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Two Novel Multiway Circuit Partitioning
Algorithms Using Relaxed Locking

Ali Dasdan and Cevdet Aykanat

Abstract—All the previous Kernighan–Lin-based (KL-based)
circuit partitioning algorithms employ the locking mechanism,
which enforces each cell to move exactly once per pass. In this
paper, we propose two novel approaches for multiway circuit
partitioning to overcome this limitation. Our approaches allow
each cell to move more than once. Our first approach still uses the
locking mechanism but in a relaxed way. It introduces the phase
concept such that each pass can include more than one phase, and
a phase can include at most one move of each cell. Our second
approach does not use the locking mechanism at all. It introduces
the mobility concept such that each cell can move as freely as
allowed by its mobility. Each approach leads to KL-based generic
algorithms whose parameters can be set to obtain algorithms
with different performance characteristics. We generated three
versions of each generic algorithm and evaluated them on a subset
of common benchmark circuits in comparison with Sanchis’
algorithm (FMS) and the simulated annealing algorithm (SA).
Experimental results show that our algorithms are efficient, they
outperform FMS significantly, and they perform comparably to
SA. Our algorithms perform relatively better as the number of
parts in the partition increases as well as the density of the circuit
decreases. This paper also provides guidelines for good parameter
settings for the generic algorithms.

Index Terms— Iterative improvement, Kernighan–Lin-
based algorithms, move-based partitioning, multiway circuit
partitioning, relaxed locking, very large scale integration (VLSI).

I. INTRODUCTION

CIRCUIT partitioning deals with the task of dividing (par-
titioning) a given circuit into two or more parts such that

the total weight of the signal nets interconnecting these parts is
minimized while maintaining a given balance criterion among
the part sizes. Since circuits can be appropriately represented
by hypergraphs [1], we modeled circuits with hypergraphs
and will use circuit and hypergraph terms interchangeably.
Hypergraph partitioning has many important applications in
very large scale integration VLSI layout [2]. The hypergraph
partitioning problem is an NP-hard minimization problem [3],
[4], and hence, we should resort to heuristic algorithms to
obtain a good solution or hopefully a near-optimal solution.
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Moreover, such algorithms should run in low-order polynomial
time because the problem sizes are usually very large.

Kernighan and Lin [5] proposed a two-way graph parti-
tioning algorithm which became the basis for most of the
subsequent partitioning algorithms, all of which we call the
Kernighan–Lin-based (KL-based) algorithms. Kernighan and
Lin’s algorithm (KL) operates only on balanced partitions
[6] and performs a number of passes over the cells of the
circuit where each pass comprises a repeated operation of
pairwise cell swapping for all pairs of cells. Schweikert and
Kernighan [1] adopted KL to hypergraph partitioning. Fiduccia
and Mattheyses [7] obtained a faster implementation (FM) of
KL with the help of a new data structure, called the bucket
data structure. This data structure basically contains bucket
arrays and bucket lists and is explained in Section III-C in
detail. FM can operate on unbalanced partitions and employs
a single cell move instead of a swap of a cell pair at each
step in a pass. Krishnamurthy [8] added to FM a look-ahead
ability, which helps to break ties better in selecting a cell to
move. Sanchis [9] generalized Krishnamurthy’s algorithm to a
multiway circuit partitioning algorithm. There are many other
approaches to circuit partitioning; the reader is referred to the
excellent survey in [10]. The simulated annealing algorithm
(SA) [6], [11] is one of the most successful ones. In this paper,
we will focus on Sanchis’ algorithm (FMS) and SA.

A KL-based algorithm iterates a number of passes over the
cells of the circuit until a locally minimum partition is found.
Each cell is moved exactlyonceper pass to avoid thrashing or
infinite loops [7], [8], and alocking mechanismis devised to
enforce this restriction. That is, a cell is locked as soon as it
is moved in a pass, and it remains locked until the end of the
pass. As also independently observed in [12],we claim that this
locking mechanism is too restrictive and that it actually results
in poor solution quality. To remedy this problem, we propose
two approaches. Each approach essentially allows each cell
to be moved more than once but limits the total number of
cell moves per pass. This limit can be more than the total
number of cells in the circuit. Our first approach still uses
the locking mechanism but in a different way and establishes
the basis of the proposed “multiway partitioning by locked
moves” algorithm (PLM). Our second approach does not use
the locking mechanism at all. It introduces a new property
for cell moves and bases the decision of a cell move on this
property. This approach establishes the basis of the proposed
“multiway partitioning by free moves” algorithm (PFM).

We did experiments on benchmark circuits for the proposed
algorithms in comparison with FMS and SA. We compared

0278–0070/97$10.00 1997 IEEE



170 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 2, FEBRUARY 1997

the algorithms in terms of performance and running time. By
the performance of an algorithm, we mean the quality of the
solution that the algorithm delivers. In terms of performance,
experimental results show that the proposed algorithms out-
perform FMS significantly and perform nearly as well as SA,
although SA yields the best performance. In terms of running
time, experimental results show that the running times of the
proposed algorithms are far smaller than that of SA but larger
than that of FMS. The proposed algorithms seem to perform
well for both multiway partitioning and partitioning of sparse
circuits.

The rest of the paper is organized as follows. Section II
gives the basic definitions related to multiway hypergraph par-
titioning and introduces the notations. The proposed algorithms
are presented in Section III. This section also discusses the
data structure and the complexity analysis. The experimental
framework giving the details of the experiments on benchmark
circuits, and the experimental results for performance and
running times are presented in Section IV. This section also in-
cludes some experiments on the parameters of our algorithms.
Section V contains our conclusions and directions for future
work.

II. DEFINITIONS AND NOTATIONS

We model a circuit by a hypergraph where
is the set of cells and

is the set of nets. Each net is a subset ofEach cell has a
weight and each net has a weight The
degree of is the number of nets connected to and the
degree of is the number of cells connected
to The total number of pins denotes thesizeof where

Theaverage cell (net) degree is defined
as The density for is
defined as

(1)

which is similar to the definition in [13].
A partition of is a way partitionif

eachpart is a nonempty subset of parts are pairwise
disjoint, and the union of parts is equal to A way
partition is also called amultiway partition if and a
bipartition if

A net with at least one pin in a part is said toconnectthat
part. A net that connects more than one part is said to becut,
otherwiseuncut. The cost of the cutsize, is equal to
the sum of the weights of all cut nets. As in [9], each net
contributes an amount of to the cutsize. Thecutsetof a
partition is the set of all cut nets.

The multiway circuit partitioning probleminvolves a way
partitioning of such that the cutsize is minimized and the
partitioning is balanced. A partition is balancedif each part
satisfies thebalance criterion where

and
Here, is the total weight of the cells in is

the total weight of all the cells, and is a parameter satisfying

We used in our implementation as in
similar works.

All KL-based algorithms select a cell to move based on its
move gains. Thegain of the move of from to
is equal to the difference between the sum of the weights of the
nets that removes from the cutset and the sum of the weights
of the nets that adds to the cutset of the partition. Based on
this definition, we readily see that the gain ofis equal to the
decrease or negative increase in the cutsize that would result
from moving The maximum move gain is equal to
the product of the maximum cell degree and the maximum net
weight. All the gains fall in the interval

III. PROPOSEDALGORITHMS

Let denote the total number of moves in a pass. In our
approaches, each cell moves times on the average, which
can be more than one when At each step in a pass,
a direct multiway partitioningalgorithm considers all possible
moves of a cell from its source part toany of the other parts
(the target parts) in the partition and chooses the best of them,
i.e., the one with the maximum gain. In this respect, FMS and
the proposed algorithms are all direct multiway partitioning
algorithms. For way partitioning, there are possible
move directions or target parts for a single cell. We now give
the specifics of the proposed approaches.

A. Multiway Partitioning by Locked Moves (PLM)

The generic PLM algorithm is given in Fig. 1. In this
algorithm, each pass contains a number ofphases, and each
phase contains a sequence of tentative moves. Let denote
the number of phases in a pass and the number of moves
in each phase so that In essence, PLM moves
a number of cells in a phase, locks each cell as it moves,
and unlocks all the cells moved in that phase before starting
another phase. Each phase tries to find a better location for
the cells, and the final location for a cell is determined only
after all the phases, i.e., at the end of each pass. Unlocking a
cell at the end of each phase except the last one is to give the
cell one more chance of moving in the rest of the pass. The
parameters of PLM are and Since we have cells,

, but can be larger than The values that we used
for these parameters are given in Section IV-A.

Note that step 14 in Fig. 1 finds the best partition en-
countered during a pass, and steps 15–17 move the cells to
their final locations in that partition. The maximum prefix
sum in step 14 of a pass is the difference between the cost
of the partition at the start of this pass and the cost of the
best partition reached. The moves in the maximum prefix
subsequence constitute the sequence of the moves that lead
to the best partition in this pass. The steps of PLM are almost
the same as those of FMS, and PLM actually subsumes FMS
for and Running FMS with moves
per pass amounts to running PLM withonly onephase, and so
FMS with moves per pass is not equivalent to PLM. The
dynamic locking algorithm (DLA) algorithm [12] looks similar
to PLM, but DLA is not equivalent to PLM in following major
respects: DLA is for bipartitioning, but PLM is for multiway
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Fig. 1. The generic direct multiway partitioning by PLM.

partitioning. DLA uses a different unlocking strategy in that
it only unlocks some neighbors of the cell moved, but PLM
unlocks all the cells moved in a phase. Finally, DLA imposes
an upper bound on the maximum number of moves per cell,
but PLM imposes an upper bound on the average number of
moves per cell.

B. Multiway Partitioning by Free Moves (PFM)

The generic PFM algorithm is given in Fig. 2. This algo-
rithm does not use the locking mechanism at all. Instead, the
decision as to which cell to move is based on a new property
of the cells. This new property is called themobility. Each
cell has a mobility value for each of its gains. These values
determine the move capability of a cell.

The mobility of the move of from to is
defined as

(2)

where and are parameters as defined below. Themove
count of counts the moves that makes. When the cells
are inserted into the bucket lists for the first time, it is set
to one. It is then set to zero and incremented by one with
each move. The parameteris used to expand the range of
values into (0, 1). For a predefined interval at

for values, is computed to be

(3)

using (2), where is a very small constant. We used
in our implementation. The mobility of a cell can be

considered to be the probability that the cell can be selected
for a move. So, the larger the mobility, the larger the chance
of being selected for a move. As can be seen from (2), this
probability increases as the gain gets larger but decreases as
the move count gets larger. That is, the cell is penalized by
the number of moves it makes. The parameterdetermines
the extent of this penalization. We found that is a
good choice.

To utilize the bucket data structure, we have to devise a
way of indexing the bucket arrays of this data structure using
the mobility values. For this, we scale the mobility values
to a range larger than (0, 1) and convert them to an integer.
Thus, we map a cell with mobility to a bucket list
indexed by where denotes thescale
factor. Henceforth, by the mobility of we mean its
value. The flooring in introduces a slight randomization
to the move selection process by mapping some cells with
different values into the same bucket list. The amount of
this randomization is controlled by the scale factor in that a
small scale factor introduces more randomness. As can readily
be seen from the definition of value for a cell can be
computed in constant time, given the gain and the move count
of the cell. Since each cell has ( 1) possible move gains,
each of which is for a target part, each cell also has (1)
mobility values.

PFM does moves per pass and does not lock any cell.
The same cell can be selected as many times as it has the
maximum mobility value among all the cells. The steps of this
algorithm are similar to those of PLM with the main difference
being that the cells are evaluated on the basis of the mobility
values rather than their gains. The parameters of PFM are the
move count, and In our implementation, we used
the move count, and as given in this section. The values
that we used for and are given in Section IV-A.

C. Data Structure and Initial Partitioning

Since our algorithms are similar to FMS, we adapted the
bucket data structure, which was proposed in [9] for a direct
multiway partitioning. We will explain this data structure for
PFM and give the changes for PLM later. This data structure
contains onebucket arrayof size for each move direction.
The bucket arrays are indexed by mobility values. Each move
is stored in the arrays at an index corresponding to its mobility
value. Since several moves can have the same mobility, each
array cell is actually a linked list, called abucket list. For
constant time insertion and deletion of moves, the bucket lists
are doubly-linked lists. There are ( ) move directions for
each cell and parts in the partition, so there are a total
of bucket arrays. The index of the array cell that
contains a nonempty bucket list with the largest mobility value,
called the top bucket list, is stored in a special variable to
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Fig. 2. The generic direct multiway partitioning by PFM.

ensure constant time access to the best moves in each bucket
array. An insertion into a bucket list is done at the head of
the list, guaranteeing (1) time for the operation. To find a
move with the maximum mobility, we search all
top bucket lists and select the first such move encountered
during the process. If there is more than one move with the
same maximum mobility, we select the one at the head of the
list, obtaining (1) time for the removal. If the top bucket list
becomes empty after the removal, we have to spend time
to update the index of the top bucket list [9]. This scheme is
actually called last-in, first-out (LIFO) in [14]. FMS and PLM
use the same data structure in the same way except that we
should replace with and mobility with gain in
the foregoing discussion.

Like FMS, our algorithms need an initial way partition
as input. We generate an initial way partition byrandomly
assigning each cell to one of the parts with the minimum size.
This algorithm is actually an approximation algorithm [15].

D. Time Complexity Analysis

Since our algorithms are also KL-based, we need one
procedure to compute the gains initially and another to update
them after a move in such a way that the running time of our
partitioning algorithms become linear in the size of the circuit.
Our procedures are given in [16] due to lack of space. They
can be considered as a straightforward generalization of those
in [4] for multiway partitioning or a simplification of those

in [9] for the first level gains. For each cell, the initial gain
computation procedure computes a move gain for each part
by using the definition of the move gain. Its running time is

The gain update procedure is similar to the one given in
[9]. It may end up checking and updating the gains of each cell
on the nets that are connected to the cell moved. If locking is
used, the total number of updates can be bounded from above
as shown in [9], and the running time becomes
for a whole pass or per
move. If locking is not used as in PFM, we cannot bound
the number of times a particular cell moves, and so we have
to give a trivial upper bound such that the running time
becomes per move, where is
the maximum cell degree and is the maximum net
degree. FMS, PLM, and PFM use almost the same gain update
procedure, the difference being that the gain update procedures
for FMS and PLM do not consider locked moves.

Given the running times above, we can derive the total
running time of the algorithms as follows. The time complexity
of FMS is per pass as given in [9].
Since each pass of PLM comprises phases, and each
phase has a running time of PLM runs in

time per pass. For PFM, we cannot
get a simple running time expression due to the difficulty
in constraining the total number of moves for a each cell.
The dominant steps for PFM’s time complexity are steps 1,
6, and 9. These steps are also dominant for PLM but the time
complexity of each of these steps is subsumed in the overall
running time. Since there are 1) bucket arrays each with
size the time to initialize all list pointers (step 1) takes

time, and the time to select a cell to move (step 6)
takes time. There are moves per pass, and step 9
takes time, so the loop of step 5 takes

time. Hence, the overall running
time of PFM is
per pass. The total number of passes that each of these
algorithms does is not known in advance but usually less than
a small constant, and so these per-pass running times also
correspond to the total running times. The time complexity
of each algorithm can be reduced by using a binary heap to
speed up the move selection step, e.g., that of FMS reduces
to per pass [9].

E. Search Space and Algorithm Behavior

This section comments on the size of each algorithm’s
search space and gives plots of how they behave during
partitioning. By the search space of an algorithm, we mean the
set of solutions (partitions) that the algorithm examines during
partitioning. The sizes of the search spaces of our algorithms
are larger compared to that of FMS, and this is used to give an
intuition for their better performance and larger running times.

Every partitioning algorithm developed after FM has used
the move-neighborhood structure. A partitioning algorithm
with a move-neighborhood structure proceeds from one parti-
tion to another by means of a single cell move. Our algorithms
as well as FMS use the move-neighborhood structure. Let

denote the number of solutions explored per pass by a
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(a) (b)

Fig. 3. Evolution of cutsize with cell moves for (a) PLM and (b) PFM on s838 with 495 cells.

KL-based algorithm Then, the total number of partitions
explored by is equal to the product of the number of
passes that makes and The number of passes is
usually less than ten but varies with each choice of both the
algorithm and the problem. A move-neighborhood structure
for way partitioning of an -cell circuit contains at most

partitions at each step in a pass, as each ofcells
can move to any of the target parts. Note that, for
an algorithm using the locking mechanism, only unlocked
cells should be considered when computing Then, we
can obtain the following bounds:

and
If all the moves in a pass are possible, these

inequalities become equalities.
Intuitively, we expect that the larger the number of partitions

explored by an algorithm, the better the quality of the solution
delivered by that algorithm as well as the larger the running
time of that algorithm. Our experimental observations provide
support for this intuitive view, yet they also show that this
intuitive fact is not the only factor affecting the performance.
Also note that almost all of the partitions explored by FMS per
pass are different. However, some of the partitions explored
by PLM and PFM per pass may be the same since they allow
multiple moves for a cell. Although in general, PFM beats
PLM and PLM in turn beats FMS in terms of the total number
of solutions explored, we have some exceptions as given in
Section IV-B1.

As for how the proposed algorithms behave, Fig. 3(a) and
(b) illustrate the evolution of the cutsize with the cell moves
in PLM2 and PFM2, respectively, for four-way partitioning
of s838 with 495 cells. This circuit is a small circuit from
the Partitioning93 test suite. PLM2 and PFM2 are two
versions of PLM and PFM, respectively, and are presented in
Section IV-A. Each interval between two successive vertical
lines corresponds to a pass. The “current” cutsize curve is for
tentative moves during a pass, and the “final” cutsize curve is
for the permanent moves. These two curves usually coincide
in the plots. The initial cutsize for both algorithms is 374,
and the final cutsizes for PLM2 and PFM2 are 77 and 50,
respectively. In Fig. 3(a), each spike roughly corresponds to

a phase. In fact, Fig. 3(a) shows the typical behavior of a
KL-based algorithm with locking, e.g., FMS has the same
behavior. Thus, PLM2 and FMS do not benefit from most of
the moves in a pass, indicating that locking does not prevent
thrashing. As seen in Fig. 3(b), PFM2, on the other hand,
utilize most of them. PFM2 smoothes out the spikes, yielding
a more steady convergence.

IV. EXPERIMENTAL FRAMEWORK, RESULTS, AND DISCUSSION

This section presents the details of the experimental frame-
work and gives the experimental results. We evaluated three
versions of both PLM and PFM in comparison with FMS and
SA on a subset of benchmark circuits.

A. Experimental Framework

By setting the parameters of the generic PLM and PFM
algorithms to different values, we generated three versions of
each of these algorithms. Henceforth, these versions of PLM
and PFM will be referred to as PLMand PFM respectively,
for The values of the parameters and the names
of these versions are presented in the following table, where

is the ratio of the bucket size in an PFM
algorithm to that of FMS.

Versions of PLM and PFM
N Nout Nin Name N R Name
n 2 n=2 PLM1 n 2 PFM1
nk 2k n=2 PLM2 nk 8 PFM2

nk2 2k2 n=2 PLM3 nk2 128 PFM3

Let denote the number of cell moves in a pass of
a KL-based algorithm Then, for this setting, we have

and We say that a PFMalgorithm
correspondsto a PLM algorithm or vice versa if e.g.,
PFM2 and PLM2 correspond to each other. Note thatis
chosen to be a function of and rather than a constant, as
the size of each algorithm’s search space is proportional to
these problem parameters.
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TABLE I
PROPERTIES OFBENCHMARK CIRCUITS (n = NUMBER OF CELLS, m = NUMBER OF NETS, p = NUMBER OF PINS, Dv = AVERAGE CELL

DEGREE, De = AVERAGE NET DEGREE, Dv;max = MAXIMUM CELL DEGREE, De;max = MAXIMUM NET DEGREE, AND D = DENSITY)

All the algorithms were coded in C. Our implementation of
Sanchis’ algorithm, i.e., FMS, is better than Sanchis’ original
implementation because FMS uses the LIFO tie-breaking
scheme, but the original implementation uses the random tie-
breaking scheme, which is consistently outperformed by LIFO
as advocated in [14]. A comparison of the performance of FMS
with that of Sanchis’ (even with level 4) as given in [14] on
some circuits such asprim1 and prim2 also confirms this
fact.

All of the experiments were done on a Sun SPARC 10
under SunOS operating system. We used nine benchmark
circuits as our test instances from theLayoutSynth92
andPartitioning93 test suites inACM/SIGDA Design
Automation Benchmarks . The properties of these circuits
are summarized in Table I. The circuits in all the tables in
Section IV are ordered in ascending density. We deleted certain
nonessential features of these circuits as in [1] and [7]. All the
nets with only one cell were removed, and each net containing
a cell more than once was enforced to contain that cell only
once. In order to give to the reader a better interpretation of
the experimental results, we set each cell and net weight to
one. However, it should be noted that our formulation as well
as our implementation allow nonuniformly weighted cells and
nets without any change.

In our experiments, we used a slightly modified version of
PFM in order to improve performance by eliminating some
zero-gain moves. The new version did not select a cell in two
successive moves. We used a table lookup technique to speed
up the calculation of the exponential function values in (2) as
in [6].

We set the number of parts to 2, 4, 6, and 8 as in similar
works. Following [17] and [18], we ran FMS 500 times, each
of our algorithms 30 times, and SA ten times on each test
instance starting from different initial partitions. The running
time of SA on the largest circuitind2 for was so large
that we could not obtain any performance data for SA on this
circuit. To allow a fair comparison between the algorithms,
we used the same initial partition generation algorithm and
the same balance criterion for all the algorithms. Moreover,
the level parameter of FMS was set to one as the level
parameter concept is applicable to our algorithms, but we did
not incorporate it. The running time of an algorithm is the sum

of its system and user times and includes all the times from
that of reading the input circuit up to that of outputting a final
locally minimum partition. The parameter settings discussed
in this section will be referred to asthe default settings.

We implemented SA according to the cooling schedule in
[6]. This cooling schedule was proposed for bipartitioning and
also used in a work [17] similar to ours. We also incorporated
the guidelines supplied in [6], [11], and [19]. We made the
following three changes in the cooling schedule in [6] to adapt
it to multiway partitioning. The starting temperature was set to
ten as in [11] where the acceptance rate was larger than 90%,
whereas Johnsonet al. [6] suggested a starting temperature
where the acceptance rate was 40% for a speedup. This change
did not affect the performance but increased the running time
a bit. The termination condition was met when either the
acceptance rate was less than 2% as in [6] or the same cutsize
was encountered 2 times. This change did not degrade
the performance. We used it merely to eliminate unnecessary
moves before the convergence. The final change was in the
form of the cost function. Johnsonet al. [6] used a penalty
function approach so that their scheme allowed infeasible par-
titions to be accepted. In order to ensure that each algorithm we
compared selects a move in the same way, we did not use the
penalty function approach in our implementation of SA. This
change may degrade the performance slightly if the balance
criterion is tight, but it seems to reduce the running time.

B. Results with Default Settings and Discussion

Table II presents the average and minimum cutsizes found
by each algorithm. Table III presents the average running
time of each algorithm. The bottom of Table II also includes
the average percent improvements of the algorithms with
respect to FMS where the averages were taken over all the
circuits. We gave these percentages only to give a quick
perspective to the reader. In all the tables, the bold values
in a row correspond to the best values for that row. Recall
that the best cutsize is the smallest cutsize, and the best
running time is also the smallest running time. In general,
the performance of each algorithm differs when and

We examine these two cases separately.
1) Results—Performance at Bipartitioning:From Table II,

we observe the following for the solution quality at biparti-
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TABLE II
AVERAGE (MINIMUM ) CUTSIZES FORBENCHMARK CIRCUITS. BOLD VALUES ARE THE BEST VALUES IN EACH ROW

tioning. For the average performance, PLM3 and FMS deliver
the best results, but PLM3 beats FMS on five of the eight
circuits. For the minimum performance, FMS outperforms all
the others except that forstruct , the most sparse circuit,
PFM2 and PFM3 produce the smallest cutsize. Generally, both
the average and minimum performance of PLMand PFM
gets better asincreases, i.e., as the number of moves per pass
increases. Moreover, the PLMalgorithms perform better than
the corresponding PFMalgorithms. SA performs nearly as
well as PFM3. PLM3 achieves the best average performance,
14% on prim1 , and PFM3 achieves the best minimum
performance, 18% onstruct , both relative to FMS.

The relatively poor performance of most of our algorithms
for bipartitioning seems a bit surprising as we expect that they

examine more partitions, and so they must perform better than
FMS. The following reasons seem to account for this result.
First, FMS executed the largest number of passes, making
the size of its search space comparable to that of PLM1
and PFM1. Second, FMS is the most “unstable” algorithm
for bipartitioning in the sense that the disparity between the
maximum and the minimum cutsizes it found was the largest.
The instability of FMS makes its average performance worse
but helps it beat all the others for minimum performance.
Third, the total number of local minima at bipartitioning is
not so large, and so a more greedy strategy like the locking
mechanism of FMS pays off. Fourth, the disparity in gain
values for bipartitioning is small, making the number of zero-
gains larger and so making the move selection process difficult
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TABLE III
EXECUTION TIME AVERAGES FORBENCHMARK CIRCUITS. BOLD VALUES ARE THE BEST VALUES IN EACH ROW

especially for the PFMalgorithms. We did an experiment to
penalize zero-gain moves more by settingto one in (2). We
observed an overall performance improvement.

2) Results—Performance at Multiway Partitioning:From
Table II, we observe the following for the solution quality
at multiway partitioning. For the average performance, SA
delivers the best results, and PFM3 comes second. For the
minimum performance, PFM3 delivers the best performance,
and SA comes second. Like the case at bipartitioning, both
the average and minimum performance of PLMand PFM
generally gets better as increases. Unlike the case at bi-
partitioning, the PFM algorithms perform better than the
corresponding PLMalgorithms. That even PFM2 beats PLM3
despite indicates that is not the only
factor that improves the performance. The mobility concept

also helps a lot. The mobility concepts pays off because PFM2
outperforms all the PLMalgorithms. Relative to FMS, PFM3
yields the best average and minimum performance, 66% and
73% both onind1 , respectively. Note that the bottom of
Table II gives overall relative performance figures in terms
of percentages.

As the search space is larger and more difficult to explore
at multiway partitioning, better search strategies are needed
for a thorough exploration. The superiority of our algorithms
with respect to FMS reveals their effectiveness and supports
our original claim. Note that the relative performance of our
algorithms gets better as we move up in the tables. Since the
circuits are ordered in ascending density in the tables, this
observation shows that our algorithms perform relatively better
as the circuit gets more sparse. There are some anomalies
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TABLE IV
CUTSIZE AVERAGES BY PFM3 FOR DIFFERENT VALUES OF THE SCALE FACTOR S: (Gmax =

MAXIMUM MOVE GAIN POSSIBLE.) BOLD VALUES ARE THE BEST VALUES IN EACH ROW

TABLE V
CUTSIZE AVERAGES BY PLM FOR DIFFERENT VALUES OF N

in
AND N: (N = TOTAL NUMBER OF MOVES PERPASS, N

in
= NUMBER OF PHASES

PER PASS, n = NUMBER OF CELLS, AND k = NUMBER OF PARTS.) BOLD VALUES ARE THE BEST VALUES IN EACH ROW

though, e.g., the performance onprim2 and test06 . The
variation of the circuits not only in density but in both structure
and size seems to account for these anomalies. Through our
experiments on randomly generated circuits that varied only
in density, we have observed that most of these anomalies
disappeared. Our algorithms’ superior performance for sparse
circuits is very promising as real applications are usually
sparse. Also, as the circuit gets denser, even the performance
of a simple greedy algorithm becomes comparable to that of
KL [20], and so sparse circuits help us assess the performance
of an algorithm better.

3) Results—Running Times:As for the running times from
Table III, we can say that in general, the algorithms can
be ordered according to their running times regardless of
the number of parts as

where represents the total running time of the algorithm
Note that the running time of SA is far larger than those

of the others, and FMS takes the smallest running time. We
derived the following empirical inequality for the (total or per-
pass) running time of our algorithms with respect to that of
FMS

(4)

where is any of the PFM or PLM algorithms. This
inequality shows that the running times of our algorithms in
practice are basically directly proportional to the number of
cell moves and so they are as efficient as FMS.

C. Experiments on Algorithm Parameters and Discussion

Table IV presents the effects of the scale factor on the
performance of PFM3. The results for PFM1 and PFM2 are
similar. Table V presents the effects of and on the
performance of the PLMalgorithms. The values in the tables
are the average of the five best cutsizes in 30 runs. We chose
two circuits, struct and c2670 , with different densities.
Note that the column for and in Table V
corresponds to FMS.

We observe that as increases, the performance of the
PFM algorithms generally gets better, the reason being that a
very small introduces too much randomness in the move
selection process and renders the selection of best moves
difficult. Through other experiments, we have also observed
that a very large does not help as it prevents the randomness
altogether and prevents the occasional selection of uphill
moves. We suggest that i.e., is a
safe choice but one should use a largewhen the search
space is difficult to explore as is the case when the circuit is
sparse, is large or is small.
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For the PLM algorithms, we note the following. For
multiway partitioning, the PLM algorithms outperform FMS
no matter what and are; however, the results get
better as increases. For bipartitioning, a large favors
a small , and a small favors a large e.g., when

or gives the best results and
when gives the best results. In
our experiments mentioned in the previous section, we used

as a compromise.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose two novel approaches for mul-
tiway circuit partitioning to overcome the limitations of the
traditional locking mechanism, which has been used by all
the previous KL-based algorithms. Each approach allows more
moves per pass for each cell. Each approach leads to a generic
algorithm whose parameters can be set in different ways such
that better performance is usually obtained by spending more
time in exploring the search space. We generated three versions
of each generic algorithm and evaluated them on a subset of
commonly used benchmark circuits in comparison with FMS
and SA. The experimental results show that our algorithms out-
perform FMS significantly especially on multiway partitioning
as well as partitioning of sparse circuits. The performance of
our algorithms is comparable to that of SA, but the running
time of SA is far larger than those of ours. We also did some
experiments on the parameters of the generic algorithms and
provided some guidelines for good parameter settings. Our
approaches can easily be incorporated into existing KL-based
algorithms such as those in [9], [13], [17], and [21].

We believe that our approaches are mature and effective
enough to use, but there are some areas for further research
such as better mobility functions (largeror larger increments
in move count to decrease unnecessary cell moves), design of
adaptive schemes to reduce the number of moves per pass, use
of phase concept in the PFMalgorithms, incorporation of our
approaches with existing approaches, and finally application
of our algorithms in other areas like VLSI placement.
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