
Technical Section

OBJECT-SPACE PARALLEL POLYGON RENDERING ON

HYPERCUBES

TAHSIN M. KURC° 1, CEVDET AYKANAT2{ and BUÈ LENT OÈ ZGUÈ C° 2

1Department of Computer Science, University of Maryland, College Park, MD 20742, USA
2Department of Computer Engineering and Information Science, Bilkent University,

06533 Ankara, Turkey

AbstractÐThis paper presents algorithms for object-space parallel polygon rendering on hypercube-con-
nected multicomputers. A modi®ed scanline z-bu�er algorithm is proposed for local rendering phase.
The proposed algorithm avoids message fragmentation by packing local foremost pixels in consecutive
memory locations e�ciently, and it eliminates the initialization of scanline z-bu�er for each scanline.
Several algorithms, utilizing di�erent communication strategies and topological embeddings, are pro-
posed for global z-bu�ering of local foremost pixels during the pixel merging phase. The performance
comparison of these pixel merging algorithms are presented based on the communication overhead
incurred in each scheme. Two adaptive screen subdivision heuristics are proposed for load balancing in
the pixel merging phase. These heuristics utilize the distribution of foremost pixels on the screen for the
subdivision. Experimental results obtained on an Intel's iPSC/2 hypercube multicomputer and a Parsy-
tec CC system are presented. Rendering rates of 300K±700K triangles per second are attained on 16
processors of Parsytec CC system in the rendering of datasets from publicly available SPD database. #
1998 Elsevier Science Ltd. All rights reserved

Key words: polygon rendering, parallel, distributed memory, multicomputers, hypercube.

1. INTRODUCTION

Algorithms and methods in polygon rendering ®eld
[1] deal with producing realistic images of computer

generated environments composed of polygons. A
pipeline of operations is applied to render polygons.

These pipeline of operations transform polygons
from 3-dimensional (3D) space to 2D screen space,

perform smooth shading of the polygons, and per-
form hidden-surface removal to give realism to the

image produced. Among many hidden-surface
removal algorithms, z-bu�er and scanline z-bu�er al-

gorithms are more popular due to wider range of
applications and better utilization of coherency.

Rendering of 3D complex scenes has been a chal-
lenge for many years in computer graphics ®eld.

Along with the advances in computer graphics,
increased importance of more realism in computer
generated images has made the rendering process

more and more complex and time consuming. In
addition, increased complexity of graphical models

(e.g., large number of polygons that make up the
scene) has required more and more memory.

General purpose distributed-memory multicompu-
ters can provide a cost-e�ective and ¯exible en-

vironment for fast image generation.
Polygon rendering applications can be considered

as containing two interacting domains, namely

image-space and object-space. Image-space (screen),

on which the result of the rendering is displayed,

constitutes the output domain of the rendering pro-

cess. Object-space is the input dataset de®ned in 3D

space, and it constitutes the input domain of the

rendering process. Based on these domains, there

are basically two approaches for parallel rendering;

image-space parallelism and object-space parallelism.

In this work, we investigate object-space paralle-

lism for polygon rendering on hypercube-connected

multicomputers. In object-space parallelism, the

domain of decomposition is the input domain of

the rendering process. The primitives (polygons,

objects, etc.) that constitute the environment are

distributed among the processors. Processors con-

currently render their local primitives, thus produ-

cing partial images. After local rendering phase,

partial images in all processors are merged to

obtain the ®nal picture because primitives in di�er-

ent processors may contribute to the same pixel lo-

cation on the screen. Pixel merging (image

composition) phase is performed by exchanging

local image bu�ers fully or partially over the inter-

connection network. Object-space parallelism is also

called sort-last approach [2].

In object-space parallelism, e�cient paralleliza-

tion of the pixel merging phase is one of the most

critical issues because pixel merging phase intro-

duces overhead to the parallel execution. An archi-

tecture with a pipelined image-composition network

Comput. & Graphics, Vol. 22, No. 4, pp. 487±503, 1998
1998 Elsevier Science Ltd. All rights reserved

Printed in Great Britain
0097-8493/98 $19.00+0.00

PII: S0097-8493(98)00047-8

{Corresponding author. E-mail: aykanat@cs.bilkent.
edu.tr.

487

to perform pixel merging is presented in [3, 4].

However, full z-bu�er in each processor is injected
into the communication network resulting in un-
necessarily high volumes of communication. The

approaches in [5, 6] use tree interconnection top-
ology for the pixel merging phase. The main disad-
vantage of both approaches is the low processor

utilization in pixel merging phase due to the tree
topology. Another approach presented in [7] utilizes

network broadcast capability for the pixel merging
phase. This approach decreases the volume of com-
munication by injecting only the pixel information

for `active' pixel locations in each processor into
the network. Furthermore, the volume of communi-
cation is also expected to decrease since each pro-

cessor, which has not yet broadcast its local pixel
information, deletes the local hidden pixels. This
approach is well suited to architectures with net-

work broadcast capability or with shared memory
because the cost of broadcast is small in these ma-

chines. However, communication overhead will be
high in distributed-memory machines since each
active pixel should be broadcast. The second disad-

vantage is the low processor utilization: once a pro-
cessor broadcasts its local pixels, it waits idle until
the end of pixel merging phase.

Low processor utilization in the pixel merging
phase is a common problem in the previous

approaches [5±7]. Lee et al. [8] address this problem
and divide the screen during pixel merging phase on
2D mesh architectures. Static interleaved assign-

ment of scanlines is utilized for load balancing in
the pixel merging phase. Adaptive division of the
screen for load balancing in pixel merging compu-

tations remains as an alternative to be investigated.
The communication overhead is another issue

which should be considered carefully. Volume of
communication can be decreased by exchanging
only foremost pixels in each processor. Exchanging

foremost pixels rises one important question as how
to extract local foremost pixels to avoid message
fragmentation in pixel merging phase. No algor-

ithms are presented in the previous works to answer
this question. E�cient algorithms to perform

extraction of local foremost pixels in the local ren-
dering phase need to be investigated.
In this work, a modi®ed scanline z-bu�er algor-

ithm is proposed for local rendering phase. The
nice features of the proposed algorithm are as fol-
lows. It avoids message fragmentation in pixel mer-

ging phase by storing local foremost pixels in
consecutive memory locations e�ciently. In ad-

dition, it eliminates initialization of scanline z-bu�er
for each scanline, which introduces a sequential
overhead to parallel rendering. All of the processors

are utilized actively throughout the pixel merging
phase by exploiting the interconnection topology of
hypercube and by dividing the screen among pro-

cessors. The volume of communication is decreased
by exchanging only local foremost pixels in each

processor after local rendering phase. We propose
two schemes, called pairwise exchange (PAIR) and

all-to-all personalized communication (AAPC)
schemes. PAIR scheme is also referred to as fold or
multinode accumulation [9]. PAIR scheme involves

a minimum number of communication steps, but it
has store-and-forward overhead. AAPC scheme
eliminates this overhead by increasing the number

of communication steps. Our AAPC scheme di�ers
from 2-phase direct pixel forwarding of Lee et al.
[8]. Our algorithm is a one-phase algorithm, i.e.,

pixels are transmitted to destination processors in a
single communication phase. Hence, our algorithm
avoids the intermediate z-bu�ering in [8]. We also
investigate load balancing in pixel merging phase.

Two adaptive screen subdivision heuristics, namely
recursive subdivision and heuristic bin packing, are
proposed to achieve better load balancing. These

heuristics utilize the distribution of foremost pixels
on the screen for the subdivision. We present exper-
imental results on an iPSC/2 hypercube multicom-

puter and a Parsytec CC system. AAPC scheme
with heuristic bin packing achieves rendering rates
of 300K±700K triangles per second on 16 pro-

cessors of Parsytec CC system using the scenes
from SPD database [10].
Organization of the paper is as follows. Section 2

summarizes the previous work on object-space par-

allelism. Object-space parallel polygon rendering
algorithm is presented in Section 3. Section 4
describes the proposed modi®ed scanline z-bu�er al-

gorithm for the local rendering phase. Section 5
presents several algorithms utilizing di�erent com-
munication strategies and topological embeddings

for parallel pixel merging on hypercubes. We give a
comparison of these schemes based on the com-
munication overhead incurred in each scheme.
Section 6 presents two adaptive screen decompo-

sition algorithms for load balancing in the pixel
merging phase. Experimental results on an Intel's
iPSC/2 hypercube multicomputer are given in

Section 7. Results on a Parsytec CC system are pre-
sented in Section 8.

2. PREVIOUS WORK ON OBJECT-SPACE PARALLELISM

There are various works both on image-space

parallelism [11±16] and object-space parallelism [3±
8]. This section summarizes the previous works on
object-space parallelism.

Molnar et al. [3] and Eyles et al. [4] present
PixelFlow architecture for object-space parallel ren-
dering. In this architecture, primitives are distribu-

ted among a set of identical renderers (¯ow units),
which consist of geometry processor and rasterizer
boards. Image composition network provides a

daisy-chained connection between rasterizer boards
of neighboring ¯ow units. During a typical oper-
ation, ®rst the screen is divided into smaller regions.
Then, geometry processors transform primitives

T. M. Kurc° et al.488

into screen space and place them into buckets for

each screen region. The screen regions are processed
one-by-one. For a given screen region, each ren-
derer rasterizes local primitives in the corresponding

bucket. After local rasterization, the pixel data is
merged over the composition network and loaded
into shaders to convert ®nal pixel data into color

values. Shaders feed color values to frame bu�ers
for display. Regions of screen are assigned to sha-

ders in a round-robin fashion. Flow units can be
designated to operate as shaders, renderers, or
frame-bu�ers by software. PixelFlow architecture is

not the only architecture specialized for parallel ren-
dering. There are other architectures such as Pixel-
Planes [17] and SGI Onyx2 [18]. All of these archi-

tectures use specialized hardware to achieve high
rendering rates. The hardware architectures for ren-
dering is out of the scope of this paper. In this

paper, we investigate algorithms for general purpose
multicomputers, in particular, with hypercube inter-

connection topology.
Scopigno et al. [6] present a parallel hidden-sur-

face removal (HSR) paradigm based on divide-and-

conquer approach. The HSR problem is solved by
subdividing the problem into equal size subpro-

blems recursively until the size of the subproblem
becomes su�ciently small. HSR is done on the sub-
problem by `leafHSR processes'. The results of the

leafHSR processes are then merged to obtain the
®nal result. Authors present simulation results for
tree-based and shared-memory architectures. In

tree-based architecture model, each processor is
assigned either to a leafHSR process or to a merge
process. In shared-memory model, a scheduling pro-

cessor assigns processors to leafHSR and merge
processes.

Li and Miguet [6] present an algorithm for trans-
puters interconnected by a network con®gured as a
tree structure. Pixel merging phase is done using the

tree structure. In order to increase processor utiliz-
ation and reduce memory requirements, the screen
is subdivided into horizontal bands and processing

of these bands are pipelined. Once a processor
®nishes the work on a band, it merges the results

from its children in the tree and sends the merged
band to its parent. Ternary tree, binary tree and
unary tree (ring) interconnection topologies are

investigated for pixel merging phase.
Cox and Hanrahan [7] propose a pixel merging

algorithm developed for architectures with network
broadcast capability. In the pixel merging phase,
pixel information at each `active' pixel location,

de®ned as the pixel location covered by at least one
local polygon, is broadcast over the network.
Starting from processor 1 and continuing in increas-

ing processor numbers, processor k broadcasts the
local pixel information in its local active pixel lo-
cations to a global frame-bu�er and to processors

k + 1, k+ 2,...,P that `snoop' the network to catch
pixel information broadcast. Each snooping pro-

cessor compares the distance values of received pix-
els with local pixels and eliminates hidden local

pixels from further consideration. In this way, the
number of pixels broadcast by the next processor is
expected to decrease.

In a recent work, Lee et al. [8] present several
pixel merging algorithms for 2D mesh multicompu-
ters. Their algorithms consist of two stages. In the

®rst stage, the full screen partial images in each pro-
cessor are divided into r horizontal regions for an
r� c mesh. These regions are concurrently merged

along the rings in the rows of the processor mesh to
produce the respective subimages. In the second
stage, the subimages in each processor are further
divided into c horizontal subregions. These subre-

gions are concurrently merged along the rings in
the columns to produce the ®nal image. In their
®rst scheme, regions of local full z-bu�er are circu-

lated along the rings for merging and forwarding.
In the second scheme, the volume of communi-
cation is reduced by circulating bounding boxes

that cover only active pixels. In their direct pixel
forwarding scheme, the partial images are sent
directly to the destination processors in two stages.

In the local rendering phase, processors store the
generated active pixels in the respective send queues
according to the screen region assignment for the
®rst stage. That is, no z-bu�ering is performed

during the local rendering phase. In the ®rst stage,
these send queues are directly transmitted to their
destination processors in the rows by exploiting the

cut-through [9] routing capability of the architec-
ture. Then, each processor z-bu�ers the received
pixels by its local active pixels to reduce the volume

of communication for the next stage. In the second
stage, active pixels in each processor are merged
along the columns through direct pixel forwarding
as in the ®rst stage. Lee et al. [8] also address the

load balancing issue in the pixel merging phase.
The subregions assigned to processors consist of
interleaved scanlines rather than consecutive scan-

lines for better load balancing.

3. THE PARALLEL ALGORITHM

The following de®nitions are given for the sake
of clarity of the presentation of the parallel algor-

ithm. A pixel location (x,y) on the image plane is
said to be active if at least one pixel is generated for
that location. Otherwise, it is called an inactive pixel

location. Note that di�erent processors may gener-
ate pixels for the same location. A pixel is said to
be a foremost (winning) pixel, if it is the current

pixel whose z value is minimum for the respective
active pixel location. At the end of the pixel mer-
ging operation there remains only one winning pixel

for each active pixel location.
The algorithm for object-space parallel polygon

rendering consists of the following three phases;
initialization, local rendering and pixel merging. In

Object-space parallel polygon rendering 489

the initialization phase, polygon information is dis-

tributed to node processors by the host processor
using scattered assignment scheme. In this scheme,
successive polygons in the sequence are assigned to

the processors in a round-robin fashion. In the
local rendering phase, each processor performs geo-
metry processing, hidden-surface removal and shad-

ing for its local polygons. In this work, we propose
and use a modi®ed scanline z-bu�er algorithm for

hidden-surface removal. This algorithm is presented
in Section 4.
After local z-bu�ering, pixels generated in each

processor should be merged because multiple pro-
cessors may produce pixels for the same pixel lo-
cation. The global z-bu�ering operations during the

pixel merging phase can be considered as an over-
head to the sequential rendering. Each global z-buf-

fering operation necessitates interprocessor
communication. E�cient implementation of the
pixel merging phase is thus a crucial factor for the

performance of object-space parallel rendering. In
its simplest form, pixel merging phase can be per-
formed by exchanging pixel information for all

pixel locations between processors. We call this
scheme full z-bu�er merging. This scheme may

introduce large communication overhead in pixel
merging phase because pixel information for inac-
tive pixel locations are also exchanged. This over-

head can be reduced by exchanging only local
foremost pixels in each processor. This scheme is
referred to here as active pixel merging.

The motivation behind local z-bu�ering is to
reduce the volume of communication during pixel

merging phase through decreasing the number of
local pixels to be globally z-bu�ered. Thus, the ben-
e®t of local foremost pixel concept is expected to

increase with increasing depth complexity of the
scene. However, it should be noted here that local
foremost pixel concept does not integrate transpar-

ency. Depth-sorted non-opaque pixels obtained
during local z-bu�ering cannot be blended locally
because of the possibility of multiple processors

generating pixels for the same location. In this case,
pixel merging involves merge sorting of the locally

sorted pixel lists. Hence, local z-bu�ering cannot
reduce the volume of communication in the merging
of non-opaque pixels. However, local z-bu�ering

together with the concept of local foremost opaque
pixel can be bene®cial in the parallel rendering of
hybrid scenes containing both opaque and non-opa-

que primitives. During local z-bu�ering, pure z-buf-
fering is adopted between opaque pixels to maintain

the current foremost opaque pixel, whereas depth
sorting is adopted for non-opaque pixels which are
not obstructed by the current foremost opaque

pixel. This local z-bu�ering scheme can easily be
implemented by maintaining a linked list of depth-
sorted pixels for each local active pixel location

such that each linked list will contain at most one
opaque pixel as its last entry. In this way, all local

opaque and non-opaque pixels obstructed by the
local foremost opaque pixels will be avoided from

global merging, thus reducing the volume of com-
munication. The algorithms presented in the rest of
the paper assume that the scene is composed of

only opaque primitives.

4. A MODIFIED SCANLINE z-BUFFER ALGORITHM

In distributed-memory multicomputers, transmit-

ting all data elements in one send operation takes
less time than transmitting each element in distinct
steps due to setup time of each message. In order to
prevent message fragmentation in active pixel mer-

ging, the local foremost pixels should be stored in
consecutive memory locations. In this section, we
propose and present a modi®ed scanline z-bu�er al-

gorithm which stores foremost pixels in consecutive
memory locations e�ciently. The proposed algor-
ithm also avoids initialization of the scanline z-buf-

fer for each scanline.
When polygons are projected onto the screen,

some of the scanlines intersect the edges of the pro-
jected polygons. Each pair of such intersections is

called a span. In the ®rst phase of the proposed al-
gorithm, these spans are generated and inserted into
the local scanline span lists (SSL) structure. SSL is a

1D virtual array that holds a linked list of local
polygon spans for each scanline. Each span is rep-
resented by a record, which contains the intersec-

tion pair (minimum x-intersection xmin and
maximum x-intersection xmax) and necessary infor-
mation for z-bu�ering and shading through span

rasterization. SSL is constructed by inserting the
spans of the projected polygons to the appropriate
scanline lists in sorted (increasing) order according
to their xmin values. This sorting allows to perform

local z-bu�ering without initializing the scanline
array for each scanline on the screen.
In the second phase, spans in the SSL structure

are processed, in scanline order (y order), for local
z-bu�ering and shading. Two local 1D arrays are
used to store only local foremost pixels. These two

local arrays are called Winning Pixel Array (WPA)
and Modi®ed Scanline Array (MSA). WPA stores
the information about the foremost (winning) pix-
els. Each entry in this array contains location infor-

mation, z value and shading information about the
respective local foremost pixel. Since z-bu�ering is
done in scanline order, the pixels in WPA are in

scanline order and pixels in a scanline are stored in
consecutive locations. Hence, for location infor-
mation, only x value of the pixel generated for lo-

cation (x,y) needs to be stored in WPA. MSA is a
modi®ed scanline z-bu�er. It is an integer array of
size N for a screen of resolution N�N. MSA[x]

gives the index of the pixel generated at location x
in WPA. At the beginning, each entry of the MSA
is set to zero. Moreover, a range value is associated
with each scanline. The range value of the current

T. M. Kurc° et al.490

scanline is set to one plus the index of the last
pixel, which is generated by the previous scanline,

in WPA. The range value for the ®rst scanline is set
to 1. Since spans are sorted in increasing xmin

values, if a location x in MSA has a value less than

the range value of the current scanline, it means
that location x is generated by a span belonging to
previous scanlines. For such locations, the gener-

ated pixels are directly stored into WPA without
any comparison. Otherwise, the generated pixel is
compared with the pixel pointed by the index value.

This indexing scheme and sorted order of spans in
the SSL structure avoid re-initialization of MSA at
each scanline. However, due to comparison made
with the range value, an extra comparison is intro-

duced for each pixel generated. These extra com-
parison operations are reduced as follows. The
sorted order of spans in the SSL structure assures

that when a span s in scanline y is rasterized, it will
not generate a pixel location x which is less than
xmin of the previous spans. The current span s is

divided into two segments such that one of the seg-
ments cover the pixels generated by the previous
spans in the current scanline and other segment

covers the pixels generated by the spans in the pre-
vious scanline. Distance comparisons are made only
for the pixels in the ®rst segment. The pixels gener-
ated for the second segment are stored into WPA

without any distance comparisons.

5. PIXEL MERGING ON HYPERCUBES

This section presents pixel merging algorithms

developed for a d-dimensional hypercube multicom-
puter with P= 2d processors. In these algorithms,
each processor initially owns local foremost pixels
belonging to the whole screen of size N�N. Then,

a global z-bu�ering operation is performed so that
each processor gathers pixels belonging to a hori-
zontal screen subregion of size N� (N/P).

The algorithms presented in this section use
di�erent interprocessor communication strategies
and di�erent interconnection topologies that can be

embedded onto hypercube. The communication
overhead of each algorithm is analyzed for full z-
bu�er merging and active pixel merging schemes.
For full z-bu�er merging, it is assumed that there

are A = N�N pixel locations on the screen. For
active pixel merging, we assume that each processor
has F foremost pixels after local z-bu�ering, which

are distributed evenly on the image-space along y-
dimension, and we also assume that processors are
perfectly load balanced at each communication

step. Perfect load balance and even distribution
assumptions are made to simplify the analysis of
each algorithm.

In the equations given in the following sections,
tsu denotes the setup time for a message, ttrfull
denotes the time to transmit one pixel location on
z-bu�er, and ttractive denotes the time required to

transmit one active pixel information. A pixel lo-
cation on z-bu�er contains depth value (z) and

color values red, green, and blue. An active pixel in-
formation contains x position of the pixel in ad-
dition to z and color values.

5.1. Ring exchange scheme

One way of performing pixel merging is to embed
a ring onto the hypercube using gray-code ordering
[19], and perform the pixel merging on the ring. In

the ring exchange scheme, each processor receives
pixels from its right neighbor and sends pixels to its
left neighbor. In this scheme, the screen is divided

into P regions and numbered from 0 to Pÿ 1. At
exchange step i (i = 1,...,Pÿ 1), kth processor in
the ring transmits the pixels in the region (k + i)
mod P to its left neighbor and receives the pixels in

the region (k+ i+ 1) mod P from its right neigh-
bor. The receiving processor merges the pixels in
the received screen region with the local region and

stores them in order to transmit in the next step.
These exchange operations are repeated Pÿ 1
times.

In full z-bu�er merging, A/P pixels are concur-
rently sent and received at each communication
step. The communication time in this scheme is

Tcomm � �Pÿ 1�tsu � Pÿ 1

P
Attrfull: �1�

In active pixel merging, each processor sends only
the foremost pixels to its left neighbor and receives
only the active pixels from its right neighbor. The
receiving processor merges these pixels with the

local foremost pixels. The number of pixels after
this merge operation is equal to the number of
active pixel locations in the union of two sets: set of

local active pixel locations and set of received pixel
locations in the respective screen region. If the pro-
cessor has L foremost pixels for a screen region and

receives R pixels for the same region, then at the
end of the merge operation at step i, the number of
foremost pixels will be L + Ci, where 0RCiRR,
assuming RRL. If two sets are totally disjoint then

no pixels are merged, making Ci equal to R. In
other words, Ci represents the amount of concur-
rent store-and-forward overhead due to the pixels

that do not merge at the ith concurrent store-
merge-and-forward step. Therefore, the communi-
cation time in active pixel merging is

Tcomm ��Pÿ 1�tsu

�
�
Pÿ 1

P
F�

XPÿ2
i�1
�Pÿ iÿ 1�Ci

�
ttractive: �2�

As seen in Equation (2), the volume of communi-

cation in active pixel merging depends both on the
number of local foremost pixels and the distribution
of pixels in the subregion for which merging is per-
formed.

Object-space parallel polygon rendering 491

5.2. 2-dimensional mesh exchange scheme

A 2-D mesh with M = 2dd/2e columns and

K= 2bd/2c rows can be embedded onto a hypercube
with P= M�K processors [19]. In mesh embed-

ding, each row and each column of the mesh form

rings in gray-code ordering. Pixel merging can be

done using these rings in the mesh embedding.

First, the screen is divided into M regions. The pro-
cessors at each row, independently from other rows,

merge these M regions along the respective row.

After rowwise merging, nodes on the same column

have the same screen region of size A/M pixels.
Each of these screen regions are further divided

into K regions, and pixel merging is done along the

columns of the mesh.

The communication time (Tcomm) required for a

2D mesh exchange scheme is the sum of the com-

munication time required for rowwise merging
(Trow) and columnwise merging (Tcolumn). Since

rows and columns are simply rings, we can use the

equations for ring exchange scheme. In full z-bu�er

merging, A/M pixels are concurrently sent and
received at each exchange step of the rowwise mer-

ging stage. Hence, the communication time for row-

wise exchanges is

Trow � �Mÿ 1�tsu �Mÿ 1

M
Attrfull: �3�

After rowwise merging, each screen region is

further divided into K subregions. Hence, in full z-

bu�er merge, A/(MK) pixels are concurrently trans-
mitted and received at each exchange step of

columnwise merging. As a result, the communi-

cation time for columnwise exchanges is

Tcolumn � �Kÿ 1�tsu � Kÿ 1

MK
Attrfull: �4�

Hence, total communication time in full z-bu�er

merging is

Tcomm �Trow � Tcolumn

� �M� Kÿ 2�tsu � Pÿ 1

P
Attrfull: �5�

Using a similar approach, communication time

for rowwise exchanges in active pixel merging is

Trow ��Mÿ 1�tsu

�
�
Mÿ 1

M
F�

XMÿ2
i�1
�Mÿ iÿ 1�Ci

�
ttractive: �6�

After rowwise merging, the remaining number of
foremost pixels (Lforemost) at each processor is

Lforemost � F

M
�
XMÿ1
i�1

Ci: �7�

As in full z-bu�er merging, the remaining pixel

set is further divided to exchange along the columns
of the mesh. Therefore, the communication time for

columnwise merging is

Tcolumn ��Kÿ 1�tsu

�
�
Kÿ 1

K
Lforemost �

XKÿ2
i�1
�Kÿ iÿ 1�Bi

�
ttractive

�Kÿ 1�tsu �
�
Kÿ 1

P
F� Kÿ 1

K

XMÿ1
i�1

Ci

�
XKÿ2
i�1
�Kÿ iÿ 1�Bi

�
ttractive: �8�

Here, Ci and Bi denote the amount of pixel store-
and-forward overhead at step i of the rowwise and

columnwise merging phases, respectively. As a
result, total communication time in active pixel
merging is

Tcomm ��M� Kÿ 2�tsu

�
�
Pÿ 1

P
F�

XMÿ2
i�1
�Mÿ iÿ 1�Ci

� Kÿ 1

K

XMÿ1
i�1

Ci �
XKÿ2
i�1
�Kÿ iÿ 1�Bi

�
ttractive:

�9�
The 2D mesh scheme is a generalized version of

ring exchange scheme since a ring can be considered
as a 2D mesh with M = P and K= 1. It is possible
to embed meshes of higher dimensions onto the
hypercube [19]. In the following section, a general

k-dimensional mesh exchange scheme is derived and
analyzed.

5.3. k-Dimensional mesh exchange scheme
Assume we embed a k-dimensional mesh onto

the hypercube as P = 2d=
Qdÿ1

i�0 Li. Here, Li rep-
resents the number of processors in the ith dimen-
sion of the mesh with Li$1 for i = 0,...,kÿ 1 and

Fig. 1. Concurrent communication volume (in bytes) on
di�erent meshes embedded onto a 4-dimensional hyper-

cube with 16 processors for di�erent scenes

T. M. Kurc° et al.492

Li=1 for i= k,...,dÿ 1. A ring is obtained by mak-

ing L0=P and Li=1 for i = 1,...,dÿ 1. In the k-
dimensional mesh, a similar exchange scheme as in

2D mesh exchange is applied. That is, pixel merging
is done along the rings embedded at each dimen-

sion. At stage i of the pixel merging in k-dimen-
sional mesh, the rings embedded in dimension i is

utilized to perform the pixel merging.
In full z-bu�er merging, communication time is

equal to the sum of communication times at each
stage. The communication time (Ti) at stage i is

equal to the communication time for pixel merging

along the corresponding ring in dimension i of the
k-dimensional mesh:

Ti � �Li ÿ 1�tsu � Li ÿ 1Yi
j�0

Lj

Attrfull: �10�

Thus, total communication time in full z-bu�er

merging is

Tcomm �
Xkÿ1
i�0

Ti

�
Xkÿ1
i�0
�Li ÿ 1�tsu � Pÿ 1

P
Attrfull: �11�

In active pixel merging, the communication time

at stage i is

Ti � �Li ÿ 1�tsu � Vittractive, �12�
where concurrent communication volume (Vi) is

Vi �Li ÿ 1Yi
j�0

Li

F�
Xiÿ1
j�0

�
Li ÿ 1Yi
`�j�1

L`

XLjÿ1

n�1
C jn

�

�
XLiÿ2

j�1
C i

j�Li ÿ jÿ 1�: �13�

Here, C i
j represents volumes of communication

incurred due to the distribution of active pixel lo-
cations in a region at the communication step j

along the ring embedded in dimension i of the
mesh.

The ®rst and second terms in Equation (13) rep-

resent the volume of communication incurred due
to the active pixel locations in each processor before

stage i. The last term in the equation represents the
volume of communication incurred due to the dis-

tribution of active pixels in a region in each pro-
cessor. This term also a�ects the volume of

communication in the later stages of the pixel mer-
ging since it a�ects the number of active pixels in a

processor after stage i. Therefore, if the volume of
communication due to this term is minimized at

each stage, the total volume of communication is
expected to decrease. One way to minimize the

value of this term is to control the distribution of
active pixel locations in each region. Controlling

the active pixel distribution requires a preprocessing
step before the distribution of primitives to pro-

cessors. This preprocessing results in redistribution
of polygons between processors before local z-buf-
fering. Note that this preprocessing step should be

repeated when viewing direction and orientation
change. Another way to minimize the value of the
last term in Equation (13) is to minimize the value

of Li at each stage. The last term is minimized
when Li=2 (for i = 0,...,dÿ 1) is chosen for the
rings at each dimension and a d-dimensional mesh

is embedded onto the hypercube.
Figure 1 illustrates volume of communication on

di�erent k-dimensional meshes embedded onto a 4-
dimensional hypercube for di�erent scenes (see

Fig. 9 for the rendered images of the scenes). As
seen in Fig. 1, communication volume decreases
with increasing mesh dimension. The lowest com-

munication volume is achieved on 4D mesh while
the highest is obtained on 1D mesh, i.e., ring
exchange scheme. This ®gure supports our discus-

sion and analysis in this section that the lowest
communication volume is expected to occur when a
d-dimensional mesh is embedded onto a d-dimen-

sional hypercube. The scheme to implement pixel
merging on the d-dimensional mesh (with Li=2) on
hypercube is given in the next section. This scheme
is called pairwise exchange scheme.

5.4. Pairwise exchange scheme

Pairwise exchange (PAIR) scheme exploits the
recursive-halving idea widely used in hypercube-
speci®c global operations. This operation requires d

concurrent divide-and-exchange stages. At each
stage i (for i= 0,1,2,...,dÿ 1), each processor
divides horizontally its current active region of size
N�n into two equal sized subregions (each of size

N�n/2), referred to here as top and bottom subre-
gions, where n= N during the initial halving stage.
Meanwhile, each processor divides its current local

foremost pixels into two subsets as belonging to
these two subregions, which are referred here as top
and bottom pixel subsets. Then, processor pairs

which are neighbors across channel i exchange their
top and bottom pixel subsets. After the exchange,
processors concurrently perform z-bu�ering oper-

ations between retained and received pixel subsets
to ®nish the stage.
In full z-bu�er merging, half of the current screen

is transmitted and merged at each exchange stage.

Therefore, the total time required for interprocessor
communication is

Tcomm �dtsu �
Xi�0
dÿ1

A

2�i�1�
ttrfull

� dtsu � Pÿ 1

P
Attrfull: �14�

In active pixel merging, each processor transmits
half of its current foremost pixels at each exchange

Object-space parallel polygon rendering 493

stage. Assuming perfect load balance at each
exchange step, the communication time in active

pixel merging is

Tcomm � dtsu

�
�
Pÿ 1

P
F�

Xdÿ2
i�0

2�dÿiÿ1� ÿ 1

2�dÿiÿ1�
C i�1

1

�
ttractive:�15�

5.5. All-to-all personalized communication scheme

All of the schemes discussed so far are store-
merge-and-forward schemes. At each exchange step,
the received pixels are stored into the local memory
of the processor. These pixels are compared and

merged with the pixels stored before. After this
merge operation, some part of the foremost pixels
are sent at the next exchange step, i.e., they are for-

warded towards the destination processor through
other processors at each concurrent communication
step. During this store-merge-and-forward steps,

some pixels may be copied from memory of one
processor to memory of the other processors with-
out any merging more than once as shown by the
Bi and Ci terms in the equations. This memory-to-

memory copy overhead due to the store-and-for-
ward operations can be avoided by sending the pix-
els directly to their destination processors. This

section presents a scheme called all-to-all personal-
ized communication (AAPC) to implement this
direct pixel forwarding idea.

The iPSC/2 hypercube multicomputer has the
cut-through [9] routing capability. So, multi-hop
communication between two non-neighbor pro-

cessors is almost as fast as single-hop neighbor
communications if all the links between two pro-
cessors are not currently used by other messages.
The communication hardware uses the e-cube rout-

ing algorithm [20]. In an AAPC scheme, the screen
is divided into P regions and kth region is assigned
to processor k for k= 0,1,...,Pÿ 1. Each processor

simply performs Pÿ 1 communication steps exchan-
ging pixel data according to the region assignment
with a di�erent processor at every step. Each pro-

cessor must choose its communication partner at
each step so that the hypercube links do not su�er
congestion. A congestion-free schedule for AAPC
using e-cube routing is given in [9, 20]. In this sche-

dule, processor k sends its local pixel data belong-
ing to the screen region k$ i directly to processor
k$ i at exchange step i (for i = 1,...,Pÿ 1), where

`$ ' denotes the bitwise exclusive-or operation.
After Pÿ 1 exchange steps, each processor gathers
all of the foremost pixels belonging to its assigned

screen region. Then, each processor z-bu�ers the
local pixels and the pixels it receives from other
processors through maintaining a local z-bu�er of

size N� (N/P). Local pixels are scattered onto the
z-bu�er without any distance comparisons. The z
value of each received pixel is compared with the z
value in the respective pixel location in the z-bu�er.

After all the pixels are processed local z-bu�ers con-
tain the winning pixels for the ®nal images corre-

sponding to respective screen regions.
In full z-bu�er merging, A/P pixels are concur-

rently exchanged at each communication step.

Thus, the communication time in this scheme is

Tcomm � �Pÿ 1�tsu � Pÿ 1

P
Attrfull: �16�

In active pixel merging, F/P pixels are concur-
rently exchanged at each communication step.
Hence, the communication time in this scheme is

Tcomm � �Pÿ 1�tsu � Pÿ 1

P
Fttractive: �17�

5.6. Comparison of pixel merging schemes

As seen in Equations (1), (5), (11), (14) and (16),
the volume of communication in full z-bu�er mer-
ging is not a�ected by the distribution of foremost

pixels in screen regions. All schemes induce the
same concurrent communication volume of
A(Pÿ 1)/P in full z-bu�er merging. However, PAIR

scheme induces the smallest number of concurrent
communications (log2 P as shown in Equation (14)).
Hence, PAIR is the most suitable scheme for full z-
bu�er merging on hypercubes.

As seen in Equations (2), (9), (13) and (15), the
volume of communication in active pixel merging is
a�ected by the distribution of pixels in all of the store-

merge-and-forward schemes, PAIR scheme
(Equation (15)) being the least a�ected one. On the
other hand, the volume of communication in an

AAPC scheme is not a�ected by the distribution of
pixels as seen in Equation (17). Hence, among all
schemes, the AAPC scheme is expected to give the

lowest concurrent communication volume in active
pixel merging. For large numbers of processors with
high communication latency, the number of com-
munication steps, which directly a�ects the total setup

time, is also a crucial factor in the performance of
pixel merging. The number of concurrent communi-
cation steps is equal to log2 P in a PAIR scheme,

whereas it is equal to Pÿ 1 in an AAPC scheme. For
large number of processors, the number of communi-
cation steps may be a dominating factor in the com-

munication time in the active pixel merging phase.
Therefore, among all schemes presented in this sec-
tion, PAIR and AAPC schemes are most suitable for
pixel merging on hypercube multicomputers. Only

these two schemes are experimentally investigated in
this work.

6. LOAD BALANCING IN ACTIVE PIXEL MERGING

In this section, two heuristics that implement
adaptive subdivision of screen among processors to
achieve good load balance in active pixel merging
are presented.

T. M. Kurc° et al.494

6.1. Recursive adaptive subdivision
Recursive adaptive subdivision (RS) scheme

recursively divides the screen into two subregions
such that the number of pixels in one subregion is
equal to the number of pixels in the other subregion

as much as possible. This scheme is well suited to
the recursive structure of the hypercube and can be
done in parallel. Each processor counts the number

of local foremost pixels at each scanline and stores
them into a local workload array of size N. Each
entry of the array stores the number of local fore-

most pixels at the corresponding scanline. An el-
ement-by-element global sum operation is
performed on these local arrays to obtain the distri-
bution of foremost pixels in all processors. Then,

using this global workload array, each processor
divides the screen into two horizontal bands of con-
secutive scanlines so that each region contains

almost equal number of active pixel locations.
Along with the division of the screen, the hypercube
is also divided into two equal subcubes of dimen-

sion dÿ 1. Top subregion is assigned to one sub-
cube while the bottom subregion is assigned to the
other subcube. Subcubes perform subdivision of the

local subregions concurrently and independently.
Since the screen is divided into horizontal bands,
the global workload array is re-used during the
further subdivision steps.

6.2. Heuristic bin packing

In an RS scheme, the subdivision of the screen is
done on a scanline basis and consecutive scanlines
are assigned to processors. For this reason, perfect

load balance cannot be obtained during the recur-
sive bisection steps. As the recursive bisection steps
proceed independently, the load imbalance incurred
in a particular bisection may propagate and ac-

cumulate during the further bisections of the re-
spective pair of subregions. A better distribution of
workload among processors can be achieved by

using a direct P-way subdivision scheme which
allows non-consecutive scanline assignment to pro-
cessors. A heuristic bin packing (HBP) approach is

used to minimize the load of the most heavily
loaded processor in the subdivision. In order to rea-
lize this goal, a scanline is assigned to a processor
with minimum workload. In addition, scanlines are

assigned in the order of decreasing number of pixels
they have, i.e., scanlines that have large number of
pixels are assigned at the beginning. In this way,

large variations in the processor loads due to new
assignments are minimized towards the end.
In each processor, the total number of pixels at

each scanline after local hidden surface removal
step is found. Then, scanlines are sorted with
respect to their pixel counts in decreasing order.

This sorting is done in parallel. Assume that the
size of the set of scanlines, which have non-zero
number of pixels, is S. For parallel sorting, each
processor sorts a disjoint subset of size S/P of this

set of scanlines in parallel. Then, sorted arrays in
each processor are merged to obtain the ®nal sorted

array. This merge operation can be performed in d
concurrent communication steps. In this work, load
balancing in a parallel sorting operation is not con-

sidered. Various parallel sorting algorithms can be
found in [21, 22]. In our HBP implementation, a
binary heap is used to ®nd the processor with mini-

mum workload during the scanline assignment pro-
cess.
As mentioned earlier, in our modi®ed scanline z-

bu�er algorithm, each processor stores its local
foremost pixels into its local winning pixel array
(WPA) in scanline order in consecutive locations.
However, the HBP algorithm may assign consecu-

tive scanlines to di�erent processors for a better
load balance. Hence, non-consecutive scanline data
in the local WPA of a processor k can be assigned

to another processor `. As a result, in order for
processor k to send the pixels belonging to scanlines
assigned to processor `, it has to gather those pixels

in another array so that they are stored in consecu-
tive memory locations. In order to avoid this extra
gather overhead before each send operation, the

load balancing algorithm HBP is executed before
local hidden surface removal. Then, scanlines are
renumbered so that scanlines assigned to every pro-
cessor are numbered consecutively. In this way, pix-

els generated for these scanlines are stored in
consecutive locations in the local WPAs. However,
the load metric in the HBP algorithm is the number

of active pixels in each scanline after local hidden
surface removal is performed. In order to ®nd the
number of winning pixels after local hidden surface

removal without running local z-bu�er operations,
each processor executes the extended span algorithm
given in Fig. 2 on the spans in its local scanline
span list (SSL) structure.

In Fig. 2, subscripts ``' and `r' denote the left and
right end-points, respectively, of a span (s) and an
extended-span (es) in terms of the pixel location in

a scanline. In this algorithm, intersecting spans in
scanline y are merged to form extended spans. The
sum of the number of pixels in these extended

spans gives the number of winning pixels W[y] after
local z-bu�ering for scanline y. Recall that during
SSL creation, spans are sorted with respect to their

x` (xmin) values in increasing order. Because of this
sorted order of spans in local SSLs, there is no
need to store the extended spans, and checking the
intersection of a span s with the current extended-

span es can easily be done by only checking x` of
span s with esr.

7. EXPERIMENTAL RESULTS ON AN iPSC/2 HYPERCUBE

The algorithms proposed in this work were im-
plemented on a 4-dimensional Intel iPSC/2 hyper-
cube multicomputer. Our iPSC/2 system contains
16 nodes each of which is equipped with an 80386/

Object-space parallel polygon rendering 495

387 processor and 4 MB memory. The hypercube

interconnection network implements cut-through

routing through direct-connect communication tech-

nology [20]. The algorithms were implemented

using C language and the native message passing

library (NX) of iPSC/2. The algorithms were tested

in parallel rendering of scenes composed of 1, 2, 4,

and 8 tea pots for screens of size 400�400 and

640�640. Table 1 gives the characteristics of the

scenes in terms of total number of polygons, total

number of pixels generated and total number of

winning pixels in the ®nal picture for di�erent

screen sizes. Rendered images of the scenes from

the viewing directions used in the experiments are

given in Fig. 8.

Here, we mainly present and discuss the exper-

imental performance comparison of the active pixel

merging schemes proposed in this work. Full z-buf-

fer merging is also implemented, and only its

speedup performance is compared to that of the

active pixel merging for the sake of experimental

validation of the theoretical analysis given in

Section 5. Pairwise exchange scheme is used in the

implementation of full z-bu�er merging since it is

found to be the most suitable scheme for full z-buf-

fer merging on hypercubes (see Section 5.6). The

abbreviations used in the ®gures and tables are

AAPC: all-to-all personalized communication, PAIR:

pairwise exchange, RS: recursive subdivision, HBP:

heuristic bin packing, and ZBUF-EXC: full z-bu�er

exchange. All timing results in the tables are in

milliseconds.

Table 2 illustrates the performance comparison of

the active pixel merging schemes AAPC-HBP,

AAPC-RS and PAIR-RS. The timing results for

local z-bu�ering step do not include the time spent

for SSL creation, because all algorithms use the

same span-list creation algorithm. The overheads

associated with load balancing operations are incor-

porated into the local z-bu�ering time. If we com-

pare the pixel merging times, the AAPC-HBP

scheme gives the best results among all schemes.

This is because of the fact that the HBP scheme

achieves better load balancing than a RS scheme.

As also seen in the table, PAIR-RS scheme gives

the worst performance results in pixel merging

phase. This is because of the store-and-forward

Fig. 2. Extended span algorithm for computing the active
pixel counts of scanlines before running local z-bu�ering

Table 1. Scene characteristics in terms of number of triangles, total number of pixels generated (TPG), and total number
of winning pixels in the ®nal picture (TPF) for di�erent screen sizes of N�N

Number of N= 400 N= 640
Scene triangles TPG TPF TPG TPF

1 POT 3751 59091 43247 137043 110515
2 POT 7502 66802 37084 151881 94840
4 POT_1 15004 71578 26328 146468 66727
4 POT_2 15004 81735 35629 171480 90692
8 POT_1 30008 154187 52258 324464 133617
8 POT_2 30008 99589 36043 201829 91729

Table 2. Comparison of execution times (in milliseconds) of several active pixel merging schemes

AAPC-HBP AAPC-RS PAIR-RS

N P Scene
Local z-
bu�.

Pixel
merg. Total

Local z-
bu�.

Pixel
merg. Total

Local z-
bu�.

Pixel
merg. Total

16 4 POT_1 550 181 731 524 218 742 520 323 843
8 POT_1 1126 302 1428 1083 376 1459 1079 684 1763

400 8 4 POT_1 1031 250 1281 992 291 1283 989 419 1408
8 POT_1 2098 464 2562 2034 543 2577 2030 861 2891

16 4 POT_1 1060 333 1393 1016 418 1434 1011 702 1713
8 POT_1 2238 611 2849 2170 794 2964 2165 1502 3667

640 8 4 POT_1 2013 540 2553 1951 636 2587 1947 936 2883
8 POT_1 4250 1050 5300 4146 1242 5388 4142 1957 6099

T. M. Kurc° et al.496

overhead associated with this scheme. If the per-

formance of the algorithms are compared with

respect to their local z-bu�ering time, algorithms

that use RS schemes perform better. This is due to

the fact that RS schemes introduces less subdivision

overhead than HBP schemes. In total (local z-buf-

fering + pixel merging) execution time (Total), a

AAPC-HBP scheme achieves the best performance

in all instances.

Figure 3 illustrates the performance comparison

of load balancing heuristics RS and HBP in active

pixel merging schemes. The load imbalance value is

computed as the ratio of the di�erence between the

loads of maximum and minimum loaded processors

to average workload. The workload of a processor

is taken to be the number of pixel merging oper-

ations it performs in the pixel merging phase. As

seen in Fig. 3, HBP achieves much better load bal-

ance than RS, and as seen in Fig. 3(a) the perform-

ance gap between these two schemes rapidly

increases with increasing number of processors (P)

in favor of HBP. In other words, HBP scales much

better than RS as expected since the amount of

load imbalance propagation and accumulation

rapidly increases with increasing P in RS. As seen

in Fig. 3(b), load balancing performance of both

RS and HBP schemes improve with increasing

screen resolution due to larger ¯exibility in screen

subdivision.

Figure 4 illustrates the total concurrent communi-

cation volume (in bytes) for various active pixel

merging schemes. The total volume of concurrent

communication is calculated as the sum of the

maximum volume of concurrent communication at

each communication step. As seen in the ®gure, an

AAPC scheme results in substantially less volume

Fig. 3. Load balancing performance of RS and HBP in active pixel merging for: (a) 2 POT scene on
di�erent number of processors at A= 400�400, and (b) di�erent scenes at di�erent screen resolutions

on P = 16 processors

Fig. 4. Concurrent communication volume (in bytes) for: (a) 2 POT scene on di�erent number of pro-
cessors at A= 400�400, and (b) di�erent scenes on P= 16 processors at A= 400� 400 and

A= 640� 640

Object-space parallel polygon rendering 497

of communication than PAIR scheme as expected.

Note that communication volume in active pixel

merging is proportional to the number of active
pixel locations in each processor. As the number of

processors increases, the number of active pixel lo-

cations per processor is expected to decrease.
Hence, concurrent communication volume is

expected to decrease with increasing number of pro-

cessors as is also seen in Fig. 4(a). The increase in
the communication volume of the PAIR-RS scheme

as the number of processors increases from 2 to 4 is

due to the increase in the store-and-forward over-
head. It is also experimentally observed that better

load balance in pixel merging leads to less concur-

rent volume of communication. As seen in Fig. 4(b),
a HBP scheme, which achieves better load balan-

cing than RS, results in less volume of communi-

cation than an RS scheme in all rendering

instances. This is because of the fact that balancing
the computational loads of the processors also bal-

ances the communication loads of the processors

thus reducing the concurrent communication
volume.

Figure 5 illustrates speedup curves for di�erent

pixel merging schemes. Due to insu�cient local

memory in node processors of iPSC/2, speedup

®gures for ZBUF-EXC scheme can only be

obtained for 1 POT and 2 POT scenes at screen of
size 400� 400. Hence, speedup curves for only these

two rendering instances are illustrated in the ®gure
for the sake of performance comparison on a com-

mon framework. Figure 5 represents the speedup
curves for total execution times (span list crea-
tion + local z-bu�ering + pixel merging). As seen

in the ®gure, all active pixel merging schemes
achieve substantially better speedup than the full z-

bu�er merging scheme ZBUF-EXC thus con®rming
the theoretical results given in Section 5. Since pixel

information for inactive pixel locations are also
exchanged in full z-bu�er scheme, this scheme

incurs substantially larger volumes of communi-
cation than active pixel merging schemes. As

expected, the performance gap between full z-bu�er
and active pixel merging schemes increases with the
increasing number of processors (P) in favor of the

active pixel merging schemes. In other words, active
pixel merging schemes scale much better than full z-

bu�er schemes. Concurrent communication volume
is expected to decrease with increasing P in active

pixel merging, whereas it slowly increases towards
the screen size A with increasing P in full pixel mer-

ging (see Equation (14)).
As seen in Fig. 5, AAPC schemes achieve con-

siderably better speedup than PAIR schemes in
active pixel merging. This is because of the fact that

AAPC incurs less volume of communication and
smaller numbers of global z-bu�ering operations

than PAIR by avoiding the store-and-forward over-
head. Among AAPC schemes, AAPC-HBP achieves
slightly higher speedup than AAPC-RS because of

better balancing in computational and communi-
cation load.

Fig. 5. Speedup ®gures for (a) 1 POT scene and (b) 2 POT scene at A= 400�400

Table 3. Number of triangles in the test scenes

Scene Number of triangles

Teapot 102080 (102K)
Balls 157440 (157K)
Lattice 235200 (235K)
Rings 343200 (343K)
Tree 425776 (426K)
Mountain 524288 (524K)

T. M. Kurc° et al.498

8. EXPERIMENTAL RESULTS ON A PARSYTEC CC
SYSTEM

The pixel merging algorithms AAPC-HBP and
ZBUF-EXC, giving the best and the worst perform-

ance results on iPSC/2 hypercube respectively, were

also implemented and experimented on a Parsytec
CC system. The Parsytec CC system is also a mess-

age-passing distributed-memory architecture. It con-
tains 16 nodes, each of which is equipped with a

133 MHz PowerPC 604 processor and 64 MB mem-
ory. The interconnection network is a multistage

switch network consisting of four 8�8 crossbar
switching boards such that each switching board

connects 4 processors to the network. The algor-
ithms were implemented in C language and PVM

3.3 [23, 24] was used for message passing. Although

hypercube topology cannot be embedded onto the
interconnection topology of Parsytec for P > 4, a

virtual hypercube topology was assumed in the im-
plementations. As each processor has su�ciently

large local memory, the algorithms were tested on
relatively complex scenes selected from the publicly

available SPD database [10]. The number of tri-
angles in these scenes range from 102K to 524K.

Table 3 displays the number of triangles in each
scene. All results presented in this section are the

timings for rendering the images given in Fig. 9 at

the screen resolution of 512� 512.
Figure 6 illustrates the percent decrease in the

total number of pixels generated when local z-buf-
fering is applied in the local rendering phase. As

seen in Fig. 6, the percent decrease in the total
number of pixels generated is very high on a small

number of processors. However, it decreases with

increasing number of processors for all scenes. The
average percent decrease over all scenes is 49% at

P = 2 and it reduces to 11% at P = 16. This is an
expected result because polygons are distributed

among more processors and the number of local

polygons overlapping in each processor decreases.

Thus, smaller number of pixels are eliminated
during local z-bu�ering. As seen in Fig. 6 and the

rendered images in Fig. 9, the percent decrease

increases with increasing depth complexity of the

scene. For example, the percent decrease in the

Rings scene (Fig. 9(d)) with high depth complexity
is as high as 80% at P = 2 and it remains above

25% at P = 16. Thus, local z-bu�ering can save a

considerable amount of communication time on

small to medium number of processors and for
scenes containing large numbers of polygons with

high depth complexity.

Fig. 6. Percent decrease in the total number of pixels gen-
erated after local z-bu�ering

Fig. 7. Rendering rates of (a) AAPC-HBP and (b) ZBUF-EXC pixel merging algorithms on Parsytec
CC system

Object-space parallel polygon rendering 499

Fig. 8. Rendered images of the scenes used in the experiments on iPSC/2: (a) 1 POT scene, (b) 2 POT
scene, (c) 4 POT_1 scene, (d) 4 POT_2 scene, (e) 8 POT_1 scene, (f) 8 POT_2 scene

T. M. Kurc° et al.500

Fig. 9. Rendered images of the scenes used in the experiments on the Parsytec CC system: (a) Teapot
scene (102K triangles, rendering time is 0.332 s on 16 processors), (b) Balls scene (157K triangles, ren-
dering time is 0.495 s on 16 processors), (c) Lattice scene (235K triangles, rendering time is 0.7 s on 16
processors), (d) Rings scene (343K triangles, rendering time is 0.821 s on 16 processors), (e) Tree scene
(426K triangles, rendering time is 0.576 s on 16 processors), (f) Mountain scene (524K triangles, render-

ing time is 1.052 s on 16 processors)

Object-space parallel polygon rendering 501

Figure 7 illustrates the variation of rendering
rates of AAPC-HBP and ZBUF-EXC schemes with

increasing number of processors. Rendering rate is
given in terms of the number of triangles rendered
per second. As seen in the ®gure, the AAPC-HBP

scheme achieves rendering rates of 300K±700K tri-
angles per second through speedup values of 5±10
on 16 processors. However, the ZBUF-EXC scheme

can only achieve much lower rendering rates of
100K±350K triangles per second through speedup
values of 2±7 on 16 processors. These results on

complex scenes also verify that exchanging only
active pixels results in substantial gain in the ren-
dering rate.
The speedup values on Parsytec CC systems are

lower than those on iPSC/2 systems. While
PowerPC processors of Parsytec are approximately
1000 times faster than 80386/387 processors of

iPSC/2 in terms of peak MFLOPS performance, the
peak communication bandwidth between two nodes
of Parsytec CC system (40 MBytes/sec) is only 14

times faster than that of iPSC/2 (2.8 Mbytes/sec).
Hence, interprocessor communication a�ects the
speedup performance of the algorithms more in

Parsytec system than it does in iPSC/2 system.
Furthermore, hypercube-speci®c communication
schemes AAPC and pairwise exchanges used in
AAPC-HBP and ZBUF-EXC respectively may

incur contention on some links for P = 8 and
P = 16 as hypercube topology cannot be embedded
onto the interconnection topology of the Parsytec

system for these P values. Such link contentions
will result in the serialization of messages in the sys-
tem thus increasing the communication overhead.

9. CONCLUSIONS

E�cient algorithms were proposed and im-
plemented for object-space parallel polygon render-
ing on hypercube multicomputers. The proposed

algorithms reduce the volume of communication by
exchanging only local foremost pixels in the pixel
merging phase. The proposed modi®ed scanline z-

bu�er algorithm avoids message fragmentation by
packing local foremost pixels in consecutive mem-
ory locations e�ciently, and it eliminates the initia-
lization of scanline z-bu�er for each scanline.

Several pixel merging schemes, utilizing di�erent
communication strategies and topological embed-
dings, were discussed for theoretical performance

evaluation. Pairwise exchange and all-to-all person-
alized communication schemes were implemented as
they were found to be best suited to the hypercube

topology. All-to-all personalized communication is
a direct pixel forwarding scheme, and it avoids the
store-and-forward overhead of the pairwise

exchange scheme at the expense of larger number of
communication steps. Two adaptive screen subdivi-
sion heuristics were implemented for load balancing
in the pixel merging phase. The performance of the

proposed algorithms were experimented by parallel
rendering of datasets from publicly available SPD

database on an Intel's iPSC/2 hypercube multicom-
puter and a Parsytec CC multicomputer.
Experimental results con®rmed the expectation that

active pixel merging after local z-bu�ering and
direct pixel forwarding achieve substantial increases
in the rendering performance. Rendering rates of

300K±700K triangles per second were attained in
the rendering of SPD scenes containing 102K±524K
triangles on 16 processors of Parsytec CC system.

The modi®ed scanline z-bu�er algorithm and
load balancing heuristics proposed in this work are
independent of the interconnection topology. As in
hypercube topology, exchanging foremost pixels is

expected to give higher rendering rates than mer-
ging full z-bu�ers on other topologies due to much
less volumes of communication. However, the mess-

age exchange sequence of the pixel merging schemes
may have to be modi®ed to avoid link contention
in the target architecture to attain maximum per-

formance.

AcknowledgementsÐThis work is partially supported by
the Commission of the European Communities,
Directorate General for Industry under contract ITDC
204±82166, and The Scienti®c and Technical Research
Council of Turkey (TUÈ BIÇTAK) under grant EEEAG±160.

REFERENCES

1. Watt, A., Fundamentals of Three-Dimensional
Computer Graphics, Addison-Wesley, 1989.

2. Molnar, S., Cox, M., Ellsworth, D. and Fuchs, H., A
sorting classi®cation of parallel rendering. IEEE
Computer Graphics and Applications, 1994, 14(4), 23±
32.

3. Molnar, S., Eyles, J. and Poulton, J., Pixel¯ow: high-
speed rendering using image composition. Computer
Graphics, 1992, 26(2), 231±240.

4. Eyles, J., Molnar, S., Poulton, J., Greer, T., Lastra,
A., England, N. and Westover, L., PixelFlow: the re-
alization. Proceedings of the Siggraph/Eurographics
Workshop on Graphics Hardware, Los Angeles, Aug.
1997, pp. 57-68.

5. Scopigno, R., Paoluzzi, A., Guerrini, S. and Rumolo,
G., Parallel depth-merge: a paradigm for hidden sur-
face removal. Computers & Graphics, 1993, 17(5),
583±592.

6. Li, J. and Miguet, S., Z-bu�er on a transputer-based
machine. Proceedings of the Sixth Distributed Memory
Computing Conference, April 1991, pp. 315-322.

7. Cox, M. and Hanrahan, P., Pixel merging for object-
parallel rendering: a distributed snooping algorithm.
Proceedings of the 1993 Parallel Rendering
Symposium, Oct. 1993, pp. 49-56.

8. Lee, T. Y., Raghavendra, C. S. and Nicholas, J. B.,
Image composition schemes for sort-last polygon ren-
dering on 2D mesh multicomputers. IEEE
Transactions on Visualization and Computer Graphics,
1996, 2(3), 202±217.

9. Kumar, V., Grama, A., Gupta, A. and Karypis, G.,
Introduction to Parallel Computing, Design and
Analysis of Algorithms. The Benjamin/Cummings
Publishing Company, Inc., California, USA, 1994.

T. M. Kurc° et al.502

10. Haines, E., A proposal for standard graphics environ-
ments. IEEE Computer Graphics and Applications,
1987, 7(11), 3±5.

11. Mueller, C., The sort-®rst rendering architecture for
high-performance graphics. Proceedings of 1995
Symposium on Interactive 3D Graphics, 1995, pp. 75-
84.

12. Crockett, T. W. and Orlo�, T., A MIMD rendering
algorithm for distributed memory architectures.
Proceedings of the 1993 Parallel Rendering
Symposium, Oct. 1993, pp. 35-42.

13. Ellsworth, D., A multicomputer polygon rendering al-
gorithm for interactive applications. Proceedings of
the 1993 Parallel Rendering Symposium, Oct. 1993,
pp. 43-48.

14. Whitman, S., Multiprocessor Methods for Computer
Graphics Rendering. Jones and Bartlett Publishers,
1992.

15. High®eld, J. C. and Bez, H. E., Hidden surface elim-
ination on parallel processors. Computer Graphics
Forum, 1992, 11(5), 293±307.

16. Gupta, A. and Fisher, A. L., Flexible parallel polygon
rendering. Proceedings of International Conference on
Parallel Processing, 1990, 3, 87±91.

17. Lastra, A., Fuchs, H. and Poulton, J., Harnessing
parallelism for high-performance interactive computer

graphics. Proceedings of NSF Workshop on
Experimental Systems, June 1996.

18. Onyx2, Scalable Visualization Supercomputers. http://
www.sgi.com.

19. Saad, Y. and Schultz, M. H., Topological properties
of hypercubes. IEEE Transactions on Computers,
1988, 37(7), 867±871.

20. Nugent, S. F., The iPSC/2 direct-connect communi-
cations technology. Proceedings of Third Conference
on Hypercube Concurrent Computers and Applications,
Jan. 1988, pp. 51-60.

21. Abal|, B., OÈ zguÈ ner, F. and Bataineh, A., Balanced
parallel sort on hypercube multiprocessors. IEEE
Transactions on Parallel and Distributed Systems,
1993, 4(5), 572±581.

22. Plaxton, C. G., Load balancing, selection and sorting
on the hypercube. Proceedings of 1989 ACM
Symposium on Parallel Algorithms and Architectures,
1989, pp. 64-73.

23. Geist, A., Beguelin, A., Dongarra, J., Jiang, W.,
Manchek, R. and Sunderam, V., PVM: Parallel
Virtual Machine, A User's Guide and Tutorial for
Networked Parallel Computing, The MIT Press, 1994.

24. Genias Software GmbH, Germany. PowerPVM/EPX
for Parsytec CC systems: PowerPVM/EPX User's
Guide, 1996.

Object-space parallel polygon rendering 503

