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AbstractÐIn this work, we show that the standard graph-partitioning-based decomposition of sparse matrices does not reflect the

actual communication volume requirement for parallel matrix-vector multiplication. We propose two computational hypergraph models

which avoid this crucial deficiency of the graph model. The proposed models reduce the decomposition problem to the well-known

hypergraph partitioning problem. The recently proposed successful multilevel framework is exploited to develop a multilevel

hypergraph partitioning tool PaToH for the experimental verification of our proposed hypergraph models. Experimental results on a

wide range of realistic sparse test matrices confirm the validity of the proposed hypergraph models. In the decomposition of the test

matrices, the hypergraph models using PaToH and hMeTiS result in up to 63 percent less communication volume (30 to 38 percent

less on the average) than the graph model using MeTiS, while PaToH is only 1.3±2.3 times slower than MeTiS on the average.

Index TermsÐSparse matrices, matrix multiplication, parallel processing, matrix decomposition, computational graph model, graph

partitioning, computational hypergraph model, hypergraph partitioning.
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1 INTRODUCTION

ITERATIVE solvers are widely used for the solution of large,
sparse, linear systems of equations on multicomputers.

Two basic types of operations are repeatedly performed at
each iteration. These are linear operations on dense vectors
and sparse-matrix vector product (SpMxV) of the form
y � Ax, where A is an m�m square matrix with the same
sparsity structure as the coefficient matrix [3], [5], [8], [35],
and y and x are dense vectors. Our goal is the paralleliza-
tion of the computations in the iterative solvers through
rowwise or columnwise decomposition of the A matrix as
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where processor Pk owns row stripe Ar
k or column stripe

Ac
k, respectively, for a parallel system with K processors. In

order to avoid the communication of vector components
during the linear vector operations, a symmetric partition-
ing scheme is adopted. That is, all vectors used in the solver
are divided conformally with the row partitioning or the
column partitioning in rowwise or columnwise decomposi-
tion schemes, respectively. In particular, the x and y vectors
are divided as �x1; . . . ;xK �t and �y1; . . . ;yK �t, respectively. In
rowwise decomposition, processor Pk is responsible for
computing yk � Ar

kx and the linear operations on the kth
blocks of the vectors. In columnwise decomposition,
processor Pk is responsible for computing yk � Ac

kxk

(where y �PK
k�1 yk) and the linear operations on the kth

blocks of the vectors. With these decomposition schemes,
the linear vector operations can be easily and efficiently
parallelized [3], [35] such that only the inner-product
computations introduce global communication overhead
of which its volume does not scale up with increasing
problem size. In parallel SpMxV, the rowwise and column-
wise decomposition schemes require communication before
or after the local SpMxV computations, thus they can also
be considered as pre- and post-communication schemes,
respectively. Depending on the way in which the rows or
columns of A are partitioned among the processors, entries
in x or entries in yk may need to be communicated among
the processors. Unfortunately, the communication volume
scales up with increasing problem size. Our goal is to find a
rowwise or columnwise partition of A that minimizes the
total volume of communication while maintaining the
computational load balance.

The decomposition heuristics [32], [33], [37] proposed for
computational load balancing may result in extensive
communication volume because they do not consider the
minimization of the communication volume during the
decomposition. In one-dimensional (1D) decomposition, the

worst-case communication requirement is K�K ÿ 1� mes-

sages and �K ÿ 1�m words, and it occurs when each

submatrix Ar
k (Ac

k) has at least one nonzero in each column

(row) in rowwise (columnwise) decomposition. The ap-

proach based on 2D checkerboard partitioning [15], [30]

reduces the worst-case communication to 2K� �����Kp ÿ 1�
messages and 2� �����Kp ÿ 1�m words. In this approach, the

worst-case occurs when each row and column of each

submatrix has at least one nonzero.
The computational graph model is widely used in the

representation of computational structures of various
scientific applications, including repeated SpMxV computa-
tions, to decompose the computational domains for
parallelization [5], [6], [20], [21], [27], [28], [31], [36]. In this
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model, the problem of sparse matrix decomposition for

minimizing the communication volume while maintaining

the load balance is formulated as the well-known K-way

graph partitioning problem. In this work, we show the

deficiencies of the graph model for decomposing sparse

matrices for parallel SpMxV. The first deficiency is that it

can only be used for structurally symmetric square

matrices. In order to avoid this deficiency, we propose a

generalized graph model in Section 2.3 which enables the

decomposition of structurally nonsymmetric square ma-

trices as well as symmetric matrices. The second deficiency

is the fact that the graph models (both standard and

proposed ones) do not reflect the actual communication

requirement as will be described in Section 2.4. These flaws

are also mentioned in a concurrent work [16]. In this work,

we propose two computational hypergraph models which

avoid all deficiencies of the graph model. The proposed

models enable the representation and, hence, the decom-

position of rectangular matrices [34], as well as symmetric

and nonsymmetric square matrices. Furthermore, they

introduce an exact representation for the communication

volume requirement as described in Section 3.2. The

proposed hypergraph models reduce the decomposition

problem to the well-known K-way hypergraph partitioning

problem widely encountered in circuit partitioning in VLSI

layout design. Hence, the proposed models will be

amenable to the advances in the circuit partitioning

heuristics in VLSI community.
Decomposition is a preprocessing introduced for the

sake of efficient parallelization of a given problem. Hence,

heuristics used for decomposition should run in low order

polynomial time. Recently, multilevel graph partitioning

heuristics [4], [13], [21] are proposed leading to fast and

successful graph partitioning tools Chaco [14] and MeTiS

[22]. We have exploited the multilevel partitioning methods

for the experimental verification of the proposed hyper-

graph models in two approaches. In the first approach,

MeTiS graph partitioning tool is used as a black box by

transforming hypergraphs to graphs using the randomized

clique-net model as presented in Section 4.1. In the second

approach, the lack of a multilevel hypergraph partitioning

tool at the time that this work was carried out led us to

develop a multilevel hypergraph partitioning tool PaToH

for a fair experimental comparison of the hypergraph

models with the graph models. Another objective in our

PaToH implementation was to investigate the performance

of multilevel approach in hypergraph partitioning as

described in Section 4.2. A recently released multilevel

hypergraph partitioning tool hMeTiS [24] is also used in the

second approach. Experimental results presented in Section

5 confirm both the validity of the proposed hypergraph

models and the appropriateness of the multilevel approach

to hypergraph partitioning. The hypergraph models using

PaToH and hMeTiS produce 30 percent±38 percent better

decompositions than the graph models using MeTiS, while

the hypergraph models using PaToH are only 34 percent±

130 percent slower than the graph models using the most

recent version (Version 3.0) of MeTiS, on the average.

2 GRAPH MODELS AND THEIR DEFICIENCIES

2.1 Graph Partitioning Problem

An undirected graph G � �V; E� is defined as a set of
vertices V and a set of edges E. Every edge eij2E connects a
pair of distinct vertices vi and vj. The degree di of a vertex vi
is equal to the number of edges incident to vi. Weights and
costs can be assigned to the vertices and edges of the graph,
respectively. Let wi and cij denote the weight of vertex vi2V
and the cost of edge eij2E, respectively.

��fP1;P2; . . . ;PKg is a K-way partition of G if the
following conditions hold: Each part Pk, 1 � k � K, is a
nonempty subset of V, parts are pairwise disjoint
(Pk \ P` � ; for all 1 � k < ` � K) and union of K parts is
equal to V (i.e.,

SK
k�1 Pk�V). A K-way partition is also

called a multiway partition if K>2 and a bipartition if K�2.
A partition is said to be balanced if each part Pk satisfies the
balance criterion

Wk �Wavg�1� "�; for k � 1; 2; . . . ; K: �1�
In (1), weight Wk of a part Pk is defined as the sum of the
weights of the vertices in that part (i.e. Wk�

P
vi2Pk wi),

Wavg��
P

vi2V wi�=K denotes the weight of each part under
the perfect load balance condition, and " represents the
predetermined maximum imbalance ratio allowed.

In a partition � of G, an edge is said to be cut if its pair of
vertices belong to two different parts and uncut, otherwise.
The cut and uncut edges are also referred to here as external
and internal edges, respectively. The set of external edges of
a partition � is denoted as EE . The cutsize definition for
representing the cost ���� of a partition � is

���� �
X
eij2EE

cij: �2�

In (2), each cut edge eij contributes its cost cij to the cutsize.
Hence, the graph partitioning problem can be defined as the
task of dividing a graph into two or more parts such that the
cutsize is minimized while the balance criterion (1) on part
weights is maintained. The graph partitioning problem is
known to be NP-hard even for bipartitioning unweighted
graphs [11].

2.2 Standard Graph Model for Structurally
Symmetric Matrices

A structurally symmetric sparse matrix A can be repre-
sented as an undirected graph GA��V; E�, where the
sparsity pattern of A corresponds to the adjacency matrix
representation of graph GA. That is, the vertices of GA
correspond to the rows/columns of matrix A and there
exists an edge eij2E for i 6�j if and only if off-diagonal
entries aij and aji of matrix A are nonzeros. In rowwise
decomposition, each vertex vi2V corresponds to atomic
task i of computing the inner product of row i with column
vector x. In columnwise decomposition, each vertex vi2V
corresponds to atomic task i of computing the sparse
SAXPY/DAXPY operation y�y�xia�i, where a�i denotes
column i of matrix A. Hence, each nonzero entry in a row
and column of A incurs a multiply-and-add operation
during the local SpMxV computations in the pre- and post-
communication schemes, respectively. Thus, computational
load wi of row/column i is the number of nonzero entries in
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row/column i. In graph theoretical notation, wi�di when
aii�0 and wi�di�1 when aii 6�0. Note that the number of
nonzeros in row i and column i are equal in a symmetric
matrix.

This graph model displays a bidirectional computational
interdependency view for SpMxV. Each edge eij2E can be
considered as incurring the computations yi yi�aijxj and
yj yj�ajixi. Hence, each edge represents the bidirectional
interaction between the respective pair of vertices in both
inner and outer product computation schemes for SpMxV.
If rows (columns) i and j are assigned to the same processor
in a rowwise (columnwise) decomposition, then edge eij
does not incur any communication. However, in the
precommunication scheme, if rows i and j are assigned to
different processors then cut edge eij necessitates the
communication of two floating±point words because of
the need of the exchange of updated xi and xj values
between atomic tasks i and j just before the local SpMxV
computations. In the post-communication scheme, if col-
umns i and j are assigned to different processors then cut
edge eij necessitates the communication of two floating±
point words because of the need of the exchange of partial
yi and yj values between atomic tasks i and j just after the
local SpMxV computations. Hence, by setting cij � 2 for
each edge eij2E, both rowwise and columnwise decom-
positions of matrix A reduce to the K-way partitioning of its
associated graph GA according to the cutsize definition
given in (2). Thus, minimizing the cutsize is an effort
towards minimizing the total volume of interprocessor
communication. Maintaining the balance criterion (1)
corresponds to maintaining the computational load balance
during local SpMxV computations.

Each vertex vi2V effectively represents both row i and
column i in GA although its atomic task definition differs in
rowwise and columnwise decompositions. Hence, a parti-
tion � of GA automatically achieves a symmetric partition-
ing by inducing the same partition on the y-vector and x-
vector components since a vertex vi2Pk corresponds to
assigning row i (column i), yi, and xi to the same part in
rowwise (columnwise) decomposition.

In matrix theoretical view, the symmetric partitioning
induced by a partition � of GA can also be considered as
inducing a partial symmetric permutation on the rows and
columns of A. Here, the partial permutation corresponds to
ordering the rows/columns assigned to part Pk before the
rows/columns assigned to part Pk�1, for k � 1; . . . ; K ÿ 1,
where the rows/columns within a part are ordered
arbitrarily. Let A� denote the permuted version of A
according to a partial symmetric permutation induced by �.
An internal edge eij of a part Pk corresponds to locating
both aij and aji in diagonal block A�

kk. An external edge eij
of cost 2 between parts Pk and P` corresponds to locating
nonzero entry aij of A in off-diagonal block A�

k` and aji of A
in off-diagonal block A�

`k, or vice versa. Hence, minimizing
the cutsize in the graph model can also be considered as
permuting the rows and columns of the matrix to minimize
the total number of nonzeros in the off-diagonal blocks.

Fig. 1 illustrates a sample 10� 10 symmetric sparse
matrix A and its associated graph GA. The numbers inside
the circles indicate the computational weights of the

respective vertices (rows/columns). This figure also illus-
trates a rowwise decomposition of the symmetric A matrix
and the corresponding bipartitioning of GA for a two±
processor system. As seen in Fig. 1, the cutsize in the given
graph bipartitioning is 8, which is also equal to the total
number of nonzero entries in the off-diagonal blocks. The
bipartition illustrated in Fig. 1 achieves perfect load balance
by assigning 21 nonzero entries to each row stripe. This
number can also be obtained by adding the weights of the
vertices in each part.

2.3 Generalized Graph Model for Structurally
Symmetric/Nonsymmetric Square Matrices

The standard graph model is not suitable for the partition-
ing of nonsymmetric matrices. A recently proposed bipartite
graph model [17], [26] enables the partitioning of rectan-
gular as well as structurally symmetric/nonsymmetric
square matrices. In this model, each row and column is
represented by a vertex and the sets of vertices representing
the rows and columns form the bipartition, i.e.,
V � VR [ VC. There exists an edge between a row vertex
i 2 VR and a column vertex j 2 VC if and only if the
respective entry aij of matrix A is nonzero. Partitions �R
and �C on VR and VC, respectively, determine the overall
partition ��fP1; . . . ;PKg, where Pk � VRk

[ VCk for
k � 1; . . . ; K. For rowwise (columnwise) decomposition,
vertices in VR (VC) are weighted with the number of
nonzeros in the respective row (column) so that the balance
criterion (1) is imposed only on the partitioning of VR (VC).
As in the standard graph model, minimizing the number of
cut edges corresponds to minimizing the total number of
nonzeros in the off-diagonal blocks. This approach has the
flexibility of achieving nonsymmetric partitioning. In the
context of parallel SpMxV, the need for symmetric
partitioning on square matrices is achieved by enforcing
�R � �C. Hendrickson and Kolda [17] propose several
bipartite-graph partitioning algorithms that are adopted
from the techniques for the standard graph model and one
partitioning algorithm that is specific to bipartite graphs.

In this work, we propose a simple yet effective graph
model for symmetric partitioning of structurally nonsym-
metric square matrices. The proposed model enables the
use of the standard graph partitioning tools without any
modification. In the proposed model, a nonsymmetric
square matrix A is represented as an undirected graph GR�
�VR; E� and GC��VC; E� for the rowwise and columnwise
decomposition schemes, respectively. Graphs GR and GC
differ only in their vertex weight definitions. The vertex set
and the corresponding atomic task definitions are identical
to those of the symmetric matrices. That is, weight wi of a
vertex vi2 VR (vi2 VC) is equal to the total number of
nonzeros in row i (column i) in GR (GC). In the edge set E,
eij2E if and only if off-diagonal entries aij 6�0 or aji 6�0. That
is, the vertices in the adjacency list of a vertex vi denote the
union of the column indices of the off-diagonal nonzeros at
row i and the row indices of the off-diagonal nonzeros at
column i. The cost cij of an edge eij is set to 1 if either aij 6�0
or aji 6�0, and it is set to 2 if both aij 6�0 and aji 6�0. The
proposed scheme is referred to here as a generalized
model since it automatically produces the standard graph
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representation for structurally symmetric matrices by

computing the same cost of 2 for every edge.
Fig. 2 illustrates a sample 10� 10 nonsymmetric sparse

matrix A and its associated graph GR for rowwise

decomposition. The numbers inside the circles indicate the

computational weights of the respective vertices (rows).

This figure also illustrates a rowwise decomposition of the

matrix and the corresponding bipartitioning of its asso-

ciated graph for a two±processor system. As seen in Fig. 2,

the cutsize of the given graph bipartitioning is 7, which is

also equal to the total number of nonzero entries in the off-

diagonal blocks. Hence, similar to the standard and

bipartite graph models, minimizing cutsize in the proposed

graph model corresponds to minimizing the total number of

nonzeros in the off-diagonal blocks. As seen in Fig. 2, the

bipartitioning achieves perfect load balance by assigning 16

nonzero entries to each row stripe. As mentioned earlier,

the GC model of a matrix for columnwise decomposition

differs from the GR model only in vertex weights. Hence,

the graph bipartitioning illustrated in Fig. 2 can also be

considered as incurring a slightly imbalanced (15 versus 17

nonzeros) columnwise decomposition of sample matrix A

(shown by vertical dash line) with identical communication

requirement.

2.4 Deficiencies of the Graph Models

Consider the symmetric matrix decomposition given in
Fig. 1. Assume that parts P1 and P2 are mapped to
processors P1 and P2, respectively. The cutsize of the
bipartition shown in this figure is equal to 2�4�8, thus
estimating the communication volume requirement as eight
words. In the pre-communication scheme, off-block-diag-
onal entries a4;7 and a5;7 assigned to processor P1 display
the same need for the nonlocal x-vector component x7 twice.
However, it is clear that processor P2 will send x7 only once
to processor P1. Similarly, processor P1 will send x4 only
once to processor P2 because of the off-block-diagonal
entries a7;4 and a8;4 assigned to processor P2. In the post-
communication scheme, the graph model treats the off-
block-diagonal nonzeros a7;4 and a7;5 in P1 as if processor P1

will send two multiplication results a7;4x4 and a7;5x5 to
processor P2. However, it is obvious that processor P1 will
compute the partial result for the nonlocal y-vector
component y07�a7;4x4�a7;5x5 during the local SpMxV phase
and send this single value to processor P2 during the post-
communication phase. Similarly, processor P2 will only
compute and send the single value y04�a4;7x7�a4;8x8 to
processor P1. Hence, the actual communication volume is in
fact six words instead of eight in both pre- and post-
communication schemes. A similar analysis of the rowwise
decomposition of the nonsymmetric matrix given in Fig. 2
reveals the fact that the actual communication requirement
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Fig. 2. Two-way rowwise decomposition of a sample structurally nonsymmetric matrix A and the corresponding bipartitioning of its
associated graph GR.



is five words (x4, x5, x6, x7, and x8) instead of seven,
determined by the cutsize of the given bipartition of GR.

In matrix theoretical view, the nonzero entries in the
same column of an off-diagonal block incur the commu-
nication of a single x value in the rowwise decomposition
(pre-communication) scheme. Similarly, the nonzero entries
in the same row of an off-diagonal block incur the
communication of a single y value in the columnwise
decomposition (post-communication) scheme. However, as
mentioned earlier, the graph models try to minimize the
total number of off-block-diagonal nonzeros without con-
sidering the relative spatial locations of such nonzeros. In
other words, the graph models treat all off-block-diagonal
nonzeros in an identical manner by assuming that each off-
block-diagonal nonzero will incur a distinct communication
of a single word.

In graph theoretical view, the graph models treat all cut
edges of equal cost in an identical manner while computing
the cutsize. However, r cut edges, each of cost 2, stemming
from a vertex vi1 in part Pk to r vertices vi2 ; vi3 ; . . . ; vir�1

in
part P` incur only r�1 communications instead of 2r in
both pre- and post-communication schemes. In the pre-
communication scheme, processor Pk sends xi1 to processor
P` while P` sends xi2 ; xi3 ; . . . ; xir�1

to Pk. In the post-
communication scheme, processor P` sends y0i2 ; y

0
i3
; . . . ; y0ir�1

to processor Pk while Pk sends y0i1 to P`. Similarly, the
amount of communication required by r cut edges, each of
cost 1, stemming from a vertex vi1 in part Pk to r vertices
vi2 ; vi3 ; . . . ; vir�1

in part P` may vary between 1 and r words
instead of exactly r words, determined by the cutsize of the
given graph partitioning.

3 HYPERGRAPH MODELS FOR DECOMPOSITION

3.1 Hypergraph Partitioning Problem

A hypergraph H��V;N� is defined as a set of vertices V
and a set of nets (hyperedges) N among those vertices.
Every net nj 2 N is a subset of vertices, i.e., nj�V. The
vertices in a net nj are called its pins and denoted as pins�nj�.
The size of a net is equal to the number of its pins, i.e.,
sj�jpins�nj�j. The set of nets connected to a vertex vi is
denoted as nets�vi�. The degree of a vertex is equal to the
number of nets it is connected to, i.e., di�jnets�vi�j. Graph is
a special instance of hypergraph such that each net has
exactly two pins. Similar to graphs, let wi and cj denote the
weight of vertex vi2V and the cost of net nj2N ,
respectively.

Definition of K-way partition of hypergraphs is identical
to that of graphs. In a partition � ofH, a net that has at least
one pin (vertex) in a part is said to connect that part.
Connectivity set �j of a net nj is defined as the set of parts
connected by nj. Connectivity �j�j�jj of a net nj denotes the
number of parts connected by nj. A net nj is said to be cut if
it connects more than one part (i.e., �j > 1) and uncut,
otherwise (i.e., �j � 1). The cut and uncut nets are also
referred to here as external and internal nets, respectively.
The set of external nets of a partition � is denoted as N E .
There are various cutsize definitions for representing the
cost ���� of a partition �. Two relevant definitions are:

�a� ���� �
X
nj2N E

cj and �b� ���� �
X
nj2N E

cj��j ÿ 1�: �3�

In (3.a), the cutsize is equal to the sum of the costs of the cut
nets. In (3.b), each cut net nj contributes cj��j ÿ 1� to the
cutsize. Hence, the hypergraph partitioning problem [29]
can be defined as the task of dividing a hypergraph into two
or more parts such that the cutsize is minimized while a
given balance criterion (1) among the part weights is
maintained. Here, part weight definition is identical to that
of the graph model. The hypergraph partitioning problem is
known to be NP-hard [29].

3.2 Two Hypergraph Models for Decomposition

We propose two computational hypergraph models for the
decomposition of sparse matrices. These models are
referred to here as the column-net and row-net models
proposed for the rowwise decomposition (pre-communica-
tion) and columnwise decomposition (post-communication)
schemes, respectively.

In the column-net model, matrix A is represented as a
hypergraph HR��VR;NC� for rowwise decomposition.
Vertex and net sets VR and NC correspond to the rows
and columns of matrix A, respectively. There exist one
vertex vi and one net nj for each row i and column j,
respectively. Net nj�VR contains the vertices correspond-
ing to the rows that have a nonzero entry in column j. That
is, vi2nj if and only if aij 6�0. Each vertex vi 2 VR
corresponds to atomic task i of computing the inner
product of row i with column vector x. Hence, computa-
tional weight wi of a vertex vi2 VR is equal to the total
number of nonzeros in row i. The nets of HR represent the
dependency relations of the atomic tasks on the x-vector
components in rowwise decomposition. Each net nj can be
considered as incurring the computation yi yi�aijxj for
each vertex (row) vi2nj. Hence, each net nj denotes the set
of atomic tasks (vertices) that need xj. Note that each pin vi
of a net nj corresponds to a unique nonzero aij, thus
enabling the representation and decomposition of structu-
rally nonsymmetric matrices, as well as symmetric matrices,
without any extra effort. Fig. 3a illustrates the dependency
relation view of the column-net model. As seen in this
figure, net nj�fvh; vi; vkg represents the dependency of
atomic tasks h, i, k to xj because of the computations
yh yh�ahjxj, yi yi�aijxj, and yk yk�akjxj. Fig. 4b
illustrates the column-net representation of the sample 16�
16 nonsymmetric matrix given in Fig. 4a. In Fig. 4b, the pins
of net n7�fv7; v10; v13g represent nonzeros a7;7, a10;7, and
a13;7. Net n7 also represents the dependency of atomic tasks
7, 10, and 13 to x7 because of the computations
y7 y7�a7;7x7, y10 y10�a10;7x7, and y13 y13�a13;7x7.

The row-net model can be considered as the dual of the
column-net model. In this model, matrix A is represented as
a hypergraph HC��VC;NR� for columnwise decomposi-
tion. Vertex and net sets VC and NR correspond to the
columns and rows of matrix A, respectively. There exists
one vertex vi and one net nj for each column i and row j,
respectively. Net nj�VC contains the vertices correspond-
ing to the columns that have a nonzero entry in row j. That
is, vi2nj if and only if aji 6� 0. Each vertex vi2VC
corresponds to atomic task i of computing the sparse
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SAXPY/DAXPY operation y�y�xia�i. Hence, computa-
tional weight wi of a vertex vi2 VC is equal to the total
number of nonzeros in column i. The nets of HC represent
the dependency relations of the computations of the y-vector
components on the atomic tasks represented by the vertices
of HC in columnwise decomposition. Each net nj can be
considered as incurring the computation yj yj�ajixi for
each vertex (column) vi2nj. Hence, each net nj denotes the
set of atomic task results needed to accumulate yj. Note that
each pin vi of a net nj corresponds to a unique nonzero aji,
thus enabling the representation and decomposition of
structurally nonsymmetric matrices as well as symmetric
matrices without any extra effort. Fig. 3b illustrates the
dependency relation view of the row-net model. As seen in
this figure, net nj�fvh; vi; vkg represents the dependency of
accumulating yj�yhj� yij�ykj on the partial yj results
yhj �ajhxh, yij�ajixi, and ykj �ajkxk. Note that the row-net
and column-net models become identical in structurally
symmetric matrices.

By assigning unit costs to the nets (i.e., cj�1 for each net
nj), the proposed column-net and row-net models reduce
the decomposition problem to the K-way hypergraph
partitioning problem according to the cutsize definition
given in (3.b) for the pre- and post-communication schemes,
respectively. Consistency of the proposed hypergraph
models for accurate representation of communication
volume requirement while maintaining the symmetric
partitioning restriction depends on the condition that
ªvj 2 nj for each net nj.º We first assume that this condition
holds in the discussion throughout the following four
paragraphs and then discuss the appropriateness of the
assumption in the last paragraph of this section.

The validity of the proposed hypergraph models is
discussed only for the column-net model. A dual discussion
holds for the row-net model. Consider a partition � of HR
in the column-net model for rowwise decomposition of a
matrix A. Without loss of generality, we assume that part
Pk is assigned to processor Pk for k�1; 2; . . . ; K. As � is
defined as a partition on the vertex set of HR, it induces a
complete part (hence, processor) assignment for the rows of
matrix A and, hence, for the components of the y vector.
That is, a vertex vi assigned to part Pk in � corresponds to
assigning row i and yi to part Pk. However, partition � does
not induce any part assignment for the nets ofHR. Here, we
consider partition � as inducing an assignment for the
internal nets of HR, hence, for the respective x-vector

components. Consider an internal net nj of part Pk (i.e.,
�j � fPkg) which corresponds to column j of A. As all pins
of net nj lie in Pk, all rows (including row j by the
consistency condition) which need xj for inner-product
computations are already assigned to processor Pk. Hence,
internal net nj of Pk, which does not contribute to the
cutsize (3.b) of partition �, does not necessitate any
communication if xj is assigned to processor Pk. The
assignment of xj to processor Pk can be considered as
permuting column j to part Pk, thus respecting the
symmetric partitioning of A since row j is already assigned
to Pk. In the 4-way decomposition given in Fig. 4b, internal
nets n1, n10, n13 of part P1 induce the assignment of x1, x10,
x13 and columns 1, 10, 13 to part P1. Note that part P1

already contains rows 1, 10, 13, thus respecting the
symmetric partitioning of A.

Consider an external net nj with connectivity set �j,
where �j � j�jj and �j > 1. As all pins of net nj lie in the
parts in its connectivity set �j, all rows (including row j by
the consistency condition) which need xj for inner-product
computations are assigned to the parts (processors) in �j.
Hence, contribution �jÿ1 of external net nj to the cutsize
according to (3.b) accurately models the amount of
communication volume to incur during the parallel SpMxV
computations because of xj if xj is assigned to any
processor in �j. Let map�j�2�j denote the part and, hence,
processor assignment for xj corresponding to cut net nj. In
the column-net model together with the pre-communication
scheme, cut net nj indicates that processor map�j� should
send its local xj to those processors in connectivity set �j of
net nj except itself (i.e., to processors in the set
�jÿfmap�j�g). Hence, processor map�j� should send its
local xj to j�jjÿ1��jÿ1 distinct processors. As the
consistency condition ªvj 2 njº ensures that row j is already
assigned to a part in �j, symmetric partitioning of A can
easily be maintained by assigning xj, hence permuting
column j to the part which contains row j. In the 4-way
decomposition shown in Fig. 4b, external net n5 (with
�5 � fP1;P2;P3g) incurs the assignment of x5 (hence,
permuting column 5) to part P1 since row 5 (v5 2 n5) is
already assigned to part P1. The contribution �5 ÿ 1 � 2 of
net n5 to the cutsize accurately models the communication
volume to incur due to x5 because processor P1 should send
x5 to both processors P2 and P3 only once since
�5 ÿ fmap�5�g � �5 ÿ fP1g � fP2; P3g.
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In essence, in the column-net model, any partition � of
HR with vi 2 Pk can be safely decoded as assigning row i, yi
and xi to processor Pk for rowwise decomposition.
Similarly, in the row-net model, any partition � of HC with
vi 2 Pk can be safely decoded as assigning column i, xi, and
yi to processor Pk for columnwise decomposition. Thus, in
the column-net and row-net models, minimizing the cutsize
according to (3.b) corresponds to minimizing the actual
volume of interprocessor communication during the pre-
and post-communication phases, respectively. Maintaining
the balance criterion (1) corresponds to maintaining the
computational load balance during the local SpMxV
computations. Fig. 4c displays a permutation of the sample
matrix given in Fig. 4a according to the symmetric
partitioning induced by the 4-way decomposition shown
in Fig. 4b. As seen in Fig. 4c, the actual communication
volume for the given rowwise decomposition is six words
since processor P1 should send x5 to both P2 and P3, P2

should send x11 to P4, P3 should send x7 to P1, and P4

should send x12 to both P2 and P3. As seen in Fig. 4b,
external nets n5, n7, n11, and n12 contribute 2, 1, 1, and 2 to
the cutsize since �5 � 3, �7 � 2, �11 � 2, and �12 � 3,
respectively. Hence, the cutsize of the 4-way decomposi-
tion given in Fig. 4b is 6, thus leading to the accurate
modeling of the communication requirement. Note that
the graph model will estimate the total communication
volume as 13 words for the 4-way decomposition given
in Fig. 4c since the total number of nonzeros in the off-
diagonal blocks is 13. As seen in Fig. 4c, each processor
is assigned 12 nonzeros thus achieving perfect computa-
tional load balance.

In matrix theoretical view, let A� denote a permuted
version of matrix A according to the symmetric partitioning
induced by a partition � of HR in the column-net model.
Each cut-net nj with connectivity set �j and map�j��P`
corresponds to column j of A containing nonzeros in �j
distinct blocks (A�

k`, for Pk 2 �j) of matrix A�. Since
connectivity set �j of net nj is guaranteed to contain part
map�j�, column j contains nonzeros in �jÿ1 distinct off-
diagonal blocks of A�. Note that multiple nonzeros of
column j in a particular off-diagonal block contributes only

one to connectivity �j of net nj by definition of �j. So, the
cutsize of a partition � of HR is equal to the number of
nonzero column segments in the off-diagonal blocks of
matrix A�. For example, external net n5 with �5 �
fP1;P2;P3g and map�5� � P1 in Fig. 4b indicates that
column 5 has nonzeros in two off-diagonal blocks A�

2;1

and A�
3;1, as seen in Fig. 4c. As also seen in Fig. 4c, the

number of nonzero column segments in the off-diagonal
blocks of matrix A� is 6, which is equal to the cutsize of
partition � shown in Fig. 4b. Hence, the column-net model
tries to achieve a symmetric permutation which minimizes
the total number of nonzero column segments in the off-
diagonal blocks for the pre-communication scheme. Simi-
larly, the row-net model tries to achieve a symmetric
permutation which minimizes the total number of nonzero
row segments in the off-diagonal blocks for the post-
communication scheme.

Nonzero diagonal entries automatically satisfy the
condition ªvj 2 nj for each net nj,º thus enabling both
accurate representation of communication requirement and
symmetric partitioning of A. A nonzero diagonal entry ajj
already implies that net nj contains vertex vj as its pin. If,
however, some diagonal entries of the given matrix are
zeros, then the consistency of the proposed column-net
model is easily maintained by simply adding rows, which
do not contain diagonal entries, to the pin lists of the
respective column nets. That is, if ajj�0 then vertex vj
(row j) is added to the pin list pins�nj� of net nj and net nj is
added to the net list nets�vj� of vertex vj. These pin additions
do not affect the computational weight assignments of the
vertices. That is, weight wj of vertex vj inHR becomes equal
to either dj or djÿ1 depending on whether ajj 6�0 or ajj�0,
respectively. The consistency of the row-net model is
preserved in a dual manner.

4 DECOMPOSITION HEURISTICS

Kernighan-Lin (KL)-based heuristics are widely used for
graph/hypergraph partitioning because of their short run-
times and good quality results. The KL algorithm is an
iterative improvement heuristic originally proposed for
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rowwise decomposition of matrix A� obtained by permuting A according to the symmetric partitioning induced by �.



graph bipartitioning [25]. The KL algorithm, starting from
an initial bipartition, performs a number of passes until it
finds a locally minimum partition. Each pass consists of a
sequence of vertex swaps. The same swap strategy was
applied to the hypergraph bipartitioning problem by
Schweikert-Kernighan [38]. Fiduccia-Mattheyses (FM) [10]
introduced a faster implementation of the KL algorithm for
hypergraph partitioning. They proposed vertex move
concept instead of vertex swap. This modification, as well
as proper data structures, e.g., bucket lists, reduced the time
complexity of a single pass of the KL algorithm to linear in
the size of the graph and the hypergraph. Here, size refers to
the number of edges and pins in a graph and hypergraph,
respectively.

The performance of the FM algorithm deteriorates for
large and very sparse graphs/hypergraphs. Here, sparsity
of graphs and hypergraphs refer to their average vertex
degrees. Furthermore, the solution quality of FM is not
stable (predictable), i.e., average FM solution is significantly
worse than the best FM solution, which is a common
weakness of the move-based iterative improvement
approaches. Random multistart approach is used in VLSI
layout design to alleviate this problem by running the FM
algorithm many times starting from random initial
partitions to return the best solution found [1]. However,
this approach is not viable in parallel computing since
decomposition is a preprocessing overhead introduced to
increase the efficiency of the underlying parallel algorithm/
program. Most users will rely on one run of the decom-
position heuristic, so the quality of the decomposition tool
depends equally on the worst and average decompositions
than on just the best decomposition.

These considerations have motivated the two±phase
application of the move-based algorithms in hypergraph
partitioning [12]. In this approach, a clustering is performed
on the original hypergraph H0 to induce a coarser
hypergraph H1. Clustering corresponds to coalescing
highly interacting vertices to supernodes as a preprocessing
to FM. Then, FM is run on H1 to find a bipartition �1, and
this bipartition is projected back to a bipartition �0 of H0.
Finally, FM is rerun on H0 using �0 as an initial solution.
Recently, the two±phase approach has been extended to
multilevel approaches [4], [13], [21], leading to successful
graph partitioning tools Chaco [14] and MeTiS [22]. These
multilevel heuristics consist of three phases: coarsening,
initial partitioning, and uncoarsening. In the first phase, a
multilevel clustering is applied starting from the original
graph by adopting various matching heuristics until the
number of vertices in the coarsened graph reduces below a
predetermined threshold value. In the second phase, the
coarsest graph is partitioned using various heuristics,
including FM. In the third phase, the partition found in
the second phase is successively projected back towards the
original graph by refining the projected partitions on the
intermediate level uncoarser graphs using various heur-
istics, including FM.

In this work, we exploit the multilevel partitioning
schemes for the experimental verification of the proposed
hypergraph models in two approaches. In the first
approach, multilevel graph partitioning tool MeTiS is used

as a black box by transforming hypergraphs to graphs using
the randomized clique-net model proposed in [2]. In the
second approach, we have implemented a multilevel
hypergraph partitioning tool PaToH, and tested both
PaToH and multilevel hypergraph partitioning tool hMeTiS
[23], [24] which was released very recently.

4.1 Randomized Clique-Net Model for Graph
Representation of Hypergraphs

In the clique-net transformation model, the vertex set of the
target graph is equal to the vertex set of the given
hypergraph with the same vertex weights. Each net of the
given hypergraph is represented by a clique of vertices
corresponding to its pins. That is, each net induces an edge
between every pair of its pins. The multiple edges
connecting each pair of vertices of the graph are contracted
into a single edge of which cost is equal to the sum of the
costs of the edges it represents. In the standard clique-net
model [29], a uniform cost of 1=�siÿ1� is assigned to every
clique edge of net ni with size si. Various other edge
weighting functions are also proposed in the literature [1]. If
an edge is in the cut set of a graph partitioning then all nets
represented by this edge are in the cut set of hypergraph
partitioning, and vice versa. Ideally, no matter how vertices
of a net are partitioned, the contribution of a cut net to the
cutsize should always be one in a bipartition. However, the
deficiency of the clique-net model is that it is impossible to
achieve such a perfect clique-net model [18]. Furthermore,
the transformation may result in very large graphs since the
number of clique edges induced by the nets increase
quadratically with their sizes.

Recently, a randomized clique-net model implementa-
tion was proposed [2] which yields very promising results
when used together with graph partitioning tool MeTiS. In
this model, all nets of size larger than T are removed during
the transformation. Furthermore, for each net ni of size si,
F�si random pairs of its pins (vertices) are selected and an
edge with cost one is added to the graph for each selected
pair of vertices. The multiple edges between each pair of
vertices of the resulting graph are contracted into a single
edge as mentioned earlier. In this scheme, the nets with size
smaller than 2F�1 (small nets) induce a larger number of
edges than the standard clique-net model, whereas the nets
with size larger than 2F�1 (large nets) induce a smaller
number of edges than the standard clique-net model.
Considering the fact that MeTiS accepts integer edge costs
for the input graph, this scheme has two nice features.1

First, it simulates the uniform edge-weighting scheme of the
standard clique-net model for small nets in a random
manner since each clique edge (if induced) of a net ni with
size si<2F�1 will be assigned an integer cost close to
2F=�siÿ1� on the average. Second, it prevents the quadratic
increase in the number of clique edges induced by large
nets in the standard model since the number of clique
edges induced by a net in this scheme is linear in the size of
the net. In our implementation, we use the parameters T �
50 and F �5 in accordance with the recommendations
given in [2].
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4.2 PaToH: A Multilevel Hypergraph Partitioning
Tool

In this work, we exploit the successful multilevel metho-
dology [4], [13], [21] proposed and implemented for graph
partitioning [14], [22] to develop a new multilevel hyper-
graph partitioning tool, called PaToH (PaToH: Partitioning
Tools for Hypergraphs).

The data structures used to store hypergraphs in PaToH
mainly consist of the following arrays. The NETLST array
stores the net lists of the vertices. The PINLST array stores
the pin lists of the nets. The size of both arrays is equal to
the total number of pins in the hypergraph. Two auxiliary
index arrays VTXS and NETS of sizes jVj�1 and jN j�1
hold the starting indices of the net lists and pin lists of the
vertices and nets in the NETLST and PINLST arrays,
respectively. In sparse matrix storage terminology, this
scheme corresponds to storing the given matrix both in
Compressed Sparse Row (CSR) and Compressed Sparse Column
(CSC) formats [27] without storing the numerical data. In
the column-net model proposed for rowwise decomposi-
tion, the VTXS and NETLST arrays correspond to the CSR
storage scheme, and the NETS and PINLST arrays corre-
spond to the CSC storage scheme. This correspondence is
dual in the row-net model proposed for columnwise
decomposition.

The K-way graph/hypergraph partitioning problem is
usually solved by recursive bisection. In this scheme, first a
2-way partition of G=H is obtained and, then, this biparti-
tion is further partitioned in a recursive manner. After lg2K
phases, graph G=H is partitioned into K parts. PaToH
achieves K-way hypergraph partitioning by recursive
bisection for any K value (i.e., K is not restricted to be a
power of 2).

The connectivity cutsize metric given in (3.b) needs
special attention in K-way hypergraph partitioning by
recursive bisection. Note that the cutsize metrics given in
(3.a) and (3.b) become equivalent in hypergraph bisection.
Consider a bipartition VA and VB of V obtained after a
bisection step. It is clear that VA and VB and the internal nets
of parts A and B will become the vertex and net sets of HA
and HB, respectively, for the following recursive bisection
steps. Note that each cut net of this bipartition already
contributes 1 to the total cutsize of the final K-way partition
to be obtained by further recursive bisections. However, the
further recursive bisections of VA and VB may increase the
connectivity of these cut nets. In parallel SpMxV view,
while each cut net already incurs the communication of a
single word, these nets may induce additional communica-
tion because of the following recursive bisection steps.
Hence, after every hypergraph bisection step, each cut net
ni is split into two pin-wise disjoint nets n0i � pins�ni�

TVA
and n00i � pins�ni�

TVB and, then, these two nets are added
to the net lists of HA and HB if jn0ij > 1 and jn00i j > 1,
respectively. Note that the single-pin nets are discarded
during the split operation since such nets cannot contribute
to the cutsize in the following recursive bisection steps.
Thus, the total cutsize according to (3.b) will become equal
to the sum of the number of cut nets at every bisection step
by using the above cut-net split method. Fig. 5 illustrates
two cut nets ni and nk in a bipartition and their splits into

nets n0i, n
00
i and n0k, n

00
k, respectively. Note that net n00k becomes

a single-pin net and it is discarded.
Similar to multilevel graph and hypergraph partitioning

tools Chaco [14], MeTiS [22], and hMeTiS [24], the multi-
level hypergraph bisection algorithm used in PaToH
consists of three phases: coarsening, initial partitioning,
and uncoarsening. The following sections briefly summar-
ize our multilevel bisection algorithm. Although PaToH
works on weighted nets, we will assume unit cost nets both
for the sake of simplicity of presentation and for the fact
that all nets are assigned unit cost in the hypergraph
representation of sparse matrices.

4.2.1 Coarsening Phase

In this phase, the given hypergraph H�H0��V0;N 0� is
coarsened into a sequence of smaller hypergraphs H1�
�V1;N 1�;H2��V2;N 2�; . . . ;Hm��Vm;Nm� s a t i s f y i n g
jV0j> jV1j> jV2j> . . . > jVmj. This coarsening is achieved by
coalescing disjoint subsets of vertices of hypergraph Hi into
multinodes such that each multinode in Hi forms a single
vertex of Hi�1. The weight of each vertex of Hi�1 becomes
equal to the sum of its constituent vertices of the respective
multinode in Hi. The net set of each vertex of Hi�1 becomes
equal to the union of the net sets of the constituent vertices
of the respective multinode in Hi. Here, multiple pins of a
net n2N i in a multinode cluster of Hi are contracted to a
single pin of the respective net n0 2N i�1 of Hi�1. Further-
more, the single-pin nets obtained during this contraction
are discarded. Note that such single-pin nets correspond to
the internal nets of the clustering performed on Hi. The
coarsening phase terminates when the number of vertices in
the coarsened hypergraph reduces below 100 (i.e.,
jVmj�100).

Clustering approaches can be classified as agglomerative
and hierarchical. In the agglomerative clustering, new
clusters are formed one at a time, whereas in the
hierarchical clustering, several new clusters may be formed
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simultaneously. In PaToH, we have implemented both
randomized matching±based hierarchical clustering and
randomized hierarchic±agglomerative clustering. The for-
mer and latter approaches will be abbreviated as matching±
based clustering and agglomerative clustering, respectively.

The matching-based clustering works as follows: Ver-
tices of Hi are visited in a random order. If a vertex u2Vi
has not been matched yet, one of its unmatched adjacent
vertices is selected according to a criterion. If such a vertex v
exists, we merge the matched pair u and v into a cluster. If
there is no unmatched adjacent vertex of u, then vertex u
remains unmatched, i.e., u remains as a singleton cluster.
Here, two vertices u and v are said to be adjacent if they
share at least one net, i.e., nets�u� \ nets�v� 6� ;. The selection
criterion used in PaToH for matching chooses a vertex v
with the highest connectivity value Nuv. Here, connectivity
Nuv�jnets�u� \ nets�v�j refers to the number of shared nets
between u and v. This matching-based scheme is referred to
here as Heavy Connectivity Matching (HCM).

The matching-based clustering allows the clustering of
only pairs of vertices in a level. In order to enable the
clustering of more than two vertices at each level, we have
implemented a randomized agglomerative clustering ap-
proach. In this scheme, each vertex u is assumed to
constitute a singleton cluster Cu�fug at the beginning of
each coarsening level. Then, vertices are visited in a random
order. If a vertex u has already been clustered (i.e., jCuj>1),
it is not considered for being the source of a new clustering.
However, an unclustered vertex u can choose to join a
multinode cluster as well as a singleton cluster. That is, all
adjacent vertices of an unclustered vertex u are considered
for selection according to a criterion. The selection of a
vertex v adjacent to u corresponds to including vertex u to
c lus ter Cv to grow a new mult inode c lus ter
Cu�Cv�Cv [ fug. Note that no singleton cluster remains
at the end of this process as far as there exists no isolated
vertex. The selection criterion used in PaToH for agglom-
erative clustering chooses a singleton or multinode cluster
Cv with the highest Nu;Cv=Wu;Cv value, where Nu;Cv�
jnets�u� \Sx2Cv nets�x�j and Wu;Cv is the weight of the
multinode cluster candidate fug [ Cv. The division of
Nu;Cv by Wu;Cv is an effort to avoiding the polarization
towards very large clusters. This agglomerative clustering
scheme is referred to here as Heavy Connectivity Clustering
(HCC).

The objective in both HCM and HCC is to find highly
connected vertex clusters. Connectivity values Nuv and Nu;Cv

used for selection serve this objective. Note that Nuv (Nu;Cv )
also denotes the lower bound in the amount of decrease in
the number of pins because of the pin contractions to be
performed when u joins v (Cv). Recall that there might be
additional decrease in the number of pins because of single-
pin nets that may occur after clustering. Hence, the
connectivity metric is also an effort towards minimizing
the complexity of the following coarsening levels, partition-
ing phase, and refinement phase since the size of a
hypergraph is equal to the number of its pins.

In rowwise matrix decomposition context (i.e., column-
net model), the connectivity metric corresponds to the
number of common column indices between two rows or

row groups. Hence, both HCM and HCC try to combine
rows or row groups with similar sparsity patterns. This in
turn corresponds to combining rows or row groups which
need similar sets of x-vector components in the pre-
communication scheme. A dual discussion holds for the
row-net model. Fig. 6 illustrates a single level coarsening of
an 8� 8 sample matrix A0 in the column-net model using
HCM and HCC. The original decimal ordering of the rows
is assumed to be the random vertex visit order. As seen in
Fig. 6, HCM matches row pairs f1; 3g, f2; 6g, and f4; 5gwith
the connectivity values of 3, 2, and 2, respectively. Note that
the total number of nonzeros of A0 reduces from 28 to 21 in
AHCM

1 after clustering. This difference is equal to the sum
3�2�2�7 of the connectivity values of the matched row-
vertex pairs since pin contractions do not lead to any single-
pin nets. As seen in Fig. 6, HCC constructs three clusters
f1; 2; 3g, f4; 5g, and f6; 7; 8g through the clustering sequence
of f1; 3g, f1; 2; 3g, f4; 5g, f6; 7g, and f6; 7; 8g with the
connectivity values of 3, 4, 2, 3, and 2, respectively. Note
that pin contractions lead to three single-pin nets n2, n3, and
n7, thus columns 2, 3, and 7 are removed. As also seen in
Fig. 6, although rows 7 and 8 remain unmatched in HCM,
every row is involved in at least one clustering in HCC.

Both HCM and HCC necessitate scanning the pin lists of
all nets in the net list of the source vertex to find its adjacent
vertices for matching and clustering. In the column-net
(row-net) model, the total cost of these scan operations can
be as expensive as the total number of multiply and add
operations which lead to nonzero entries in the computa-
tion of AAT (ATA). In HCM, the key point to efficient
implementation is to move the matched vertices encoun-
tered during the scan of the pin list of a net to the end of its
pin list through a simple swap operation. This scheme
avoids the revisits of the matched vertices during the
following matching operations at that level. Although this
scheme requires an additional index array to maintain the
temporary tail indices of the pin lists, it achieves substantial
decrease in the run-time of the coarsening phase. Unfortu-
nately, this simple yet effective scheme cannot be fully used
in HCC. Since a singleton vertex can select a multinode
cluster, the revisits of the clustered vertices are partially
avoided by maintaining only a single vertex to represent the
multinode cluster in the pin-list of each net connected to the
cluster, through simple swap operations. Through the use
of these efficient implementation schemes the total cost of
the scan operations in the column-net (row-net) model can
be as low as the total number of nonzeros in AAT (ATA). In
order to maintain this cost within reasonable limits, all nets
of size greater than 4savg are not considered in a bipartition-
ing step, where savg denotes the average net size of the
hypergraph to be partitioned in that step. Note that such
nets can be reconsidered during the further levels of
recursion because of net splitting.

The cluster growing operation in HCC requires disjoint-
set operations for maintaining the representatives of the
clusters, where the union operations are restricted to the
union of a singleton source cluster with a singleton or a
multinode target cluster. This restriction is exploited by
always choosing the representative of the target cluster as
the representative of the new cluster. Hence, it is sufficient
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to update the representative pointer of only the singleton
source cluster joining to a multinode target cluster. There-
fore, each disjoint-set operation required in this scheme is
performed in O�1� time.

4.2.2 Initial Partitioning Phase

The goal in this phase is to find a bipartition on the coarsest
hypergraph Hm. In PaToH, we use the Greedy Hypergraph
Growing (GHG) algorithm for bisecting Hm. This algorithm
can be considered as an extension of the GGGP algorithm
used in MeTiS to hypergraphs. In GHG, we grow a cluster
around a randomly selected vertex. During the course of the
algorithm, the selected and unselected vertices induce a
bipartition on Hm. The unselected vertices connected to the
growing cluster are inserted into a priority queue according
to their FM gains. Here, the gain of an unselected vertex
corresponds to the decrease in the cutsize of the current
bipartition if the vertex moves to the growing cluster. Then,
a vertex with the highest gain is selected from the priority
queue. After a vertex moves to the growing cluster, the
gains of its unselected adjacent vertices that are currently in
the priority queue are updated and those not in the priority
queue are inserted. This cluster growing operation con-
tinues until a predetermined bipartition balance criterion is
reached. As also mentioned in MeTiS, the quality of this
algorithm is sensitive to the choice of the initial random
vertex. Since the coarsest hypergraph Hm is small, we run
GHG four times, starting from different random vertices
and select the best bipartition for refinement during the
uncoarsening phase.

4.2.3 Uncoarsening Phase

At each level i (for i � m;mÿ1; . . . ; 1), bipartition �i found
on Hi is projected back to a bipartition �iÿ1 on Hiÿ1. The
constituent vertices of each multinode in Hiÿ1 are assigned
to the part of the respective vertex in Hi. Obviously, �iÿ1 of
Hiÿ1 has the same cutsize with �i ofHi. Then, we refine this
bipartition by running a Boundary FM (BFM) hypergraph
bipartitioning algorithm on Hiÿ1 starting from initial

bipartition �iÿ1. BFM moves only the boundary vertices
from the overloaded part to the under-loaded part, where a
vertex is said to be a boundary vertex if it is connected to at
least one cut net.

BFM requires maintaining the pin-connectivity of each net
for both initial gain computations and gain updates. The
pin-connectivity �k�n� � jn \ Pkj of a net n to a part Pk
denotes the number of pins of net n that lie in part Pk, for
k � 1; 2. In order to avoid the scan of the pin lists of all nets,
we adopt an efficient scheme to initialize the � values for
the first BFM pass in a level. It is clear that initial bipartition
�iÿ1 of Hiÿ1 has the same cut-net set with �i of Hi. Hence,
we scan only the pin lists of the cut nets of �iÿ1 to initialize
their � values. For each other net n, �1�n� and �2�n� values
are easily initialized as �1�n��sn and �2�n��0 if net n is
internal to part P1, and �1�n��0 and �2�n��sn, otherwise.
After initializing the gain value of each vertex v as
g�v��ÿdv, we exploit � values as follows. We rescan the
pin list of each external net n and update the gain value of
each vertex v 2 pins�n� as g�v� � g�v� � 2 or g�v� � g�v� � 1
depending on whether net n is critical to the part containing
v or not, respectively. An external net n is said to be critical
to a part k if �k�n� � 1 so that moving the single vertex of net
n that lies in that part to the other part removes net n from
the cut. Note that two-pin cut nets are critical to both parts.
The vertices visited while scanning the pin-lists of the
external nets are identified as boundary vertices and only
these vertices are inserted into the priority queue according
to their computed gains.

In each pass of the BFM algorithm, a sequence of
unmoved vertices with the highest gains are selected to
move to the other part. As in the original FM algorithm, a
vertex move necessitates gain updates of its adjacent
vertices. However, in the BFM algorithm, some of the
adjacent vertices of the moved vertex may not be in the
priority queue because they may not be boundary vertices
before the move. Hence, such vertices which become
boundary vertices after the move are inserted into the
priority queue according to their updated gain values. The
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Fig. 6. Matching-based clustering AHCM
1 and agglomerative clustering AHCC

1 of the rows of matrix A0.



refinement process within a pass terminates when no
feasible move remains or the sequence of last
maxf50; 0:001jVijg moves does not yield a decrease in the
total cutsize. A move is said to be feasible if it does not
disturb the load balance criterion (1) with K�2. At the end
of a BFM pass, we have a sequence of tentative vertex
moves and their respective gains. We then construct from
this sequence the maximum prefix subsequence of moves
with the maximum prefix sum which incurs the maximum
decrease in the cutsize. The permanent realization of the
moves in this maximum prefix subsequence is efficiently
achieved by rolling back the remaining moves at the end of
the overall sequence. The initial gain computations for the
following pass in a level is achieved through this rollback.
The overall refinement process in a level terminates if the
maximum prefix sum of a pass is not positive. In the current
implementation of PaToH, at most two BFM passes are
allowed at each level of the uncoarsening phase.

5 EXPERIMENTAL RESULTS

We have tested the validity of the proposed hypergraph
models by running MeTiS on the graphs obtained by
randomized clique-net transformation and running PaToH
and hMeTiS directly on the hypergraphs for the decom-
positions of various realistic sparse test matrices arising in
different application domains. These decomposition results
are compared with the decompositions obtained by running
MeTiS using the standard and proposed graph models for
the symmetric and nonsymmetric test matrices, respec-
tively. The most recent version (version 3.0) of MeTiS [22]
was used in the experiments. As both hMeTiS and PaToH
achieve K-way partitioning through recursive bisection,
recursive MeTiS (pMeTiS) was used for the sake of a fair

comparison. Another reason for using pMeTiS is that direct
K-way partitioning version of MeTiS (kMeTiS) produces
9 percent worse partitions than pMeTiS in the decomposi-
tion of the nonsymmetric test matrices, although it is 2.5
times faster, on the average. pMeTiS was run with the
default parameters: sorted heavy-edge matching, region
growing, and early-exit boundary FM refinement for
coarsening, initial partitioning, and uncoarsening phases,
respectively. The current version (version 1.0.2) of hMeTiS
[24] was run with the parameters: greedy first-choice
scheme (GFC) and early-exit FM refinement (EE-FM) for
coarsening and uncoarsening phases, respectively. The V-
cycle refinement scheme was not used because, in our
experiments, it achieved at most 1 percent (much less on the
average) better decompositions at the expense of approxi-
mately three times slower execution time (on the average) in
the decomposition of the test matrices. The GFC scheme
was found to be 28 percent faster than the other clustering
schemes while producing slightly (1 percent±2 percent)
better decompositions on the average. The EE-FM scheme
was observed to be 30 percent faster than the other
refinement schemes without any difference in the decom-
position quality on the average.

Table 1 illustrates the properties of the test matrices
listed in the order of increasing number of nonzeros. In this
table, the ªdescriptionº column displays both the nature
and the source of each test matrix. The sparsity patterns of
the Linear Programming matrices used as symmetric test
matrices are obtained by multiplying the respective
rectangular constraint matrices with their transposes. In
Table 1, the total number of nonzeros of a matrix also
denotes the total number of pins in both column-net and
row-net models. The minimum and maximum number of
nonzeros per row (column) of a matrix correspond to the
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TABLE 1
Properties of Test Matrices



minimum and maximum vertex degree (net size) in the
column-net model, respectively. Similarly, the standard
deviation std and coefficient of variation cov values of
nonzeros per row (column) of a matrix correspond to the std
and cov values of vertex degree (net size) in the column-net
model, respectively. Dual correspondences hold for the
row-net model.

All experiments were carried out on a workstation
equipped with a 133 MHz PowerPC processor with 512-
Kbyte external cache and 64 Mbytes of memory. We have
tested K � 8, 16, 32, and 64 way decompositions of every
test matrix. For a specific K value, K-way decomposition of
a test matrix constitutes a decomposition instance. pMeTiS,

hMeTiS, and PaToH were run 50 times starting from
different random seeds for each decomposition instance.
The average performance results are displayed in Tables 2,
3, and 4 and Figs. 7, 8, and 9 for each decomposition
instance. The load imbalance values are below 3 percent for
all decomposition results displayed in these figures, where
p e r c e n t i m b a l a n c e r a t i o i s d e f i n e d a s
100� �Wmax ÿWavg�=Wavg.

Table 2 displays the decomposition performance of the
proposed hypergraph models together with the standard
graph model in the rowwise/columnwise decomposition of
the symmetric test matrices. Note that the rowwise and
columnwise decomposition problems become equivalent
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TABLE 2
Average Communication Requirements for Rowwise/Columnwise Decomposition of Structurally Symmetric Test Matrices



for symmetric matrices. Tables 3 and 4 display the
decomposition performance of the proposed column-net

and row-net hypergraph models together with the pro-
posed graph models in the rowwise and columnwise

decompositions of the nonsymmetric test matrices, respec-
tively. Due to lack of space, the decomposition performance
results for the clique-net approach are not displayed in

Tables 2, 3, and 4; instead they are summarized in Table 5.
Although the main objective of this work is the minimiza-

tion of the total communication volume, the results for the
other performance metrics, such as the maximum volume,

average number, and maximum number of messages
handled by a single processor, are also displayed in

Tables 2, 3, and 4. Note that the maximum volume and

maximum number of messages determine the concurrent

communication volume and concurrent number of mes-

sages, respectively, under the assumption that no conges-

tion occurs in the network.
As seen in Tables 2, 3, and 4, the proposed hypergraph

models produce substantially better partitions than the

graph model at each decomposition instance in terms of

total communication volume cost. In the symmetric test

matrices, the hypergraph model produces 7 to 48 percent

better partitions than the graph model (see Table 2). In the

nonsymmetric test matrices, the hypergraph models pro-

duce 12 to 63 percent and 9 to 56 percent better partitions
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TABLE 3
Average Communication Requirement for Rowwise Decomposition of Structurally Nonsymmetric Test Matrices



than the graph models in the rowwise (see Table 3) and

columnwise (see Table 4) decompositions, respectively. As

seen in Tables 2, 3, and 4, there is no clear winner between

hMeTiS and PaToH in terms of decomposition quality. In

some matrices, hMeTiS produces slightly better partitions

than PaToH, whereas the situation is the other way round

in some other matrices. As seen in Tables 2 and 3, there is

also no clear winner between clustering schemes HCM and

HCC in PaToH. However, as seen in Table 4, PaToH-HCC

produces slightly better partitions than PaToH-HCM in all

columnwise decomposition instances for the nonsymmetric

test matrices.

Tables 2, 3, and 4 show that the performance gap

between the graph and hypergraph models in terms of the

total communication volume costs is preserved by almost

the same amounts in terms of the concurrent communica-

tion volume costs. For example, in the decomposition of the

symmetric test matrices, the hypergraph model using

PaToH-HCM incurs 30 percent less total communication

volume than the graph model while incurring 28 percent

less concurrent communication volume, on the overall

average. In the columnwise decomposition of the nonsym-

metric test matrices, PaToH-HCM incurs 35 percent less

total communication volume than the graph model while
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Average Communication Requirements for Columnwise Decomposition of Structurally Nonsymmetric Test Matrices



incurring 37 percent less concurrent communication vo-
lume, on the overall average.

Although the hypergraph models perform better than
the graph models in terms of number of messages, the
performance gap is not as large as in the communication
volume metrics. However, the performance gap increases
with increasing K. As seen in Table 2, in the 64-way
decomposition of the symmetric test matrices, the hyper-
graph model using PaToH-HCC incurs 32 percent and
10 percent less total and concurrent number of messages
than the graph model, respectively. As seen in Table 3, in
the rowwise decomposition of the nonsymmetric test
matrices, PaToH-HCC incurs 32 percent and 26 percent
less total and concurrent number of messages than the
graph model, respectively.

The performance comparison of the graph/hypergraph
partitioning-based 1D decomposition schemes with the
conventional algorithms based on 1D and 2D [15], [30]
decomposition schemes is as follows: As mentioned earlier,
in K-way decompositions of m�m matrices, the conven-
tional 1D and 2D schemes incur the total communication
volume of �K ÿ 1�m and 2� �����Kp ÿ1�m words, respectively.
For example, in 64-way decompositions, the conventional 1D
and 2D schemes incur the total communication volumes of
63m and 14m words, respectively. As seen at the bottom of
Tables 2 and 3, PaToH-HCC reduces the total communication
volume to 1:91m and 0:90m words in the 1D 64-way

decomposition of the symmetric and nonsymmetric test
matrices, respectively, on the overall average. In 64-way
decompositions, the conventional 1D and 2D schemes incur
the concurrent communication volumes of approximately
m and 0:22m words, respectively. As seen in Tables 2 and 3,
PaToH-HCC reduces the concurrent communication vo-
lume to 0:052m and 0:025m words in the 1D 64-way
decomposition of the symmetric and nonsymmetric test
matrices, respectively, on the overall average.

Fig. 7 illustrates the relative run-time performance of the
proposed hypergraph model compared to the standard
graph model in the rowwise/columnwise decomposition of
the symmetric test matrices. Figs. 8 and 9 display the
relative run-time performance of the column-net and row-
net hypergraph models compared to the proposed graph
models in the rowwise and columnwise decompositions of
the nonsymmetric test matrices, respectively. In Figs. 7, 8,
and 9, for each decomposition instance, we plot the ratios of
the average execution times of the tools using the respective
hypergraph model to that of pMeTiS using the respective
graph model. The results displayed in Figs. 7, 8, and 9 are
obtained by assuming that the test matrix is given either in
CSR or in CSC form, which are commonly used for SpMxV
computations. The standard graph model does not necessi-
tate any preprocessing since CSR and CSC forms are
equivalent in symmetric matrices and both of them
correspond to the adjacency list representation of the
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Fig. 7. Relative run-time performance of the proposed column-net/row-net hypergraph model (Clique-net, hMeTiS, PaToH-HCM, and PaToH-HCC)
to the graph model (pMeTiS) in rowwise/columnwise decomposition of symmetric test matrices. Bars above 1.0 indicate that the hypergraph model
leads to slower decomposition time.



standard graph model. However, in nonsymmetric ma-
trices, construction of the proposed graph model requires
some amount of preprocessing time, although we have
implemented a very efficient construction code which
totally avoids index search. Thus, the execution time
averages of the graph models for the nonsymmetric test
matrices include this preprocessing time. The preprocessing
time constitutes approximately 3 percent of the total
execution time on the overall average. In the clique-net
model, transforming the hypergraph representation of the
given matrices to graphs using the randomized clique-net
model introduces considerable amount of preprocessing
time, despite the efficient implementation scheme we have
adopted. Hence, the execution time averages of the clique-
net model include this transformation time. The transfor-
mation time constitutes approximately 23 percent of the
total execution time on the overall average. As mentioned
earlier, the PaToH and hMeTiS tools use both CSR and CSC
forms such that the construction of the other form from the
given one is performed within the respective tool.

As seen in Figs. 7, 8, and 9, the tools using the
hypergraph models run slower than pMeTiS using the the
graph models in most of the instances. The comparison of
Fig. 7 with Figs. 8 and 9 shows that the gap between the
run-time performances of the graph and hypergraph
models is much less in the decomposition of the nonsym-
metric test matrices than that of the symmetric test matrices.

These experimental findings were expected, because the
execution times of graph partitioning tool pMeTiS, and
hypergraph partitioning tools hMeTiS and PaToH are
proportional to the sizes of the graph and hypergraph,
respectively. In the representation of an m�m square
matrix with Z off-diagonal nonzeros, the graph models
contain jEj � Z=2 and Z=2 < jEj � Z edges for symmetric
and nonsymmetric matrices, respectively. However, the
hypergraph models contain p � m� Z pins for both
symmetric and nonsymmetric matrices. Hence, the size of
the hypergraph representation of a matrix is always greater
than the size of its graph representation, and this gap in the
sizes decreases in favor of the hypergraph models in
nonsymmetric matrices. Fig. 9 displays an interesting
behavior that pMeTiS using the clique-net model runs
faster than pMeTiS using the graph model in the column-
wise decomposition of four out of nine nonsymmetric test
matrices. In these four test matrices, the edge contractions
during the hypergraph-to-graph transformation through
randomized clique-net approach lead to less number of
edges than the graph model.

As seen in Figs. 7, 8, and 9, both PaToH-HCM and
PaToH-HCC run considerably faster than hMeTiS in each
decomposition instance. This situation can be most prob-
ably due to the design considerations of hMeTiS. hMeTiS
mainly aims at partitioning VLSI circuits of which hyper-
graph representations are much more sparse than the
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Fig. 8. Relative run-time performance of the proposed column-net hypergraph model (Clique-net, hMeTiS, PaToH-HCM, and PaToH-HCC) to the
graph model (pMeTiS) in rowwise decomposition of symmetric test matrices. Bars above 1.0 indicate that the hypergraph model leads to slower
decomposition time than the graph model.



hypergraph representations of the test matrices. In the
comparison of the HCM and HCC clustering schemes of
PaToH, PaToH-HCM runs slightly faster than PaToH-HCC
in the decomposition of almost all test matrices except in the
decomposition of symmetric matrices KEN-11 and KEN-13,
and nonsymmetric matrices ONETONE1 and ONETONE2.
As seen in Fig. 7, PaToH-HCM using the hypergraph model
runs 1.47±2.93 times slower than pMeTiS using the graph
model in the decomposition of the symmetric test matrices.
As seen in Figs. 8 and 9, PaToH-HCM runs 1.04±1.63 times
and 0.83±1.79 times slower than pMeTiS using the graph
model in the rowwise and columnwise decomposition of
the nonsymmetric test matrices, respectively. Note that
PaToH-HCM runs 17 percent, 8 percent, and 6 percent
faster than pMeTiS using the graph model in the 8-way, 16-
way, and 32-way columnwise decompositions of nonsym-
metric matrix LHR34, respectively. PaToH-HCM achieves
64-way rowwise decomposition of the largest test matrix
BCSSTK32 containing 44.6K rows/columns and 1030K
nonzeros in only 25.6 seconds, which is equal to the
sequential execution time of multiplying matrix BCSSTK32
with a dense vector 73.5 times.

The relative performance results of the hypergraph
models with respect to the graph models are summarized
in Table 5 in terms of total communication volume and
execution time by averaging over different K values. This
table also displays the averages of the best and worst

performance results of the tools using the hypergraph
models. In Table 5, the performance results for the
hypergraph models are normalized with respect to those
of pMeTiS using the graph models. In the symmetric test
matrices, direct approaches PaToH and hMeTiS produce
30 to 32 percent better partitions than pMeTiS using the
graph model, whereas the clique-net approach produces
16 percent better partitions, on the overall average. In the
nonsymmetric test matrices, the direct approaches
achieve 34 to 38 percent better decomposition quality
than pMeTiS using the graph model, whereas the clique-
net approach achieves 21 to 24 percent better decom-
position quality. As seen in Table 5, the clique-net
approach is faster than the direct approaches in the
decomposition of the symmetric test matrices. However,
PaToH-HCM achieves nearly equal run-time performance
as pMeTiS using the clique-net approach in the decom-
position of the nonsymmetric test matrices. It is interest-
ing to note that the execution time of the clique-net
approach relative to the graph model decreases with
increasing number of processors K. This is because of the
fact that the percent preprocessing overhead due to the
hypergraph-to-graph transformation in the total execution
time of pMeTiS using the clique-net approach decreases
with increasing K.

As seen in Table 5, hMeTiS produces slightly (2
percent) better partitions at the expense of considerably
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Fig. 9. Relative run-time performance of the proposed row-net hypergraph model (Clique-net, hMeTiS, PaToH-HCM, and PaToH-HCC) to the graph
model (pMeTiS) in columnwise decomposition of symmetric test matrices. Bars above 1.0 indicate that the hypergraph model leads to slower
decomposition time than the graph model.



larger execution time in the decomposition of the
symmetric test matrices. However, PaToH-HCM achieves
the same decomposition quality as hMeTiS for the
nonsymmetric test matrices, whereas PaToH-HCC
achieves slightly (2 to 3 percent) better decomposition
quality. In the decomposition of the nonsymmetric test
matrices, although PaToH-HCC performs slightly better
than PaToH-HCM in terms of decomposition quality, it is
13 to 14 percent slower.

In the symmetric test matrices, the use of the proposed
hypergraph model instead of the graph model achieves
30 percent decrease in the communication volume require-
ment of a single parallel SpMxV computation at the expense
of 130 percent increase in the decomposition time by using
PaToH-HCM for hypergraph partitioning. In the nonsym-
metric test matrices, the use of the proposed hypergraph
models instead of the graph model achieves 34 to 35 percent
decrease in the communication volume requirement of a
single parallel SpMxV computation at the expense of only
34 to 39 percent increase in the decomposition time by using
PaToH-HCM.

6 CONCLUSION

Two computational hypergraph models were proposed
to decompose sparse matrices for minimizing commu-
nication volume while maintaining load balance during
repeated parallel matrix-vector product computations.
The proposed models enable the representation and,
hence, the decomposition of structurally nonsymmetric
matrices as well as structurally symmetric matrices.
Furthermore, they introduce a much more accurate

representation for the communication requirement than

the standard computational graph model widely used in

the literature for the parallelization of various scientific

applications. The proposed models reduce the decom-

position problem to the well-known hypergraph parti-

tioning problem, thus enabling the use of circuit

partitioning heuristics widely used in VLSI design. The

successful multilevel graph partitioning tool MeTiS was

used for the experimental evaluation of the validity of

the proposed hypergraph models through hypergraph-to-

graph transformation using the randomized clique-net

model. A successful multilevel hypergraph partitioning

tool PaToH was also implemented and both PaToH and

recently released multilevel hypergraph partitioning tool

hMeTiS were used for testing the validity of the

proposed hypergraph models. Experimental results car-

ried out on a wide range of sparse test matrices arising

in different application domains confirmed the validity

of the proposed hypergraph models. In the decomposi-

tion of the test matrices, the use of the proposed

hypergraph models instead of the graph models

achieved 30 to 38 percent decrease in the communication

volume requirement of a single parallel matrix-vector

multiplication at the expense of only 34 to 130 percent

increase in the decomposition time by using PaToH, on

the average. This work was also an effort towards

showing that the computational hypergraph model is

more powerful than the standard computational graph

model as it provides a more versatile representation for

the interactions among the atomic tasks of the computa-

tional domains.
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TABLE 5
Overall Performance Averages of the Proposed Hypergraph Models Normalized

with Respect to Those of the Graph Models Using pMeTiS
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