisection phase, the circuit is recursively partitioned into

two partitions until K partitions are obtained. Then, in the pairwise min-cut phase, total interconnection cost

is iteratively minimized by executing KL heuristic between each pair of partitions until no improvement can

be achieved. In the KL heuristic, balance among partitions is maintained implicitly by the algorithm. Cell

moves causing intolerable imbalances are not considered. In the implementation used in this work a move

which increases or decreases the size of a partition more than 10% of the size of a perfectly balanced partition

is considered as causing intolerable imbalance.

4.4 Experimental Results

In this section, performance of the proposed MFA algorithm is experimentally evaluated in comparison

with the Kernighan-Lin (KL) and the simulated annealing (SA) algorithms. These heuristics are experimented

with a large number of randomly generated circuit partitioning problem instances.

Six different types of random hypergraphs and six different types of geometric hypergraphs are generated

with jCj � 200, jCj � 400 and jN j � jCj�2, jN j � jCj and jN j � 2jCj. For each type of hypergraph 10

15



Table 2: Interconnection cost averages (and standard deviations) normalized with respect to the MFA heuristic
and percent imbalance ratio averages (and standard deviations) of the solutions found by the MFA, KL, and SA
heuristics for geometric hypergraphs.

Problem Size Average Interconnection Cost Average Percent Imbalance Ratio

jCj jN j K MFA KL SA MFA KL SA

200 100 4 1�00 (0�21) 1�02 (0�26) 1�00 (0�22) 8�09 (3�91) 5�55 (1�64) 1�85 (0�71)
200 200 4 1�00 (0�21) 0�94 (0�17) 0�98 (0�15) 6�65 (4�66) 6�41 (1�49) 1�62 (0�71)
200 400 4 1�00 (0�17) 0�88 (0�12) 0�98 (0�13) 7�63 (4�41) 6�36 (1�61) 1�46 (0�73)
400 200 4 1�00 (0�24) 1�02 (0�22) 0�98 (0�20) 8�09 (3�71) 5�77 (2�10) 0�77 (0�36)
400 400 4 1�00 (0�15) 0�77 (0�11) 0�88 (0�14) 5�46 (3�35) 6�94 (1�70) 0�82 (0�40)
400 800 4 1�00 (0�17) 0�69 (0�10) 0�86 (0�13) 7�03 (4�81) 7�32 (1�56) 0�73 (0�37)

200 100 8 1�00 (0�14) 1�29 (0�31) 1�09 (0�17) 6�08 (2�59) 7�13 (1�06) 3�14 (1�06)
200 200 8 1�00 (0�10) 1�13 (0�20) 1�05 (0�11) 5�16 (2�28) 7�32 (0�91) 3�48 (1�36)
200 400 8 1�00 (0�07) 1�09 (0�14) 1�07 (0�09) 6�42 (2�62) 7�28 (0�91) 3�64 (1�17)
400 200 8 1�00 (0�17) 1�10 (0�17) 1�02 (0�17) 7�70 (3�68) 7�29 (1�37) 1�83 (0�58)
400 400 8 1�00 (0�11) 0�96 (0�09) 1�05 (0�10) 4�97 (2�32) 8�46 (1�02) 1�72 (0�61)
400 800 8 1�00 (0�11) 0�90 (0�08) 1�02 (0�09) 6�01 (3�03) 8�53 (1�15) 1�80 (0�61)

200 100 16 1�00 (0�12) 2�23 (0�65) 1�13 (0�19) 6�16 (1�63) 6�38 (1�09) 7�68 (2�53)
200 200 16 1�00 (0�09) 1�60 (0�21) 1�03 (0�11) 6�68 (1�56) 6�55 (1�02) 7�08 (2�21)
200 400 16 1�00 (0�07) 1�68 (0�38) 1�01 (0�07) 7�62 (1�77) 6�21 (1�40) 7�72 (2�28)
400 200 16 1�00 (0�13) 1�21 (0�17) 1�10 (0�13) 6�10 (2�13) 8�26 (0�95) 3�47 (1�04)
400 400 16 1�00 (0�07) 1�12 (0�13) 1�06 (0�08) 5�51 (1�44) 8�64 (1�12) 3�47 (1�13)
400 800 16 1�00 (0�07) 1�05 (0�11) 1�04 (0�06) 6�50 (1�79) 8�55 (1�16) 3�75 (1�19)

different random instances are generated. That is, a total of 120 different hypergraph instances are generated

randomly. In each hypergraph instance, maximum cell weight (Wc) and maximum net weight (Wn) are both

selected as 4. The maximum net size (smax) in random hypergraph instances and the average net size (savg)

in geometric hypergraph instances are selected as 16 and 8, respectively. A total of 3 � 120 � 360 circuit

partitioning problem instances are constructed by using these hypergraph instances and selecting the number

of partitions as K � 4, K � 8, and K � 16.

Tables 1-3 and Figure 5 illustrate the performance results of the MFA, KL and SA heuristics for the

circuit partitioning problem instances constructed using random and geometric hypergraphs. In Tables 1-3,

jCj (number of cells) and jN j (number of nets) determine the type of the 10 distinct hypergraph instances

experimented for collecting the data in each row. Each algorithm is executed 10 times for each problem

instance starting from different, randomly chosen initial configurations. Each entry in Tables 1-3 illustrates the

overall average (and standard deviation) of the results of 10 � 10 � 100 executions of a particular algorithm

for partitioning 10 different hypergraph instances of the same type into K partitions.

Tables 1 and 2 illustrate the quality of the solutions obtained by the MFA, KL and SA heuristics for random

and geometric hypergraphs, respectively. Total interconnection cost averages (and standard deviations) of the

solutions are normalized with respect to the results of the MFA heuristic. Percent imbalance ratio averages

(and standard deviations) of the solutions displayed in these tables are computed using 100 � �jP jmax �

jP jmin���2jP javg� where jP jmax, jP jmin and jP javg � �
PK

k�1 jPkj��K denote the maximum, the minimum

and the average partition sizes. Table 3 displays the execution time averages of the MFA, KL and SA heuristics

on a SUN Sparc Server 490, measured in seconds. Figure 5 illustrates the change in the interconnection cost

and execution time averages of the MFA, KL and SA heuristics with respect to the number of partitions for

random and geometric hypergraphs.

16



Table 3: Execution time averages (in seconds) of the MFA, KL, and SA heuristics for random and geometric
hypergraphs.

Average Execution Time
Problem Size Random Hypergraphs Geometric Hypergraphs

jCj jN j K MFA KL SA MFA KL SA

200 100 4 0�76 1�11 7�64 1�76 0�86 7�85
200 200 4 1�13 1�78 9�44 1�53 1�35 8�75
200 400 4 2�12 3�47 10�94 2�07 2�23 11�20
400 200 4 1�40 2�51 18�52 2�71 1�76 18�59
400 400 4 2�11 4�51 22�31 2�15 2�77 21�62
400 800 4 3�60 8�80 28�46 3�32 4�91 28�54

200 100 8 1�65 3�24 14�16 5�44 2�44 13�93
200 200 8 2�70 5�07 16�22 8�12 3�52 15�98
200 400 8 4�79 8�83 18�65 16�36 5�75 18�81
400 200 8 2�84 5�29 33�27 7�22 3�61 32�60
400 400 8 5�30 9�88 37�45 9�63 5�49 36�41
400 800 8 10�38 18�96 45�18 15�51 8�99 44�53

200 100 16 2�90 12�10 25�38 7�37 8�46 22�52
200 200 16 4�52 15�60 28�79 9�31 11�75 27�76
200 400 16 7�34 24�47 33�65 17�63 15�23 35�07
400 200 16 5�22 14�58 61�02 11�41 10�62 55�69
400 400 16 9�90 25�68 65�95 14�09 15�66 62�90
400 800 16 16�47 44�55 76�53 20�93 23�21 82�03

As is mentioned earlier, circuit partitioning has two different optimization objectives: interconnection cost

and imbalance cost. Hence, the quality of a solution of a particular circuit partitioning problem instance has two

components: interconnection quality and balance quality. For random hypergraphs, as is seen in Figure 5(a)

and Table 1, interconnection qualities of the solutions found by the MFA and the SA heuristics are comparable

and both better than the interconnection qualities of the solutions found by the KL heuristic. For geometric

hypergraphs, as is seen in Figure 5(b) and Table 2, the KL and SA heuristics produce solutions with slightly

better interconnection qualities compared with those of the MFA heuristic for K � 4. However, for K � 8

and K � 16 interconnection qualities of the solutions obtained by the MFA heuristic are better than those of

the KL and SA heuristics.

As is seen in Tables 1 and 2, the balance qualities of the solutions found by the MFA algorithm are

comparable with those of the KL heuristic. Note that, the balance qualities of the solutions found by the SA

heuristic are superior to those of the MFA and KL heuristics. This is due to the implementation of the SA

heuristic (explained in Section 4.2) which compels balanced partitionings.

As is seen in Figure 5 and Table 3, the MFA and KL heuristics are significantly faster than the SA heuristic.

For the case of random hypergraphs, the MFA heuristic is always faster than the KL heuristic. For geometric

hypergraphs, execution time averages of the MFA and KL heuristics are comparable for K � 4 and K � 16,

whereas for K � 8 the KL heuristic is faster than the MFA heuristic. Note that, as the number of partitions

increase, both the solution quality and the speed advantage of the MFA heuristic increases in comparison with

those of the KL heuristic. The relative increase in the speed of the MFA heuristic is also observed in the

literature [16] for the case of graph partitioning problem.
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Figure 5: Interconnection cost (normalized with respect to the MFA heuristic) and execution time (in seconds)
averages of the MFA, KL and SA heuristics for (a) random and (b) geometric hypergraphs for different number
of partitions.

5 Conclusion

In this paper, a mean field annealing (MFA) algorithm is proposed for the circuit partitioning problem using

the net-cut model. An efficient implementation scheme is also developed for the proposed algorithm. The

proposed implementation scheme decreases the complexity of a single MFA iteration by asymptotical factors.

The performance of the proposed algorithm is experimentally evaluated in comparison with two well-known

heuristics (simulated annealing (SA) and Kernighan-Lin (KL)) for a large number of randomly generated circuit

partitioning problem instances. The qualities of the solutions obtained by the MFA heuristic are comparable

with those of the SA heuristic. In general, the MFA heuristic produces better solutions than the KL heuristic.

The proposed MFA algorithm is significantly faster than the SA algorithm. In general, the MFA algorithm is

also faster than the KL algorithm. It is also observed that, as the number of partitions increase, the solution

quality and the speed advantage of the proposed MFA heuristic increases in comparison with those of the KL

heuristic.
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