
Active Pixel Merging on Hypercube
Multicomputers�

Tahsin M� Kur�c� Cevdet Aykanat� and B�ulent �Ozg�u�c

Dept� of Computer Engineering and Information Sci�
Bilkent University� ����� Ankara� TURKEY

Abstract� This paper presents algorithms developed for pixel merging
phase of object�space parallel polygon rendering on hypercube�connected
multicomputers� These algorithms reduce volume of communication in
pixel merging phase by only exchanging local foremost pixels� In order
to avoid message fragmentation� local foremost pixels should be stored
in consecutive memory locations� An algorithm� called modi�ed scanline
z�bu�er� is proposed to store local foremost pixels e	ciently� This algo�
rithm also avoids the initialization of scanline z�bu�er for each scanline
on the screen� Good processor utilization is achieved by subdividing the
image�space among the processors in pixel merging phase� E	cient algo�
rithms for load balancing in the pixel merging phase are also proposed
and presented� Experimental results obtained on a 
��processor Intel�s
iPSC�
 hypercube multicomputer are presented�

� Introduction

There are two approaches for parallel polygon rendering in multicomputers�
image�space parallelism ��� �� 	
 and object�space parallelism ��� �� 

� In object�
space parallel rendering� input polygons are partitioned among the processors�
Each processor� then� runs a sequential rendering algorithm for its local polygons�
Each generated pixel is locally z�bu�ered to eliminate local hidden pixels� After
local z�bu�ering� pixels generated in each processor should be globally merged�
because more than one processor may produce a pixel for the same screen coor�
dinate� The global z�bu�ering operations during the pixel merging phase can be
considered as an overhead to the sequential rendering� Furthermore� each global
z�bu�ering operation necessitates interprocessor communication� E�cient imple�
mentation of the pixel merging phase is thus a crucial factor for the performance
of object�space parallel rendering� In its simplest form� pixel merging phase can
be performed by exchanging pixel information for all pixel locations between pro�
cessors� We will call this scheme full z�bu�er merging� This scheme may introduce
large communication overhead in pixel merging phase because pixel information
for inactive pixel locations are also exchanged� This overhead can be reduced

� This work is partially supported by Intel Supercomputer Systems Division grant
no� SSD
����
�
 and The Scienti�c and Technical Research Council of Turkey
�T�UB�ITAK� grant no� EEEAG���



by exchanging only local foremost pixels in each processor� This scheme is re�
ferred to here as active pixel merging� The approaches in ��� 

 use architectures
whose processors are interconnected in a tree structure for pixel merging phase�
Both approaches result in low processor utilization in pixel merging phase due
to tree topology� The processors in the lower levels of the tree �e�g�� processors
at the leaves� may have substantially less work than those in the upper levels
of the tree� Another approach presented in ��
 utilizes network broadcast capa�
bility for pixel merging phase� Each processor� starting from the �rst processor
and continuing in increasing processor id� broadcasts �active� pixels to a global
frame bu�er� The other processors capture the broadcast pixels and delete their
local pixels which are hidden by the broadcast pixels� In this way� the number of
pixels broadcast by the next processor is expected to decrease� Their approach
will introduce a large communication overhead due to broadcast operation on
medium�to�coarse grain distributed�memory architectures� In addition� their ap�
proach su�ers from low processor utilization because a processor remains idle
until the end of pixel merging phase after broadcasting its pixels�

This paper investigates the object�space parallelism on hypercube�connected
distributed�memory multicomputers� In our approach� the hypercube intercon�
nection topology and message passing characteristics of hypercube multicom�
puter are exploited� Algorithms proposed in this work achieve good processor
utilization by implicitly subdividing image�space among the processors in pixel
merging phase� The volume of communication is decreased by only exchanging
local foremost pixels for active pixel locations as in ��
� However� storing only
local foremost pixels for e�cient pixel merging introduces some overhead to
conventional scanline z�bu�er algorithm� An algorithm� called modi�ed scanline
z�bu�er� is proposed to reduce this overhead� The proposed algorithm also avoids
initialization of scanline z�bu�er for each scanline in local z�bu�ering� Load bal�
ancing issue in pixel merging phase is discussed� Algorithms for achieving better
load balance are proposed and discussed�

� Modi�ed Scanline Z�bu�er Algorithm

In order to prevent message fragmentation in active pixel merging� the local fore�
most pixels should be stored in consecutive memory locations� In this section� a
modi�ed scanline z�bu�er algorithm is presented� This algorithm utilizes a mod�
i�ed scanline scheme to store foremost pixels in consecutive memory locations
e�ciently� In addition� this algorithm avoids initialization of scanline z�bu�er for
each scanline by sorting polygon spans at each scanline in increasing minimum
x�intersections�

When polygons are projected to the screen �of resolution NxN �� some of
the scanlines intersect the edges of the projected polygons� Each pair of such
intersections is called a span� In the �rst step of the algorithm� the spans are
generated and put into the scanline span lists� The scanline span lists involve a
linked list for each scanline which contains the respective polygon spans� Each
span is represented by a record� which contains the intersection pair �minimum
x�intersection xmin and maximum x�intersection xmax� and necessary informa�
tion for z�bu�ering and shading� Scanline span lists are constructed by inserting



the spans of the projected polygons to the appropriate scanline lists in sorted
�increasing� order according to their xmin values� This sorting allows to perform
local z�bu�ering without initializing the scanline array for each scanline on the
screen�

In the second step� spans in the scanline lists are processed� in scanline order
�y order�� for local z�bu�ering and shading� Two local arrays are used to store
only local foremost pixels� First array is called Winning Pixel Array �WPA�
used to store the foremost �winning� pixels� Each entry in this array contains
location information� z value� and shading information about the respective lo�
cal foremost pixel� Since z�bu�ering is done in scanline order� the pixels in the
WPA are in scanline order and pixels in a scanline are stored in consecutive
locations� Hence� for location information� only x value of the pixel generated
for location �x�y� needs to be stored in WPA� Second array� called Modi�ed

Scanline Array �MSA� of size N� is a modi�ed scanline z�bu�er� MSA�x
 gives
the index in WPA of pixel generated at location x� Initially� each entry of the
MSA is set to zero� Moreover� a �range� value is associated with each scanline�
The �range� value of the current scanline is set to one plus the index of the
last pixel� which is generated by the previous scanline� in WPA� The �range�
value for the �rst scanline is set to �� Since spans are sorted in increasing xmin
values� if a location x in MSA has a value less than the �range� value of current
scanline� it means that location x is generated by a span belonging to previous
scanlines� For such locations� the generated pixels are directly stored into WPA
without any comparison� Otherwise� the generated pixel is compared with the
pixel pointed by the index value� This indexing scheme and sorting of spans in
scanline span list avoid re�initialization of MSA at each scanline� However� due
to comparison made with �range� value� an extra comparison is introduced for
each pixel generated� These extra comparison operations are reduced as follows�
The sorted order of spans in the scanline span lists assures that when a span s
in scanline y is rasterized� it will not generate a pixel location x which is less
than xmin of previous spans� The current span s is divided into two segments
such that one of the segments cover the pixels generated by previous spans in
the current scanline and other segment covers the pixels generated by spans of
previous scanline� Distance comparisons are made for the pixels in the �rst seg�
ment� The pixels generated for the second segment are stored into WPA without
any distance comparisons�

� Pixel Merging on Hypercube Multicomputer

This section presents two active pixel merging algorithms developed for a d�
dimensional hypercube multicomputer with P � �d processors� In these algo�
rithms� each processor initially owns local foremost pixels belonging to the whole
screen of size NxN � Then� a global z�bu�ering operation is performed on local
foremost pixels so that each processor gathers global foremost pixels belonging
to a horizontal screen subregion of size NxN�P �



��� Pairwise Exchange Scheme

This scheme exploits the recursive�halving idea widely used in hypercube�speci�c
global operations� This operation requires d concurrent divide�and�exchange
stages� Within each stage i �for i � �� �� �� ���� d� ��� each processor divides hor�
izontally its current active region of size N � n into two equal sized subregions
�each of size N�n���� referred here as top and bottom subregions� where n � N
during the initial halving stage� Meanwhile� each processor divides its current lo�
cal foremost pixels into two subsets as belonging to these two subregions� which
are referred here as top and bottom pixel subsets� Then� processor pairs which
are neighbors over channel i exchange their top and bottom pixel subsets� After
the exchange� processors concurrently perform z�bu�ering operations between
retained and received pixel subsets to �nish the stage�

��� All�to�All Personalized Communication Scheme

The pairwise exchange scheme can also be considered as a store�and�forward

scheme� At each stage� the received pixels are stored into the local memory of the
processor� These pixels are compared and merged with the pixels retained� After
this merge operation� some of the pixels are sent at the next exchange stage� i�e��
they are forwarded towards the destination processor through other processors at
each concurrent communication step� Note that during these store�compare�and�
forward stages� pixels may be copied frommemory of one processor to memory of
the other processors more than once� This memory�to�memory copy operations
can be reduced by sending the pixels directly to their destination processors�

In iPSC�� hypercube multicomputer� communication between processors is
done by Direct Connect Modules �DCMs�� Communication between two non�
neighboring processors is almost as fast as neighbor communications if all the
links between two processors are not currently used by other messages� The
communication hardware uses the e�cube routing algorithm ��
� Using DCMs�
we can exchange messages between non�neighbor processors by the algorithm
presented in ��
� This algorithm totally avoids message congestion by ensuring
that at each exchange stage� the pixel data is directed to destination processors
following disjoint paths�

In all�to�all personalized communication scheme� the screen is implicitly di�
vided into P horizontal subregions� Each subregion is implicitly assigned to a
processor� Then� each processor sends the pixels belonging to the subregion of
processor �k� directly to processor �k�� After P�� exchange steps� each proces�
sor z�bu�ers the local pixels with the received pixels� Each processor holds a local
z�bu�er of size N � N�P � Local pixels are scattered onto the z�bu�er without
any distance comparisons� Then� each received pixel�s z value is compared with
the z value in the pixel location in the z�bu�er� After all pixels are processed�
z�bu�er contains the pixels in the �nal picture�

� Load Balancing in Pixel Merging Step

In this section� two heuristics that implement adaptive subdivision of screen
among processors to achieve good load balance in pixel merging are presented�



��� Recursive Adaptive Subdivision

This scheme recursively divides the screen into two subregions such that number
of pixels in one subregion is almost equal to the number of pixels in the other
subregion� This scheme is well suited to the recursive structure of the hypercube�

Each processor counts the number of local foremost pixels at each scanline
and stores them in an array� Each entry of the array stores the sum of local fore�
most pixels at the corresponding scanline� An element�by�element global pre�x
sum operation is performed on this array to obtain the distribution of foremost
pixels in all processors� Then� using this array� each processor divides the screen
into two horizontal bands of consecutive scanlines so that each region contains
equal number of active pixel locations� Along with the division of the screen�
the hypercube is also divided into two equal subcubes of dimension d � �� Top
subregion is assigned to one subcube while bottom subregion is assigned to other
subcube� Subcubes perform subdivision of the local subregions concurrently and
independently� Since screen is divided into horizontal bands� the global array
obtained by global sum operation is used for further divisions of the screen�

��� Heuristic Bin Packing

In the recursive adaptive subdivision scheme� the subdivision of the screen is done
on scanline basis� i�e�� scanlines are not divided� For this reason� it is di�cult to
achieve exactly equal load in each subregion� In addition� when a division point
is found and screen is divided into two subregions� each subregion is subdivided
independent of the other one� As a result� at each recursive subdivision� the load
imbalance between the subregions may propagate and increase� Therefore� at the
end of recursive subdivision� some processors may still have substantially more
work load than others� A better distribution of work load among the processors
can be achieved by using a di�erent partitioning scheme� called heuristic bin

packing� In this scheme� the goal is to minimize the di�erence between the loads
of the maximum loaded processor and minimum loaded processor� In order to
realize this goal� a scanline is assigned to a processor with minimum work load�
In addition� scanlines are assigned in decreasing number of pixels they have�
i�e�� scanlines that have large number of pixels are assigned at the beginning�
In this way� large variations in the processor loads due to new assignments are
minimized towards the end�

� Experimental Results

The algorithms proposed in this work were implemented in C language on a �
�
node Intel iPSC�� hypercube multicomputer� Algorithms were tested for scenes
composed of �� �� �� and � tea pots for screens of size ���x��� and 
��x
��� The
characteristics of the scenes are given in Table �� The abbreviations in the �gures
and tables are AAPC� all�to�all personalized communication� PAIR� pairwise
exchange� RS� recursive adaptive subdivision� HBP� heuristic bin packing� ZBUF�
EXC� full z�bu�er merging� All timing results in the tables are in milliseconds�

Table � illustrates the performance comparison of PAIR�RS scheme with full
z�bu�er merging� The timings for some scene instances for ZBUF�EXC scheme



Table �� Scene characteristics in terms of total number of pixels generated �TPG��
number of polygons� and total number of winning pixels in the �nal picture �TPF� for
di�erent screen sizes�

N���� N����
Scene Num� Of Polygons TPG TPF TPG TPF

 POT ���
 ����
 ��
�� 
����� 

��
�


 POT ���
 ����
 ����� 
�
��
 �����
� POT 
 
���� �
��� 
��
� 
����� ���
�
� POT 
 
���� �
��� ���
� 
�
��� ����


� POT 
 ����� 
��
�� �

�� �
���� 
���
�
� POT 
 ����� ����� ����� 
�
�
� �
�
�

Table �� Relative execution times of full z�bu�er merging and PAIR�RS for N�����

PAIR�RS ZBUF�EXC
Span List Local Pixel Span List Local Pixel

P Scene Creation z�bu�er Merging Creation z�bu�er Merging

 POT �

 ��� ��� �
� ��� 
�
�

 POT ��
 ��
 ��
 ��� ��� 
���


� � POT 
 
��� �
� �
� 
�
� ��� 
���
� POT 
 


� ��� ��� 
��� ��
 
���
� POT 
 

�
 
��� ��� 

�� 


� 
���
� POT 
 
��� ��
 ��
 
�
� ��� 
���

 POT ��� �
� ��� �

 ��
 
��


 POT ��� ��� ��� �
� ��� 
��


� � POT 
 
��� ��� �
� 
��� 
��� 
���
� POT 
 

�� 

�� ��� 

�� 

�
 
��

� POT 
 �

� 
��� ��
 � � �

could not be obtained due to insu�cient local memory� Those cases are indicated
by a ��� in this table� As seen in Table �� PAIR�RS gives much better results
than ZBUF�EXC in pixel merging phase� Since pixel information for inactive
pixel locations are also exchanged� the volume of communication in ZBUF�EXC
is larger than that of PAIR�RS� As is also seen from the table� the PAIR�RS
performs better than ZBUF�EXC also in local z�bu�er phase since it avoids
initialization of z�bu�er�

Total volume of concurrent communication �in bytes� for various pixel merg�
ing schemes are illustrated in Fig� �� The total volume of concurrent communi�
cation is calculated as the sum of the maximum volume of communication at
each communication step� As seen from the �gure� AAPC scheme results in less
volume of communication than PAIR scheme as expected� Note that the volume
of communication in active pixel merging is proportional to the number of ac�
tive pixel locations in each processor� As the number of processors increases� the
number of active pixel locations per processor is expected to decrease� Hence� it
is expected that volume of communication decreases as the number of processors
increases as is also seen in Fig� ��a�� The increase in volume of communication



2 4 8 16
Number of Processors

50K

100K

150K

200K

250K

300K

Vo
lu

m
e 

of
 C

om
m

un
ica

tio
n 

(B
yt

es
)

AAPC-HBP
AAPC-RS
PAIR-RS

1 POT 2 POT 4 POT_1 4 POT_2 8 POT_1 8 POT_2
Scene 

50K

100K

150K

200K

400K

300K

Vo
lu

m
e 

of
 C

om
m

un
ica

tio
n 

(B
yt

es
)

PAIR-RS, A=640x640
AAPC-RS, A=640x640
AAPC-HBP, A=640x640
PAIR-RS, A=400x400
AAPC-RS, A=400x400
AAPC-HBP, A=400x400

�a� �b�

Fig� �� Volume of communication for �a� 
 POT scene on di�erent processors�
A � ��� � ���� �b� A � ��� � ��� and A � ��� � ��� for di�erent scenes on 
�
processors�

in PAIR�RS scheme on � processors is due to store�and�forward overheads� It is
also experimentally observed that better load balance in pixel merging indirectly
a�ects the volume of communication as well� As illustrated in Fig� ��b�� HBP
scheme results in less volume of communication than RS scheme�

Performance comparison of load balancing heuristics are illustrated in Fig� ��
The load imbalance is the ratio of the di�erence of the work loads of maximum
and minimum loaded processors to average work load� The work load of a pro�
cessor was taken to be the number of pixel merging operations it performs in the
pixel merging phase� As seen from the �gure� HBP achieves much better load
balance than RS as expected� Load balance improves with increasing screen reso�
lution due to better accuracy in dividing the screen� As is also seen fromFig� ��a��
HBP scales better than RS for larger number of processors� A speedup of �����
was obtained using �
 processors with AAPC�HBP scheme for � POT scene and
A � 
��� 
���

� Conclusions

In this work� e�cient algorithms were proposed for active pixel merging on hy�
percube multicomputers� These algorithms reduce the volume of communication
by exchanging only active pixel locations in pixel merging phase� The message
fragmentation in active pixel merging is avoided by storing local foremost pixels
to consecutive memory locations in local z�bu�ering phase� An algorithm� called
modi�ed scanline z�bu�er� is proposed to store the local foremost pixels into con�
secutive memory locations e�ciently� This algorithm also avoids initialization of
scanline z�bu�er for each scanline on the screen� It is experimentally observed
that active pixel merging with modi�ed scanline z�bu�er algorithm performs
better than full z�bu�er merging� It is also experimentally observed that all�to�
all personalized communication scheme achieves less communication overhead
than pairwise exchange scheme due to less store�and�forward overheads in active



1 2 4 8 16
Number of Processors

0.00

0.10

0.20

0.30

0.40

Lo
ad

 Im
ba

la
nc

e

HBP, A=400x400
RS, A=400x400

1 POT 2 POT 4 POT_1 4 POT_2 8 POT_1 8 POT_2
Scene

0.00

0.10

0.20

0.30

0.40

Lo
ad

 Im
ba

la
nc

e

RS, A=400x400
RS, A=640x640
HBP, A=400x400
HBP, A=640x640

�a� �b�

Fig� �� Comparison of RS with HBP� �a� Di�erent number of processors for 
 POT
scene� A � ��� � ���� �b� Di�erent screen resolutions and di�erent scenes on 
� pro�
cessors�

pixel merging� Two load balancing heuristics were proposed to distribute load
evenly in pixel merging� The heuristic bin packing achieves better load balance
and scales better than recursive adaptive subdivision in active pixel merging�
Therefore� it is recommended that all�to�all personalized communication with
heuristic bin packing scheme should be utilized for active pixel merging on hy�
percube multicomputers�

References


� J�C� High�eld and H�E� Bez� �Hidden surface elimination on parallel processors��
Computer Graphics Forum� ����� 
������ �
��
��


� D� Ellsworth� �A multicomputer polygon rendering algorithm for interactive ap�
plications�� in Proc� of ���� Parallel Rendering Symposium� San Jose� ����� �Oct�

�����

�� S� Whitman� Multiprocessor Methods for Computer Graphics Rendering� Jones and
Bartlett Publishers� Boston �
��
��

�� M� Cox and P� Hanrahan� �Pixel merging for object�parallel rendering� A dis�
tributed snooping algorithm�� in Proc� of ���� Parallel Rendering Symposium� San
Jose� ����� �Oct� 
�����

�� R� Scopigno� A� Paoluzzi� S� Guerrini� and G� Rumolo� �Parallel depth�merge� A
paradigm for hidden surface removal�� Comput� � Graphics� ������ ������
 �
�����

�� J� Li and S� Miguet� �Z�bu�er on a transputer�based machine�� in Proc� of the

Sixth Distributed Memory Computing Conf�� IEEE Computer Society Press� �
��
�

 �April 
��
��

�� S�F� Nugent� �The iPSC�
 direct�connect communications technology�� in Proc�

Third Conf� Hypercube Concurrent Comput� and Appl�� �
��� �Jan� 
�����
�� B� Abal�� F� �Ozg�uner� and A� Bataineh� �Balanced parallel sort on hypercube

multiprocessors�� IEEE Trans� on Parallel and Distributed Systems� ����� ��
�
��
 �
�����


