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Abstract� In this work� we show the de�ciencies of the graph model
for decomposing sparse matrices for parallel matrix�vector multiplica�
tion� Then� we propose two hypergraph models which avoid all de�cien�
cies of the graph model� The proposed models reduce the decomposition
problem to the well�known hypergraph partitioning problem widely en�
countered in circuit partitioning in VLSI� We have implemented fast
Kernighan�Lin based graph and hypergraph partitioning heuristics and
used the successful multilevel graph partitioning tool �Metis� for the ex�
perimental evaluation of the validity of the proposed hypergraph models�
We have also developed a multilevel hypergraph partitioning heuristic
for experimenting the performance of the multilevel approach on hy�
pergraph partitioning� Experimental results on sparse matrices� selected
from Harwell�Boeing collection and NETLIB suite� con�rm both the va�
lidity of our proposed hypergraph models and appropriateness of the
multilevel approach to hypergraph partitioning�

� Introduction

Iterative solvers are widely used for the solution of large� sparse� linear system
of equations on multicomputers� Three basic types of operations are repeatedly
performed at each iteration� These are linear operations on dense vectors� in�
ner product	s
 of dense vectors� and sparse�matrix vector product of the form
y � Ax � where y and x are dense vectors� and A is a matrix with the same
sparsity structure as the coe�cient matrix 
�� ���� All of these basic operations
can be performed concurrently by distributing either the rows or the columns of
the matrix A and the components of the dense vectors in the same way� These
two decomposition schemes are referred here as rowwise and columnwise de�
composition schemes� respectively� Note that these two decomposition schemes
are one�dimensional decomposition of matrixA which is a two�dimensional data
structure� Both of these two decomposition schemes induce a computational
distribution such that each processor is held responsible for updating the val�
ues of those vector components assigned to itself� With this data distribution
scheme� linear vector operations and inner�product operations can be easily and
e�ciently parallelized by an even distribution of vector components to proces�
sors 
�� ���� Linear vector operations do not necessitate communication� whereas
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inner�product operations introduce global communication overhead which does
not scale up with increasing problem size�

Sparse�matrix vector product computations constitute the most time con�
suming operation in iterative solvers� In parallel matrix�vector multiplication�
rowwise and columnwise decomposition schemes necessitate communication just
before and after the local matrix�vector product computations� respectively�
Hence� these two schemes can also be considered as the pre and post communi�
cation schemes� respectively� In rowwise decomposition scheme� processors need
some nonlocal components of the global x�vector� depending on the sparsity pat�
tern of their local rows� just before the local matrix�vector product computations�
Each processor send some of its local x�vector components to those processor	s

which need them� After receiving the needed nonlocal x components� each pro�
cessor can concurrently compute its local components of the global y�vector by
performing a local matrix�vector product� In columnwise decomposition scheme�
after local matrix�vector product computations� processors send the non�local
components of their computed y�vectors to those processor	s
 which need them�
depending on the sparsity pattern of their local columns� After receiving the
needed y components� each processor can concurrently complete the computa�
tion of its local y�vector by simply adding these received values to its appropriate
local y�vector locations� Hence� by weighting each row or column by its nonzero
entry count� load balancing problem can be considered as the number parti�

tioning problem� However� di�erent row or column partitionings with good load
balance may also signi�cantly di�er the communication requirement� Unfortu�
nately� the communication requirement scales up with increasing problem size�
The minimization of the communication overhead while maintaining the compu�
tational load balance reduces to the domain decomposition problem� where the
sparse matrix A constitutes the domain of problem�

Almost all domain decomposition methods proposed in the literature employ
graph model 
�� ���� In this work� we show the de�ciencies of the graph model
for decomposing sparse matrices for parallel matrix vector multiplication� The
�rst de�ciency is that it can only be used for symmetric square matrices� The
second de�ciency is the fact that the graph model does not re�ect the actual
communication requirement which will be described in Section ���� In this work�
we propose two hypergraph models which avoid all de�ciencies of the graph
model� The proposed models enable the representation and hence the decom�
position of unsymmetric square and rectangular matrices as well as symmetric
matrices� Furthermore� they introduce a much more accurate representation for
the communication requirement� The proposed models reduce the decomposition
problem to the well�known hypergraph partitioning problem widely encountered
in circuit partitioning in VLSI layout design� Hence� the proposed models will
be amenable to the advances in the circuit partitioning heuristics and tools to
be developed in VLSI community�

Domain decomposition is a preprocessing introduced for the sake of e�cient
parallelization of the given problem� Hence� heuristics used for decomposition
should run in low order polynomial time� Kernighan�Lin 	KL
 based heuristics



are widely used for graph and hypergraph partitioning because of their short
run�times and good quality results� Therefore� we selected and implemented fast
k �way KL�based graph and hypergraph partitioning heuristics for experimenting
the validity of our proposed hypergraph models� Here� k represents the num�
ber of processors on the target multicomputer� Recently� multilevel graph parti�
tioning heuristics are proposed leading to successful graph partitioning tools
Chaco 
�� and Metis 
���� We have also exploited the multilevel partitioning
methods for the experimental veri�cation of our proposed hypergraph models
in two approaches� In the �rst approach� Metis graph partitioning tool is used as
a black box by transforming hypergraphs to graphs using the traditional clique�
net model� In the second approach� lack of existence of multilevel hypergraph
partitioning tool led us to develop a multilevel hypergraph partitioning heuristic�
for fair comparison of two models�

� Graph Model and Its De�ciencies

In this section� we discuss the de�ciencies of graph model for decomposing sparse
matrices for parallel matrix�vector multiplication�

��� Graphs and Graph Partitioning Problem

An undirected graph G � 	V� E
 is de�ned as a set of vertices V and a set of
edges E � Every edge eij �E connects a pair of vertices vi and vj � The degree
di of a vertex vi is equal to the number of edges incident to vi � Let wi and cij
denote the weight of vertex vi�V and the cost of edge eij�E � respectively�

� �	P�� � � � � Pk
 is a k�way partition of G if the following conditions hold�
each part P�� � � � � k � is a nonempty subset of V � parts are pairwise disjoint
	Pi � Pj � � for all � � i � j � k 
� and union of k parts is equal to V � In
a partition � of G � an edge is said to be cut if its pair of vertices belong to
two di�erent parts� and otherwise uncut� The set of cut 	external
 edges for a
partition � are denoted as EE � The cutsize de�nition for representing the cost
�	�
 of a partition � is

�	�
 �
X

eij�EE

cij 	�


In 	�
� each cut edge eij contributes its cost cij to the cutsize� In a partition
� of G � the size of a part is de�ned as the sum of the weights of the vertices
in that part� Hence� graph partitioning problem can be de�ned as the task of
dividing a graph into two or more parts such that the cutsize is minimized� while
a given balance criterion among the part sizes is maintained�

��� Graph Model for Decomposition

Graph representation of only structurally symmetric matrices will be discussed
in the decomposition context� since graph model is restricted to symmetric ma�
trices� A symmetric sparse matrix A can be represented as an undirected graph
GA � 	V� E
� The vertices in the vertex set V correspond to the rows�columns
of the matrix A� In the pre�communication scheme� each vertex vi � V corre�
sponds to the atomic task i of computing the inner product of row i with the



column vector x� In the post�communication scheme� each vertex vi � V corre�
sponds to the atomic task i of computing the sparse SAXPY�DAXPY operation
y�y�xia�i � where a�i denotes the i�th column of matrix A� Hence� in both
pre and post communication schemes� each nonzero entry in a row and column
of A incurs a multiply�and�add operation during the local matrix�vector product
computations in the pre and post communication schemes� respectively� Thus�
computational load wi of mapping row�column i to a processor is the number
of nonzero entries in row�column i �

In the edge set E � eij �E if and only if aij and aji of matrix A are nonze�
ros� Hence� the vertices in the adjacency list of a vertex vi denote the column
	row
 indices of the o��diagonal nonzeros in row i 	column i
 of A� In the pre�
communication scheme� each edge eij � E corresponds to the exchange of up�
dated xi and xj values between the atomic tasks i and j� just before the local
matrix�vector product computations� In the post�communication scheme� each
edge eij�E corresponds to the exchange of partial yi and yj results between the
atomic tasks i and j � just after the local matrix�vector product computations�
In both schemes� each edge represents the bidirectional interaction between the
respective pair of vertices� Hence� by setting cij � � for each edge eij�E � both
rowwise and columnwise decomposition of matrix A reduces to the k �way par�
titioning of its associated graph GA according to the cutsize de�nition given in
	�
� Thus� minimizing the cutsize according to 	�
 corresponds to the goal of
minimizing the total volume of interprocessor communication� Maintaining the
balance among part sizes corresponds to maintaining the computational load
balance during local matrix�vector product computations�

��� De�ciencies of the Graph Model

As mentioned earlier� graph model is restricted to representing structurally sym�
metric matrices� Furthermore� the graph model does not re�ect the actual com�
munication requirement� Graph model treats all cut edges in an identical manner
while computing the cutsize 	i�e�� � words per cut edge
� However� r cut edges
stemming from a vertex vi in part P� to r vertices vi� � vi�� � � � � vir in part Pm
incur only r�� communications instead of �r in both pre and post communica�
tion schemes� Because� in the pre�communication 	post�communication
 scheme�
P� 	Pm 
 sends xi 	yi� � yi� � � � � � yir 
 to processor Pm 	P� 
 while Pm 	P� 
 sends
xi� � xi�� � � � � xir 	yi 
 to processor P� 	Pm 
�

� Hypergraph Models for Decomposition

In this section� we propose two hypergraph models for mapping sparse�matrix
vector multiplication which avoids the de�ciencies of the graph model�

��� Hypergraphs and Hypergraph Partitioning Problem

A hypergraph H � 	V�N 
 is de�ned as a set of vertices V and a set of nets
	hyperedges
 N among those vertices� Every net nj � N is a subset of vertices�
i�e�� nj � V � Vertices in a net nj are called its pins and denoted as pins
nj� �
The size of a net is equal to the number of its pins� i�e�� sj� jnets
nj�j � The set



of nets connected to a vertex vi is denoted as nets
vi� � The degree of a vertex
is equal to the number of nets it is connected to� i�e�� di� jnets
vi�j � Let wi and
cj denote the weight of vertex vi�V and the cost of net nj�N � respectively�

De�nition of k �way partition of hypergraphs is identical to that of graphs�
In a partition � of H � a net that has at least one pin 	vertex
 in a part is said
to connect that part� Let �j denotes the number of parts connected by net nj �
A net nj is said to be cut if it connects more than one part 	i�e�� �j � �
� and
uncut 	i�e�� �j � �
 otherwise� The set of cut 	external
 nets for a partition �
are denoted as NE � There are various cutsize de�nitions for representing the
cost �	�
 of a partition � � Two relevant de�nitions are�

	a
 �	�
 �
X

nj�NE

cj and 	b
 �	�
 �
X

nj�NE

cj	�j � �
� 	�


In 	��a
� cutsize is equal to the sum of the costs of the cut nets� In 	��b
� each
cut net nj contributes cj	�j ��
 to the cutsize� Hence� hypergraph partitioning
problem can be de�ned as the task of dividing a hypergraph into two or more
parts such that the cutsize is minimized� while a given balance criterion among
the part sizes is maintained�

��� Two Hypergraph Models for Decomposition

We propose two hypergraph models for the decomposition� These models are
referred to here as the column�net and row�net models� In the column�net model�
matrixA is represented as the hypergraph HC	VR�NC
� The vertex and net sets
VR and NC correspond to the rows and columns of matrixA� respectively� There
exist one vertex vi and one net nj for each row i and column j � respectively�
Net nj contains the vertices corresponding to the rows which have a nonzero
entry on column j � That is� vi�nj if and only if aij �� �� Each vertex vi � VR
corresponds to the atomic task i of computing the inner product of row i with
the column vector x� Hence� the weight wi� di is associated with each vertex
vi�VR � Nets of HC represent the dependency relations of the atomic tasks to
the x�vector components in the pre�communication scheme� That is� each net
nj�VR denotes the set of atomic tasks that need xj �

The row�net model can be considered as the dual of the column�net model� In
this model� matrixA is represented as the hypergraph HR	VC �NR
� The vertex
and net sets VC and NR correspond to the columns and rows of the matrix A�
respectively� There exist one vertex vi and one net nj for each column i and
row j � respectively� Net nj contains the vertices corresponding to the columns
which have a nonzero entry on row j � That is� vi � nj if and only if aji �� ��
Each vertex vi � VC corresponds to the atomic task i of computing the sparse
SAXPY�DAXPY operation y�y�xia�i � Hence� the weight wi�di is associated
with each vertex vi�VC � Nets of HR represent the dependency relations of the
computation of y�vector components to the atomic tasks represented by vertices
of HR in the post�communication scheme� That is� each net nj � VC denotes
the set of atomic task results needed to compute yj �

By assigning unit costs to the nets 	i�e�� cj�� for each net nj 
� the proposed
column�net and row�net models reduce the decomposition problem into k �way



hypergraph partitioning problem according to the cutsize de�nition given in 	��b

for the pre and post communication schemes� respectively� Part size de�nition
is identical to that of the graph model� Assume that part P� is assigned to
processor � � Let C
i� denotes the connectivity set of net ni which is de�ned
as the set of parts 	processors
 connected by the net ni � Note that �i � jC
i�j �
In the column�net model together with the pre�communication scheme� a cut
net ni indicates that processor part
xi��C
i� should send its local xi to those
processors in the connectivity set of net ni except itself 	i�e�� to processors in
the set C
i��fpart
xi�g � Hence� processor part
xi� should send its local xi to
�i�� distinct processors� Here� part
xi� denotes the part 	processor
 assignment
for xi � In the row�net model together with the post�communication scheme� a
cut net ni indicates that processor part
yi��C
i� should receive the partial yi
results from those processors in the connectivity set of net ni except itself 	i�e��
from processors in the set C
i��fpart
yi�g
� Hence� processor part
yi� should
receive partial yi results from �i�� distinct processors� Thus� in column�net
and row�net models� minimizing the cutsize according to 	��b
 corresponds to
minimizing the actual volume of interprocessor communication during pre and
post communication phases� respectively� Maintaining the balance among part
sizes corresponds to maintaining the computational load balance during local
matrix�vector product computations� Note that row�net and column�net models
become identical in symmetric square matrices�

Figure � illustrates ��way graph and hypergraph partitions corresponding
to the partial decomposition of a symmetric matrix� Here� assume that part
P� is assigned to processor � for � � �� �� �� �� As seen in Fig� �	a
� cutsize in
the graph model is ��� � �� since there are � cut edges� However� actual
volume of communication is � in both pre and post communication schemes�
For example� in the pre�communication scheme� processor � should send x� to
both processors � and � only once� whereas processors � and � should send
� and � local xi values to processor �� respectively� As seen in Fig� �	b
� each
cut�net ni � for i��� �� � � � � �� contributes � to the cutsize since ��� ��� � � ��
�� � �� and cut�net n� contributes � to the cutsize since �� � �� Hence� the
cutsize in the hypergraph model is � thus leading to an accurate modeling of
the communication requirement�

� Decomposition Heuristics

Kernighan�Lin 	KL
 based heuristics are widely used for graph and hypergraph
partitioning because of their short run�times� and good quality results� KL algo�
rithm is an iterative improvement heuristic originally proposed for ��way graph
partitioning 	bipartitioning
 
���� This algorithmbecame the basis for most of the
subsequent partitioning algorithms� all of which we call the KL�based algorithms�
KL algorithm performs a number of passes until it �nds a locally minimum par�
tition� Each pass consists of a sequence of vertex swaps� The same swap strategy
was applied to hypergraph partitioning problem by Schweikert�Kernighan 
����
Fiduccia�Mattheyses 	FM
 
�� introduced a faster implementation of KL algo�
rithm for hypergraph partitioning� They proposed vertex move concept instead
of vertex swap� This modi�cation as well as proper data structures� e�g�� bucket
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Fig� �� A partial ��way decomposition of a symmetric matrix in 	a
 graph� 	b

hypergraph models

lists� reduced the time complexity of a single pass of KL algorithm to linear in
the size of the graph and the hypergraph� Here� size refers to the number of
edges and pins in a graph and hypergraph� respectively� In this work� we have
implemented k �way FM�based graph and hypergraph partitioning heuristics for
experimenting the validity of our proposed hypergraph models�

The performance of FM deteriorates for large and�or too sparse and�or dense
graphs�hypergraphs� Many clustering algorithms have been proposed especially
for hypergraphs to alleviate this problem 
��� Clustering corresponds to coalesc�
ing highly interacting vertices to supernodes as a preprocessing to FM� Recently�
multilevel graph partitioning methods have been proposed leading to success�
ful graph partitioning tools Chaco 
�� and Metis 
���� These multilevel heuristics
consists of � phases� namely coarsening � initial partitioning � and uncoarsening�
In the �rst phase� multilevel clustering is successively applied starting from the
original graph by adopting various matching heuristics until number of vertices
in the coarsened graph reduces below a predetermined threshold value� In the
second phase� coarsest graph is partitioned using various heuristics including
FM� In the third phase� partition found in the second phase is successively pro�
jected back towards the original graph by re�ning the projected partitions on
intermediate level uncoarser graphs using various heuristics including FM�

��� Clique�Net Model for Graph Representation of Hypergraphs

The goal in this approach is to exploit the Metis graph partitioning tool as a
black box� So� we use the traditional clique�net model to transform hypergraphs
to graphs� In this transformation model� the vertex set of the target graph is
equal to the vertex set of the given hypergraph� Each net of the given hypergraph
is represented by a clique of vertices corresponding to its pins� Vertex weights of
the hypergraph become the vertex weights of the graph� Costs of the edges are
equal to the sum of the costs of the nets that they represent� If an edge is in the
cut set of a graph partitioning then all nets represented by this edge are in the
cut set of hypergraph partitioning and vice versa�



The de�ciency of this graph model is that it treats a net with size s in the
hypergraph as s	s��
	� edges� This strategy exaggerates the importance of the
nets that have more than two terminals and the exaggeration grows with the
square of the size of the net 
���� In our current implementation� we remove all
nets of size larger than T during the transformation� Furthermore� for each net
nj � we select F�sj random pairs of its pins and add an edge with cost one to
the graph for each selected pair of pins 	vertices
� Note that this scheme is an
experimental e�ort to alleviate the above mentioned problem� We use T � ��
and F �� in accordance to the recommendations given in 
���

��� A Multilevel Hypergraph Partitioning Heuristic

In this work� we exploit the successful multilevel methodology proposed and
implemented for graph partitioning 	Metis 
���
 to develop a new multilevel
hypergraph partitioning tool� called PaToH 	PaToH� Partitioning Tools for
Hypergraphs
� We should note that current implementation is just an initial
implementation to experiment both the validity of our hypergraph models and
the performance of multilevel approach on hypergraph partitioning�

Coarsening Phase In this phase� the given hypergraph H�H� is coarsened
into a sequence of smaller hypergraphs H��	V��N�
� H��	V��N�
� � � ��Hm�
	Vm �Nm
 satisfying jV�j� jV�j� jV�j� � � � � jVmj � This coarsening is achieved
by combining vertex pairs of hypergraph Hi into supernodes of next level hyper�
graph Hi�� � The weight of each supernode of Hi�� is set equal to the sum of
its constituent vertices in Hi � Also� the net set of each supernode is set equal to
the union of the net sets of its constituent vertices� Coarsening phase terminates
when number of vertices in the coarsened hypergraph reduces below ��� 	i�e��
jVmj����
 following the recommendation given in 
����

In the current implementation� we use a randomized vertex matching for
coarsening� In this scheme� an un�matched vertex u of hypergraph Hi is selected
randomly� Then� we consider all un�matched vertices which share nets with ver�
tex u for matching�We match u with the vertex v such that the sum of the costs
of the shared nets between u and v is maximum among all considered vertices�
If there exists no un�matched vertex which shares net	s
 with the selected vertex
u � then vertex u is left un�matched� In rowwise matrix decomposition context
	i�e�� column�net model
� this matching scheme corresponds to combining rows
or row groups with similar row sparsity patterns� This in turn corresponds to
combining rows or row groups which need similar sets of x�vector components in
the pre�communication scheme� A dual discussion holds for columnwise matrix
decomposition using the row�net model�

Partitioning Phase The goal in this phase is to �nd a partition on the coars�
est hypergraph Hm � In the current implementation we use k �way FM algorithm
with the cutsize de�nition 	��b
 for partitioning Hm � Since the coarsest hyper�
graph Hm is small� we run the k �way FM heuristic more than once and take
the minimum� We set this number of trials to � in PaToH�

Uncoarsening Phase At each level i 	for i � m�m��� � � � � �
� partition �i

found on Hi is projected back to the partition �i�� on Hi�� � The constituent



Table �� Properties of test matrices� d and s denote the vertex degree and net size in
graph and hypergraph models� respectively� Z denotes the total number of non�zeros
in matrices�

name jVj� jN j jEj davg Z savg smin smax

bcspwr
 
�
� �
�� 
��
 �	�� ���
 � 
�

bcspwr
� ���� 	�

 
��� �
	�� ��
� � 
�
lshp��
� ��
� 
�	� ���� 

�	� ��		 � 

lshp���� ���� 
��
� ���� ��	�� ��	� � 


dwt��	� ��	� 



� ��

 ����� ���� � 
�
bcsstk�
 ���� 

��� ��
� ����� 
��� � �
ganges 
�	
 
���� ���� ����� 
���
 � 	�

perold 
�
� ���
� 

��
 �	
�� ����
 � 	�
sctab� 
		� �	��� 
���
 ��	�� �
�	
 � ��
sctab� ��	� �	��� 
���� 
���� �
�	� � 
�

vertices of each supernode of Hi is assigned to the part of their supernode� Ob�
viously� this new partition �i�� has the same cutsize with the previous partition
�i � Then� we re�ne this partition by running our k �way FM algorithm on Hi��

starting from the initial partition �i�� � However� in this phase� we limit the
maximumnumber of passes to �� We also put an early termination rule into one
pass of k �way FM� A pass is terminated whenever last �����jVij moves do not
decrease the cut�

� Experimental Results

We have implemented k �way FM graph and hypergraph partitioning heuristics
and a multilevel k �way hypergraph partitioning algorithm PaToH� and used
Metis
��� graph partitioning tool for the experimental evaluation of the validity
of the proposed hypergraph models� FM heuristics iteratively improve initial
feasible partitions� A partition is said to be feasible if it satis�es the load balance
criterion Wavg	�� 

 � Wp � Wavg	�� 

� for each part p � �� �� � � �k � Here�
Wavg � 	

Pn

i��wi
	k denotes the part sizes of each part under perfect load
balance condition� and 
 represents the predetermined maximumload imbalance
ratio allowed� We have used 
����� in all heuristics�

Symmetric sparse matrices selected from Harwell�Boeing collection 
�� and
linear programming problems in NETLIB suite 
�� are used for experimenta�
tion� Note that test matrices are restricted to symmetric matrices since graphs
cannot be used to model unsymmetric square and rectangular matrices� Ta�
ble � displays the characteristics of the selected test matrices� BCSPWR�� and
BCSPWR�� matrices come from the sparse matrix representation of power net�
works� LSHP���� and LSHP���� matrices come from the �nite element dis�
cretizations of L�shaped regions� DWT���� and BCSSTK�� are structural engi�
neering problems� The sparsity patterns of GANGES� PEROLD� SCTAB� and
SCTAB� are obtained from the NETLIB suite by multiplying the respective
constraint matrices with their transposes� Power matrices� structural engineer�



ing matrix DWT����� and NETLIB matrices GANGES and PEROLD have
unstructured sparsity pattern� Finite element matrices� structural engineering
matrix BCSSTK��� and NETLIB matrices SCTAB��� have rather structured
sparsity pattern�

The graph and hypergraph representations of these matrices are partitioned
to �� �� ��� and �� parts by running the heuristics on a Sun UltraSparc ������
Each heuristic were run �� times for each decomposition instance using random
initial seeds� Minimum communication volume values of these �� runs are dis�
played in Table � together with the average run�times� Communication volume
values displayed in this table correspond to the communication cost computed
according to 	��b
�

We will refer to the FM heuristics using the graph and hypergraph models
as FM�G and FM�H� respectively� As seen in Table �� FM�H usually �nds better
decompositions than FM�G 	�� better on the overall average
� As also seen in
this table� FM�H always �nds drastically better decompositions than FM�G on
unstructured test matrices with small net sizes 	e�g�� power matrices
� However�
the relative performance of FM�H with respect to FM�G deteriorates on struc�
tured matrices with large net sizes 	e�g�� �nite element matrices and NETLIB
matrices SCTAB���
� This experimental �nding can be attributed to the follow�
ing reason� FM�H algorithm encounters large number of zero move gains during
the decomposition of such matrices� FM�H algorithm randomly resolves these
ties� However� on such cases� FM�G algorithm tends to gather the adjacent ver�
tices although they do not decrease the actual communication requirement at
that point in time� However� as seen in the table� PaToH overcomes the large net
size problem because of the multilevel clustering 	matchings
 performed during
the coarsening phase 	e�g�� PEROLD� SCTAB���
�

In multilevel heuristics� clique�net approach does not perform very well com�
pared to the graph model Metis 	only �� better on the overall average
 as
expected� As seen in Table �� our multilevel hypergraph partitioning heuristic
	PaToH
 almost always performs better than the graph model Metis 	��� better
on the overall average
� However� our current implementation of PaToH is ����
to ����� times slower than graph model Metis 	���� times slower on the over�
all average
� As described in Section ���� current implementation of the PaToH
is just an initial implementation to experiment the performance of multilevel
approaches on hypergraph partitioning�

� Conclusion and Future Research
Two hypergraph models were proposed for decomposing sparse matrices for par�
allel matrix�vector multiplication� The proposed models avoid all de�ciencies of
the graph model� The proposed models enable the representation and hence
the decomposition of unsymmetric square and rectangular matrices as well as
symmetric matrices� Furthermore� they introduce a much more accurate repre�
sentation for the communication requirement� The proposed models reduce the
decomposition problem to the well�known hypergraph partitioning problem thus
enabling the use of existing circuit partitioning heuristics and tools widely used
in VLSI design� Fast Kernighan�Lin based graph and hypergraph partitioning



Table �� Minimum communication costs for �� runs and average run�times �in sec�
onds�� Numbers in parentheses represent values normalized with respect to the graph
model results found by the same class of heuristics� Bold values indicate the best com�
munication volume values with respective heuristics�

k�way FM Heuristics Multilevel Heuristics
Graph Hypergraph Graph Hypergraph Model

name k Model Model Model Clique�Net
Metis Metis PaToH
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heuristics were implemented and the successful multilevel graph partitioning tool
	Metis
 was used for the experimental evaluation of the validity of the proposed
hypergraph models� An initial version for a multilevel hypergraph partitioning
heuristic was also implemented for experimenting both the validity of the pro�
posed models and the performance of the multilevel approach on hypergraph
partitioning� Experimental results on sparse matrices� selected from Harwell�
Boeing collection and NETLIB suite� con�rmed the validity of our proposed
hypergraph models� Initial experimental results were also found to be promising
for the performance of multilevel approaches on hypergraph partitioning� We are
currently working on improving both the speed and quality performance of our
multilevel hypergraph partitioning heuristic�
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