A parallel scaled
conjugate-gradient
algorithm for the solution
phase of gathering
radiosity on hypercubes

Tahsin M. Kurg, Cevdet Aykanat,
Biilent Ozgiig

Department of Computer Engineering and Informa-
tion Science, Bilkent University, 06533, Bilkent, An-
kara, Turkey

Gathering radiosity is a popular method
for investigating lighting effects in a closed
environment. In lighting simulations, with
fixed locations of objects and light sour-
ces, the intensity and color and/or reflec-
tivity vary. After the form-factor values
are computed, the linear system of equa-
tions is solved repeatedly to visualize
these changes. The scaled conjugate-
gradient method is a powerful technique
for solving large sparse linear systems of
equations with symmetric positive definite
matrices. We investigate this method for
the solution phase. The nonsymmetric
form-factor matrix is transformed into
a symmetric matrix. We propose an
efficient data redistribution scheme to
achieve almost perfect load balance. We
also present several parallel algorithms for
form-factor computation.

Key words: Gathering radiosity — Scaled
conjugate-gradient method — Parallel al-
gorithms — Hypercube multicomputer —
Data redistribution

Correspondence to: T.M. Kurg

The Visual Computer (1997) 13:1-19
© Springer-Verlag 1997

1 Introduction

Realistic synthetic image generation by com-
puters has been a challenge for many years in the
field of computer graphics. It requires the accurate
calculation and simulation of light propagation
and global illumination effects in an environment.
The radiosity method (Goral et al. 1984) is one of
the techniques for simulating light propagation in
a closed environment. Radiosity accounts for the
diffuse inter-reflections between the surfaces in
a diffuse environment. There are two approaches
to radiosity: progressive refinement (Cohen et al.
1988) and gathering. Gathering is a very suitable
approach for investigating lighting effects within
a closed environment. For such applications, the
locations of the objects and light sources in the
scene usually remain fixed, while the intensity and
color of light sources and/or reflectivity of surfa-
ces change in time. The linear system of equations
is solved many times to investigate the effects of
these changes. Therefore, efficient implementation
of the solution phase is important for such
applications.

Although gathering is excellent for some applica-
tions in realistic image generation, it requires
much computing power and memory storage to
hold the scene data and computation results. As
a result, applications of the method on conven-
tional uniprocessor computers for complex envi-
ronments can be far from practical due to high
computation and memory costs. Distributed
memory multicomputers, however, can provide
a cost-effective solution to problems that require
much computation power and memory storage.
In these types of architectures, processors are con-
nected to other processors by an interconnection
network, such as a hypercube, ring, mesh, etc.
Data are exchanged and processors are synchro-
nized via message passing.

Various parallel approaches have been proposed
and implemented for gathering radiosity (Chal-
mers and Paddon 1989, 1990; Price and Truman
1990; Paddon et al. 1993). In these approaches, the
Gauss—Jacobi (GJ) method is used in the solution
phase. The scaled conjugate-gradient (SCG)
method is known to be a powerful technique for
the solution of large sparse linear systems of equa-
tions with symmetric positive definite matrices. In
general, the SCG method converges much faster
than the GJ method. In this work, the utilization
and parallelization of the SCG method is investi-
gated for the solution phase. The nonsymmetric

1

form-factor matrix is efficiently transformed
into a symmetric matrix. An efficient data redis-
tribution scheme is proposed and discussed
to achieve an almost perfect load balance in
the solution phase. Several parallel algorithms
for the form-factor computation phase are also
presented.

The organization of the paper is as follows. Sec-
tion 2 describes the computational requirements
and the methods used in the form-factor compu-
tation and solution phases. The GJ and SCG
methods for the solution phase are described in
this section. Section 3 briefly summarizes the
existing work on the parallelization of the radio-
sity method. Section 4 briefly describes the hy-
percube multicomputer. Section 5 presents the
parallel algorithms for form-factor computation.
The parallel algorithms developed for the solution
phase are presented and discussed in Sect. 6. Load
balancing in the solution phase and a data redis-
tribution scheme are discussed in Sect. 7. Finally,
experimental results from a 16-node Intel iPSC/2
hypercube multicomputer are presented and dis-
cussed in Sect. 8.

2 Gathering radiosity

In the radiosity method, every surface and object
constituting the environment is discretized into
small patches, which are assumed to be perfect
diffusers. The algorithm calculates the radiosity
value of each patch in the scene.

The gathering radiosity method (the term radio-
sity method will also be used interchangeably
to refer to the gathering method) consists of
three successive computational phases: the form-
factor computation phase, the solution phase,
and the rendering phase. The form-factor
matrix is computed and stored in the first
phase. In the second phase, a linear system of
equations is formed and solved for each color
band (e.g., red, green, blue) to find the radiosity
values of all patches for these colors. In the last
phase, results are rendered and displayed on the
screen. They are derived from the radiosity values
of the patches computed in the second phase.
Conventional rendering methods (Watt 1989;
Whitman 1992) (e.g., Gouraud shading, Z-buffer
algorithm) are used in the last phase to display the
results.

2

This section describes the computational require-
ments and the methods used in the form-factor
computation and solution phases.

2.1 Form-factor computation phase

In an environment discretized into N patches, the
radiosity b; of each patch ‘i’ is computed as
follows:

N
bi:ei+ri Z bJFlJ (1)
j=1

J

where ¢; and r; denote the initial radiosity and
reflectivity values, respectively, of patch ‘i’, and
the form-factor F;; denotes the fraction of light
that leaves patch ‘j° and is incident on patch ‘i’.
The F;; values depend on the geometry of the
scene, and they remain fixed as long as the ge-
ometry of the scene remains unchanged. The
F;; values are taken to be zero for convex patches.
An approximation method to calculate the form
factors, called the hemicube method, is proposed
by Cohen and Greenberg (1985). In this method,
a discrete hemicube is placed around the center of
each patch. Each face of the hemicube is divided
into small squares (surface squares). A typical
hemicube is composed of 100 x 100 x 50 such
squares. Each square ‘s’ corresponds to a delta
form-factor Af(s).

After allocating a hemicube over a patch ‘i’, all
other patches in the environment are projected
onto the hemicube for hidden patch removal.
Then, each square ‘s’ allocated by patch °j° con-
tributes Af(s) to the form-factor F;; between
patches ‘i’ and ‘j’. At the end of this process, the
ith row of the form-factor matrix F is constructed.
The F matrix is a sparse matrix because a patch
may not see all the patches in the environment
due to the occlusions. In order to reduce the
memory requirements, space is allocated dynam-
ically for only nonzero elements of the matrix
during the form-factor computation phase. Each
element of a row of the matrix is in the form
[column id, value]. (This compressed form requires
8 bytes for each nonzero entry, 4 bytes for the
column-id, and 4 bytes for the value. We observed
that =~30% of the matrix entries are nonzero
in our test scenes. Hence, for N patches,

approximately 2.4N? bytes are required to store
the F matrix.) The column id indicates the j index
of an F;; value in the ith row.

2.2 Solution phase

In this phase, the linear system of equations of the
form

Cbh=(I—RF)b=e 2)

is solved for each color band. Here, R is the
diagonal reflectivity matrix, b is the radiosity vec-
tor to be calculated, e is the vector representing
the self-emission (initial emission) values of
patches, and F is the form-factor matrix.
Methods for solving such a linear system of equa-
tions can be grouped as direct methods and iter-
ative methods (Golub and van Loan 1989). In this
work, iterative methods have been used in the
solution phase because they exploit and preserve
the sparsity of the coefficient matrix. In addition,
unlike direct methods, maintaining only F is suffi-
cient in the formulation of iterative methods in
this work. Hence, they require less storage than
direct methods. Furthermore, iterative methods
are more suitable for parallelization. It has been
experimentally observed that iterative methods
converge quickly to acceptable accuracy values.
Three popular iterative methods widely used
for solving linear system of equations are the
Gauss—Jacobi (GJ), Gauss—Seidel (GS), and con-
jugate-gradient (CG) methods (Golub and van
Loan 1989). The GS scheme is inherently sequen-
tial; hence, it is not suitable for parallelization.
Thus, only the GJ and CG schemes are described
and investigated for parallelization in this work.

2.2.1 The GJ method

In the GJ method, the iteration equation for the
solution phase of the radiosity becomes

b**! = RFb* + e. (3)

Note that it suffices to store only the diagonals of
the diagonal R matrix. Hence, matrix and vector
will be used interchangeably to refer to a diagonal
matrix. The GJ algorithm necessitates storing

Initially, choose b®
fork =1,23,...

1. form b*t! = RFbF + e as
x=Fbf;y=Rx;bftl =y +te
2. r* = b+l bk

3. check Norm(r¥)/maz(b¥) < ¢
where Norm(r¥) = SN | |7¥| and maz(b*) = maz(|b|)

Fig. 1. Basic steps of the GJ method

only the original F matrix and the reflectivity
vector for each color in the solution phase. The
algorithm for the GJ method is given in Fig. 1.
The computational complexity of an individual
Gl iteration is:

Ty~ (2M + 6N)t cqc 4)

where M is the total number of nonzero entries in
the F matrix, and N is the number of patches in
the scene. Here, scalar addition, multiplication,
and absolute value operations are assumed to
take the same amount of time f,,.

2.2.2 The SCG method

The convergence of the CG method (Hestenes and
Stiefel 1952) is guaranteed only if the coefficient
matrix C is symmetric and positive definite. How-
ever, the original coefficient matrix is not symmet-
ric since c¢;; = r;F;; # rjFj; = c;;. Therefore, the
CG method cannot be used in the solution phase
using the original C matrix as is also mentioned
by Paddon et al. (1993). However, the reciprocity
relation A;F;; = A;F;; between the form-factor
values of the patches can be exploited to trans-
form the original linear system of equations in Eq.
2 into

Sb = De (5)

with a symmetric coefficient matrix S =DC
where D is a diagonal matrix D = diag[A/r4,
As/rs, ..., Ax/ry]. Note that matrix S is symmet-
I‘iC Since Sij = AlFlj = A]Fjl = Sji fOl’] 75 I The lth
row of the matrix S has the following structure:

Si* =[—-AFy, ..., — AiFi,ifl’Ai/ria

- AiFi,i+17 teey _AiFiN]

fori=1,2,...,N. Therefore, matrix S preserves
diagonal dominance. Thus, the coefficient matrix
S in the transformed system of equations (Eq. 5)
is positive definite since diagonal dominance of
a matrix ensures its positive definiteness, which is
also shown by Neumann (1994, 1995) indepen-
dently of our work.

The convergence rate of the CG method can
be improved by preconditioning. In this work,
simple yet effective diagonal scaling is used for
preconditioning the coefficient matrix S. In this
preconditioning scheme, rows and columns of
the coefficient matrix S are individually scaled by
the diagonal matrix D = diag[A4/r1, ..., An/TN].
Hence, the CG algorithm is applied to solve the
following linear system of equations

Sh=¢ (6)

where S=D !2SD"Y2=D !?DCD !2 =
D!2CD~'/? has unit diagonals, b = D'/?b, and
¢ = D~ '?De = D'?e. Thus, the vector De on the
right-hand side in Eq. 5 is also scaled, and b must
be scaled back at the end to obtain the original
solution vector b (ic., b =D~ '/?b). The eigen-
values of the scaled coefﬁaent matrix S (in Eq. 6)
are more likely to be grouped together than those
of the unscaled matrix S (in Eq. 5), thus resulting
in a better condition number. 5

The entries of the scaled coefficient matrix S are of
the following structure:

S

- r/;a,

J

Sij =

if i#j
1 otherwise.

The values of the scaling parameters ./7;A; and
1j/A; depend only on the area and reflectivity
values of the patches and do not change through-
out the iterations. Therefore, the values of the
scaling parameters can be computed once at the
beginning of the solution phase and maintained
in two vectors (for each color band) representing

two diagonal matrices D, = diag[/"1 A4, ...,

«/VNAN] and D2 = diag[«/rl/Al, s\/rN/AN:l’

The basic steps of the SCG algorithm proposed
4

Initially, choose b° and let #° = & — Sb° and then compute < ¥, >
fork=0,1,2,...
1. form q* = Sp* as
x=Dop* ;y=Fx;2=Diy;q¢" =p‘ -z
2. (a) 6 = < pF,q* >

=bk 4 ap®
5. (a) =< l.k-{»l Fh+1 >
b) 8= —=F=
(b) A <r®*,r*> -
(c) r* — Dyi*, b* — DybF
check Norm(r¥)/maz(b*) < ¢
(d) < FFHL PR+ 5=
6. pk+l = pk+1 +ﬂpk

Fig. 2. Basic steps of the SCG method

for the solution phase of the radiosity method is
illustrated in Fig. 2. The p* and F*-vectors in
Fig. 2 denote the direction and res1dual vectors at
iteration k, respectlvely Note that i =& — Sb*
must be null when b* is coincident with the solu-
tion vector.

The matrix vector product ¢* = — Sp*looks as if the
S matrix is to be computed and stored for each
color band. However, this matrix vector product
can be rewritten for each color as:

q“(r,g.b) = S(r,9.b)p"(r.¢.b)
= [I - Dl(raga b)FDz(I‘,g, b)]pk(’,, g, b)

= pk(ra 9, b) - Dl(rs 9, b)FDZ(ra 9, b)

xp“(r,g,b). (7)

Hence, it suffices to compute and store only the
original F matrix and two scaling vectors D, and
D, for each color band for the SCG method.
However, in order to minimize the computational
overhead during iterations due to this storage
scheme, the vector D;FD,p* should be computed
as a sequence of three matrix vector products,
x=D,p", y=Fx and z=D,y, which take
O(N),®(M) and O(N) times, respectively. Since
M = O(N?), the computational overhead due to
the diagonal matrix vector products x = D,p,
z = D,x, and the vector subtraction ¢* = p* — z
(which also takes @(N) time) is negligible. The

computational complexity of a single SCG iter-
ation is

Tsce = (M + 18N)tcqpc. (8)

Although the operations shown convert the
C matrix into a symmetric matrix, in practice one
should be careful when using the SCG method.
The hemicube method used in the form-factor
calculations is an approximation. As a result, the
form-factor values calculated may contain nu-
meric errors due to the violation of some assump-
tions (Baum et al. 1989). Therefore, the reciprocity
relation may not hold, and the operations may
still result in a nonsymmetric matrix.

2.2.3 Convergence check

The convergence of iterative methods is usually
checked by comparing a selected norm of the
residual error vector r* = e — Cb* with a prede-
termined threshold value at each iteration k. In
this work, the following error norm is used for the
convergence check:

ng:1|ri‘c|

Error* =
O = nax (b))

©)

where |-| denotes the absolute value. Iterations
are terminated when the error becomes less than
a predetermined threshold value (e.g., error* < ¢
where ¢ = 5x 107 °). Note that the residual vector
r* is already computed n the SCG method. How-
ever, the residual vector r* is not explicitly com-
puted in the GJ scheme. Nonetheless,

r* =e — Cb*=e — (I — RF)b*
= e + RFb* — b* = b**! — b*. (10)
Hence, the residual error vector r* can easily be

calculated at each iteration of the GJ scheme by
a single vector subtraction operation.

3 Related work

There are various parallel implementations for
progressive refinement and gathering methods in

the literature (Chalmers and Paddon 1989, 1990,
1991; Price and Truman 1990; Purgathofer and
Zeiller 1990; Feda and Purgathofer 1991; Guitton
et al. 1991; Jessel et al. 1991; Drucker and
Schroeder 1992; Varshney and Prins 1992; Pad-
don et al. 1993; Aykanat et al. 1996). In this
section, parallel approaches for the gathering
method are summarized.

Price and Truman (1990) parallelize the gathering
method on a transputer-based architecture in
which the processors were organized as a ring
having a master processor, used for communicat-
ing with host and graphics system, and had
a number of slave processors to do the calcu-
lations. Any data can be exchanged with this ring
interconnection. In their approach, they assume
that total scene data can be replicated in the local
memories of the processors, hence form factors
can be computed without any interprocessor
communication. The GJ iterative scheme is used
in their solution phase.

Purgathofer and Zeiller (1990) use a ring of trans-
puters. In the form-factor computation phase,
“receiving” patches are statically distributed to
worker processors. Patches are distributed to pro-
cessors randomly to obtain a better load balance.
The master processor sends global patch informa-
tion in blocks to the first processor in the ring.
Then, the patch information is circulated in the
ring. In their approach, the sparsity of the form-
factor matrix is exploited, and the matrix is main-
tained in compressed form. The memory used for
matrix rows and hemicube information is over-
lapped, allowing the calculation of several rows of
the matrix at a time in each processor. The num-
ber of rows calculated at a time decreases as more
rows allocate memory shared with hemicube
information.

Chalmers and Paddon (1989, 1990) use a demand-
driven approach in the form-factor computation
phase and a data-driven approach in the solution
phase in which data are assigned to processors in
a static manner. The target architecture is based
on transputers arranged in a structure of minimal
path lengths. Paddon et al. (1993) discuss the
trade-offs between demand and data-driven
schemes in the parallelization of the form-factor
computation phase. Chalmers and Paddon (1989)
address the data redistribution issue for better
load balancing in the solution phase. Chalmers
and Paddon (1990) use a demand-driven

5

approach for the form-factor calculation phase.
The form-factor row computations are concep-
tually divided evenly among the processors. The
even decomposition here refers to the equal num-
ber of row allocations to each conceptual region.
Each processor is assigned a task by the master
from its conceptual region until all tasks in its
region are consumed. Idle processors whose con-
ceptual regions are totally consumed are assigned
tasks from the conceptual regions of other proces-
sors. However, in such cases, the computed form-
factor vectors are passed to the processors that
own the conceptual region. The GIJ iterative
scheme is used in the solution phases of all these
works.

4 The hypercube multicomputer

Among the many interconnection topologies, the
hypercube topology is popular because many
other topologies, such as ring and mesh, can be
embedded into it. Therefore, it is possible to ar-
range processors in the most suitable interconnec-
tion topology for the solution of the problem.
A d-dimensional hypercube consists of P = 29
processors (nodes) with a link between every pair
of processors whose d-bit binary labels differ in
one bit. Thus, each processor is connected to
d other processors. The hamming distance between
two processors in a hypercube is defined as the
number of different bits between these two proces-
sors’ ids. The channel i refers to the communica-
tion links between processors whose processor ids
differ in only the ith bit.

Intel’s iPSC/2 hypercube is a distributed memory
multicomputer. Data are exchanged and synchro-
nized between nodes via exchanging messages. In
this multicomputer, interprocessor communication
time (Tomm) for transmitting m words can be
modeled as T, =t + mt,,., Where t,, is the trans-
mission time per word, and t,, (>t in the iPSC/2
hypercube multicomputer) is the set-up time.

5 Computation of the parallel
form-factor matrix
In this section, the parallel algorithms devised for

the phase computing the form-factor matrix in the
gathering method are described.

6

5.1 Static assignment

In this scheme, each processor is statically as-
signed the responsibility of computing the rows
corresponding to a subset of patches prior to the
parallel execution of this phase. However, projec-
tion computations onto local hemicubes may
introduce load imbalance during the parallel
form-factor computation phase. The complexity
of the projection of an individual patch onto
a hemicube depends on several geometric factors.
A patch that is clipped completely requires much
less computation than a visible patch, since it
leaves the projection pipeline in a very early stage.
Furthermore, a patch with a large projection area
on a hemicube requires more scan-conversion
computation than a patch with a small projection
area. Hence, the assignment scheme should be
carefully selected in order to maintain the load
balance in this phase.

In this work, we recommend two types of static
assignment schemes: scattered and random. In the
scattered assignment scheme, the adjacent patches
on each surface are ordered consecutively. Then,
the successive patches in the sequence are as-
signed to the processors in a round-robin fashion.
Note that filling the hemicube for the adjacent
patches is expected to take an almost equal
amount of computation due to the similar view
volumes of adjacent patches. Hence, scattered as-
signment is expected to yield a good load balance.
The scattered assignment of the patches on a
regular surface (e.g., rectangular surface) is trivial.
Unfortunately, this assignment scheme may
necessitate expensive preprocessing computations
for the irregular surfaces. The random assignment
scheme is recommended if the scene data are not
suitable for the preprocessing needed for the scat-
tered assignment scheme. In this assignment
scheme, randomly selected patches are similarly
assigned to the processor in a round-robin
fashion. It has been observed experimentally that
the random assignment scheme yields a fairly
good load balance for a sufficiently large § ratio.
The random assignment scheme is used in this
work.

In both of these two assignment schemes, first
(N mod P) processors in the decimal processor or-
dering are assigned [§] patches, whereas the re-
maining processors are assigned | 5 | patches.
After the assignment, the patches are renumbered

so that ¥ patches assigned to processor [are re-
numbered from §1to (I + 1) — 1. The new global
numbering (new patch ids) is not modified
throughout the computations.

5.1.1 Patch circulation

In this scheme, the host processor distributes only
local path information to node processors. After
receiving the local patch information, each pro-
cessor calculates the rows of the F matrix for its
local patches. Each processor places a hemicube
around the center of a local patch and calculates
the form-factor row for that patch. Each proces-
sor’s local patch information is circulated among
the processors so that it can project all patches
to their local hemicubes. The ring-embedded hy-
percube structure, which can easily be achieved
by gray-code ordering (Ranka and Sahni 1990), is
used for patch circulation. If the number of
patches N is not a multiple of P, those processors
having[§ 7local patches require one more patch
circulation phase than the processors having| 5 |
local patches. Hence, those processors having
| ¥ | patches participate in an extra patch circula-
tion phase (which does not include any local
hemicube fill operation) for the sake of other
processors.

In this scheme, information for @(}) patches is
concurrently transmitted to successive processors
of the ring in each communication step. The total
volume of concurrent communication in a single
circulation step is then O(3)(P — 1) = O(N).
Hence, the total concurrent communication vol-
ume is O(N)[¥] = ©(%). This communication
overhead can be reduced by avoiding communi-
cation as much as possible. To do this, the global
patch information is duplicated at each node pro-
cessor. The scheme to implement this idea is given
in the following section.

5.1.2 Storage sharing scheme

Dynamic memory allocation is used for storing
the computed F matrix rows. This scheme can be
exploited to share the memory needed for global
patch information with the memory to be allo-
cated to nonzero matrix elements. With such
a sharing of memory, we can avoid interprocessor

communication until the memory allocated to
global patch information is required for a row of
the matrix.

In this scheme, the global patch information is
duplicated in each processor after the local patch
assignment and the corresponding global patch
renumbering mentioned earlier. Then, processors
concurrently compute and store the form-factor
rows corresponding to their local assignment.
They avoid interprocessor communication until
no more memory can be allocated for the new
row. If a processor cannot allocate memory space
for storing the computed form-factor row, it
broadcasts a message so that other processors can
switch to the communication phase as soon as
possible and run the patch circulation scheme.
Note that the patch should be circulated until all
remaining rows of the F matrix are calculated.
Therefore, the data circulation phase in the patch
circulation scheme should be repeated a number
of times equal to the maximum number of un-
processed patches remaining.

5.2 Demand-driven assignment

This approach is an attempt to achieve better load
balance through patch assignment to idle proces-
sors upon request. The scheme proposed in this
work has similarities to the approach used by
Chalmers and Paddon 1989, (1990). However, un-
like their scheme, the patches are not divided
conceptually. When a patch is processed, the com-
puted form-factor row remains in the processor.
In this scheme, each node processor demands
a new patch assignment from the host processor
as soon as it computes the form-factor row(s)
associated with the previous patch assignment.
The host processor sends the necessary informa-
tion for a predefined number of patch assignments
to the requesting node processor. The number of
patch assignments at a time is a factor that affects
the performance. The number of node-to-host and
host-to-node communications decreases with an
increasing number of patch assignments at a time.
However, this may affect the quality of load bal-
ance adversely.

Each node processor keeps an array to save the
reflectivity and emission values of the processed
patches. The global ids of the processed patches
are also saved in an array to be used in the

v

solution phase. In addition, each processor holds
the information for all patches in the scene to avoid
interprocessor communication, as is explained in
Sect. 5.1.2. The host processor behaves as a master.
It is responsible for processing requests and syn-
chronizing nodes between phases. The host pro-
gram maintains an array for global patch informa-
tion and keeps account of the remaining patches to
be processed. All node processors are synchronized
by the host processor when one or more of the
node memories become full, and processors have to
switch to the data circulation mode. The host is
also responsible for the termination of the form-
factor computation phase.

6 Parallel solution phase

This section describes the parallel GJ and SCG
algorithms developed for the solution phase. The
parallel implementation of the solution phase is
closely related to the schemes used in the phase
computing the form-factor matrix because patch
distribution, hence row distribution, to the pro-
cessors differs in each scheme. In the following
sections, parallel algorithms for the solution
phase are described. We assume that a static as-
signment scheme is used in the phase computing
the parallel form-factor. An efficient parallel re-
numbering scheme, described in Sect. 6.3, adapts
these algorithms if the demand-driven assignment
scheme is used in this phase.

6.1 Parallel Gauss—Jacobi (GJ) method

The GJ algorithm formulated (Fig. 1) for the solu-
tion phase has the following basic types of opera-
tions: matrix vector product (x = Fb¥), diagonal
matrix vector product (y = Rx), vector subtrac-
tion/addition (b**! =y + e, r* = b**! — b¥), vec-
tor norm and maximum (step 3). All of these basic
operations can be performed concurrently by dis-
tributing the rows of the form-factor matrix F, the
corresponding diagonals of the R matrix, and the
corresponding entries of the b and e vectors. In the
parallel form-factor computation, each processor
computes the complete row of form factors for its
local patches. Hence, each processor holds a row
slice of the form-factor matrix at the end of the
form-factor computation phase. Thus, the row

8

Initially, choose b®
fork =1,23,...

k

1. (a) perform global-concatenate on b, ., — bgiobal

_ k
(b) xt0cat = Frocarbyiopar
(¢) Yiocat = RiocalXiocal

oy
(d) biSEs = Yiocal + €tocal

E o _ Rkl _ Lk
2. Tioear = Pigtar = Plocar

3. (a) Olocat = Norm(rﬁ,m,)
biocatmaz = maz (b))
(b) perform one global-sum-max operation to compute
Tlocal = Oglobal and biocaimar — bglobaimaz
check ogioba/bgiobatmaz < €

Fig. 3. The parallel GJ algorithm

partitioning required for the parallelization of the
solution phase is automatically achieved in this
phase. The slices of the R, b, and e vectors are
mapped to the processors accordingly. With such
a mapping, each processor is responsible for updat-
ing the values of those b and r vector elements
assigned to it. That is, each processor is responsible
for updating its own slice of the global b vector in
a local B array (of size N/P) at each iteration.
Figure 3 illustrates the parallel GJ algorithm.

In an individual GJ iteration, each processor
needs to calculate a local matrix vector product
that involves & inner products of its local rows
with the global b vector. To do this, the whole
b vector computed in a distributed manner in
a particular iteration is needed by all processors in
the next iteration. This requirement necessitates
the global concatenate operation, which is illus-
trated for a 3D hypercube topology in Fig. 4. In
this operation, each processor | moves its local
b array to the Ith slice of a working array GB of
size N. Then, log, P concurrent exchange com-
munication steps are taken between neighbor pro-
cessors over channels j =0,1,2, ... ,log, P — 1, as
is illustrated in Fig. 4. Note that the amount of
concurrent data exchange between processors is
only % in the first step, and it is doubled at each
successive step. That is, at the ith communication
step, processors exchange the appropriate slices of
size 20~ V& of their local GB array over channel
i — 1. Therefore, the total volume of concurrent
communication is:

log,P—1 2]N
Volume of communication = Z P
j=0

_(P—1N

2 words. (11)

Communication over channel 0.
101

o0 ot 100 110

Communication over channel 1.

Shaded segments are exchanged between processors.

000 001 010 o011 100 101 110 111
001 @————____ 101
/, //
. ,
, ,
. ,
000 - 100
ou/.___ _____11_1.
’ ’ //
- oy -7 110
Communication over channel 2. . oo
000 001 010 o011 100 101 110 111
001 101
A !
’ 1 // 1
Pd 1 , '
000 .” L1007 X
o<=———>>@ !
: b l
| ! I !
! A ! |
o011 11
: <19
1 ’ 1 v’
| e I s
| L | ,
1 ’ 1
[4 [. .
“1"' e o i)/ Fig. 4. Global concatenate operation for a

3D hypercube

The distributed vector add/subtract operations
are performed concurrent}\}/ as local vector opera-
tions on vectors of size 5 without necessitating
any interprocessor communication. The partial
sums computed by each processor must be added
to form the global sum to compute the vector
norm (Y7~ |r;|). In addition, local bjyeqimax values
should be compared to obtain the global max-
imum (b,iopaimax)- Furthermore, the results should
be distributed to all processors in order to ensure
the termination at the same iteration. The distrib-
uted global norm operation can be performed by
a global sum operation. The exchange-communi-
cation sequence of the global sum operation is
exactly the same as that of global concatenate
operation. The only difference is the local scalar

addition after each exchange communication step
(Aykanat et al. 1988) instead of the local vector
concatenation. This local scalar operation in-
volves the addition of the received partial sum to
the current partial sum. Similarly, the distributed
global maximum can be found by using the glob-
al max operation. The global max operation can
be done by replacing the local scalar addition
operation with a comparison operation in global
sum operation. Performing global sum and global
max operations successively requires 2log, P of
set-up time. Fortunately, this set-up time can be
decreased to log, P by combining the global max
and global sum operations into a single global
operation (global sum-max). In this global
operation, partial sums and current maximums

9

are exchanged after each exchange communica-
tion step. Therefore, assuming a perfect load bal-
ance, the parallel computational complexity of an
individual GJ iteration is:

2M 6N
TGJ ~ <T + ?) Leate + 210g2 Ptsu

P—-1
+ <T N + 2log2P> Ly (12)

As is seen from this equation, the communication
overhead can be considered negligible for a
sufficiently large granularity (i.e., M/P>N).
Note that this equation is equivalent to Eq. 4
for P = 1.

6.2 Parallel scaled conjugate-gradient
(SCG) method

The SCG algorithm (Fig. 2) formulated for the
solution phase has the following basic types of
operations: matrix-vector product (y = Fx), diag-
onal matrix-vector products (x = D, p*,z = D,y),
vector subtraction (q* = p* — z), inner products
(KF5 5, <(p~q°>), vector update through
SAXPY operations in steps 3, 4, and 6, and vector
norm and maximum operations for the conver-
gence check. All of these basic operations can be
performed concurrently by distributing the rows
of the F matrix and the corresponding entries of
the e,D{,D,,X,y,z b,p, T, and q vectors.

As is discussed for the parallel GJ algorithm,
during the phase of the parallel form-factor com-
putation, the rows of the F matrix are assigned to
the processors automatically. With such a map-
ping, each processor stores its own (local) row
slice of the F matrix and the corresponding slices
of the e,D;, and D, vectors. Furthermore, each
processor is responsible for updating its local sli-
ces of the x,y,zb,p,F,q vectors. Figure 5 illus-
trates the parallel SCG algorithm.

A sequence of distributed matrix and vector com-
putations are needed for the distributed computa-
tion of the q* vector. To find the diagonal matrix
vector products x = D,p* and z = Dy, the pro-
cessors concurrently compute their local x,,.,; and
Ziocar VECtOTs by computing element-by-element
products of pairs of local vectors that correspond

10

fork =0,1,2,...

_ &
1. (a) Xiocat = Dagiocal)Plocat
(b) perform global-concatenate on Xiocar — Xgiobal
(¢) Yiocal = FiocalXgtobal
(d) Ztocat = Di(local)Yiocal
E ook
(&) Wocar = Plocat — Zlocal
—e ok &
2. (a) Orocal =< Plocatr Local >
(b) perform global-sum on jocat — Ogiobat
(¢) agrobat =< T, ¥ > g100a1 /Ogiobal
Skl _ =k k
3. Tlgeal = Tlocal — Xglobal Aiocal
RE+L _ [k k
4. bygiar = blpcar + globaiPlocar

<kl k4l
5. () Mocat =< Fijbap, Fiota >

(b) rf,ca — Doifeq), blocar — Dabloy
biocaimaz = m‘w(bﬁ;cal)v Tlocal = Norm(rfocal)
(c) perform one global operation to compute
Aocal = Aglobal » Tlocal = Oglobals blocalmaz — bglobaimaz
check o g10bar / bgiobatmaz < €
(d) Batobat = Agiovat/ < ¥, ¥F > giopa
(e) < FFHL FF+L > = Agiobar

B+l _ <kl k
6. Protar = Figear + Balobal Plocar

Fig. 5. The parallel SCG method

to their slices of the global D,, p* and Dy, y vec-
tors, respectively. Thus, the distributed diagonal
matrix vector product does not necessitate any
interprocessor communication. As is the case in
the GJ method, the distributed computation of
the matrix vector product y = Fx necessitates
global concatenation on the local x,.; vector
stored in a local array X of size N/P in each
processor. Then, the processors concurrently
compute their local y;,.; vectors by multiplying
a local matrix corresponding to their slice of the
F matrix with the global x,,, vector, collected
in an array GX of size N in their local memories
after the global concatenate operation. Finally,
the processors concurrently compute their local
q¥.a vectors with local vector subtraction
operation.

All processors need the most recently updated
values for the global scalars o5, and Bgopa for
their local vector updates in steps 3, 4, and 6. As is
seen in steps 2 and 5, the update of these global
scalars involves computing the inner products
{q*,p*> and (F*" 1 F** 1) at each iteration. Hence,
all processors should receive the results of these
distributed inner product computations. To com-
pute these products, the processors concurrently
compute the local inner products (partial sums)
corresponding to their slices of the respective
global vectors. Then, the results are accumulated
in the local memory of each processor by a glob-
al-sum operation. At the end of the global sum

operation, the processors can concurrently com-
pute the same value for the global scalars oppa
and f 1, With these global inner product results.
In steps 3, 4, and 6, the processors concurrently
update their local byyeq;, Frocar and Poeqr Vectors with
local SAXPY operations on these vectors. Note
that the distributed norm and maximum opera-
tions also necessitate global sum-max operations
after all processors concurrently compute their
local (partial) error norms and maximums, which
correspond to the norm/maximum of their sli-
ces of the global r and b vectors. Fortunately,
these operations and the global inner product
Pk 1§k 1y can be concurrently accumulated in
the same global operation to avoid the extra over-
head of the log, P set-up time. In this global op-
eration, one local maximum and two partial sums
are exchanged in each of the log, P concurrent
exchange steps. Therefore, assuming a perfect
load balance, the parallel computational com-
plexity of an individual SCG iteration is:

2M 18N

TSCG ~ <T + T) tcalc + 31092Ptsu

P—1
+ <T N + 4log2P> ti. (13)

As is seen from this equation, the communication
overhead can be considered negligible for a suffi-
ciently large granularity (i.e., M/P>N).

6.3 A parallel renumbering scheme

In the form-factor computation phase of the static
assignment scheme, patches are renumbered and
assigned to the node processors so that processor
| has patches from %I to $(+1)—1 for
1=0,1,2,...,P — 1. Therefore, the exchange
sequence, together with the local concatenate
scheme in the global concatenate operations at
step 1a of the parallel GJ algorithm and step 1b of
the parallel SCG algorithm, maintains the orig-
inal global patch ordering of the static assignment
scheme in the local copies of the global vectors.
Hence, during the concurrent local matrix vector
products, the appropriate entries in the current
global vectors collected in the local GB (in GJ)
and GX (in SCG) arrays can be accessed for

multiplication by indexing through the column ids
of the local nonzero form-factor values. Unfortu-
nately, this nice consistency between the global
patch numbering and the global F matrix row
ordering among the processors is disturbed in the
demand-driven assignment scheme. Hence, the
demand-driven assignment scheme necessitates
two-level indexing for each scalar multiplication
involved in the local matrix vector products at
each iteration. We propose an efficient parallel
renumbering scheme to avoid this two-level
indexing.

During the computation of the form-factor matrix
in the demand-driven assignment scheme, each
processor saves the global id of the patches it
receives from the host processor in a local integer
array ID. After the form-factor computation,
a global-concatenate operation on these local ar-
rays collects a copy of the global GID array in
each processor. Note that the collection operation
is done in the same way as the global concatenate
operation to be performed on the local B (in GJ)
and X (in SCQG) arrays during the iterations.
Hence, there is a one-to-one correspondence
between the GB (GX) and GID arrays such
that the radiosity value in GB[i] (GX[i]) belongs
to the patch whose original global id =
GID[i]. Then, each processor constructs the same
permutation array PERM of size N, where
PERMIGID[i]] =1 (fori=1,2,...,N) by per-
forming a single for loop. Here, PERMTJi] de-
notes the new global id for the ith patch in the
original global numbering. Then, each processor
concurrently updates the column_id values of
all its local nonzero form-factor values using
the PERM array as column_id = PERM
[column_id]. Note that this renumbering opera-
tion is performed only once as a preprocessing
step just before the solution phase, and it is not
repeated when the reflectivity and/or emission
values are modified.

7 Load balancing in the solution
phase: data redistribution

Assigning equal numbers of F matrix rows and
the corresponding vector elements suffices to
achieve a perfect load balance during the distrib-
uted vector operations involved in the GJ and
SCG iterations. However, the computational

11

complexities of individual GJ and SCG iterations
are bounded by the distributed matrix vector
products Fb and Fx, respectively. Hence, the load
balance during the computing of the distributed
matrix vector products is much more crucial than
during that of the vector operations. Since we
exploit the sparsity of the F matrix in the matrix
vector products, the load balance in these compu-
tations can only be achieved by assigning equal
numbers of nonzero entries of the K matrix to the
processors.

The factors that effect the load balance in the
form-factor computation and the solution phases
are not the same. The assignment schemes men-
tioned earlier for the form-factor computation
aim at achieving load balance on the hemicube
filling operations associated with the patches.
However, even if two patches require almost equal
time for hemicube filling the number of nonzero
entries in the respective rows may be substantially
different. Hence, an assignment scheme (e.g., the
demand-driven assignment) that yields a near-
perfect load balance in the form-factor computa-
tion may not achieve a good load balance during
the solution phase. Furthermore, it is not possible
to achieve perfect load balance in the form-factor
computation phase through static assignment,
since the amount of projection work is not known
a priori. However, once the sparsity structure of
the F matrix is determined at the end of the
form-factor computation phase, static reassign-
ment can be used for better load balancing in the
solution phase. Recall that the parallel form-
factor computation phase already imposes a row-
wise distribution of the nonzero F matrix entries
that may not achieve this desired assignment.
Hence, a redistribution of F matrix entries is
needed for perfect load balancing during the dis-
tributed matrix vector product operations. There
are various data redistribution schemes in the
literature (Ryu and Jaja 1990; Jaja and Ryu 1992).
The main objective in these schemes is to achieve
a data redistribution such that the number of data
elements in different processors differ at most by
one. However, these schemes do not assume any
hierarchy among the data elements. In our case,
data elements belong to the rows of the F matrix,
and it is desirable to minimize the subdivision of
rows among the processors because subdivided
rows may require extra communication during
the solution phase. Furthermore, the data move-

12

ment necessitated by the redistribution should be
minimized to minimize the preprocessing over-
head for the solution phase.

7.1 A parallel data-redistribution scheme

In this work, we propose an efficient parallel
redistribution scheme that allows at most one
shared row between successive processors in the
decimal ordering (i.e., between processors [and
I+ 1forl=0,,...,P—2). That is, each proces-
sor [, except the first and the last processors (0 and
P — 1, respectively), may share at most two rows,
one with processor I — 1 and one with processor
I + 1. The processors 0 and P — 1 may share at
most one row with processors 1 and P — 2, re-
spectively. Recall that successive processors in the
decimal ordering hold the successive row slices of
the distributed F matrix. We assume a similar
global implicit numbering for the nonzero entries
of the distributed F matrix. Nonzero entries in the
same row are assumed to be numbered in the
storage order. Nonzero entries in the successive
rows are assumed to be numbered successively.
Hence, the global numbers of the nonzero entries
in processor [+ 1 are assumed to follow those of
processor [.

In the parallel reassignment phase, a global con-
catenate operation is performed on the local
F matrix nonzero entry counts so that each pro-
cessor collects a copy of the global integer
OLDMAP array of size P. At this stage,
OLDM AP[I] denotes the number of nonzero en-
tries computed and stored in processor [for

1=0,1,...,P — 1. Then, processors concurrently
run the prefix sum operation on their OLDM AP
array. After the prefix sum operation,

OLDMAP[l—1]+4+1---OLDMAP[I] denotes
the range of nonzero entries computed and stored
in processor [in the assumed ordering. Note that
OLDMAP[P — 1] = M yields the total number
of nonzero entries in the global F matrix. Then, all
processors concurrently construct the same inte-
ger NEWMAP array of size P, where NEW -
MAP[I]=[% 1 for 1=0,1,...,(MmodP)—1
and NEWMAP[I]=| % | for [=(MmodP),
..., P — 1. At this stage, NEW M AP[!] denotes
the number of nonzero entries to be stored in
processor [after the data redistribution. Then, the
processors concurrently run the prefix sum

operation on their NEW M AP array. Therefore,
after the prefix sum operation NEWMAP[Il — 1]+
1--- NEWMAP[I] denotes the range of F matrix
nonzero entries to be stored in processor [in the
assumed ordering after the redistribution. Each
processor, knowing the new mapping for their
current local nonzero entries, can easily determine
its local row subslices to be redistributed and their
destination processor(s). Similarly each processor,
knowing the old mapping for their expected map-
ping after the data redistribution, can easily deter-
mine the source processor(s) from which it will
receive data during the redistribution and the
volume of data in each receive operation. How-
ever, the sending processors should append the
row structure of the data transmitted in front of
the messages during the data redistribution phase.
Note that consecutive row data are transmitted
between processors, and only the first and/or last
rows of the transmitted data may be partial
row(s). Processors receiving data store them in
row structure according to the global row order-
ing with simple pointer operations.

At the end of the data redistribution phase, the
number of nonzero entries stored by different pro-
cessors may differ at most by one. Thus, perfect
load balance is achieved during the distributed
sparse matrix vector product calculated at each
iteration of both the GJ and the SCG methods.
However, shared rows need special attention
during these distributed matrix-vector-product
operations. Consider a row ‘i’ (in global row num-
bering) shared between processors | and [+ 1.
Note that this row corresponds to the last and
first (partial) local rows of processors [and [+ 1,
respectively. During the distributed matrix vector
product these two processors accumulate the par-
tial sums that correspond to the inner products of
their local portions of the ith row of the F matrix
with the global right-hand-side vector. These two
partial sums should be added to determine the ith
entry of the resultant left-hand-side vector. Hence,
row sharing necessitates one concurrent inter-
processor communication between successive
processors after each distributed matrix vector
product. In the proposed mapping, the computa-
tions associated with the vector entries corre-
sponding to the shared rows between processors
land [+ 1 are assigned to the processor [+ 1 for
[=0,1,...,P — 2. Hence, processors concurrent-
ly send the partial inner product results corre-

sponding to their last local row (if it is shared) to
the next processor in the decimal ordering. Note
that only a single floating-point word is transmit-
ted in these communications. Hence, this concur-
rent shift-and-add scheme for handling shared
rows introduces a tg, + t, + t,4q COncurrent com-
munication and addition overhead per iteration
of both the GJ and SCG algorithms.

7.2 Avoiding the extra set-up time
overhead

We propose an efficient scheme for the GJ method
that avoids the extra set-up time overhead by
incorporating this extra communication into the
global concatenation. In the proposed scheme, the
global concatenate operation is performed on the
bkt array after step 1d (Fig. 3) instead of on the
b¥ . . array at step la. That is, it is actually per-
formed for the next iteration. Note that the first
and/or last entries of the x;,.,; array may contain
partial results at the end of step 1b due to the row
sharing. Processors propagate these partial results
to their bf,!} arrays through step 1c and d. Hence,
the first and/or last entries of the b%!} array may
contain partial results just before the global con-
catenate operation modified to handle these par-
tial results. The exchange and local concatenate
structure of the modified global concatenate op-
eration is exactly the same as that of the conven-
tional one. However, just after the concurrent
exchange step over channel j, processors whose
jth bit of their processor ids are 1(0) add the last
(first) entry of the received array to the first (last)
entry of their local array in addition to the proper
local concatenate operation if this location con-
tains a partial result. The concurrent addition
operation after the exchange step over channel
j corrects the partial result corresponding to the
shared rows between successive processors of
the hamming distance j+ 1 for j=0,1,...,
log, P — 1. The proposed modification introduces
an overhead of (¢, + t.u)log, P to each global
concatenate operation. Since ty,>t, in medium-
to-coarse grain parallel architectures (e.g., the
iPSC/2), the modified global concatenate scheme
performs much better than the single shift-and-
add scheme. In the SCG method, a similar ap-
proach can be followed to incorporate the extra
communication overhead due to the shared rows

13

1al”
puter

into the global inner product operation at step
2a-b in Fig. 5.

8 Experimental results

The algorithms discussed in this work were imple-
mented (in the C language) on a 4D Intel iPSC/2
hypercube multicomputer. These algorithms were
tested on various room scenes containing various
objects discretized into varying numbers of
patches ranging from 496 to 2600.

Table 1 illustrates the relative performance results
of various parallel algorithms for the form-factor
computation phase. The execution times of the
algorithms are illustrated in Fig. 6a for 16 proces-
sors. Parallel timing results for the random as-
signment scheme denote the average of 5 different
executions for different random assignments. As is
seen in the table, the storage sharing scheme gives
better performance results than the patch circula-
tion scheme. In the storage sharing scheme, ran-
dom decomposition yields a better load balance
than the tiled decomposition, as is expected. How-

Table 1. Relative performance results in parallel execution times

computation phase

ever, tiled assignment in the storage sharing
scheme yields better results in most of the test
instances (e.g., 15 out of 19) than the random
assignment in patch circulation due to the de-
crease in communication overhead. As seen in
Table 1 and in Fig. 6a, the demand-driven scheme
always performs better than the static assignment
scheme due to a better load balance. Note that
experimental timing results for some of the instan-
ces are missing for a small number of processors
due to insufficient local memory sizes. The se-
quential timings could only be obtained for the
smallest scenes with N =886 and N = 1000 as
3418.7 s and 3981.3 s, respectively. The efficiency
curves for these scenes are illustrated in Fig. 6b.
The demand-driven scheme yields almost 0.99 ef-
ficiency even for these two small scenes on a hy-
percube with 16 processors.

We have also experimented on the effect of the
assignment granularity on the form-factor compu-
tation and solution phases for the demand-driven
assignment scheme. The results of these experi-
ments are displayed in Fig. 7. The assignment
granularity denotes the number of patches

(in seconds) of various parallel algorithms for the form-factor

Scene P Static assignment Demand-driven
scheme
N M Patch circulation Storage sharing
Random Random Tiled
2600 1804 647 16 1560.0 1193.6 1539.4 1149.9
8 3046.4 2380.7 3024.9 2299.5
2208 1468539 16 1227.8 9717.5 1203.5 929.1
8 2383.4 1911.2 2365.5 1857.3
1728 746779 16 757.6 565.5 751.0 530.2
8 1450.9 1099.0 1482.3 1059.0
4 2719.5 2161.5 2909.9 2110.8
1412 461947 16 564.9 443.6 5354 4239
8 1078.1 867.1 994.0 843.9
4 2032.6 1700.7 1923.0 1684.9
2 3764.7 3399.2 3594.3 3365.3
1000 342003 16 3228 263.7 309.9 251.2
8 616.1 5123 621.8 499.7
4 1173.8 1012.5 1149.3 996.8
2 2191.2 2014.4 2223.8 1993.0
886 303 146 16 274.4 224.8 254.8 215.5
8 519.1 439.0 4923 428.9
4 997.2 870.2 955.7 853.9
2 1858.5 1719.0 1858.3 1708.1

14

‘m%fu oy
VISUZ
s B
omputer
Execution Times for Form-Factor Computation Phase Efficiency Curves for Form-Factor Computation Phase
Number of Processors = 16
2000.0 1.00
GO—=© Patch circulation - Random
- {3—& Storage sharing - Random f—— — — — — — — —
&>—< Storage sharing - Tiled
&—2 Demand-driven
1500.0
G—© N=886, Patch circulation
s ©—© N=886, Storage sharing
§ 0.90 | ---"\\~"-"--"---- ALH—2A N=886, Demand-driven
§ <+—-<1N=1000, Patch circulation
3 *——% N=1000, Storage sharing
£ §- »——x N=1000, Demand-driven
g 1000.0 8
= 2
b= &
E=
g
fin]
500.0
o — oro L | o
886 1000 1412 1728 2208 2600 2 4 8 16
Scene Complexity (Number of Patches) Num. of Processors
6a 6b
Effect of the Assignment Granularity Effect of the Assignment Granularity
form-factor computation phase solution phase
260.0 —— . - - 18.0
o 1 1 1
S S b L
o i ' 1 e A
250.0 fri-r--mrommm oo oo == L
A , ! 17.0 fhbobombomm oo oo
T T T [U,
_ b ' ' ! .
™ o ' ' ' =
B La00 bbb bo__i : : i -
g e 1 ; g
= T | i | -
I e A foome R A S S
- o ' ' ' =
g o : : £
g 2300 b - /ooy o Ty = S P < T A I
fin] o i i I fin] T i
A e SR i |
o d i H Vi 1
o0 ! : 15.0 1--r e i e
2200 (rr-pl--r------- R et To-~---- 5 |
7 i i i v Y
']] 1 1 rr L
4 e A i '
o i i 1 o |
2100 Lii L : : 140 Lit ! ! : :
12 4 8 16 32 12 4 8 16 32
Granularity Granularity
Fig. 6a,b. Form-factor computation phase: a execution times for various schemes on 16 processors; b efficiency curves for
various schemes
Fig.7. The effect of the assignment granularity on the performance (execution time in seconds) of the demand-driven scheme
for N =886, P =16

assigned and sent to the requesting idle processor
by the host processor. A small assignment
granularity (e.g., single patch assignment) gives
better performance in the parallel form-factor
computation phase due to the better load balance
in spite of the increased communication overhead.
Therefore, we can deduce that the calculation of
a single form-factor row is computationally inten-

sive, and hence the load balance is a more crucial
factor than the communication overhead in this
scheme. As is also seen in the figure, a similar
behavior is observed in the solution phase when
nonzero entries are not redistributed. Note that
higher granularity means a processor will gener-
ate more rows for a single request. Hence, the
number of nonzero entries in the local slices of the

15

=
S
=)
=
Q
(3]
%
o
=
S
o
=2
)
<=
=~
2]
el
<
Q
=
-
o
>
o
el
Q
S
<
=
3]
o
7]
1]
<
(5]
=
=
=
=
=
=
o0
=
S
<
=
©
o
<=
=
(5]
g
—
)
(5]
=
=
e
.|
2]
=
=
)
2]
<
=
o
=
o
=
=
o
2]
(5]
=
=
=]
R
v
£
(5]
=
o
2]
2]
=
-2
—
<
>
—
o
—
1]
o
=
Q
o
2
v
=]
=
w2
Q
g
=
=
o
=
=
Q
(3]
%
o
—_
(5}
=
<
-
<
a3
~
)
=2
=
<
2

(5}
g
=
=
on
£
w
175}
(5}
Q
o
St
o
o
St
o
+
=1
o
=
=2
o
w
2
Il
[_‘
)
[_4
73
el
<
()
=
St
o
>
o
on
£
o
=
=
Q
g
pay
[_'
o)
=
(5}
E
=

=
(o)}

Demand-driven approach

Static

P

Scene

assignment,
random

Redistribution

No redistribution

TOT

Solution
time

Preprocessing

time

TOT

Preprocessing Solution

time

TOT

time

Renumbering Redistribution Iterations Total

Total

Iterations

Renumbering

461947

1412

17.0
332
65.7
1309

16.8
329
65.3
130.1

0.263
0.514
1.020
2.042

0.093
0.117
0.085
0.024

0.104
0.189
0.359
0.702

18.0
33.7
66.3
131.6

17.9
335
65.9
1309

0.280
0.523
1.030
2.045

0.114
0.195
0.364
0.708

342003

1000

O\ N ©
<t oo~ <
— AN —

—
Sy —
<t oo o~ <
— N —

—
oAt on
o QN 0
NS
SOoOO -
<t 00 00 O
[l S A sa)
coco
Soo o
v~ O~
N O = —
S =l
Soo O
v QN 0 \O
— O W

—
ol N ullie}
— AN —

—
o on on —
<t 0o O —
A < Y @
oo~
QDN O~
=
QoM
SoOoOoO

303 146

886

F matrix in each processor may be substantially
different, incurring more load imbalance in the
solution phase for higher granularity values. As is
expected, when the data are redistributed, the
execution time of the solution phase remains con-
stant, irrespective of the assignment granularity.

Table 2 illustrates the performance comparison of
various schemes in the solution phase along with
the associated overheads. Note that static assign-
ment scheme does not necessitate any renumber-
ing operation. As is expected, data redistribution
achieves performance improvement due to better
load balancing in spite of the preprocessing over-
heads. The overall performance gain will be much
more notable for repeated solution operations as
are required in lighting simulations, since the data
are redistributed only once for such applications.
As is seen in this table, the time spent for the
renumbering and data redistribution operation is
substantially smaller than even the solution time
per iteration and yields a considerable improve-
ment in performance during the parallel solution.
For example, by spending almost 0.6% of the
solution time in data redistribution, we reduce the
total solution time by almost 7.1% on 16 proces-
sors for the scene with N = 1412 patches. The
relative performance gain achieved by adopting
data redistribution is expected to increase with an
increasing number of processors. Table 2 also
illustrates the decrease in the execution time of the
parallel renumbering operation whenever the
data redistribution operation is performed. This is
due to the fact that the load balance metric in
both the parallel renumbering and the matrix
vector product operations are exactly the same;
i.e., there are equal numbers of nonzero matrix
elements in each processor.

Table 3 illustrates the performance comparison of
the GJ and SCG methods for the parallel solution
phase. Note that experimental timing results for
some of the instances on a small number of pro-
cessors are missing due to the insufficient local
memory size. However, sequential timings for the
scenes with N = 1728, 2208, and 2600 patches are
estimated with the sequential complexity expres-
sions given in Egs. 4 and 8 and with ¢, = 5.87 us
for the sake of efficiency computations. The
number of iterations denote the total number of
iterations required for convergence to the same
tolerance value (5 x 107°) for three color bands
(i.e., red, green, blue). As is seen in Table 3, an

i

isua
1puter

Table 3. Performance comparison of parallel the Gauss—Jacobi (GJ) and Scaled Conjugate-Gradient (SCG) methods (1* denotes the
estimated sequential timings)

Scene P Gauss—Jacobi Scaled Conjugate-Gradient
N M Execution time Number of Execution time Number of
iterations iterations
Total Iterations Total Iterations
2600 1804 647 16 124.0 1.35 92 54.1 1.39 39
8 246.2 2.68 92 106.7 2.74 39
1* 1957.6 21.28 92 837 21.47 39
2208 1468 539 16 102.1 1.10 93 46.4 1.13 41
8 202.6 2.18 93 91.3 2.23 41
1* 1610.6 17.32 93 716.4 17.47 41
1728 746779 16 51.5 0.57 91 23.6 0.59 40
8 101.6 1.12 91 46.1 1.15 40
4 202.0 222 91 91.0 2.28 40
1* 803.4 8.83 91 358 8.95 40
1188 178374 16 12.6 0.15 87 6.1 0.16 38
8 24.2 0.28 87 114 0.30 38
4 474 0.55 87 21.9 0.58 38
2 939 1.08 87 43.1 1.13 38
1 186.7 2.15 87 83.5 2.20 38
880 45889 16 4.1 0.05 89 24 0.06 41
8 7.1 0.08 89 4.0 0.10 41
4 13.3 0.15 89 7.1 0.17 41
2 26.1 0.29 89 13.6 0.33 41
1 514 0.58 89 25.8 0.63 41
496 66900 16 4.8 0.06 83 2.5 0.07 38
8 8.8 0.11 83 44 0.12 38
4 17.2 0.21 83 8.4 0.22 38
2 33.8 0.41 83 16.4 0.43 38
1 67.0 0.81 83 31.5 0.83 38
individual SCG iteration takes more time than
that of the GJ iteration. However, the SCG
method converges much faster than the GIJ
method, as is expected. Therefore, we recommend
the parallel SCG method for the solution phase.
Figure 8 illustrates the efficiency curves of the
> SCG method. As is seen in this figure, the efficien-
8 o8 cy remains above 86% for sufficient granularity
£ (e, M/P > 11148).

| |

500K

1000K 1500K
Number of non-zero entries

Fig. 8. Efficiency curves for the SCG method

2000K

9 Conclusions

In this work, a parallel implementation of the
gathering method for hypercube-connected multi-
computers has been discussed for applications in
which the location of objects and light sources
remain fixed, whereas the intensity and color of
the light sources and/or reflectivity of objects vary

17

in time, such as in lighting simulations. In such
applications, the efficient parallelization of the
solution phase is important since this phase is
repeated many times.

The powerful scaled conjugate-gradient (SCGQG)
method has been successfully applied in the solu-
tion phase. It has been shown that the non-
symmetric form-factor matrix can be efficiently
transformed into a symmetric and positive defi-
nite matrix to be used in the SCG method. It has
been experimentally observed that the SCG algo-
rithm converges faster than commonly used
Gauss—Jacobi (GJ) algorithm, which converges in
almost double the number of iterations of the
SCG algorithm. Efficient parallel SCG and GIJ
algorithms were proposed and implemented. An
almost perfect load balance has been achieved by
a new and efficient parallel data redistribution
scheme. Our experiments verify that the efficiency
of the SCG algorithm with the data redistribution
scheme remains over 86% for sufficiently large
granularity (i.e., M/P > 11 148). We conclude that
the SCG method is a much better alternative to
the conventional GJ method for the parallel solu-
tion phase.

In this paper, several parallel algorithms for the
form-factor computation phase were also present-
ed. It has been illustrated that it is possible to
reduce the interprocessor communication by
sharing the memory space for rows of the form-
factor matrix with global patch data. It has also
been observed that the demand-driven approach,
in spite of its extra communication overhead,
achieves better load balancing and hence better
processor utilization than static assignment.

An efficient parallel renumbering scheme has also
been proposed to avoid double indexing required
in the matrix vector products in the parallel SCG
and GJ algorithms when demand-driven assign-
ment is used in the form-factor computation
phase.

Acknowledgements. This work is partially supported by the
Commission of the European Communities, Directorate General
for Industry under contract ITDC 204-82166, and The Scientific
and Technical Research Council of Turkey (TUBITAK) under
grant EEEAG-160.

References

1. Aykanat C, Ozgiiner F, Ercal F, Sadayappan P (1988)
Iterative algorithms for solution of large sparse systems of

18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

linear equations on hypercubes. IEEE Trans Comput
37:1554-1568

. Aykanat C, Capin TK, Ozgii¢ B (1996) A parallel progressive

radiosity algorithm based on patch data circulation. J Com-
put Graph 20:307-324

. Baum DR, Rushmeier HE, Winget JM (1989) Improving

radiosity solutions through the use of analytically deter-
mined form-factors. Comput Graph 23:325-334

. Chalmers AG, Paddon DJ (1989) Implementing a radiosity

method using a parallel adaptive system. Proceedings of the
Ist International Conference on Applications of Trans-
puters, Liverpool, UK

. Chalmers AG, Paddon DJ (1990) Parallel radiosity methods.

The 4th North American Transputer Users Group Confer-
ence, Ithaca, USA, 10S Press, pp 183-193

. Chalmers AG, Paddon DJ (1991) Parallel processing of

progressive refinement radiosity methods. Proceedings of
the 2nd Eurographics Workshop on Rendering, Barcelona,
Spain

. Cohen MF, Greenberg DP (1985) The hemi-cube: a radiosity

solution for complex environments.
(SIGGRAPH’85) 19:31-40

Comput Graph

. Cohen MF, Chen S, Wallace J, Greenberg DP (1988) A pro-

gressive refinement approach for fast radiosity image
generation. Comput Graph 22:75-84

. Drucker SM, Schroeder P (1992) Fast radiosity using a

data parallel architecture. Proceedings of the 3rd Euro-
graphics Workshop on Rendering, Bristol, UK, pp 247-258
Feda M, Purgathofer W (1991) Progressive refinement
radiosity on a transputer network. Proceedings of the
2nd Eurographics Workshop on Rendering, Barcelona,
Spain

Golub GH, van Loan CF (1989) Matrix computations,
2nd edn. The Johns Hopkins University Press, Baltimore,
Maryland

Goral CM, Torrance KE, Greenberg DP, Battaile B (1984)
Modeling the interaction of light between diffuse surfaces.
Comput Graph 18:213-222

Guitton P, Roman J, Schlick C (1991) Two parallel
approaches for a progressive radiosity. Proceedings of the
2nd Eurographics Workshop on Rendering, Barcelona,
Spain

Hestenes MR, Stiefel E (1952) Methods of conjugate gradi-
ents for solving linear systems. Natl Bureau Stand J Res
49:409-436

Jaja J, Ryu KW (1992) Load balancing and routing on the
hypercube and related networks. J Parallel Distributed
Comput 14:431-435

Jessel JP, Paulin M, Caubet R (1991) An extended radiosity
using parallel ray-traced specular transfers. Proceedings of
the 2nd Eurographics Workshop on Rendering, Barcelona,
Spain

Neumann L (1994) New efficient algorithms with posi-
tive definite radiosity matrix. Proceedings of the 5th Euro-
graphics Workshop on Rendering, Darmstadt, pp 219-237
Neumann L, Tobler R (1995) New efficient algorithms with
positive definite radiosity matrix. In: G. Sakas, P. Shirley,
and S. Miiller (eds) Photorealistic Rendering Techniques.
Springer, pp 227-243

Paddon D, Chalmers A, Stuttard D (1993) Multiprocessor
models for the radiosity method. Proceedings of the 1st
Bilkent Computer Graphics Conference on Advanced Tech-
niques in Animation, Rendering, and Visualization. Ankara,
Bilkent Univ., Ankara, pp 85-103

— Fh

“Visual
Computer

20. Price M, Truman G (1990) Radiosity in parallel. Application
of transputers: Proceedings of the 1st International Confer-
ence on Applications of Transputers, IOS Press, Amster-
dam, pp 40-47

21. Purgathofer W, Zeiller M (1990) Fast radiosity by paralleli-
zation. Proceedings of the Eurographics Workshop on
Photosimulation, Realism and Physics in Computer
Graphics, Rennes, pp 173-184

22. Ranka S, Sahni S (1990) Hypercube algorithms with applica-
tions to image processing and pattern recognition. Bilkent
University Lecture Series, Springer, Berlin Heidelberg New
York

23. Ryu KW, Jaja J (1990) Efficient algorithms for list ranking
and for solving graph problems on the hypercube. IEEE
Trans Parallel Distributed Syst 1:83-90

24. Varshney A, Prins JF (1992) An environment-projection
approach to radiosity for mesh-connected computers. Pro-
ceedings of the 3rd Eurographics Workshop on Rendering,
Bristol, UK, pp 271-281

25. Watt A (1989) Fundamentals of three-dimensional computer
graphics. Addison Wesley, Wokingham New York Amster-
dam Bonn

26. Whitman S (1992) Multiprocessor methods for computer
graphics rendering. Jones and Bartlett Boston

TAHSIN M. KURC received
his B.S. degree in Electrical and
Electronics Engineering from
the Middle East Technical Uni-
versity, Ankara, Turkey, in 1989
and his M.S. degree in Com-
puter Engineering and Informa-
tion Science from Bilkent Uni-
versity, Ankara, Turkey, in 1991.
He is currently a Ph.D. student
at Bilkent University. His re-
search interests include parallel
computing and algorithms,
parallel computer graphics ap-
plications, visualization, and
rendering.

CEVDET AYKANAT received
his B.S. and M.S. degrees from
the Middle East Technical Uni-
versity, Ankara, Turkey, and his
Ph.D. degree from Ohio State
University, Columbus, all in
electrical engineering. He was
a Fulbright Scholar during his
Ph.D. studies. He worked at the
Intel Supercomputer Systems
Division Beaverton, as a re-
search associate. Since October
1988 he has been with the De-
partment of Computer Engin-
eering and Information Science,
Bilkent University, Ankara, Tur-
key, where he is currently an associate professor. His research
interests include parallel computer architectures, parallel algo-
rithms, parallel computer graphics applications, neural network
algorithms, and fault-tolerant computing.

BULENT OZzGUC joined the
Bilkent University Faculty of
Engineering, Turkey, in 1986.
He is a professor of computer
science and the dean of the Fac-
ulty of Art, Design and Architec-
ture. He formerly taught at the
University of Pennsylvania,
USA, Philadelphia, College of
Arts, USA, and the Middle East
Technical University, Turkey,
and worked as a member of the
research staff at the Schlumber-
ger Palo Alto Research Center,
USA. For the last 15 years, he
has been active in the field of
computer graphics and animation. He received his B. Arch. and
M. Arch. in architecture from the Middle East Technical Univer-
sity in 1972 and 1973. He received his M.S. in architectural
technology from Colombia University, USA, and his Ph.D. in
a joint program of architecture and computer graphics from the
University of Pennsylvania in 1974 and 1978, respectively. He is
a member of ACM Siggraph, IEEE Computer Society and UIA.

19

