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Abstract

Cell placement is an important phase of current VLSI circuit design styles such as standard cell, gate array, and Field Programmable Gate
Array (FPGA). Although nondeterministic algorithms such as Simulated Annealing (SA) were successful in solving this problem, they are
known to be slow. In this paper, a neural network algorithm is proposed that produces solutions as good as SA in substantially less time. This
algorithm is based on Mean Field Annealing (MFA) technique, which was successfully applied to various combinatorial optimization
problems. A MFA formulation for the cell placement problem is derived which can easily be applied to all VLSI design styles. To
demonstrate that the proposed algorithm is applicable in practice, a detailed formulation for the FPGA design style is derived, and the
layouts of several benchmark circuits are generated. The performance of the proposed cell placement algorithm is evaluated in comparison
with commercial automated circuit design software Xilinx Automatic Place and Route (APR) which uses SA technique. Performance
evaluation is conducted using ACM/SIGDA Design Automation benchmark circuits. Experimental results indicate that the proposed
MFA algorithm produces comparable results with APR. However, MFA is almost 20 times faster than APR on the average.q 1998 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Cell placement is an important problem arising in various
VLSI circuit design styles such as standard cell, gate array
and Field Programming Gate Array (FPGA). Given a circuit
description, the problem is to find a layout of the circuit
while minimizing some cost function. Usually two closely
related criteria are used to construct a cost function: mini-
mization of the routing length and minimization of the chip
area. In some design styles (e.g. standard cell), minimization
of the area is equivalent to minimization of the routing
length (Shahookar and Mazumder, 1991), whereas in
some others area is fixed (e.g. FPGA). If the area is fixed,
minimization of the routing length is necessary for the rout-
ability of the circuit using the available routing resources.
Minimization of the routing length also minimizes the pro-
pagation delays of the circuit, hence increasing its speed
(Shahookar and Mazumder, 1991).

Although the cell placement problem has different
characteristics related to the technology used in different
design styles, key features of the problem remain the

same. This enables a general definition for the cell
placement problem to be made which is valid for all design
styles. The problem is decomposed into two phases such
that the first phase is same for all design styles and the
second phase depends on the design style. An instance of
the first phase of the cell placement problem consists of a
hypergraphQ(C, N) representing the circuit to be placed,
and a rectangular grid of clusters withP rows andQ
columns where the circuit will be placed. Hypergraph
Q(C, N) consists of a vertex setC representing the cells
of the circuit, a hyperedge setN representing the nets of the
circuit, a cell weight functionqcell:C → N, and a net weight
functionqnet:N → N, whereN represents the set of natural
numbers. The aim is to partition the vertex setC into P 3 Q
clusters such that the routing cost is minimized and the
weights of the clusters are nearly balanced. The weight
of a cluster is the sum of the weights of the cells in that
cluster. In general, cell weight function is used to encode
the areas of cells, and net weight function is used to
increase the importance of some nets which may be crucial
for the performance of the circuit. The rectangular grid of
clusters is used for estimating the final locations of the
cells. The computation of routing cost is discussed in detail
in Section 2.
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Fig. 1(a) illustrates an example circuit with 16 cells and
19 nets (Shahookar and Mazumder, 1991). The circuit has 3
input (I1, I2, I3) and 2 output (O1, O2) pads. Pads may be
interpreted as cells which must be mapped to the boundaries
of the cluster grid. The example circuit in Fig. 1(a) may be
represented with a hypergraphQ(C, N) according to the
above definition as:

C ¼{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,I1, I2, I3, O1, O2}
N ¼{{ I1, 1, 2, 3, 4}, {I2, 1, 2, 3, 4, 11, 12}, {I3, 6, 10, 11, 12, 13}, {1, 8},

{3, 7}, {11, 13}, {5, 6}, {8, 9}, {9, 15}, {13, 16}, { O1, 15}, {2, 5},
{4, 10}, {12, 14}, {6, 8}, {7, 9}, {10, 15}, {14, 16}, { O2, 16}}

Unit cell and net weights are assumed in this example.
Fig. 1(b) shows the placement of this circuit to a 43 4 grid
of 16 clusters.

The second phase of the cell placement problem is the
mapping of the cells in the clusters to their final locations in
the layout. In standard cell design style, cells are used for
constructing rows, and in gate array design style, cells are
mapped to rows or grid locations according to the type of the
gate array used (Sechen, 1988). Some gate arrays consist of
modules forming a rectangular grid. For this type of gate
arrays the second phase of the problem may be skipped by
choosing the number of rows and columns of the cluster grid
to be equal to the number of rows and columns of the mod-
ule grid, respectively. Symmetrical FPGAs consist of logic
blocks forming a rectangular grid (Rose et al., 1992, Rose et
al., 1993). Hence, the second phase of the problem can be
similarly skipped for symmetrical FPGAs. This two phase
modeling enables the development of heuristics for the first
phase of the problem which are independent of the design
style.

Since cell placement problem is NP-Hard (Lengauer,
1990), finding efficient placement heuristics is an important
research issue. In the last decade, neurocomputing
approaches based on Hopfield model were successfully
applied to various combinatorial optimization problems
such as the traveling salesman problem (Peterson and
Söderberg, 1989; VandenBout and Miller, 1989; Takahashi,
1997), scheduling problem (Gisle´n et al., 1992), mapping
problem (Bultan and Aykanat, 1992), knapsack problem
(Ohlsson et al., 1993; Ohlsson and Pi, 1997), communica-
tion routing problem (Ho¨kkinen et al., 1998), graph parti-
tioning problem (Herault and Niez, 1989; Peterson and
Söderberg, 1989; VandenBout and Miller, 1990), graph lay-
out problem (Cimikowski and Shope, 1996), circuit parti-
tioning problem (Yih and Mazumder, 1990; Bultan and
Aykanat, 1995). In this paper, the Mean Field Annealing
(MFA) technique is applied to the cell placement problem.
MFA is a new approach for solving combinatorial optimiza-
tion problems (Peterson and So¨derberg, 1989; VandenBout
and Miller, 1989, VandenBout and Miller, 1990; Gisle´n et
al., 1992; Bultan and Aykanat, 1992, Bultan and Aykanat,
1995; Ohlsson et al., 1993; Ohlsson and Pi, 1997; Ho¨kkinen
et al., 1998). MFA combines the collective computation
property ofHopfield neural networks(Hopfield and Tank,
1985) with the annealing notion ofSimulated Annealing
(SA) (Kirkpatrick et al., 1983). In MFA, discrete variables
calledspins(or neurons) are used for encoding configura-
tions of combinatorial optimization problems. Anenergy
function written in terms of spins is used for representing
the cost function of the problem. Then, using the expected
values of these discrete variables, a nondeterministic
gradient descent type relaxation scheme is used to find a

Fig. 1. (a) A circuit with 16 cells, 19 nets and 5 pads. (b) A sample placement of the circuit in (a) to a 43 4 grid of 16 clusters. Bounding box and horizontal and
vertical spans of the net {10, 15} are shown in (b).
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configuration of the spins which minimizes the energy func-
tion associated with them.

In this paper, a MFA-based cell placement algorithm is
proposed. In order to show the performance of the proposed
algorithm on concrete examples MFA formulations are
derived for symmetrical-array FPGA design style. How-
ever, the MFA formulations proposed for FPGAs are gen-
eral enough so that they can easily be applied to the first
phase of the cell placement problem in other design styles
with minor modifications.

The organization of the paper is as follows. Section 2
discusses the method used for approximating the routing cost
of the placement. FPGA design style is briefly summarized in
Section 3. Section 4 begins with the presentation of the general
guidelines for applying MFA technique to combinatorial opti-
mization problems. Then, the proposed formulation and imple-
mentation of the MFA algorithm for the cell placement
problem following these guidelines are presented. The encod-
ing scheme used in the proposed formulation is discussed in
Section 4.1. The proposed energy function formulation and
derivation of the mean field theory equations are presented
in Section 4.2 and Section 4.3, respectively. The parameter
selection and cooling schedule are discussed in Section 4.4.
Finally, experimental results which evaluate the relative
performance of the proposed algorithm are discussed in
Section 5.

2. Routing cost

Computation of the routing cost is the crucial part of
the cell placement problem. In the first phase of the pro-
blem, cells are partitioned toP 3 Q clusters which form a
rectangular grid. Fig. 1(b) shows the partitioning of the circuit
in Fig. 1(a) to a 43 4 grid. Initially, it is assumed that all
clusters have the same size, forming a uniform grid as in
Fig. 1(b). After the cells are mapped to the clusters, areas of
the clusters may be different, resulting with a nonuniform
grid. If the clusters are balanced, the difference between
the uniform grid and the actual nonuniform grid is not
significant.

In order to calculate the routing cost the exact locations of
the cells in the layout must be known. Each cell is assumed to
be placed to the center of the cluster to which it is mapped.
During the placement, it is not feasible to calculate the exact
routing length for two reasons. Firstly, a feasible placement is
not available during the execution of some algorithms
(Dunlop and Kernighan, 1985), secondly, the computation
of the exact routing cost necessitates the execution of the
global and the detailed routing phases which are as hard as
the placement phase. Hence, most of the placement heuristics
use a method for approximating the routing cost. An efficient
and commonly used approximation is thesemi-perimeter
method (Shahookar and Mazumder, 1991; Sherwani, 1993).
In this method, the routing cost of a net is approximated by
the semi-perimeter length of the smallest bounding rectangle

(bounding box) enclosing all the cells connected to that net.
Fig. 1(b) shows the bounding box of the net {10, 15} with
two cells. This method gives a good approximation to the
Steiner treewhich is the most efficient routing scheme (Sha-
hookar and Mazumder, 1991). The shortest way to route a
net is to find the minimum length Steiner tree of the cells
connected to that net. Steiner trees can also be used as an
approximation of the final routing length, but finding the
minimum Steiner tree is an NP-Hard problem and its com-
putation may not be feasible. Hence, semi-perimeter method
is a good and efficient way of approximating the routing
length.

Another way to view the semi-perimeter method is to
define the vertical and the horizontal spans for each net
(Sechen, 1988). The vertical and the horizontal spans of a
net are the lengths of the vertical and the horizontal sides of
its bounding rectangle, respectively. Fig. 1(b) shows the
vertical and the horizontal spans of the net {10, 15}. Total
routing cost can be computed by adding the vertical and the
horizontal spans of all the nets. If vertical and horizontal
routings have different costs, then the total routing cost can
be approximated by multiplying the vertical and the hori-
zontal spans of the nets by the appropriate unit costs.

3. FPGA design style

Field Programmable Gate Arrays (FPGAs) were widely
used in industry in recent years. Because they provide cheap
and flexible usage, fast manufacturing turnaround time and
low prototype cost, many designers prefer to use them in
their applications. Several types of FPGAs were introduced
over the last years, which differ from each other by their
programming technologies, logic block architectures and
routing network architectures (Rose et al., 1992). They
can be classified into four main categories: symmetrical-
array, row-based, hierarchical and sea-of-gates.

A typical symmetrical-array FPGA consists of a two-
dimensional grid calledlogic cell array (LCA) which is
interconnected with vertical and horizontal channels as
shown in Fig. 2(a). Each point in this two-dimensional
grid is called aconfigurable logic block(CLB). A CLB
can implement a set of logic functions. In FPGA design
style, CLBs are used to provide the functionality of the
circuit by mapping the logic gates of the circuit to CLBs.
Logic blocks at the boundaries of the LCA are calledinput–
output blocks (IOBs). IOBs are used for external
connections of the circuit. Routing network, which consists
of vertical and horizontal channels placed in between CLBs,
makes connections among CLBs and IOBs.Switch blocks
(SBs) that connect wire segments in horizontal and vertical
channels are also a part of the routing network. In commer-
cial FPGAs, routing resources are fixed and fairly limited
(Xilinx, 1994). For example, there are only five tracks in
each routing channel for Xilinx XC3000 series of FPGAs as in
Fig. 2(a). The placement problem is especially important in
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designs using such devices, because fixed routing resources
make it difficult to achieve 100% automatic routing.

Automated FPGA layout generation can be divided into
four major phases,partitioning, technology mapping, place-
mentandrouting(Rose et al., 1993). Partitioning is used for
very large logic circuits that require multiple FPGA chips.
In technology mapping phase, a logic circuit is transformed
to an optimized, generic logic input format that consists of
CLBs and IOBs. In the placement phase, the circuit that is
formed in the technology-mapping phase is assigned to spe-
cific CLBs and IOBs in the LCA. This phase of FPGA
layout design is equivalent to the cell placement problem
discussed earlier. Most commercial automated design tools
for FPGAs use SA algorithm in the placement phase. SA
technique provides high quality solutions but it is notably
slow. In this paper, a fast placement algorithm is proposed
for symmetrical-array FPGAs that produces layouts which
are as good as the ones produced by SA.

4. Applying MFA to the cell placement problem

MFA technique merges the collective computation and
the annealing properties of Hopfield neural networks (Hop-
field and Tank, 1985) and SA (Kirkpatrick et al., 1983),
respectively, to obtain a general algorithm for solving com-
binatorial optimization problems. A combinatorial optimi-
zation problem consists of a set of configurations and a cost
function. For example, for the cell placement problem the
set of configurations corresponds to the set of all possible
placements of the input circuit. Sometimes, configurations
are also referred to as solutions. Cost function assigns a cost
to each configuration of the problem. For the cell placement
problem, the cost of each configuration (i.e. placement) is
the routing length of that placement. Optimum solution of a
combinatorial optimization problem is the configuration (i.e.

solution) which has the minimum (maximum) cost if the pro-
blem is a minimization (maximization) problem. Hence, for
the cell placement problem the optimum solution is the place-
ment of the circuit which has the minimum routing length.

In the MFA technique (Peterson and So¨derberg, 1989;
VandenBout and Miller, 1989, VandenBout and Miller,
1990), discrete variables called spins (or neurons) are used
to encode the configurations of the problem. A configuration
in the spin domain is a valuation of these discrete variables.
An encoding is defined which is a one-to-one mapping from
the set of configurations of the problem to the set of config-
urations of the spins. Then the cost function of the problem
is formulated in terms of spins. This function defines the
energy of a configuration in the spin domain. MFA algo-
rithm is a search algorithm in the spin domain which looks
for the configuration with the minimum energy. To achieve
this goal, expected values of the spins are updated itera-
tively using a nondeterministic gradient descent algorithm.
In the following sections, the formulation of the MFA tech-
nique for the cell placement problem is described.

4.1. Encoding

The MFA algorithm is derived by analogy toIsing and
Pottsmodels which are used to estimate the state of a system
of particles, called spins, in thermal equilibrium (Peterson
and So¨derberg, 1989; VandenBout and Miller, 1989, Van-
denBout and Miller, 1990). In Ising model, spins can be in
one of the two-states represented by 0 and 1, whereas in
Potts model they can be in one of theK states. For the
cell placement problem the Potts model is used for encoding
the configurations of the problem.

In the K-state Potts model ofS spins, the states of spins
are represented usingS K-dimensional vectorsSi ¼

½si1;…; sik;…; siK ÿt, 1 # i # S, where ‘t’ denotes the vector
transpose operation. The spin vectorSi is allowed to be

Fig. 2. (a) A typical architecture of symmetrical FPGA (Xilinx XC3030 chip). (b) FPGA model used in the proposed MFA formulation.
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equal to one of the principal unit vectorse1,…,ek,…,eK, and
cannot take any other value. Principal unit vectorek is
defined to be a vector which has all its entries equal to 0
except itskth entry which is equal to 1. SpinSi is said to be
in statek if it is equal toek. Hence, aK-state Potts spinSi is
composed ofK two-state variablessi1,…,sik,…,sik, wheresik

[ {0,1}, with the following constraint∑K
k¼ 1

sik ¼ 1, 1 # i Q S: (1)

To encode the configuration space of the cell placement
problem using theseK-state Potts spins, one spin is assigned
to each cell of the circuit. Each state of a spin corresponds to
a location in the layout, i.e. if a spin is in statek this means
that the cell associated with that spin is placed to locationk.

Two types of cells are considered in FPGA placement,
namelyL-cells andIO-cells. That is, in the circuitQ(C,N), C
¼ CL ∪ CIO, whereCL andCIO denote the sets ofL-cells
and IO-cells, respectively. Here,L-cells correspond to the
logic cells of the circuit to be placed to CLBs in the LCA.
IO-cells correspond to the input/output pads of the circuit to
be placed to the IOBs on the boundaries of the LCA as
shown in Fig. 2. Hence, two different encoding schemes
are used for theL-cells and theIO-cells.

4.1.1. Logic cell encoding
In order to encode the configuration space of the place-

ment problem, one Potts spin could be assigned to eachL-
cell i [ CL of the circuitQ(C,N) to be placed. A (K ¼ PQ)-
dimensional Potts spin could be used to encode the location
of eachL-cell, where each state of the Potts spin corre-
sponds to a location in theP 3 Q LCA. In this encoding,
there would be a total of |CL| (PQ)-dimensional Potts spins
in the system for encodingL-cells. Since each Potts spin
could be in one of theK states at a time, there would be a
one-to-one mapping between the configuration space of the
problem domain and the spin domain. As each Potts spin
consists ofK two-state variables, a total of |CL|PQ two-state
variables would be required for this encoding. However, a
more efficient encoding is to represent the location of each
L-cell with two Potts spins with dimensionsP andQ. Spins
with dimensionP are used to encode the rows of the LCA,
and spins with dimensionQ are used to encode the columns
of the LCA. Note that this encoding also constructs a one-to-
one mapping between the configuration space of the
problem domain and the spin domain. However, it is more
efficient since it uses a total of |CL|(P þ Q) two-state vari-
ables instead of |CL|PQ two-state variables of the previous
encoding. Spins with dimensionsP andQ are called row and
column spins and labeled asSr

i ¼ [sr
i1, …,sr

ip, …,sr
iP]t and

Sc
i ¼ [sc

i1, …,sc
iq, …,sc

iQ]t for L-cell i [ CL, respectively.
If a row (column) spin is in statep (q) the correspondingL-
cell is assigned to rowp (columnq). Hence,sr

ip ¼ 1 (sc
iq ¼ 1)

means thatL-cell i is assigned to rowp (columnq) of the
LCA. That is, if sr

ip ¼ 1 andsc
iq ¼ 1, this means thatL-cell i

is assigned to the CLB at locationpq. Here and hereafter,
row and column spins ofL-cells will be referred asL-row
andL-column spins, respectively.

4.1.2. Input/output cell encoding
In the Xilinx series of FPGAs, there are four IOBs, two on

each side, at the boundaries of each row and column of the
layout as shown in Fig. 2. Therefore, a (P 3 Q)-dimensional
FPGA hasM ¼ 4(P þ Q) IOBs. In IOB encoding, one Potts
spin is assigned to eachIO-cell b [ CIO of the circuitQ(C,N)
to be placed. AnM-dimensional Potts spin can be used to
encode the position of eachIO-cell, where each state of the
Potts spin corresponds to a unique IOB location in the layout.
There will be a total of |CIO| M-dimensional Potts spins in the
system for encodingIO-cells. Since each Potts spin consists of
M two-state variables, a total of |CIO|M two-state variables are
needed for this encoding. Spins with dimensionM are called
IO spins and labeled asSio

b ¼ [sio
b1, …,sio

bm, …,sio
bM]t for IO-cell

b [ CIO. If an IO spin is in statem the correspondingIO-cell
is assigned to IOB at locationm in the layout. In order to
simplify the encoding, the FPGA model is extended by adding
two new boundary columns and two new boundary rows as
shown in Fig. 2(b). Rows 0 andPþ 1, and columns 0 andQþ

1 are allocated to IOBs. AnL-cell can be assigned to any
internal rowp, 1 # p # P, and any internal columnq, 1 #
q # Q. An IO-cell can only be assigned to boundary rows 0
andP þ 1 or boundary columns 0 andQ þ 1. IOB locations
are numbered in clockwise direction starting from the upper
left corner of the layout from 1 to 4P þ 4Q. Two new func-
tionsrow(m) andcol(m) are defined to show the IOB location
m in terms of its row and column locations. Using this num-
bering scheme,sio

bm¼ 1 means thatIO-cell b is assigned to
IOB at locationm, that isIO-cell b is assigned to one of the
two IOBs at locationpqof the LCA wherep ¼ row(m) andq
¼ col(m). Note that eitherp [ {0,P þ 1} or q [ {0 ;Qþ 1} :

4.2. Energy function formulation

In the MFA algorithm, the aim is to find the spin values
minimizing the energy function of the system. In order to
achieve this goal, the average (expected) values of the spin
vectorsSr

i , Sc
i andSio

b are iteratively updated using a non-
deterministic gradient descent algorithm. Iterations con-
tinue until the system stabilizes at some fixed point. Define

V i
i ¼ vr

i1, …,vr
ip, …,vr

iP

� �t
¼ Sr

i


 �
¼ sr

i1


 �
, …, sr

ip


 �
, …, sr

iP


 �� �t,
Vc

i ¼ vc
i1, …,vc

iq, …,vc
iQ

� �t
¼ Sc

i


 �
¼ sc

i1


 �
, …, sc

iq


 �
, …, sc

iQ


 �� �t,
V io

b ¼ vio
b1, …,vio

bm, …,vio
bM

� �t
¼ Sio

b


 �
¼ sio

b1


 �
, …, sio

bm


 �
, …, sio

bM


 �� �t,
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where Vr
i , Vc

i andV io
b denote the expected values of

the spins Sr
i , Sc

i andSio
b , respectively. Note thatsr

ip,
sc
iq, sio

bm [ {0 ,1} , i:e:, sr
ip, sc

iq andsio
bm are discrete vari-

ables taking only two values 0 and 1, whereas
vr

ip, vc
iq, vio

bm [ [0, 1], i:e:, vr
ip, vc

iq andvio
bm are continuous

variables taking any real value between 0 and 1. As the system
is a Potts glass the following constraints are similar to Eq. (1):∑P

p¼ 1
vr

ip ¼ 1,
∑Q
q¼ 1

vc
iq ¼ 1,

∑M
m¼ 1

vio
bm¼ 1, (2)

for all i [ CL andb [ CIO. These constraints guarantee
that given an L-cell i and an IO-cell b, Potts spins
Sr

i , Sc
i andSio

b are in one of theP, Q and M states at a
time, respectively, i.e.,L-cell i is assigned to only one row
and one column, andIO-cell b is assigned to only one IOB
for our encoding of the placement problem. Note that
vr

ip ¼ 〈sr
ip〉, i:e: vr

ip is the expected value ofsr
ip. Hence,

vr
ip ¼ P{ sr

ip ¼ 0} 3 0þ P{ sr
ip ¼ 1} 3 1¼ P{ sr

ip ¼ 1}

¼ P{ L-cell i is in row p} :
Similarly,

vc
iq ¼ P{ L-cell i is in columnq} ,

vio
bm¼ P{ IO-cell b is in IOB m} :

That is,vr
ip is the probability of findingL-cell i in one of theQ

CLB locations at rowp, andvc
iq is the probability of findingL-

cell i in one of the P CLB locations at columnq. If
vr

ip ¼ 1 andvc
iq ¼ 1, then corresponding configuration is

Sr
i ¼ ep andSc

i ¼ eq, respectively, which means thatL-cell i
is placed to the CLB at locationpq of the LCA. Similarly,
vio

bm is the probability of findingIO-cell b at IOB locationm.
Note thatvio

bm also denotes the probability of findingIO-cell b in
one of the two IOB slots at locationpqof the LCA, wherep ¼

row(m) andq ¼ col(m). If vio
bm¼ 1 then the corresponding con-

figuration isSio
b ¼ em which means that theIO-cell b is assigned

to the IOB at locationm. This also means that theIO-cell b is
assigned to one of the two IOBs at locationpq of the LCA.

The encoding scheme defined here ensures thatL-cells
are assigned to the CLBs in the internal rows and columns of
the LCA. Similarly, it ensures thatIO-cells are assigned to
the IOBs in the boundary rows and columns of the LCA.
However, for the sake of both simplicity of presentation and
the efficiency of implementationP þ 2 andQ þ 2 dimen-
sional vectors are maintained for row and column spins,
respectively, for eachL-cell i [ CL;

Vr
i ¼ vr

i0, vr
i1, …,vr

ip, …,vr
iP, vr

i,Pþ 1

� �t,
Vc

i ¼ vc
i0, vc

i1, …,vc
iq, …,vc

iQ, vc
i,Qþ 1

� �t
: ð3Þ

Note that vr
i0, vr

i,Pþ 1,vc
i0 andvc

i, Qþ 1 are initialized to and
remain as all 0s sinceL-cells cannot be assigned to the bound-
ary rows and columns. Here,vr

ip for 1 # p # P andvc
iq for 1 #

q # Q correspond to the actual spin variables iteratively
updated during the MFA algorithm. For similar reasons,P
þ 2 and Q þ 2 dimensional row and column vectors are
maintained and updated for eachIO-cell b [ CIO

Vr
b ¼ vr

b0, vr
b1, …,vr

bp, …,vr
bP, vr

b,Pþ 1

� �t,
Vc

b ¼ vc
b0, vc

b1, …,vc
bq, …,vc

bQ, vc
b,Qþ 1

� �t, ð4Þ

wherevr
bp (vc

bq) corresponds to the probability of findingIO-
cell b in an IOB location at rowp (columnq) of the LCA.
Note that there are 2P (2Q) IOBs in the boundary rows
(columns) 0 andP þ 1 (Q þ 1). However, there are only
4 IOBs in each internal rowp (columnq) for 1 # p # P (1 #
q # Q). The row vectorVr

b can easily be computed using
actualIO-spin values as follows:

vr
b0 ¼

∑2P

m¼ 1
vio

bm, vr
b,Pþ 1 ¼

∑4Pþ 2Q

m¼ 2Pþ 2Qþ 1
vio

bm, (5)

vr
bp ¼ vio

bk þ vio
b,kþ 1 þ vio

b, þ vio
b, , þ 1 for 1 # p # P, (6)

wherek ¼ 2P þ (2p ¹ 1) and, ¼ M ¹ (2p ¹ 1). The
column vectorVc

b can be similarly computed as

vc
b0 ¼

∑M
m¼ 4Pþ 2Qþ 1

vio
bm, vc

b,Qþ 1 ¼
∑2Pþ 2Q

m¼ 2Pþ 1
vio

bm, (7)

vc
bq ¼ vio

bk þ vio
b,kþ 1 þ vio

b, þ vio
b, , þ 1 for 1 # q # Q, (8)

wherek ¼ (2q ¹ 1) and, ¼ (M ¹ 2Q) ¹ (2q ¹ 1). This
representation scheme is chosen forIO-cells sinceIO-cells
assigned to the IOBs in the same row and column of the
LCA incur the same vertical and horizontal routing cost,
respectively.

As mentioned earlier, energy function in the MFA algo-
rithm corresponds to formulation of the cost function of the
cell placement problem in terms of spins. Since the MFA
algorithm iterates on the expected values of the spins the
expected value of the energy function is formulated. The
gradient of the expected value of the energy function is used
in the MFA algorithm to compute the direction of maximum
energy decrease, and the expected values of the spins are
updated accordingly. The expected value of the energy
function is defined as follows for the cell placement prob-
lem. Using the expected values of the spin variables defined
earlier the following probabilities can be computed:

P{no cell of net n is in row p} ¼ P
i[n

P{cell i is not in rowp}

¼ P
i[n

(1¹ vr
ip),

P{one or more cells of netn is in row p} ¼ 1¹ P{no cell of net n is in row p}

¼ 1¹ P
i[n

(1¹ vr
ip),
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wherei [ n denotes a cell that is in netn. These values may
be computed for the columns of the LCA similarly.pr

np is
defined as the probability of the event that no cell of netn is
in row p andpc

nq as the probability of the event that no cell of
net n is in columnq, i.e.

pr
np ¼ P

i[n
(1¹ vr

ip), pc
nq ¼ P

i[n
(1¹ vc

iq): (9)

Note that, ifi [ n is anL-cell thenvr
ip andvc

iq correspond to the
actualL-row andL-column spin variables for 1# p # P and 1
# q# Q, respectively, and to dummy 0 variables forp¼ 0,Pþ

1 andq¼ 0,Qþ 1 respectively, in our representation scheme. If
i [ n is anIO-cell, then these values correspond to the respec-
tive entries of the row and column vectors maintained forIO-
spins as discussed earlier. The vertical and horizontal routing
costs of a netnare defined asqv 3 qn 3 (vertical span of netn)
andqh 3 qn(horizontal span of netn), respectively. Here,qv

andqh are the unit vertical and horizontal routing costs between
two successive cell (cluster) locations on the same column and
row, respectively. In FPGA design style,qv ¼ qh ¼ 1 is used.
Formulation of the vertical routing cost of netn as an energy
termEvn using these definitions is:

Evn ¼ qvqn

∑P

k¼ 0

∑Pþ 1

, ¼ kþ 1

(, ¹ k)

3P{vertical span of netn is between rowsk and,}

¼ qvqn

∑P

k¼ 0

∑Pþ 1

, ¼ kþ 1

(, ¹ k)P{net n is in row k}

3 P{net n is in row ,}

3 P{net n is not in first k¹ 1 rows}

3 P{net n is not in lastP¹ (, þ 2) rows}

¼ qvqn

∑P

k¼ 0

∑Pþ 1

, ¼ kþ 1

(, ¹ k)P{net n is in row k}

3 P{net n is in row ,}

3 P
k¹ 1

s¼ 0
P{net n is not in rows}

3 P
Pþ 1

t ¼ , þ 1
P{net n is not in row t}

¼ qvqn

∑P

k¼ 0

∑Pþ 1

, ¼ kþ 1

(, ¹ k)(1¹pr
nk)(1¹ pr

n,)

3 P
k¹ 1

s¼ 0
pr

ns P
Pþ 1

t ¼ , þ 1
pr

nt: ð10Þ

Here, netn is in rowk if and only if one or more cells of netn
is in row k, otherwise netn is not in rowk. Similarly, energy
formulation for the horizontal routing cost of netn is:

Ehn ¼qhqn

∑Q
k¼ 0

∑Qþ 1

, ¼ kþ 1

(, ¹ k)(1¹ pc
nk)(1¹ pc

n,)

3 P
k¹ 1

s¼ 0
pc

ns P
Qþ 1

t ¼ , þ 1
pc

nt: ð11Þ

Total vertical and horizontal routing cost terms of the
energy function (i.e.Ev and Eh) can be derived using the
formulation given in Eq. (10) and Eq. (11) as

Ev ¼
∑
n[N

Evn, Eh ¼
∑
n[N

Ehn: (12)

If the routing cost is used as the only factor in the cost
function, the optimum solution is mapping all cells of the
circuit to one location in the layout. This placement will
reduce the routing cost to zero but obviously it is not fea-
sible. Hence, a term in the cost function is needed which will
penalize the placements that put more than one cell to the
same location. This term is called the overlap cost. The
energy term is formulated corresponding to the overlap
cost for CLBs and IOBs as:

Eclb
o ¼

1
2

∑
i[CL

∑
j[CL, jÞi

qiqj

3P{ L-cells i and j are in the same CLB location}

¼
1
2

∑
i[CL

∑
j[CL, jÞi

qiqj

∑P

p¼ 1

∑Q
q¼ 1

3 P{ L-cell i is in CLB locationpq}

3 P{ L-cell j is in CLB locationpq}

¼
1
2

∑
i[CL

∑
j[CL, jÞi

qiqj

∑P

p¼ 1

∑Q
q¼ 1

vr
ipvc

iqvr
jpvc

jq, ð13Þ

Eiob
o ¼

1
2

∑
a[CIO

∑
b[CIO, bÞa

qaqb

3P
∑M

m¼ 1
{ IO-cellsa; b are in the same IOB locationm}

¼
1
2

∑
a[CIO

∑
b[CIO, bÞa

qaqb

∑M
m¼ 1

vio
amvio

bm: ð14Þ

Note that this overlap cost term becomes equal to the sum of
the inner products of the weights of the cells at each cell
(cluster) location when the system converges. In general
placement, this term is minimized when weights of all the
clusters are equal. If there is an imbalance among the cluster
weights, this term increases with the square of the amount of
imbalance, penalizing imbalanced clusterings. In FPGA pla-
cement, all cell weights are equal to 1 and only oneL-cell
and one IO-cell can be placed to one CLB and one
IOB location, respectively. In addition, |CL| # (P 3 Q),
|CIO| # M. Hence, the overlap cost is minimized when either
a single or noL-cell (IO-cell) is located to each CLB (IOB)
location. If there is an overlap in a location, the overlap cost
term increases with the square of the amount of overlap,
penalizing the overlapped locations. Total energy term can
be defined in terms of the routing cost terms and the overlap
cost term as:

E¼ Ev þ Eh þ b 3 Eo, whereEo ¼ Eclb
o þ Eiob

o : (15)

Parameterb is used to balance the two conflicting objectives
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of the energy function: minimizing the routing cost and the
overlap cost. Note that allocating all cells to the same loca-
tion minimizes the routing cost while maximizing the over-
lap cost. Minimization of the above energy function
corresponds to distributing the cells of the circuit to the
locations in such a way that the semi-perimeter and overlap
costs are minimized.

The derivation of the gradient of the energy function
using the formulation discussed earlier results in substan-
tially complex expressions. Hence, the total energy function
given in Eq. (15) is simplified in order to get more suitable
expressions for the gradient. Simplification of theEv andEh

terms given in Eq. (12) is as follows. A close examination of
Eq. (10) and Eq. (11) reveals the symmetry betweenEvn and
Ehn terms. In fact, expressions forEvn and Ehn can be
obtained from each other by interchanging ‘r’ with ‘ c’,
‘P’ with ‘ Q’, and ‘qv’ with ‘ qh’. Hence, algebraic simplifi-
cations will only be discussed for theEvn term. Similar steps
can be followed for theEhn term. The following notation is
introduced for the sake of simplification of the routing cost
terms:

Fr
nk ¼ P

k

s¼ 0
pr

ns, Lr
nk ¼ P

Pþ 1

s¼ k
pr

ns, Fc
nk ¼ P

k

s¼ 0
pc

ns, Lc
nk ¼ P

Qþ 1

s¼ k
pc

ns:

(16)

Here,Fr
nk andLr

nk denote the probabilities that netn has no
cells in the firstk þ 1 rows (rows 0,1,2,…,k) and the lastP¹

k þ 2 rows (rows k,k þ 1,…,P,P þ 1), respectively. Simi-
larly, Fc

nk andLc
nk denote the probabilities that netn has no

cells in the firstk þ 1 and the lastQ ¹ k þ 2 columns,
respectively. Using this notation,Evn in Eq. (10) can be
rewritten as:

Evn¼wvwn

∑Pþ 1

k¼ 1
(1¹ pr

nk)F
r
n, k¹ 1

∑Pþ 1

, ¼ kþ 1

(, ¹ k)(1¹ pr
n,)Lr

n, , þ 1:

(17)

Since,

(1¹ pr
nk) P

k¹ 1

s¼ 0
pr

ns ¼ P
k¹ 1

s¼ 0
pr

ns¹ P
k

s¼ 0
pr

ns¼ Fr
n,k¹ 1 ¹ Fr

nk,

(18)

(1¹ pr
n,) P

P

t ¼ , þ 1
pr

nt ¼ P
P

t ¼ , þ 1
pr

nt ¹ P
P

t ¼ ,
pr

nt ¼ Lr
n, , þ 1 ¹ Lr

n,,

(19)

Eq. (17) becomes:

Evn ¼ qvqn

∑P

k¼ 1
Fr

n, k¹ 1 ¹ Fr
nk

ÿ � ∑Pþ 1

, ¼ kþ 1

(, ¹ k)(Lr
n, , þ 1 ¹ Lr

n,):

(20)

The innermost summation in Eq. (20) telescopes to:∑Pþ 1

, ¼ kþ 1

(, ¹ k) Lr
n, , þ 1 ¹ Lr

n,

ÿ �
¼

∑Pþ 1

, ¼ kþ 1

(1¹ Lr
n,), (21)

sinceLn,Pþ2 ¼ 1. Substituting Eq. (21) into Eq. (20):

Evn ¼ qvqn

∑P

k¼ 1
Fr

n,k¹ 1 ¹ Fr
nk

ÿ � ∑Pþ 1

, ¼ kþ 1

(1¹ Lr
n,): (22)

After computing the telescoping outer sum in Eq. (22) and
through some algebraic manipulations, expression forEvn

simplifies to:

Evn ¼ qvqn

∑P

k¼ 0
1¹ Fr

nk

ÿ �
1¹ Lr

n,kþ 1

ÿ �
: (23)

Similarly, the expression forEhn in Eq. (11) simplifies to:

Ehn ¼ qhqn

∑Q
k¼ 0

1¹ Fc
nk

ÿ �
1¹ Lc

n,kþ 1

ÿ �
: (24)

Note that Eq. (23) and Eq. (24) compute the vertical and
horizontal routing cost of netn, respectively, in an incre-
mental manner. Hence, total energy function in Eq. (15) can
be rewritten as:

E¼ qv

∑
n[N

qn

∑P

k¼ 0
(1¹ Fr

nk)(1¹ Lr
n,kþ 1)

þ qh

∑
n[N

qn

∑Q
k¼ 0

(1¹ Fc
nk)(1¹ Lc

n,kþ 1)

þ
b

2

∑
i[CL

∑
j[CL, jÞi

qiqj

∑P

p¼ 1

∑Q
q¼ 1

vr
ipvc

iqvr
jpvc

jq

þ
b

2

∑
a[CIO

∑
b[CIO,bÞa

qaqb

∑M
m¼ 1

vio
amvio

bm: ð25Þ

4.3. Derivation of the mean field theory equations

The expected valuesVr
i ,Vc

j andV io
b of eachL-row, L-

column and IO spinsSr
i , Sc

j andSio
b are iteratively updated

using the Boltzmann distribution as:

(a) vr
ip ¼

efr
ip=T

r

∑P

k¼ 1
efr

ik =T
r

, (b) vc
jq ¼

efc
jq=T

c

∑Q
k¼ 1

efc
jk =T

c

,

(c) vio
bm¼

efio
bm=T

io

∑M
k¼ 1

efio
bk=T

io

, ð26Þ

for p ¼ 1,2,…,P, q ¼ 1,2,…,Q andm ¼ 1,2,…,M, respec-
tively. Here,fr

ip, fc
jq andfio

bm denote the elements of the
mean field vectors corresponding to the variables
vr

ip, vc
jq andvio

bm, respectively. In Eq. (26),Tr, Tc and Tio

denote the temperature parameters used for annealing the
L-row, L-column, and IO spins, respectively. Recall that the
number of states of theL-row, L-column andIO spins are
different (P, Q andM, respectively) in the proposed encod-
ing. As the convergence time and the temperature parameter
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of the system depend on the number of states of the spins,
theL-row, L-column andIO spins are interpreted as differ-
ent systems. Note that Eqs. (26)a–c enforce eachL-row, L-
column andIO spinsSr

i , Sc
j andSio

b to be in one of theP, Q
andM states, respectively, when they converge. In the pro-
posed MFA formulation,L-row, L-column andIO spins are
updated in an alternate manner, i.e., eachL-row spin update
is followed by anL-column spin update which is followed
by anIO-spin update.

In the proposed formulation,L-row, L-column andIO
mean field vectorsFr

i , Fc
j andFio

b are computed inL-row,
L-column and IO iterations, respectively. Each element
fr

ip, fc
jq andfio

bm of the L-row, L-column and IO mean
field vectorsFr

i ¼ [fr
i1, …,fr

ip, …,fr
iP]t, Fc

j ¼ [fc
j1, …,fc

jq,
…,fc

jQ]t andFio
b ¼ [fio

b1, …,fio
bm, …,fio

bM]t experienced by
L-row, L-column andIO Potts spins denote the decrease
in the energy function by assigningSr

i to ep,Sc
j to eq

andSio
b to em, respectively. Hence,¹fr

ip, ¹ fc
jq and

¹ fio
bm may be interpreted as the decrease in the overall

solution quality by placingL-cell i to row p, L-cell j to
columnq, andIO-cell b to the IOB locationm, respectively.
Then, in Eqs. (26)a–c,vr

ip, vc
jq andvio

bm are updated such that
the probabilities of placingL-cell i to row p, L-cell j to
column q and IO-cell b to the IOB locationm increase
with increasing mean field valuesfr

ip, fc
jq andfio

bm, respec-
tively. Using the simplified expression for the proposed
energy function in Eq. (25) the following is derived:

fr
ip ¼ E(Vr , Vc, V io)jVr

i ¼ 0 ¹ E(Vr ,Vc,V io)jVr
i ¼ ep

¼ ¹ qv

∑
n[Ni

qnZir
np ¹ brqi

∑
j[CL, jÞi

qjv
r
jp

∑Q
q¼ 1

vc
iqvc

jq,

(27)

where

Zir
np ¼

∑p

k¼ 1
Lir

nk(1¹ Fir
n, k¹ 1) þ

∑P

k¼ p

Fir
nk(1¹ Lir

n,kþ 1), (28)

fc
jq ¼ E(Vr ,Vc,V io)jVc

j ¼ 0 ¹ E(Vr ,Vc,V io)jVc
j ¼ eq

¼ ¹ qh

∑
n[Nj

qnZjc
nq ¹ bcqj

∑
i[CL, iÞj

qiv
c
iq

∑P

p¼ 1
vr

jpvr
ip,

(29)

where

Zjc
nq ¼

∑q

k¼ 1
Ljc

nk(1¹ Fjc
n, k¹ 1) þ

∑Q
k¼ q

Fjc
nk(1¹ Ljc

n,kþ 1) (30)

fio
bm ¼ E(Vr ,Vc,V io)jV io

b ¼ 0 ¹ E(Vr ,Vc,V io)jV io
b¼em

¼ ¹qv

∑
n[Nb

qnZbr
np¹ qh

∑
n[Nb

qnZbc
nq ¹ bioqb

∑
a[CIO,aÞb

qavio
am:

(31)

Here,Ni denotes the set of nets connected to celli, andp ¼

row(m), q ¼ col(m). Note that different balance parameters

b r, bc andb io are used in Eq. (27), Eq. (29) and Eq. (31)
sinceL-row, L-column andIO spins are treated as different
systems. Here,Fir

nk,L
ir
nk,F

jc
nk andLjc

nk are defined as:

Fir
nk ¼ P

k

s¼ 0
pir

ns, Lir
nk ¼ P

Pþ 1

s¼ k
pir

ns, Fjc
nk ¼ P

k

s¼ 0
pjc

ns, Ljc
nk ¼ P

Qþ 1

s¼ k
pjc

ns,

(32)
where

pir
ns¼ P

j[n, jÞi
(1¹ vr

js), pjc
ns¼ P

i[n, iÞj
(1¹ vc

is): (33)

In Eq. (28),Zir
np computes the increase in the vertical span of

netn by assigning itsL-cell i to rowp (i.e. settingVr
i to ep) in

an incremental manner. Similarly, in Eq. (30),Zjc
nq computes

the increase in the horizontal span of netn by assigning its
L-cell j to column q (i.e. settingVc

j to eq). In Eq. (31),
Zbr

np andZbc
nq correspond to the increase in the vertical and

horizontal spans of netn, respectively, by assigning itsIO-
cell b to one of the two IOBs at locationpq(i.e. settingVio

b to
em) wherep ¼ row(m) andq ¼ col(m). The expressions for
Zbr

np andZbc
nq can be obtained by replacing ‘i’ and ‘j’ with ‘ b’

in Eq. (28) and Eq. (30), respectively. Note that row (col-
umn) assignment of a cell does not affect the horizontal
(vertical) spans of the nets connected to that cell. The last
summation terms in Eqs. (27) and (29) and Eq. (31) repre-
sent the increase in the overlap cost term by assigningL-cell
i to rowp, L-cell j to columnq andIO-cell b to IOB location
m, respectively.

Fig. 3 illustrates the pseudo-code for the MFA algorithm
proposed for the placement problem. At step 1, temperature
parametersTr, Tc andTio are initialized to sufficiently high
temperatures for the annealing ofL-row, L-column andIO
spins, respectively. At step 2, an initial high temperature
spin average is assigned to each Potts spin. In general,
each spin variable is initialized to 1/K plus a small distur-
bance term which varies between¹0.1/K andþ0.1/K. Here,
K ¼ P, K ¼ Q andK ¼ M for L-row, L-column andIO spin
variables, respectively. Note thatvr

ip, vc
jq andvio

bm spin vari-
ables updated according to Eq. (26) will approach to 1/P, 1/
Q and 1/M with Tr → `, Tc → ` andTio → `, respectively.
Then, outermostwhile-loop(step 3) iterates whileTr, Tc and
Tio are all in the cooling range. At each iteration of the
innermostrepeat-loop(step 3.1.2), the mean field vector
effecting on a randomly selectedL-row spin is computed
(step 3.1.2.1), then the respectiveL-row spin average vector
is updated (step 3.1.2.2). Similar operations are performed
for randomly selectedL-column andIO spins as shown
in steps 3.1.2.3–3.1.2.6. These spin update operations are
repeated for random sequences ofL-row, L-column and
IO spins as shown in therepeat-loop (step 3.1.2). The
system is observed at the end of eachrepeat-loop in
order to detect the convergence to an equilibrium state
at the current temperature. If the average energy
decrease caused by the spin updates performed in the
repeat-loop is below a threshold value, this means that
the system is stabilized for the current temperature.
Then, Tr, Tc and Tio are decreased according to the
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cooling schedule (step 3.2) and the overall iterative pro-
cess (step 3.1) is re-initiated.

As mentioned earlier, the proposed MFA algorithm is an
iterative process. The complexity of MFA iterations is
mainly caused by the mean field computations. As seen in
Eqs. (27) and (29) and Eq. (31), calculations of mean field
values are computationally very intensive. In this work, an
efficient implementation scheme is used which reduces the
complexity of individualL-row, L-column andIO iterations
to QðdavgPþ PQÞ; Q(davgQþ PQ) andQ(davg(Pþ Q) þ M),
respectively. Here,avg denotes the average cell degree, i.e.
average number of nets connected to a cell. This scheme is
based on the techniques developed in (Bultan and Aykanat,
1995) for circuit partitioning problem, and can be derived
from the formulations in (Bultan and Aykanat, 1995).
Therefore, its details will not be given here. Note that a
sequence ofL-row, L-column andIO spin updates can be
considered as a single MFA iteration. Hence, a single MFA
iteration takesvðdavgðPþ QÞ þ PQþ MÞ ¼ (davg(P þ Q) þ

PQ) time in our implementation scheme sinceM ¼ 4(P þ

Q) # PQ for sufficiently largeP andQ values.

4.4. Parameter selection and cooling schedule

The parametersb r, bc, b io used in mean field computa-
tions and the initial temperaturesTi

0, Tc
0, Tio

0 used in spin
updates are estimated using initial random spin averages.
Recall that parameterb in the energy function formulation
in Eq. (25) is introduced to determine a balance between the
two conflicting optimization objectives of the placement
problem. Also recall that different balance parametersb r,
bc, b io are used in theL-row, L-column andIO mean field

computations sinceL-row, L-column andIO spins are trea-
ted as different systems. For example, in theL-row mean
field computations in Eq. (27),b r determines a balance
between the terms:

f
r(v)
ip ¼ qv

∑
n[Ni

qnZir
np andf

r(o)
ip ¼ qi

∑
j[CL, jÞi

qjv
r
jp

∑Q
q¼ 1

vc
iqvc

jq,

where fr
ip ¼ fr(v)

ip þ br fr(o)
ip . Note that ¹ fr(v)

ip and ¹ fr(o)
ip

represent the increases in the vertical routing cost term
and overlap cost term, respectively, by assigningL-cell i
to row p. Then, compute the averages:

f
r(v)
ip

D E
¼

∑
i[CL

∑P

p¼ 1
f

r(v)
ip

 !�
(jCLjP),

f
r(o)
ip

D E
¼

∑
i[CL

∑P

p¼ 1
f

r(o)
ip

 !�
(jCLjP)

of these two terms using the initial random spin averages
and computeb r as:

br ¼ g f
r(v)
ip

D E.
f

r(o)
ip

D E
,

where constantg is chosen as 0.8. The parametersbc andb io

are computed similarly. The sameg ¼ 0.8 is used in these
computations.

Selection of initial temperatures is crucial for obtaining
good quality solutions. In previous applications of MFA
(Peterson and So¨derberg, 1989; VandenBout and Miller,
1990), it is experimentally observed that spin averages
tend to converge at a critical temperature. It is suitable to
chose initial temperatures slightly greater than these critical

Fig. 3. MFA algorithm proposed for the placement problem.
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temperatures. Although there are some methods proposed
for the estimation of critical temperature (Peterson and
Söderberg, 1989; VandenBout and Miller, 1990), an experi-
mental way of computing the initial temperatures is pre-
ferred here. After the balance parametersb r, bc, b io are
fixed, averageL-row, L-column andIO mean fields:

fr
ip


 �
¼

∑
i[CL

∑
P
p¼ 1f

r
ip

jCLjP
, fc

jq


 �
¼

∑
j[CL

∑
Q
q¼ 1f

c
jq

jCLjQ
,

fio
bm


 �
¼

∑
b[CIO

∑
M
m¼ 1f

io
bm

jCIOjM
ð34Þ

are computed using initial random spin averages, respec-
tively. Then,Tr

0, Tc
0, Tio

0 are computed as:

Tr
0 ¼ j fr

ip


 �
=P, Tc

0 ¼ j fc
jq


 �
=Q, Tio

0 ¼ j fio
bp


 �
=M, (35)

wherej is a constant. Our experiments indicate that it is
suitable to chose the parameterj as 100. Note that initial
temperatures are inversely proportional to the dimensions of
the respective Potts spins which is also observed for the
critical temperature formulations presented in other imple-
mentations (Peterson and So¨derberg, 1989; VandenBout
and Miller, 1990). The same cooling schedule is adopted
for L-row, L-column andIO iterations. At each temperature
level,L-row,L-column andIO iterations proceed in an alter-
nate manner for randomly selected unconvergedL-row, L-
column andIO spin updates. Here, a temperature level cor-
responds to a particular set ofTr, Tc and Tio values. Spin
variables are tested for convergence after each spin update.
If the kth variable (for anyk, 1# k # K) of a spin is detected
to be greater than 0.95, that spin is assumed to converge to
statek. At the end of each random sequence ofL-row, L-
column andIO spin updates, the total decreaseDE in the
energy caused by these spin updates is computed. Note that
a random sequence ofL-row, L-column andIO spin updates

corresponds to a single iteration of therepeat-loop(step
3.1.2) in Fig. 3. For each iteration of therepeat-loop(step
3.1.2) the average energy decrease per spin update isDE/W
where W is the total number of spin updates performed
during the random sequence ofL-row, L-column andIO
spin updates. If (DE/W) # e wheree is a small constant
chosen ase ¼ 0.1, it is concluded that the energy is stabi-
lized for the current temperature level, and the temperature
values are decreased according to the cooling schedule.

The cooling process is realized in two phases, slow cool-
ing followed by fast cooling, similar to the cooling sche-
dules used for SA. In the slow cooling phase, temperatures
are decreased usinga ¼ 0.95 untilT , T0/1.5. Then, in the
fast cooling phase,a is set to 0.85. The cooling process
continues until either 90% of the spins are converged orT
reduces below 0.01T0. At the end of this process, the vari-
able with maximum value in each unconverged spin is set to
1 and all other variables are set to 0. Then, the result is
decoded as described in Section 4.1 and the resulting place-
ment is obtained.

The resulting placement may be infeasible, i.e. more than
oneL-cell or IO-cell may be allocated to the same CLB or
IOB location, respectively. In such cases, the spins causing
infeasible allocations are re-initialized to random initial
values together with the set of unconverged spins at the
end of the cooling process. Then, MFA algorithm is exe-
cuted only for these spins starting from the initial high tem-
peratures according to the same cooling schedule. Note that
converged spins are held in their decoded values during this
re-heating process. This re-heating process is continued
until a feasible placement is found.

Fig. 4 illustrates the evolution of the energy correspond-
ing to the total placement cost with MFA iterations for the
placement of circuitc432onto a 103 10 FPGA. This figure
is constructed by computing the total energy term (Eq. (25))

Fig. 4. Evaluation of the total energy with MFA iterations for the placement ofc432.
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at the end of each random sequence ofL-row, L-column and
IO spin updates. Three curves in Fig. 4 correspond to the
evolution of the total placement cost for three different
initial temperatures computed usingj ¼ 10 000,j ¼ 100
andj ¼ 1 in Eq. (35). In Fig. 4, the major decrease in the
energy terms for all three cases occurs at the same tempera-
ture which corresponds to the critical temperature men-
tioned earlier. In this figure,j ¼ 10 000 andj ¼ 100
correspond to initial temperatures which are significantly
and slightly greater than the critical temperature,
respectively. As seen in this figure, both initial temperatures
yield almost the same solution quality. Note that initial
temperatures corresponding toj ¼ 10 000 andj ¼ 100
yield placement solutions with semi-perimeter costs of
408 and 407, respectively. In contrast,j ¼ 1 corresponds
to an initial temperature smaller than the critical tempera-
ture. This case results in a significantly worse solution qual-
ity with a semi-perimeter cost of 553. In general, starting
from initial temperatures which are slightly greater than the
critical temperature is sufficient for obtaining good solu-
tions.

5. Experimental results

This section presents experimental performance evalua-
tion of the proposed MFA algorithm in comparison with
Xilinx Automated Placement and Routing(APR 3.30)
program which uses simulated annealing algorithm in
placement. Our MFA algorithm was implemented inC lan-
guage and run on Sun-4 ELC workstations. Seven MCNC
benchmark circuits were used to test the performance and

efficiency of both programs. Xilinx 3000 series chips were
used as the target FPGAs. The circuits were mapped into
3000 series logic blocks by using Xilinx XACT tools and
these mapping results were used as inputs to the placement
programs.

Table 1 illustrates the properties of the benchmark cir-
cuits. The first two columns illustrate the number of CLBs
and IOBs in the circuits to be placed. The third column
shows the number of multi-pin nets. The last two columns
illustrate theP 3 Q dimensions of the FPGAs and the names
of the target Xilinx chips used for placement.

The placement and routing results are displayed in Table
2 and Table 3. Both MFA and APR programs were run 10
times for each problem instance. Table 2 displays the aver-
age placement costs and the average execution times of 10
runs for each placement instance. The placement results of
both MFA and APR placement programs are used as inputs
to the routing program of Xilinx APR tool. The average, the
minimum and the maximum values for the maximum path
delays obtained in 10 runs are displayed in Table 3. Table 3
also displays the average execution times of Xilinx APR
tool for routing the placements produced by MFA and
APR programs. Maximum path delay values were computed
by running Xilinx XDelay program for each routing result.

The APR routing program produced 100% routability for
each placement result obtained by both placement programs
for all circuits except the largest circuitc3540. The router
fails to route all the nets in the placement of this circuit.
Infeasibility caused by the assignment ofL-cells to the same
CLB locations was not experienced in our MFA runs.
However, infeasibility caused by the assignment ofIO-
cells to the same IOB locations was experienced in some of

Table 1
Properties of the MCNC benchmark circuits used in the experiments

Circuit Number of P 3 Q Target FPGA
CLBs IOBs Nets

c499 66 73 107 103 10 XC3030PC84
c1908 116 58 191 123 12 XC3042CQ100
c1355 70 73 115 103 10 XC3030PC84
c880 84 86 187 163 20 XC3090PQ160
c432 50 43 111 103 10 XC3030PC84
s1238 158 30 251 163 20 XC3090PQ160
c3540 283 72 489 163 20 XC3090PQ160

Table 2
Performance of the MFA and APR programs for the placement of MCNC circuits

Circuit Semi-perimeter cost APR cost Execution time (sec)
MFA APR MFA APR MFA APR

c499 51.2 87.6 25625 22578 56 792
c1908 76.6 162.7 54346 49805 138 1845
c1355 52.2 92.5 23740 20816 32 639
c880 67.2 138.4 36126 27412 188 4828
c432 44.3 89.3 16461 15193 87 506
c1238 110.2 237.5 140128 117900 367 7843
c3540 160.3 401.8 196168 142522 435 16834
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our runs. However, a single re-heating pass was sufficient for
obtaining feasible solutions in all these placement instances.

The semi-perimeter cost values displayed in Table 2 cor-
respond to the average normalized semi-perimeter costs
computed for the placement results of both programs as
described in Section 2. Here, normalization refers to assum-
ing a unit square layout. That is, vertical and horizontal
spans of the nets are normalized by multiplying them with
1/Q and 1/P, respectively, during the computation of total
semi-parameter cost values for Table 2. The APR cost
values correspond to the average costs computed for the
placement results of both programs according to APR’s
placement cost definition. The semi-perimeter costs of the
placement results obtained by the MFA program are 105%
better than those of the APR program. However, APR-costs
of the placement results obtained by the APR program are
16% better than those of the MFA program.

Table 4 illustrates the normalized relative performance
results of the two placement programs. In this table, the
averages of the maximum path delay values obtained by

the Xilinx XDelay program after routing the placement
results of APR placement program are normalized with
respect to those of the MFA program. This table also illus-
trates the execution times of the APR placement program
normalized with respect to those of the MFA program. As
seen in this table, the MFA placements yield slightly better
routing results in 3 circuits out of seven circuits. APR place-
ments yield 3% better routing results on the overall average.
However, as seen in Tables 2 and 4, MFA placement pro-
gram is significantly faster than the APR placement program
in all instances. MFA placement program is 19.8 times fas-
ter than the APR placement program on the overall average.
Fig. 5 illustrates sample routing results of the circuitc432
for placements obtained by APR and MFA.

6. Conclusions

In this paper, a fast nondeterministic cell placement
algorithm was proposed for VLSI design automation

Fig. 5. Routing results of the circuitc432for the placements obtained by (a) APR, (b) MFA.

Table 3
Routing results obtained by Xilinx APR tool for placements produced by MFA and APR programs

Cicuit Maximum path delay (ns) Execution time (sec)
MFA APR
Avg Min Max Avg Min Max MFA APR

c499 94.9 93.0 99.6 98.5 94.8 100.4 136 85
c1908 159.6 145.6 168.5 166.2 157.8 172.1 796 853
c1355 94.5 92.9 98.3 91.5 84.0 93.8 98 78
c880 151.2 141.1 164.6 139.1 137.2 142.6 187 266
c432 173.5 162.1 192.5 178.3 174.4 185.8 202 314
c1238 198.3 184.5 214.5 165.3 154.7 174.7 428 986
c3540 243.5 239.6 264.4 238.5 221.9 269.5 4380 5726
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based on Mean Field Annealing (MFA). The performance of
the proposed placement algorithm was evaluated in
comparison with the commercial automated circuit design
softwareXilinx Automatic Place and Route(APR) tool for
the placement of seven MCNC benchmark circuits. The
results show that neurocomputing approaches such as the
MFA technique can be applied to practical problems and
can compete with the commercially available tools success-
fully. Experimental results indicate that our algorithm
achieves comparable placements with APR. However, our
algorithm is significantly faster than APR.
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