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Abstract

Cell placement is an important phase of current VLSI circuit design styles such as standard cell, gate array, and Field Programmable ¢
Array (FPGA). Although nondeterministic algorithms such as Simulated Annealing (SA) were successful in solving this problem, they a
known to be slow. In this paper, a neural network algorithm is proposed that produces solutions as good as SA in substantially less time.
algorithm is based on Mean Field Annealing (MFA) technique, which was successfully applied to various combinatorial optimizatio
problems. A MFA formulation for the cell placement problem is derived which can easily be applied to all VLSI design styles. Tc
demonstrate that the proposed algorithm is applicable in practice, a detailed formulation for the FPGA design style is derived, and
layouts of several benchmark circuits are generated. The performance of the proposed cell placement algorithm is evaluated in compa
with commercial automated circuit design software Xilinx Automatic Place and Route (APR) which uses SA technique. Performan
evaluation is conducted using ACM/SIGDA Design Automation benchmark circuits. Experimental results indicate that the propos
MFA algorithm produces comparable results with APR. However, MFA is almost 20 times faster than APR on the @/E98§eEIsevier
Science Ltd. All rights reserved.

Keywords:VLSI circuit design; Cell placement problem; Field programmable gate array; Mean field annealing; Neural-network algorithm

1. Introduction same. This enables a general definition for the cell
placement problem to be made which is valid for all design
Cell placement is an important problem arising in various styles. The problem is decomposed into two phases such
VLSI circuit design styles such as standard cell, gate array that the first phase is same for all design styles and the
and Field Programming Gate Array (FPGA). Given a circuit second phase depends on the design style. An instance of
description, the problem is to find a layout of the circuit the first phase of the cell placement problem consists of a
while minimizing some cost function. Usually two closely hypergraph?(C, N) representing the circuit to be placed,
related criteria are used to construct a cost function: mini- and a rectangular grid of clusters wifh rows andQ
mization of the routing length and minimization of the chip columns where the circuit will be placed. Hypergraph
area. In some design styles (e.g. standard cell), minimizationQ(C, N) consists of a vertex s&f representing the cells
of the area is equivalent to minimization of the routing of the circuit, a hyperedge skitrepresenting the nets of the
length (Shahookar and Mazumder, 1991), whereas in circuit, a cell weight functiom:C — A/, and a net weight
some others area is fixed (e.g. FPGA). If the area is fixed, functionw,.:N — A, where/ represents the set of natural
minimization of the routing length is necessary for the rout- numbers. The aim is to partition the vertex €ahto P X Q
ability of the circuit using the available routing resources. clusters such that the routing cost is minimized and the
Minimization of the routing length also minimizes the pro- weights of the clusters are nearly balanced. The weight
pagation delays of the circuit, hence increasing its speedof a cluster is the sum of the weights of the cells in that
(Shahookar and Mazumder, 1991). cluster. In general, cell weight function is used to encode
Although the cell placement problem has different the areas of cells, and net weight function is used to
characteristics related to the technology used in different increase the importance of some nets which may be crucial
design styles, key features of the problem remain the for the performance of the circuit. The rectangular grid of
clusters is used for estimating the final locations of the
* Corresponding author. Tel.: +90-312-266-4133; Fax: +90-312-266- Cells. The computation of routing cost is discussed in detail
4126; E-mail: aykanat@cs.bilkent.edu.tr in Section 2.
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Fig. 1(a) illustrates an example circuit with 16 cells and  Since cell placement problem is NP-Hard (Lengauer,
19 nets (Shahookar and Mazumder, 1991). The circuit has 31990), finding efficient placement heuristics is an important
input (11, 12, 13) and 2 output@1, O2) pads. Pads may be research issue. In the last decade, neurocomputing
interpreted as cells which must be mapped to the boundariesapproaches based on Hopfield model were successfully
of the cluster grid. The example circuit in Fig. 1(a) may be applied to various combinatorial optimization problems
represented with a hypergragl{C, N) according to the  such as the traveling salesman problem (Peterson and

above definition as: Saderberg, 1989; VandenBout and Miller, 1989; Takahashi,
1997), scheduling problem (Gisleet al., 1992), mapping

C ={1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 18,12,13, 01, 02} problem (Bultan and Aykanat, 1992), knapsack problem

N ={{11,1,2,3,4},{2,1,2,3,4,11,12}, 3,6, 10, 11, 12, 13}, {1, 8}, (Ohlsson et al., 1993; Ohlsson and Pi, 1997), communica-
{3, 7}, {11, 13}, {5, 6}, {8, 9}, {9,15},{13,16},{ OL 15}, {2, 5}, tion routing problem (Hkkinen et al., 1998), graph parti-

{4, 10}, {12, 14}, {6, 8}, {7. 9}, {10, 15}, {14, 16}, { O2, 16}} tioning problem (Herault and Niez, 1989; Peterson and

Unit cell and net weights are assumed in this example. Saderberg, 1989; VandenBout and Miller, 1990), graph lay-
Fig. 1(b) shows the placement of this circuit to &4 grid out problem (Cimikowski and Shope, 1996), circuit parti-
of 16 clusters. tioning problem (Yih and Mazumder, 1990; Bultan and

The second phase of the cell placement problem is the Aykanat, 1995). In this paper, the Mean Field Annealing
mapping of the cells in the clusters to their final locations in (MFA) technique is applied to the cell placement problem.
the layout. In standard cell design style, cells are used for MFA is a hew approach for solving combinatorial optimiza-
constructing rows, and in gate array design style, cells aretion problems (Peterson and &aberg, 1989; VandenBout
mapped to rows or grid locations according to the type of the and Miller, 1989, VandenBout and Miller, 1990; Gislet
gate array used (Sechen, 1988). Some gate arrays consist al., 1992; Bultan and Aykanat, 1992, Bultan and Aykanat,
modules forming a rectangular grid. For this type of gate 1995; Ohlsson et al., 1993; Ohlsson and Pi, 199kkiwen
arrays the second phase of the problem may be skipped byet al., 1998). MFA combines the collective computation
choosing the number of rows and columns of the cluster grid property ofHopfield neural networkg§Hopfield and Tank,
to be equal to the number of rows and columns of the mod- 1985) with the annealing notion dimulated Annealing
ule grid, respectively. Symmetrical FPGAs consist of logic (SA) (Kirkpatrick et al., 1983). In MFA, discrete variables
blocks forming a rectangular grid (Rose et al., 1992, Rose et called spins(or neuron$ are used for encoding configura-
al., 1993). Hence, the second phase of the problem can bdions of combinatorial optimization problems. Aemergy
similarly skipped for symmetrical FPGAs. This two phase function written in terms of spins is used for representing
modeling enables the development of heuristics for the first the cost function of the problem. Then, using the expected
phase of the problem which are independent of the designvalues of these discrete variables, a nondeterministic

style. gradient descent type relaxation scheme is used to find a
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Fig. 1. (a) A circuit with 16 cells, 19 nets and 5 pads. (b) A sample placement of the circuit in (a)¢ataydd of 16 clusters. Bounding box and horizontal and
vertical spans of the net {10, 15} are shown in (b).
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configuration of the spins which minimizes the energy func- (bounding box) enclosing all the cells connected to that net.
tion associated with them. Fig. 1(b) shows the bounding box of the net {10, 15} with
In this paper, a MFA-based cell placement algorithm is two cells. This method gives a good approximation to the
proposed. In order to show the performance of the proposedSteiner treavhich is the most efficient routing scheme (Sha-
algorithm on concrete examples MFA formulations are hookar and Mazumder, 1991). The shortest way to route a
derived for symmetrical-array FPGA design style. How- net is to find the minimum length Steiner tree of the cells
ever, the MFA formulations proposed for FPGAs are gen- connected to that net. Steiner trees can also be used as an
eral enough so that they can easily be applied to the firstapproximation of the final routing length, but finding the
phase of the cell placement problem in other design stylesminimum Steiner tree is an NP-Hard problem and its com-
with minor modifications. putation may not be feasible. Hence, semi-perimeter method
The organization of the paper is as follows. Section 2 is a good and efficient way of approximating the routing
discusses the method used for approximating the routing costiength.
of the placement. FPGA design style is briefly summarized in  Another way to view the semi-perimeter method is to
Section 3. Section 4 begins with the presentation of the generaldefine the vertical and the horizontal spans for each net
guidelines for applying MFA technigue to combinatorial opti- (Sechen, 1988). The vertical and the horizontal spans of a
mization problems. Then, the proposed formulation and imple- net are the lengths of the vertical and the horizontal sides of
mentation of the MFA algorithm for the cell placement its bounding rectangle, respectively. Fig. 1(b) shows the
problem following these guidelines are presented. The encod-vertical and the horizontal spans of the net {10, 15}. Total
ing scheme used in the proposed formulation is discussed inrouting cost can be computed by adding the vertical and the
Section 4.1. The proposed energy function formulation and horizontal spans of all the nets. If vertical and horizontal
derivation of the mean field theory equations are presentedroutings have different costs, then the total routing cost can
in Section 4.2 and Section 4.3, respectively. The parameterbe approximated by multiplying the vertical and the hori-
selection and cooling schedule are discussed in Section 4.4zontal spans of the nets by the appropriate unit costs.
Finally, experimental results which evaluate the relative
performance of the proposed algorithm are discussed in
Section 5. 3. FPGA design style

Field Programmable Gate Arrays (FPGAs) were widely
2. Routing cost used in industry in recent years. Because they provide cheap
and flexible usage, fast manufacturing turnaround time and
Computation of the routing cost is the crucial part of low prototype cost, many designers prefer to use them in
the cell placement problem. In the first phase of the pro- their applications. Several types of FPGAs were introduced
blem, cells are partitioned tB X Q clusters which form a  over the last years, which differ from each other by their
rectangular grid. Fig. 1(b) shows the partitioning of the circuit programming technologies, logic block architectures and
in Fig. 1(a) to a 4x 4 grid. Initially, it is assumed that all ~ routing network architectures (Rose et al., 1992). They
clusters have the same size, forming a uniform grid as in can be classified into four main categories: symmetrical-
Fig. 1(b). After the cells are mapped to the clusters, areas ofarray, row-based, hierarchical and sea-of-gates.
the clusters may be different, resulting with a nonuniform A typical symmetrical-array FPGA consists of a two-
grid. If the clusters are balanced, the difference betweendimensional grid calledogic cell array (LCA) which is
the uniform grid and the actual nonuniform grid is not interconnected with vertical and horizontal channels as
significant. shown in Fig. 2(a). Each point in this two-dimensional
In order to calculate the routing cost the exact locations of grid is called aconfigurable logic blocCLB). A CLB
the cells in the layout must be known. Each cell is assumed tocan implement a set of logic functions. In FPGA design
be placed to the center of the cluster to which it is mapped. style, CLBs are used to provide the functionality of the
During the placement, it is not feasible to calculate the exact circuit by mapping the logic gates of the circuit to CLBs.
routing length for two reasons. Firstly, a feasible placement is Logic blocks at the boundaries of the LCA are calieput—
not available during the execution of some algorithms output blocks (IOBs). 10Bs are used for external
(Dunlop and Kernighan, 1985), secondly, the computation connections of the circuit. Routing network, which consists
of the exact routing cost necessitates the execution of theof vertical and horizontal channels placed in between CLBs,
global and the detailed routing phases which are as hard asnakes connections among CLBs and IOBsuitch blocks
the placement phase. Hence, most of the placement heuristic§SBs) that connect wire segments in horizontal and vertical
use a method for approximating the routing cost. An efficient channels are also a part of the routing network. In commer-
and commonly used approximation is tkemi-perimeter  cial FPGAs, routing resources are fixed and fairly limited
method (Shahookar and Mazumder, 1991; Sherwani, 1993).(Xilinx, 1994). For example, there are only five tracks in
In this method, the routing cost of a net is approximated by each routing channel for Xilinx XC3000 series of FPGAs as in
the semi-perimeter length of the smallest bounding rectangleFig. 2(a). The placement problem is especially important in
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designs using such devices, because fixed routing resourcesolution) which has the minimum (maximum) cost if the pro-

make it difficult to achieve 100% automatic routing. blem is a minimization (maximization) problem. Hence, for
Automated FPGA layout generation can be divided into the cell placement problem the optimum solution is the place-
four major phasegartitioning, technology mappinglace- ment of the circuit which has the minimum routing length.

mentandrouting(Rose et al., 1993). Partitioning is used for In the MFA technique (Peterson and d&oberg, 1989;
very large logic circuits that require multiple FPGA chips. VandenBout and Miller, 1989, VandenBout and Miller,
In technology mapping phase, a logic circuit is transformed 1990), discrete variables called spins (or neurons) are used
to an optimized, generic logic input format that consists of to encode the configurations of the problem. A configuration
CLBs and IOBs. In the placement phase, the circuit that is in the spin domain is a valuation of these discrete variables.
formed in the technology-mapping phase is assigned to spe-An encoding is defined which is a one-to-one mapping from
cific CLBs and 10Bs in the LCA. This phase of FPGA the set of configurations of the problem to the set of config-
layout design is equivalent to the cell placement problem urations of the spins. Then the cost function of the problem
discussed earlier. Most commercial automated design toolsis formulated in terms of spins. This function defines the
for FPGAs use SA algorithm in the placement phase. SA energy of a configuration in the spin domain. MFA algo-
technique provides high quality solutions but it is notably rithm is a search algorithm in the spin domain which looks
slow. In this paper, a fast placement algorithm is proposed for the configuration with the minimum energy. To achieve
for symmetrical-array FPGAs that produces layouts which this goal, expected values of the spins are updated itera-
are as good as the ones produced by SA. tively using a nondeterministic gradient descent algorithm.
In the following sections, the formulation of the MFA tech-
nigue for the cell placement problem is described.
4. Applying MFA to the cell placement problem
4.1. Encoding
MFA technique merges the collective computation and
the annealing properties of Hopfield neural networks (Hop- The MFA algorithm is derived by analogy tsing and
field and Tank, 1985) and SA (Kirkpatrick et al., 1983), Pottsmodels which are used to estimate the state of a system
respectively, to obtain a general algorithm for solving com- of particles, called spins, in thermal equilibrium (Peterson
binatorial optimization problems. A combinatorial optimi- and Saerberg, 1989; VandenBout and Miller, 1989, Van-
zation problem consists of a set of configurations and a costdenBout and Miller, 1990). In Ising model, spins can be in
function. For example, for the cell placement problem the one of the two-states represented by 0 and 1, whereas in
set of configurations corresponds to the set of all possible Potts model they can be in one of thestates. For the
placements of the input circuit. Sometimes, configurations cell placement problem the Potts model is used for encoding
are also referred to as solutions. Cost function assigns a costhe configurations of the problem.
to each configuration of the problem. For the cell placement In the K-state Potts model d spins, the states of spins
problem, the cost of each configuration (i.e. placement) is are represented using K-dimensional vectorsS, =
the routing length of that placement. Optimum solution of a [Sgy, ..., Sk, ....Sk 1, 1 =i = S where t’ denotes the vector
combinatorial optimization problem is the configuration (i.e. transpose operation. The spin vec@ris allowed to be
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Fig. 2. (a) A typical architecture of symmetrical FPGA (Xilinx XC3030 chip). (b) FPGA model used in the proposed MFA formulation.



C. Aykanat et al./Neural Networks 11 (1998) 1671-1684 1675

equal to one of the principal unit vectcs...,e,...,e«, and S =[S ... Sy, - S0l for Lcelli € Cy, respectively.
cannot take any other value. Principal unit veceyris If a row (column) spin is in statp (q) the corresponding-
defined to be a vector which has all its entries equal to O cell is assigned to royw (columnq). Hence,s{p =1 (sfq =1)
except itskth entry which is equal to 1. Spif is said to be means that-cell i is assigned to row (columnaq) of the
in statek if it is equal toe,. Hence, &K-state Potts spif§; is LCA. That is, if s{p =1 andsﬁq =1, this means thdt-cell i

composed oK two-state variables,...,Si,...,Sik, Wheresy is assigned to the CLB at locatiget. Here and hereafter,

€ {0,1}, with the following constraint row and column spins df-cells will be referred a&-row
K . andL-column spins, respectively.

Y s=1 1=i+s (1)

k=1

4.1.2. Input/output cell encoding

In the Xilinx series of FPGAs, there are four IOBs, two on
each side, at the boundaries of each row and column of the
layout as shown in Fig. 2. Therefore,R X Q)-dimensional
FPGA hasM = 4(P + Q) IOBs. In I0OB encoding, one Potts
spinis assigned to eatB-cellb € Cg of the circuitQ(C,N)
to be placed. AnM-dimensional Potts spin can be used to
encode the position of ead-cell, where each state of the
Potts spin corresponds to a unique IOB location in the layout.
There will be a total of¢,o| M-dimensional Potts spins in the
system for encodintD-cells. Since each Potts spin consists of
M two-state variables, a total @&,p|M two-state variables are
needed for this encoding. Spins with dimenshdrare called
IO spins and labeled & =[9, ..., Som ---» Sm]" for 10-cell
b € Cy. IfanlO spinis in statenthe correspondintD-cell
is assigned to 10B at locatiom in the layout. In order to
simplify the encoding, the FPGA model is extended by adding
two new boundary columns and two new boundary rows as

To encode the configuration space of the cell placement
problem using thesk-state Potts spins, one spin is assigned
to each cell of the circuit. Each state of a spin corresponds to
a location in the layout, i.e. if a spin is in stdte¢his means
that the cell associated with that spin is placed to locdtion
Two types of cells are considered in FPGA placement,
namelyL-cells andO-cells. That is, in the circui@(C,N), C
= C_ U Cyo, whereC, andC,g denote the sets df-cells
and |O-cells, respectively. Herd,-cells correspond to the
logic cells of the circuit to be placed to CLBs in the LCA.
10-cells correspond to the input/output pads of the circuit to
be placed to the I0OBs on the boundaries of the LCA as
shown in Fig. 2. Hence, two different encoding schemes
are used for thé-cells and thdO-cells.

4.1.1. Logic cell encoding
In order to encode the configuration space of the place-

ment problem, one Po.tts spin could be assigned to ach shown in Fig. 2(b). Rows 0 arfél+ 1, and columns 0 an@ +
celli € C, of the circuitQ(C,N) to be placed. AK = PQ)- :

) : : .1 are allocated to 10Bs. Ah-cell can be assigned to any
dimensional Potts spin could be used to encode the location;

. internal rowp, 1 = p = P, and any internal columg, 1 =

of eachL-cell, where each state of the Potts spin corre- P P ' y o

T ; . g = Q. An IO-cell can only be assigned to boundary rows 0
sponds to a location in the X Q LCA. In this encoding, .

) . . andP + 1 or boundary columns 0 arf@@ + 1. IOB locations

there would be a total o] | (PQ)-dimensional Potts spins . ) L .
. . : .~ are numbered in clockwise direction starting from the upper
in the system for encoding-cells. Since each Potts spin

could be in one of th& states at a time, there would be a left corner of the layout from 1 toR3+ 4Q. Two new func-

. ; . tionsrow(m) andcol(m) are defined to show the 10B location
one-to-one mapping between the configuration space of the . : : . :
min terms of its row and column locations. Using this num-

T oot " et schemed, 1 means <ol b & ssined
' IOB at locationm, that islO-cell b is assigned to one of the

Iore effclent encocing s o représent he location of aach ™2 1085 & OGO of the LCA wherep = row(r) and
9 P = col(m). Note that eithep € {0,P+ 1}orqe {0,Q+ 1}.

L-cell with two Potts spins with dimensiofsandQ. Spins
with dimensionP are used to encode the rows of the LCA,
and spins with dimensio® are used to encode the columns 4.2. Energy function formulation

of the LCA. Note that this encoding also constructs a one-to-

one mapping between the configuration space of the Inthe MFA algorithm, the aim is to find the spin values
problem domain and the spin domain. However, it is more minimizing the energy function of the system. In order to
efficient since it uses a total o2||(P + Q) two-state vari- achieve this goal, the average (expected) values of the spin
ables instead ofd |PQ two-state variables of the previous vectorsS, S andS; are iteratively updated using a non-
encoding. Spins with dimensioRsandQ are called rowand  deterministic gradient descent algorithm. Iterations con-
column spins and labeled & =[sy, ..., Sp, -..,Sp]' and tinue until the system stabilizes at some fixed point. Define

Vio= [MaeVeVel = ()= ({0 (S (50)]
VE = MooV )t = (S =[S0 () ($9)]'
vio [V o VS oo V] = (S0 = [(S9), s (s oo (5]

o
Il
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where V{, Vi andVy denote the expected values of
the spins §, S andSy, respectively. Note thats),

Sq Som € {0.1}, ie, s, sq andsgy, are discrete vari-
ables taking only two values 0 and 1, whereas

Vip, V&, Vim € [0,1], i.e, Vi, V& andvi, are continuous

C. Aykanat et al./Neural Networks 11 (1998) 1671-1684

Note thatVio, Vi py1,Vio @andVi o are initialized to and
remain as all Os sinde-cells cannot be assigned to the bound-
ary rows and columns. Herd, for 1 = p = P andvj, for 1 =

g = Q correspond to the actual spin variables iteratively
updated during the MFA algorithm. For similar reasoRs,

variables taking any real value between 0 and 1. As the system4- 2 andQ + 2 dimensional row and column vectors are

is a Potts glass the following constraints are similar to Eq. (1):

P Q M i
Dve=1 D V=1 D> V=1, 2)
p=1 q=1 m=1

foralli € C_andb & C,,. These constraints guarantee
that given anlL-cell i and an IO-cell b, Potts spins
S, § andS? are in one of theP, Q and M states at a
time, respectively, i.eL-cell i is assigned to only one row
and one column, ankD-cell b is assigned to only one 10B
for our encoding of the placement problem. Note that
Vip =(sp), i.e Vi is the expected value af,. Hence,

Vip=P{s, =0} X 0+ 2{5, =1} X 1=2{s, =1}

=P{L-cell i is in row p}.
Similarly,
Vig =P{L-cell i is in columng},

Vign=P{10-cell b is in 10B m}.
That is,v{p is the probability of findind_-cell i in one of theQ
CLB locations at rowp, andvfq is the probability of findingd.-
cell i in one of theP CLB locations at columng. If
Vip=1 andvi;j=1, then corresponding configuration
S =e, andS’ =g, respectively, which means thatcell i
is placed to the CLB at locatiopg of the LCA. Similarly,
Vb is the probability of findingO-cell b at 0B locationm
Note thatvg,, also denotes the probability of findil@-cell bin
one of the two I0B slots at locatiqug of the LCA, wherep =
row(m) andg = col(m). If vy, = 1 then the corresponding con-
figuration isS¢ = e,, which means that th®-cell bis assigned
to the IOB at locationm. This also means that the©-cell b is
assigned to one of the two IOBs at locatjwmof the LCA.

The encoding scheme defined here ensureslLtfalls

S

maintained and updated for eaécellb € Ci
Vrb= [VrbOI V[)l! "'1\/Dp1 "'!\,LP! \/b,P+1]t!
Vb = Vo, Vb1, --s Vg -1 Vbo vngH]t, 4

wherev, (Viq) corresponds to the probability of finding-
cell b in an 10B location at rowp (columnaq) of the LCA.
Note that there are2(2Q) I0Bs in the boundary rows
(columns) 0 and® + 1 (Q + 1). However, there are only
410Bs ineach internal row(columng)forl=p=P(1 =

g = Q). The row vectoVy, can easily be computed using
actuallO-spin values as follows:

» #42Q

Vio= D Vbm  Vheii= D Vim (5)
m=1 m=2P+2Q+1

Vop =W+ Vi 1+ Ve + W ¢4 q for 1=p=P, (6)

wherek = 2P + (2p — 1) and¢ = M — (2p — 1). The
column vectoVg can be similarly computed as

M _ P+2Q

VgO = Z Vll:())mv Vg. Q+1= Z Vll;)mi (7)
m=4P+2Q+1 m=2P+1

Vog=Vek+Vois 1+ Ve for 1=g=Q, ®)

wherek = (29 — 1) and¢ = (M — 2Q) — (29 — 1). This
representation scheme is chosenlforcells sincelO-cells
assigned to the IOBs in the same row and column of the
LCA incur the same vertical and horizontal routing cost,
respectively.

As mentioned earlier, energy function in the MFA algo-
rithm corresponds to formulation of the cost function of the

are assigned to the CLBs in the internal rows and columns of cell placement problem in terms of spins. Since the MFA
the LCA. Similarly, it ensures thdO-cells are assigned to  algorithm iterates on the expected values of the spins the
the 10Bs in the boundary rows and columns of the LCA. expected value of the energy function is formulated. The
However, for the sake of both simplicity of presentation and gradient of the expected value of the energy function is used
the efficiency of implementatioR + 2 andQ + 2 dimen- in the MFA algorithm to compute the direction of maximum
sional vectors are maintained for row and column spins, energy decrease, and the expected values of the spins are
respectively, for each-celli € Ci; updated accordingly. The expected value of the energy

V= [Viroy Vi, ---,Virp, Ve, Vir,P+1]tv functlon_ is defined as follows for the ceI_I plac_ement pr(_)b-
lem. Using the expected values of the spin variables defined
Vi = [Vig, Vi1, --s Vigs -0 Vi vﬁQH]t. 3 earlier the following probabilities can be computed:

P{no cell of netnis in row p} IEI P{cell i is not in rowp}
en

iIE_In (1_ V:‘p)v
P{one or more cells of neh is in row p} 1—P{no cell of netn is in row p}

1- I (1-),

ien
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wherei € ndenotes a cell that is in net These values may
be computed for the columns of the LCA similarlyy, is
defined as the probability of the event that no cell ofmist
inrowp andwﬁq as the probability of the event that no cell of
netnis in columng, i.e.

Thp = iIeIn (1=Vp)  mng= iIeIn (1= Mia)- ©)

Note that, ifi € nis anL-cell thenvj, andVj; correspond to the
actualL-row andL-column spin variables for £ p=Pand 1
= g = Q, respectively, and to dummy O variablesfice O,P +

1677

Total vertical and horizontal routing cost terms of the
energy function (i.eE, and E;) can be derived using the
formulation given in Eq. (10) and Eq. (11) as

E.= D Em En= D Em

(12)

neN neN

If the routing cost is used as the only factor in the cost
function, the optimum solution is mapping all cells of the
circuit to one location in the layout. This placement will
reduce the routing cost to zero but obviously it is not fea-

1 andq= 0,Q + 1 respectively, in our representation scheme. If sible. Hence, atermin the cost function is needed which will
i € nis anlO-cell, then these values correspond to the respec- Penalize the placements that put more than one cell to the

tive entries of the row and column vectors maintained @r

same location. This term is called the overlap cost. The

spins as discussed earlier. The vertical and horizontal routing€nergy term is formulated corresponding to the overlap

costs of a net are defined as, X w, X (vertical span of nat)
andwy, X wy(horizontal span of net), respectively. Hereyp,
andwy, are the unit vertical and horizontal routing costs between E
two successive cell (cluster) locations on the same column and
row, respectively. In FPGA design style, = w, = 1 is used.
Formulation of the vertical routing cost of netas an energy
term E,, using these definitions is:

P P+1
Em=wywn > D> ((—K)
k=0¢=k+1
X P{vertical span of nen is between rows and ¢}
P P+1
= wywn Z Z (€ —K)P{net nis in row k}
k=0¢=k+1

X P{net nis in row ¢}
X P{net nis not in firstk — 1 rows}
X P{net nis not in lastP — (¢ 4 2) rows}

P P+1
—wwn >, Y. (€—KP{netnis in row k}
k=0¢=k+1

X P{net nis in row ¢}

cost for CLBs and IOBs as:

gob_ 2 Z S e

IECLJECL #i
XP{L-cellsi andj are in the same CLB location}
P Q
=33 Y ea> >
IECLJECL]#I p=1q=1
X P{L-cell iisin CLB locationpg}
X P{L-cellj is in CLB Iocationpq}

p
DTS Z VipMiaVpVia:

> Z (13)
IECLjECLHH p=1q=1
gion _ 1 Y
0 = E WaWp
a€Cp beCp, b#a
M
X P Z {10-cellsa, b are in the same 0B locatiom}
m=1
1 o
=52 > wawn D Ve (14)

a€Cp beCp, b#a m=1

k—1
X HoiP{net nis not in rows}
S=

P+1 . )
X II P{netnis notin rowt}
t=(+1

P P+1

=wwn ). D (0 =KL —mh)(L—7h)

k=0¢=k+1

K
X O O 7.
s=0 "St=iqp1 ™

Q Q+1

Em=ownen >, D, (€ —K(L—75)(1—75)

k=0¢=k+1

(10

Here, nenis in rowk if and only if one or more cells of net
is in rowk, otherwise neh is not in rowk. Similarly, energy
formulation for the horizontal routing cost of neis:

(11

Note that this overlap cost term becomes equal to the sum of
the inner products of the weights of the cells at each cell
(cluster) location when the system converges. In general
placement, this term is minimized when weights of all the
clusters are equal. If there is an imbalance among the cluster
weights, this term increases with the square of the amount of
imbalance, penalizing imbalanced clusterings. In FPGA pla-
cement, all cell weights are equal to 1 and only areell

and onelO-cell can be placed to one CLB and one
IOB location, respectively. In additionC|| = (P X Q),

|[Cio] = M. Hence, the overlap cost is minimized when either
a single or nd_-cell (I0-cell) is located to each CLB (I0OB)
location. If there is an overlap in a location, the overlap cost
term increases with the square of the amount of overlap,
penalizing the overlapped locations. Total energy term can
be defined in terms of the routing cost terms and the overlap
cost term as:

E=E,+E,+8 X E,, whereE, = ES? + E°, (15)
Parameteg is used to balance the two conflicting objectives
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of the energy function: minimizing the routing cost and the sincelLp,, = 1. Substituting Eq. (21) into Eq. (20):

overlap cost. Note that allocating all cells to the same loca- p Pil
tion minimizes the routing cost while maximizing the over- Eyn= wywn, Z (,:;] o1— Fﬂk) Z (1-L%). (22)
lap cost. Minimization of the above energy function k=1 (=k+1

corresponds to distributing the cells of the circuit to the
locations in such a way that the semi-perimeter and overlap
costs are minimized.

After computing the telescoping outer sum in Eq. (22) and
through some algebraic manipulations, expressionEfgr

L . . simplifies to:
The derivation of the gradient of the energy function P
using the formulation discussed earlier results in substan- 2 ; ;
tially complex expressions. Hence, the total energy function Eva= @vn kZo(l —Frig) (1= Lhkra)- (23)

given in Eq. (15) is simplified in order to get more suitable

expressions for the gradient. Simplification of tBgandE,

terms given in Eq. (12) is as follows. A close examination of

Eg. (10) and Eq. (11) reveals the symmetry betwEgrand
En, terms. In fact, expressions fdg,, and Ey, can be
obtained from each other by interchanging with ‘c,
‘P’ with * Q’, and ‘w,’ with ‘ w},. Hence, algebraic simplifi-
cations will only be discussed for tlig,, term. Similar steps
can be followed for thé&,,, term. The following notation is

introduced for the sake of simplification of the routing cost

terms:

r K & r P41 | c LS c Q+l .
Fa= II g, Lpk= II mng, Frx= I g L= II mpe
s=0 s=k s=0 s=k

(16)

Here,F[, andLp, denote the probabilities that nethas no
cellsin the firsk 4+ 1 rows (rows 0,1,2,.,k) and the lasP —
k 4+ 2 rows (rows kk + 1,...,P,P + 1), respectively. Simi-
larly, F5 and LS, denote the probabilities that nethas no
cells in the firstk + 1 and the lasQ — k + 2 columns,
respectively. Using this notatiork,, in Eq. (10) can be
rewritten as:

P+1 P+1

En=WWn> (L= mhdFii—1 >, (€—K(L—mhe)lhesa-
k=1 {=k+1
17)
Since,
k—1 k—1 k
(1_7r£1k) II 7r:13 = 1I TLS_ II WESZFL k—l_Frr1kv
s=0 s=0 s=0 '
(18)
r P r P r P r
(1_7Tn€)t:I€I+17Tnt= t:I€I+17Tnt_ t1=1€77m—|-n +1— n{”
(19)
Eqg. (17) becomes:
P P+1
Eun = wyawn Z (Frrmkfl - Frr1k) Z (= k)(l—n 41— n€)~
k=1 {=k+1
(20)
The innermost summation in Eq. (20) telescopes to:
P+1 P+1
D €—R(Ltheri—Lh)= D (I-Lw), (21

{=k+1 {=k+1

Similarly, the expression fdE,, in Eq. (11) simplifies to:

Q

Enn=whon > (1= Ff) (1— L ksa)- (24)
k=0

Note that Eqg. (23) and Eq. (24) compute the vertical and
horizontal routing cost of nen, respectively, in an incre-
mental manner. Hence, total energy function in Eg. (15) can
be rewritten as:

P

E=w, > wn > (1—Fh)(1— L)

neN k=0

+thwnZ(1 FRo(— LS ki1)

neN k=

B P
Z > winZZVrVﬁqupVﬁq

|ECL]€CLJ¢| p=1g=1

M
+g Z Z Walp Z \/je(l)m\/g)m~ (25

aceCp beCp,b#a m=1

4.3. Derivation of the mean field theory equations

The expected value¥|,V; and VY of eachL-row, L-
column and 10 spin§, S andS[‘,’ are iteratively updated
using the Boltzmann distribution as:

¢r IT" ¢p /TC
e’ €%l
(a) p="p (b) V]cq =70 )
Z /T e¢jck/TC
2 2
e‘blon‘/Tlo
© Vom=———— (26)
Z e¢'é’k/T'°
forp=12...P,g=1,2,...,Qandm=1,2,..,M, respec-

tively. Here, ¢j,, ¢j; and ¢y, denote the elements of the
mean field vectors corresponding to the variables
Vi, VG andviy, respectively. In Eq. (26)T", T° and T°
denote the temperature parameters used for annealing the
L-row, L-column, and IO spins, respectively. Recall that the
number of states of the-row, L-column andlO spins are
different (P, Q andM, respectively) in the proposed encod-
ing. As the convergence time and the temperature parameter
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of the system depend on the number of states of the spinsg", 8° and 8° are used in Eq. (27), Eq. (29) and Eq. (31)

the L-row, L-column andO spins are interpreted as differ-

ent systems. Note that Egs. (26)a—c enforce eambw, L-
column andO spinsS/, § and SP to be in one of thé®, Q

sincelL-row, L- column andO spins are treated as different
systems Herek ", L, FJan andL}; are defined as:

andM states, respectively, when they converge. In the pro- Fnk— H 7r|r:51 Lnk— H 7T'r§s, Fl = H 7rns, L = H s

posed MFA formulationl-row, L-column andO spins are

updated in an alternate manner, i.e., eagbw spin update
is followed by anL-column spin update which is followed

by anlO-spin update.
In the proposed formulation,-row, L-column andlO
mean field vector®;, & and®y are computed in.-row,

L-column andlO iterations, respectively. Each element

ol 0% and iy, of the L-row, L- column andlO mean
field vetctors<1>r (01, s Dl oo Blp]'s B =01, ..., B,
. ®iol and &p [¢b1,...,¢g>m,..

in the energy function by assigning toep ﬁctoeq
anng’ to e, respectively. Hence,— ¢,p, ¢Jq and

—<¢>'§m may be interpreted as the decrease in the overall em) wherep =

solution quality by placing.-cell i to row p, L-cell j to
columngq, andIO-cell b to the IOB locatiomrm, respectively.
Then, in Egs. (26)a—ej,
the probabilities of placind.-cell i to row p, L-cell j to
column g and IO-cell b to the IOB locationm increase
with increasing mean field valueg,, ¢>,q and ¢>bm, respec-

tively. Using the simplified expression for the proposed

energy function in Eq. (25) the following is derived:

¢p = E(V,VEVO)i_o—E(V,VEVO)lyr e
= — Wy Z wnzri{p_ﬁrwi z wlvfp Z iq IQ’
nen; JEC,j#i
(27)
where

Zi= > L@ —Fh D)+ D Fal—Lh1),  (28)
k=1 k=p

S = E(VLVOVO)leoo— E(VLVEVO)lvee,
= — @h Z‘wnZch—Bcwj Z wvﬁ] Z |pa
neN;j IEC,,i#]
(29)
where
Z L= PR )+ Z Fe(-15,,)  (30)
$om = E(V,VEVO)lye_o—E(V,VEVO)lyee

br bc io io
= _wvzwnznp_ whz wnznq_ Wh Z WaVam:

nEN, nEN, aeCp,a#b
(31)
Here,N; denotes the set of nets connected to celhdp =

vl experlenced by
L-row, L-column andlO Potts spins denote the decrease

, Vf; andviy, are updated such that

(32)

JEP]#H(]- VIS) Wns—i r{[iij

(1 V). (33)

In Eq. (28),2" p computes the increase in the vertical span of
netn by aSS|gn|ng itd.-celli to rowp (i.e. settingv| toep) in

an incremental manner. Similarly, in Eq. (3Z}\° computes
the increase in the horizontal span of ndty assigning its
L-cell j to columnq (i.e. settmgvC to eq) In Eq. (31),

Z,?,’, and Zﬁg correspond to the increase in the vertical and
horizontal spans of net, respectively, by assigning it®-
cellbto one of the two IOBs at locatigoy (i.e. settingvy,’ to
row(m) andq = col(m). The expressions for
Zn andzﬁ’g can be obtained by replacing and ‘j’ with ‘ b’

in Eq. (28) and Eq. (30), respectively. Note that row (col-
umn) assignment of a cell does not affect the horizontal
(vertical) spans of the nets connected to that cell. The last
summation terms in Egs. (27) and (29) and Eq. (31) repre-
sent the increase in the overlap cost term by assigniog!

i to rowp, L-cellj to columng andIO-cell b to IOB location

m, respectively.

Fig. 3 illustrates the pseudo-code for the MFA algorithm
proposed for the placement problem. At step 1, temperature
parameterd’, T® andT" are initialized to sufficiently high
temperatures for the annealing lofow, L-column andlO
spins, respectively. At step 2, an initial high temperature
spin average is assigned to each Potts spin. In general,
each spin variable is initialized toK/plus a small distur-
bance term which varies betweei0.1K and+0.1K. Here,

K =P, K= QandK =M for L-row, L-column andO spin
variables, respectively. Note thd, vi; and viy, spin vari-
ables updated according to Eq. (26) will approach & 1/
Qand 1M with T" — %, T®— o« andT"® — o, respectively.
Then, outermoswhile-loop(step 3) iterates whil@", T°and

T are all in the cooling range. At each iteration of the
innermostrepeat-loop(step 3.1.2), the mean field vector
effecting on a randomly selectddrow spin is computed
(step 3.1.2.1), then the respectiv@ow spin average vector

is updated (step 3.1.2.2). Similar operations are performed
for randomly selected.-column andlO spins as shown

in steps 3.1.2.3-3.1.2.6. These spin update operations are
repeated for random sequences Lefow, L-column and

IO spins as shown in theepeat-loop (step 3.1.2). The
system is observed at the end of eawpeat-loopin
order to detect the convergence to an equilibrium state
at the current temperature. If the average energy
decrease caused by the spin updates performed in the
repeat-loopis below a threshold value, this means that
the system is stabilized for the current temperature.

row(m), q = col(m). Note that different balance parameters Then, T', T¢ and T° are decreased according to the
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cooling schedule (step 3.2) and the overall iterative pro- computations since-row, L-column andO spins are trea-
cess (step 3.1) is re-initiated. ted as different systems. For example, in theow mean

As mentioned earlier, the proposed MFA algorithm is an field computations in Eg. (27)3" determines a balance
iterative process. The complexity of MFA iterations is between the terms:
mainly caused by the mean field computations. As seen in 0
Egs. (27) and (29) and Eq. (31), .calcullat|ons of. mean field ¢iréV) — Z wnZl" and ¢irr()o) = Z WV Z VEVE,
values are computationally very intensive. In this work, an nen; jecL.j#i q=1
efficient implementation scheme is used which reduces the
complexity of individualL-row, L-column andO iterations ~ where ¢j, = ¢irév) + ' ¢>iré°)- Note that — {,5”) and — ¢>irp(,°)
t0 O(daygP + PQ), O(dadQ + PQ) andO(da(P + Q) + M), represent the increases in the vertical routing cost term
respectively. Here,, denotes the average cell degree, i.e. and overlap cost term, respectively, by assignirgell i
average number of nets connected to a cell. This scheme igo row p. Then, compute the averages:
based on the techniques developed in (Bultan and Aykanat, P
1995) for circuit partitioning problem, and can be derived <¢ir;§V)> _ <z z ¢ir;§V)> /(lCL|P)-
from the formulations in (Bultan and Aykanat, 1995). ieC, p=1
Therefore, its details will not be given here. Note that a <

sequence of-row, L-column andlO spin updates can be <¢iréo)> _

P
>y ¢{é°)> / (ICLIP)

considered as a single MFA iteration. Hence, a single MFA iEC p=1
iteration takeg)(d,,o(P + Q) +PQ+ M) = (dagP + Q) +
PQ) time in our implementation scheme sinke= 4(P +

Q) = PQ for sufficiently largeP andQ values.

of these two terms using the initial random spin averages
and computes’ as:

=(of) /(57

4.4. Parameter selection and cooling schedule 4

A where constany is chosen as 0.8. The parametg@fandg®

The parameterg', 8¢, 3° used in mean field computa- are computed similarly. The same= 0.8 is used in these

tions and the initial temperaturdg, T§, Ty’ used in spin  computations.
updates are estimated using initial random spin averages. Selection of initial temperatures is crucial for obtaining
Recall that paramete? in the energy function formulation  good quality solutions. In previous applications of MFA
in Eq. (25) is introduced to determine a balance between the(Peterson and $Serberg, 1989; VandenBout and Miller,
two conflicting optimization objectives of the placement 1990), it is experimentally observed that spin averages
problem. Also recall that different balance parameigs tend to converge at a critical temperature. It is suitable to
B¢, 8'° are used in thé.-row, L-column andlO mean field chose initial temperatures slightly greater than these critical

1. Compute the initial temperatures Ty, T¢, T¢° and set T = T, T = T¢, T%° = Tae.
2. Initialize the spin averages VI, V7 and Vie for each ¢,j € Cr and b € Cro.
3. While temperatures 7", T¢ and T"° are in the cooling range do

3.1 While E is decreasing do

3.1.1 Generate 3 random L-row, L-column and IO sequences corresponding to the
random permutations of unconverged L-row, L-column and IO spins, respectively.

3.1.2 Repeat

3.1.2.1 Compute L-row mean field vector @} for the next L-row spin i
in the L-row sequence using (27).

3.1.2.2 Update the L-row spin average vector V7 using (26.a).

3.1.2.3 Compute L-column mean field vector &7 for the next L-column spin j
in the L-column sequence using (29).

3.1.2.4 Update the L-column spin average vector V using (26.b).

3.1.2.5 Compute IO mean field vector ®i° for the next IO-spin b
in the IO sequence using (31).

3.1.2.6 Update the IO spin average vector Vi° using (26.c).
Until all sequences become empty.

32 Tr=axT", T =axT°and T% = a x T%.

Fig. 3. MFA algorithm proposed for the placement problem.
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temperatures. Although there are some methods proposeaorresponds to a single iteration of thepeat-loop(step
for the estimation of critical temperature (Peterson and 3.1.2) in Fig. 3. For each iteration of tliepeat-loop(step
Saderberg, 1989; VandenBout and Miller, 1990), an experi- 3.1.2) the average energy decrease per spin update/is
mental way of computing the initial temperatures is pre- where ¥ is the total number of spin updates performed

ferred here. After the balance parametgfs ¢, 8 are
fixed, averagé.-row, L-column andO mean fields:

(¢0,) = Ziengﬂqﬁ{p, (65) = D jec. D q-19

ICLIP B IGIQ 7

<¢It())m> _ Zbecmzm:ld)il?m

34
ColM (39

during the random sequence bfrow, L-column andIO
spin updates. IfAE/¥) = ¢ wheree is a small constant
chosen ag = 0.1, it is concluded that the energy is stabi-
lized for the current temperature level, and the temperature
values are decreased according to the cooling schedule.
The cooling process is realized in two phases, slow cool-
ing followed by fast cooling, similar to the cooling sche-
dules used for SA. In the slow cooling phase, temperatures

are computed using initial random spin averages, respec-are decreased usirg= 0.95 untilT < T¢/1.5. Then, in the

tively. Then,T§, TS, T are computed as:

To=0()/P, TS=0{ej5)/Q, T5' = o{bisp)/M, (35)

fast cooling phaseq is set to 0.85. The cooling process
continues until either 90% of the spins are converged or
reduces below 0.00. At the end of this process, the vari-

where o is a constant. Our experiments indicate that it is able with maximum value in each unconverged spin is set to

suitable to chose the parameteas 100. Note that initial

1 and all other variables are set to 0. Then, the result is

temperatures are inversely proportional to the dimensions of decoded as described in Section 4.1 and the resulting place-
the respective Potts spins which is also observed for the ment is obtained.

critical temperature formulations presented in other imple-

mentations (Peterson and d&gwberg, 1989; VandenBout

The resulting placement may be infeasible, i.e. more than
onelL-cell or 10-cell may be allocated to the same CLB or

and Miller, 1990). The same cooling schedule is adopted IOB location, respectively. In such cases, the spins causing

for L-row, L-column andO iterations. At each temperature
level,L-row, L-column andO iterations proceed in an alter-
nate manner for randomly selected unconverigedw, L-

infeasible allocations are re-initialized to random initial
values together with the set of unconverged spins at the
end of the cooling process. Then, MFA algorithm is exe-

column andO spin updates. Here, a temperature level cor- cuted only for these spins starting from the initial high tem-

responds to a particular set ®f, T¢ and T values. Spin

peratures according to the same cooling schedule. Note that

variables are tested for convergence after each spin updateconverged spins are held in their decoded values during this

If the kth variable (for ank, 1 = k = K) of a spin is detected

re-heating process. This re-heating process is continued

to be greater than 0.95, that spin is assumed to converge tauntil a feasible placement is found.

statek. At the end of each random sequencelLafow, L-
column andlO spin updates, the total decreasE in the

Fig. 4 illustrates the evolution of the energy correspond-
ing to the total placement cost with MFA iterations for the

energy caused by these spin updates is computed. Note thaplacement of circuit432onto a 10X 10 FPGA. This figure

a random sequence bfrow, L-column andO spin updates

1500

is constructed by computing the total energy term (Eqg. (25))

Circuit C4a432

1300 (-

1100

Q00

E : Total Cost (Routing+Overlap)

700

500

o———© o=10000
e———=o o=100
o o=1

"
o 100
Number of Random Sequences

200

Fig. 4. Evaluation of the total energy with MFA iterations for the placemert482
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Table 1

Properties of the MCNC benchmark circuits used in the experiments

Circuit Number of PXxXQ Target FPGA
CLBs 10Bs Nets

c499 66 73 107 1< 10 XC3030PC84

c1908 116 58 191 1X 12 XC3042CQ100

c1355 70 73 115 1 10 XC3030PC84

€880 84 86 187 165 20 XC3090PQ160

c432 50 43 111 10x 10 XC3030PC84

s1238 158 30 251 1& 20 XC3090PQ160

€3540 283 72 489 1& 20 XC3090PQ160

at the end of each random sequence-obw, L-column and efficiency of both programs. Xilinx 3000 series chips were
IO spin updates. Three curves in Fig. 4 correspond to the used as the target FPGAs. The circuits were mapped into
evolution of the total placement cost for three different 3000 series logic blocks by using Xilinx XACT tools and
initial temperatures computed usiag= 10000,0 = 100 these mapping results were used as inputs to the placement
ando = 1 in Eq. (35). In Fig. 4, the major decrease in the programs.
energy terms for all three cases occurs at the same tempera- Table 1 illustrates the properties of the benchmark cir-
ture which corresponds to the critical temperature men- cuits. The first two columns illustrate the number of CLBs
tioned earlier. In this figureg = 10000 ando = 100 and I0Bs in the circuits to be placed. The third column
correspond to initial temperatures which are significantly shows the number of multi-pin nets. The last two columns
and slightly greater than the critical temperature, illustrate theP X Qdimensions of the FPGAs and the names
respectively. As seen in this figure, both initial temperatures of the target Xilinx chips used for placement.
yield almost the same solution quality. Note that initial The placement and routing results are displayed in Table
temperatures corresponding éo= 10000 ande = 100 2 and Table 3. Both MFA and APR programs were run 10
yield placement solutions with semi-perimeter costs of times for each problem instance. Table 2 displays the aver-
408 and 407, respectively. In contrast= 1 corresponds  age placement costs and the average execution times of 10
to an initial temperature smaller than the critical tempera- runs for each placement instance. The placement results of
ture. This case results in a significantly worse solution qual- both MFA and APR placement programs are used as inputs
ity with a semi-perimeter cost of 553. In general, starting to the routing program of Xilinx APR tool. The average, the
from initial temperatures which are slightly greater than the minimum and the maximum values for the maximum path
critical temperature is sufficient for obtaining good solu- delays obtained in 10 runs are displayed in Table 3. Table 3
tions. also displays the average execution times of Xilinx APR
tool for routing the placements produced by MFA and
APR programs. Maximum path delay values were computed
5. Experimental results by running Xilinx XDelay program for each routing result.
The APR routing program produced 100% routability for
This section presents experimental performance evalua-each placement result obtained by both placement programs
tion of the proposed MFA algorithm in comparison with for all circuits except the largest circuiB54Q The router
Xilinx Automated Placement and RoutingPR 3.30) fails to route all the nets in the placement of this circuit.
program which uses simulated annealing algorithm in Infeasibility caused by the assignmentetells to the same
placement. Our MFA algorithm was implementeddran- CLB locations was not experienced in our MFA runs.
guage and run on Sun-4 ELC workstations. Seven MCNC However, infeasibility caused by the assignmentI©Of
benchmark circuits were used to test the performance andcells to the same IOB locations was experienced in some of

Table 2
Performance of the MFA and APR programs for the placement of MCNC circuits
Circuit Semi-perimeter cost APR cost Execution time (sec)

MFA APR MFA APR MFA APR
c499 51.2 87.6 25625 22578 56 792
c1908 76.6 162.7 54346 49805 138 1845
c1355 52.2 92,5 23740 20816 32 639
€880 67.2 138.4 36126 27412 188 4828
c432 443 89.3 16461 15193 87 506
c1238 110.2 2375 140128 117900 367 7843

€3540 160.3 401.8 196168 142522 435 16834
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Table 3
Routing results obtained by Xilinx APR tool for placements produced by MFA and APR programs
Cicuit Maximum path delay (ns) Execution time (sec)
MFA APR
Avg Min Max Avg Min Max MFA APR
c499 94.9 93.0 99.6 98.5 94.8 100.4 136 85
c1908 159.6 145.6 168.5 166.2 157.8 172.1 796 853
c1355 94.5 92.9 98.3 91.5 84.0 93.8 98 78
€880 151.2 141.1 164.6 139.1 137.2 142.6 187 266
c432 173.5 162.1 192.5 178.3 174.4 185.8 202 314
c1238 198.3 184.5 214.5 165.3 154.7 174.7 428 986
c3540 2435 239.6 264.4 238.5 2219 269.5 4380 5726

our runs. However, a single re-heating pass was sufficient forthe Xilinx XDelay program after routing the placement
obtaining feasible solutions in all these placement instances. results of APR placement program are normalized with
The semi-perimeter cost values displayed in Table 2 cor- respect to those of the MFA program. This table also illus-
respond to the average normalized semi-perimeter coststrates the execution times of the APR placement program
computed for the placement results of both programs asnormalized with respect to those of the MFA program. As
described in Section 2. Here, normalization refers to assum-seen in this table, the MFA placements yield slightly better
ing a unit square layout. That is, vertical and horizontal routing results in 3 circuits out of seven circuits. APR place-
spans of the nets are normalized by multiplying them with ments yield 3% better routing results on the overall average.
1/Q and 1P, respectively, during the computation of total However, as seen in Tables 2 and 4, MFA placement pro-
semi-parameter cost values for Table 2. The APR cost gram is significantly faster than the APR placement program
values correspond to the average costs computed for then all instances. MFA placement program is 19.8 times fas-
placement results of both programs according to APR'’s ter than the APR placement program on the overall average.
placement cost definition. The semi-perimeter costs of the Fig. 5 illustrates sample routing results of the cirazd32
placement results obtained by the MFA program are 105% for placements obtained by APR and MFA.
better than those of the APR program. However, APR-costs
of the placement results obtained by the APR program are
16% better than those of the MFA program. 6. Conclusions
Table 4 illustrates the normalized relative performance
results of the two placement programs. In this table, the In this paper, a fast nondeterministic cell placement
averages of the maximum path delay values obtained byalgorithm was proposed for VLS| design automation
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Fig. 5. Routing results of the circu#432for the placements obtained by (a) APR, (b) MFA.
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Table 4

C. Aykanat et al./Neural Networks 11 (1998) 1671-1684

Normalized average performance measures for the placement results obtained by MFA and APR

Circuit Maximum path delay (ns) Execution time (sec)
MFA APR MFA APR

c499 1.00 1.03 1.00 14.1
€1908 1.00 1.04 1.00 13.4
c1355 1.00 0.96 1.00 19.9
€880 1.00 0.91 1.00 25.6
c432 1.00 1.03 1.00 5.8
c1238 1.00 0.83 1.00 21.3
s3540 1.00 0.98 1.00 38.7
Avg 1.00 0.97 1.00 19.8

based on Mean Field Annealing (MFA). The performance of
the proposed placement algorithm was evaluated
comparison with the commercial automated circuit design
softwareXilinx Automatic Place and Rouf{@&PR) tool for

the placement of seven MCNC benchmark circuits. The

in

Hokkinen, J., Lagerholm, M., Peterson, C., &d&oberg, B. (1998). A Potts
neuron approach to communication routitdgural Computation10,
1587-1599.

Herault, L., & Niez, J. (1989). Neural networks and grdgpartitioning.
Complex System8, 531-575.

Hopfield, J.J., & Tank, D.W. (1985). Neural computation of decisions in

results show that neurocomputing approaches such as the optimization problemsBiological Cybernetic52, 141-152.

MFA technique can be applied to practical problems and

can compete with the commercially available tools success-

fully. Experimental results indicate that our algorithm

Kirkpatrick, S., Gellat, C.D., & Vecchi, M.P. (1983). Optimization by
simulated annealindScience220, 671-680.

Lengauer, T. (1990)Combinatorial algorithms for integrated circuit
layout Chichester and New York: Wiley.

achieves comparable placements with APR. However, our ohisson, M., & Pi, H. (1997). A study of the mean field approach to

algorithm is significantly faster than APR.
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