
CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

1

&KDSWHU��

$UFKLWHFWXUH�6\QWKHVLV�3URFHVV

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

2

4.1 Introduction

esearch on software architecture design approaches is still in its progressing phase and several

architecture design approaches have been introduced in the last years [Bass et al. 98],

[Buschmann et al. 99], [Tracz & Coglianese 92], [Shaw 98]. However, a consensus on the appropriate

software architecture design process is not established yet and current software architecture design

approaches may have to cope with several problems.

First of all, planning the architecture design phase is intrinsically difficult due to its conflicting goals

of providing a gross level structure of the system and at the same time directing the subsequent

phases in the project. The first goal requires planning the architecture in later phases of the software

development process when more information is available. The latter goal requires planning it as early

as possible so that the project can be more easily managed.

Second, most software architecture design approaches derive the architectural abstractions in

different ways and from different sources such as artifacts, use-cases, patterns and problem domains.

These sources are basically focused on the client’s-perspective1 rather than on the architectural

solution perspective of the system. The gap between the client perspective and the architectural

design perspective is generally too large and the client may lack to specify the right detail of the

problem, thereby either under-specifying or over-specifying the problem. This on its turn hinders the

identification of the right architectural abstractions since the fundamental transparent abstractions

may be missed or redundant abstractions may be elicited.

Third, generally the adopted sources are also not very useful to provide sufficiently rich semantics of

the architectural components and fall short in providing guidelines for composing the architectural

abstractions. In this case, architectural components are often equivalent to semantically poor

groupings of artifacts and are composed using simple associations.

Finally, although solution domain analysis may be used and be effective in deriving the architectural

abstractions and provide the necessary semantics, it may not suffice if it is not managed well. The

problem is that the domain model may lack the right detail of abstraction to be of practical use for

deriving architectural abstractions.

Current architecture design approaches have to cope with one or more of the above problems. In this

chapter, a novel approach is proposed, which is termed as synthesis-based software architecture design

that aims to provide effective solutions to these problems. Synthesis is a well-known concept in

1 We use the term client to denote any stakeholders who has interest in the application of a software architecture.

R

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

3

traditional engineering disciplines and involves the construction of sub-solutions for distinct loosely

coupled sub-problems and the integration of these sub-solutions into a complete solution. During the

synthesis process design alternatives are searched and selected based on the existing solution domain

knowledge.

In the synthesis-based software architecture design approach, the synthesis concept of traditional

engineering disciplines is applied to the software architecture design process. Hereby, the

requirements are first mapped to technical problems. For each problem the corresponding solution

domain is identified and architectural abstractions are derived from the solution domain knowledge.

The solution domain knowledge provides well-established concepts with rich semantics and as such

form a stable basis for architecture development. The individual sub-solutions are combined in the

overall software architecture.

In this chapter we will demonstrate the approach using a project on the design of an atomic

transaction system architecture for a distributed car dealer information system2.

The remainder of the chapter is organized as follows. In section 4.2, the synthesis concept is described

and a model for software architecture synthesis is derived. In section 4.3, an example project on the

design of a software architecture for atomic transactions for a distributed car dealer information

system will be described. This example project will be used throughout the whole chapter. In section

4.4, the synthesis-based architecture design approach will be presented that will be illustrated for the

example project. Finally, in section 4.5, we will present our discussion and conclusions.

4.2 Synthesis

This section describes the concept of synthesis. Synthesis is a well-known concept in traditional

engineering disciplines and is widely applied to solve design problems [Maher 90]. Software

architecture design can be considered as a problem solving process in which the problem represents

the requirement specification and the solution represents the software architecture design. In this

section we apply the synthesis process to the software architecture design process. In section 4.2.1 we

will explain the concept synthesis as it is described in traditional engineering disciplines. In section

4.2.2 we will apply the concept synthesis to software architecture design and gradually derive the

steps for defining the software architecture synthesis model.

2 This has been carried out as part of the INEDIS project that was a cooperative project between Siemens-Nixdorf
and the TRESE group, Software Engineering, Dept. of Computer Science, University of Twente.

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

4

4.2.1 Synthesis in Traditional Engineering

Synthesis in engineering often means a process in which a problem specification is transformed to a

solution by first decomposing the problem into loosely coupled sub-problems that are independently

solved and integrated into an overall solution.

Synthesis consists generally of multiple steps or cycles. A synthesis cycle corresponds to a transition

(transformation) from one synthesis state to another and can be formally defined as a tuple consisting

of a problem specification state and a design state [Maimon & Braha 96]. The problem specification

state defines the set of problems that still needs to be solved. The design state represents the tentative

design solution that has been lastly synthesized. Initially, the design state is empty and the problem

specification state includes the initial requirements. After each synthesis state transformation, a sub-

problem is solved. In addition a new sub-problem may be added to the problem specification state.

Each transformation process involves an evaluation step whereby it is evaluated whether the design

solutions so far (design state) are consistent with the initial requirements and any additional

requirements identified during the synthesis.

A synthesis-based design process is defined as a finite sequence of synthesis states, resulting in a

terminal state. A synthesis state is terminal in either of two cases: the specification part is satisfiable

by the design part (there is a solution) or neither the design nor the specification can be modified. The

first is a successful design the latter is an unsuccessful one.

The sub-solutions and overall solution has to meet a set of objective metrics, while satisfying a set of

constraints. Constraints may be imposed within and among the sub-solutions. For a suitable synthesis

it is required that the problem is understood well. This means that the problem is well-described and

the quality criteria and constraints are known on beforehand. In practice, however, this is very

difficult to meet and complete analysis is impossible in any but the simplest problems [Coyne et al.

90]. Therefore, synthesis can usually start before the problem is totally understood.

During the synthesis process a designer needs to consider the design space that contains the

knowledge that is used to develop the design solution. For this, synthesis requires the ability to

produce a set of alternative solutions and select an optimal or near optimal solution. The space of

possible solutions, however, may be very large and it is not feasible to examine all possible solutions

[Coyne et al. 90].

In [Maimon & Braha 96] it has been shown that the design synthesis is inherently an NP-Complete

problem. To manage this inherent complexity, synthesis can be performed at different, higher

abstraction levels in the design process. In the design of digital signal processing systems, for

example, the following synthesis approaches with increasing abstraction levels are distinguished:

circuit synthesis, logic synthesis, register-transfer synthesis, and system synthesis [Gajski et al. 92].

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

5

For large problems, the lower-level design synthesis approaches become intractable and time

consuming due to the large number of entities and their relations that need to be considered. In the

example of digital signal processing, circuit synthesis adopting the transistor as the basic abstraction,

is unsuitable for current industrial problems that integrate millions of components. A higher level of

abstraction reduces the number of entities that a designer has to consider which in turn reduces the

complexity of the design of larger systems. In addition, higher level abstractions are closer to a

designer’s way of thinking and as such increases the understandability, which on its turn facilitates to

consider various alternatives more easily. The counterpart is that higher level abstractions consists of

the fixed configuration of lower level abstractions thereby reducing the alternative configuration

possibilities, that is, the set of alternatives is implicitly reduced. This is acceptable, though, since

usually the total space of a synthesis from higher level abstractions is large enough to be of practical

use.

4.2.2 Defining the Software Architecture Synthesis Model

Mapping Client Requirements to Technical Problems

Client requirements may lack to specify the right detail of the problem and either under-specify or

over-specify the problem domain. Therefore, the gap between the requirements and the architectural

design solution is generally too large. To solve this problem we propose to introduce a problem

analysis phase that functions as an intermediary process between the requirements analysis and

architectural design. Within this problem analysis phase, the delivered client requirements are

thoroughly analyzed and mapped to technical problems that describe the problems more accurately.

In this way, the gap between the requirements and the architectural design is largely reduced and,

once the problems are clearly understood and specified independently of the initial requirements, a

solid basis is provided to drive the architecture development.

Figure 1 illustrates the separation of the concept Technical Problem from the concept Requirements. The

rounded rectangles represent the concepts; the directed arrows represent the functions between the

concepts. The left side of the figure before the hollow arrow represents the approach that is adopted

in several architecture design approaches. Hereby, the requirements are basically directly mapped to

the (architectural) solution abstractions. The right side of the figure represents the introduction of the

concept Technical Problem that has been separated from the concept Requirements. Hereby the concept

Requirements is not directly mapped to the concept Solution but first it is analyzed and mapped to the

concept Technical Problem. The concept Technical Problem describes the fundamental aspects that may

not have been present in the original requirements. A clear understanding of the problem is part of

the solution and as such this reduces the distance to the final solution.

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

6

Requirement
Specification

Solution Solution

Requirement
Specification

Technical
Problem

Figure 1. The separation of the concept Technical Problem from the concept Requirements

Deriving Architectural Abstractions from Solution Domain Models

We maintain that architectural abstractions should be best derived from the solution domain

knowledge. The reason for this is threefold:

First, the solution domain knowledge includes well-established concepts that will not change

abruptly. This is because solution domain knowledge is defined by a thorough analysis and research

and is sufficiently stabilized through a consensus of experts in the corresponding community. A basic

requirement for architectural components is that they should be stable and solution domain concepts

provide this stability.

Second, the solution domain concepts are semantically rich, and define the properties, the relations

with other concepts and their behavior. As such solution domain concepts may provide the

architectural components also the required rich semantics.

Third, solution domain concepts are related to each other and structured into taxonomies and

partimonies. Further, the compatibility and composition relations between the various concepts are

also well-defined. Existing architectural design approaches provide weak support for composing the

architectural components as we have described in chapter 3. Solution domain knowledge provides

the necessary information to support the composition of architectural components.

There exist domain analysis approaches that aim to provide solution domain models [Prieto-Diaz &

Arrango 91] [Arrango 94] [Wartik & Prieto-Diaz 92]. We argue that these approaches should be

integrated within the architecture design approaches to derive stable architectures.

Leveraging Solution Domain Models to the Identified Technical Problems

The solution domain analysis should be appropriately managed so that the domain model is

optimally tuned to the architectural design phase. The right level of detail of the solution domain

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

7

model can only be defined if both the client’s requirements and the corresponding solution domain

are considered. On the one hand, the initial client requirements will likely fail to accurately define the

overall-scope and the relevant abstractions because it does not provide a solution perspective of the

problem. On the other hand, the solution domain itself may be very large and include abstractions

that are not relevant for solving the corresponding problem. We maintain that the separated problem

specifications from the client requirements provide a useful basis for leveraging the solution domain

knowledge. This is because it is supposed to describe all the necessary fundamental aspects for

solving the problem.

This requirement is illustrated in Figure 2, which is a refinement of Figure 1. The refinement here

consists of the introduction of the concept Solution Domain Knowledge.

Solution

Requirements

Technical
Problem

Solution Domain
Knowledge

Figure 2. Leveraging solution domain knowledge to the problems

The arrow from the concept Solution Domain Knowledge to the concept Solution represents the previous

requirement of deriving solution abstractions from solution domain knowledge. The arrow from the

concept Technical Problem to the concept Solution Domain Knowledge represents the search and

leveraging of the solution domain knowledge by the identified problems.

Defining Architecture Iteratively and Recursively

Planning the architectural design phase is intrinsically difficult due to the conflicting goals of its

intended use. On the one hand it needs to represent the gross-level structure of the system and for

this it is necessary to have a complete overview of the system including the analysis and design

models in the later phases of the software development process. In addition, it is intended to be used

to manage the project adequately and this requires defining the architecture as early as possible.

We require that architectures should be derived from solution domain knowledge that we proposed

to leverage according to the identified problems as it has been illustrated in Figure 2.

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

8

To solve this dilemma we argue to adopt both an iterative and a recursive architecture design

approach. Iteration means that the same steps of a process are repeated to correct what has already

been done. Recursion means that the same steps of a process are repeated for a lower abstraction

level. For architecture design approach iteration means that the process is repeated to correct the

architectural abstractions because of newly acquired information. Recursion means that the same

process is repeated to define the sub-architectural concepts. The process of iteration and recursion is

visualized in Figure 3.

Solution

Requirements

Technical
Problem

Solution Domain
Knowledge

Sub-Problem

Figure 3. Recursion and Iteration in providing Architectural Design Solution

This figure is a refinement of Figure 2 and introduces the new concept Sub-Problem. The recursion

process is basically defined by the decomposition of the problem into sub-problems whereby the

suitable concepts are searched from the solution domain for each sub-problem individually. The

iteration is represented by the arrow directed from the concept Solution to the concept Problem.

The Software Architecture Synthesis Model

Figure 4 represents a model of architecture design synthesis3. The model consists of two parts:

Solution Definition and Solution Control. Each part consists of concepts and functions among concepts.

The concepts are represented by rounded rectangles, the functions are represented by arrows. The

part Solution Definition represents the identification and definition of solution abstractions. The part

Solution Control represents the quantification, measurement, optimization and refinement of the

selected solution abstractions. In the following we will explain the concepts and functions of both

parts of the model.

3 Note that this model conforms to the CPC model described in chapter 2.

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

9

SOLUTION DEFINITION
Requirement
Specification

Solution Structure
Specification

Solution Domain
Knowledge

Technical
Problem

Solution
Abstraction

Extract

Specify

Discover

Architecture
Description

Compose

SOLUTION CONTROL

Heuristic Rules/Optimization
Techniques

Quality Criteria/
Constraints

(Mathematical)
Model

Sub-Problem

Select Search

Provide

Express

Refine

Formulate

Apply

Figure 4. The Architecture Synthesis Model

Solution Definition

The concept Requirement Specification represents the requirements of the stakeholders who are

interested in the development of a software architecture.

The concept Technical Problem represents the problem specification that is actually to be solved. The

model thus separates the concepts Requirement Specification and Technical Problem.

The function Formulate defines the process for searching and representing the problems that need to

be solved for the architecture development.

The concept Sub-Problem represents a sub-problem of the identified problem.

The function Select represents the process for selecting the corresponding sub-problem from the

problem.

The concept Solution Domain Knowledge represents the solution domain knowledge that is needed for

solving the sub-problem.

The function Search represents the process for searching the solution domain knowledge for a given

problem.

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

10

The concept Solution Abstraction represents the extracted solution from the solution domain

knowledge.

The function Extract represents the process for extracting the solution abstractions from the solution

domain knowledge.

The concept Solution Structure Specification represents the specification of the extracted solution

abstraction.

The function Specify represents the process for specifying the solution abstraction.

The concept Architecture Description represents the architecture description so far.

The function Compose represents the refinement of the overall-architecture description with the

concept Solution Structure Specification.

The function Discover represents the process of discovering new sub-problems when new solution

abstractions are extracted from the solution domain knowledge.

Solution Control

The part Solution Control has conceptual relations with the part Solution Definition through the

functions Provide, Express and Refine.

The function Provide represents the process for providing the quality criteria and constraints that are

imposed on the solution. The concept Quality Criteria/Constraints represents these criteria and

constraints of the (sub-) problem.

The function Express represents a formalization of the solution abstraction for evaluation purposes.

Typical formalizations may be the quantification into mathematical models.

The function Apply represents the process for measurement of the expressed solution abstraction

using the provided quality criteria/constraints.

The concept Heuristic Rules / Optimization Techniques represents the optimization of the formalizations

of the solution abstractions. It can be based on mathematical optimization techniques or heuristic

rules.

The function Refine represents the process of refining the solution abstraction according to the results

of the optimization techniques.

4.3 Example Project: Transaction Software Architecture Design

The Integrated New European Dealer Information System project (INEDIS) has been carried out as a

collaborative project between the TRESE group of the University of Twente and Siemens-Nixdorf, The

Netherlands. The project dealt with the development of a distributed car dealer information system in

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

11

which different car dealers are connected through a network. The system needs to provide automated

support for processes such as workshop processing, order processing, stock management, new and

used car management, and financial accounting. The car dealer system should execute the provided

tasks consistently and effectively. The meaning of consistency depends on any a priori constraints,

which must be guaranteed that they will never be violated. For example, two clients may not reserve

the same car at the same time.

There are two main factors that threaten the consistency of data in a distributed system: concurrency

and failures. In case of concurrency the executions of programs that access the same objects can

interfere. When a failure occurs, one or more application programs may be interrupted in midstream.

Since a program is written under the assumption that its effects are only correct if it would be

executed in its entirety, an interrupted program may lead to inconsistencies as well. To achieve data

consistency distributed systems should include provision for both concurrency and recovery from

failures. The implementation of these concurrency and recovery mechanisms, however, should be

transparent to the application program developers, since they will need only the primitives and don’t

want to be bothered with implementation details. Atomic transactions, or simply transactions, are a

well-known and fundamental abstraction which provide the necessary concurrency control and

recovery mechanisms for the application programs in a transparent way. Transactions relieve

application programmers of the burden of considering the effects of concurrent access to objects or

various kinds of failures during execution. Atomic transactions have proven to be useful for

preserving the consistency in many applications like airline reservation systems, banking systems,

office automation systems, database systems and operating systems.

The car dealer information system also required the use of atomic transactions. The system would be

used in different countries and by different dealers each requiring dedicated transaction protocols.

Therefore, a basic requirement of the system was to identify common patterns of transaction systems

and likewise provide a stable architecture of atomic transactions that could be customized to the

corresponding needs.

Next to the need for adaptability at initialization time the system required also adaptation at run-

time. The system may be constituted of a large number of applications with various characteristics,

operates in heterogeneous environments, and may incorporate different data formats. To achieve

optimal behavior, this requires transactions with dynamic adaptation of transaction behavior,

optimized with respect to the application and environmental conditions, and data formats. The

adaptation policy, therefore, must be determined by the programmers, the operating system or the

data objects. Further, reusability of the software is considered as an important requirement to reduce

development and maintenance costs.

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

12

4.4 Synthesis-based Software Architecture Design

In this section the synthesis-based software architecture design process that implements the process

of the Architecture Synthesis Model of Figure 4 will be described. This approach is illustrated in

Figure 5.

Plan 0: 1→2→3→4→5

Synthesis-Based
Software Architecture
Design

0

Define
Conceptual
Structure

4

Specify
Informal
Requirements

1

Plan 1: 1→2→3

Generalize
Requirements

Identify
Sub-Problems

Prioritize
Sub-Problems

1 2 3 4
Specify
Sub-Problems

3

Define
Alternatives
for each
Concept

Describe
Constraints

2

Plan 4: 1→ 2

Define
Semantics of
Architecture

Plan 5: 1→2

1 Define
Dynamic
Behavior

2

Extract
Solution Domain
Concepts

3Identify and
Prioritize
Knowledge
Sources

2Identify and
Prioritize
Solution Domains

1

Plan 3: 1→ 2→ 3→ 4

Plan 2: 1→2→3→4

?

Define
formals
models

4
Building
Prototype

3Use-Case
and Scenario
Analysis

2

Requirements
Analysis

1 Technical
Problem
Analysis

2 Alternative
Design Space
Analysis

4
Architecture
Specification

5Solution
Domain
Analysis

3

Figure 5. Synthesis-based Software Architecture Design Approach

The figure uses the graphical notation from Hierarchical Task Analysis (HTA) [Diaper 89b] in which

activities are represented in hierarchical order. Each numbered box represents an activity that can be

refined using a plan. Each plan represents a flow diagram describing the causal sequencing of the

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

13

activities. The double-headed arrows represent interaction between two activities. The diamond with

a question mark represents the validation of a step.

The following sections are organized around the basic process of the approach. Section 4.4.1 describes

the Requirements Analysis process, section 4.4.2 the Problem Analysis process, section 4.4.3 the Solution

Domain Analysis process, section 4.4.4 Alternative Space Analysis process and finally section 4.4.5 the

Architecture Specification process.

4.4.1 Requirements Analysis

The architecture design is initiated with the requirements analysis phase in which the basic goal is to

understand the stakeholder requirements. Stakeholders may be managers, software developers,

maintainers, end-users, customers etc. [Prieto-Diaz & Arrango 91]. In the synthesis-based approach

the well-known requirement analysis techniques such as textual requirement specifications, use-cases

[Jacobson et al. 99] and scenarios [Kruchten 95], constructing prototypes and defining finite state

machine modeling are used. Informal requirement specifications serve as a first basis for the

requirements analysis process and is generally defined by interacting with the clients. Use cases

provide a more precise and broader perspective of the requirements by specifying the external

behavior of the system from different user perspectives. Scenarios are instances of use cases and

define the dynamic view and the possible evolution of the system. Prototypes are used to define the

possible user interfaces and may further help to clarify the desired behavior of the system. Finally, for

safety-critical systems rigorous approaches such as state transition diagrams or formal specification

languages may be used.

These techniques have been applied in different approaches and have shown to be useful in

supporting the analysis and understanding of the client requirements. We will not elaborate on them

in this thesis and refer for detailed information to the corresponding publications [Thayer et al. 97]

[Sommerville & Sawyer 97] [Loucopoulos & Karakostas 95].

Example

At the start of the project the initial requirement specification was given by the client

[Ahsmann & Bergmans 95]. We interviewed developers and managers of the project to

extract the basic requirements for the INEDIS system [Tekinerdogan 95a]. We further

analyzed the project literature, which included user’s guide, manuals, design and

implementation documentation and case studies. In addition we experimented with the

existing NEDIS system in a real environment and identified the basic requirements for the

further releases. Thereby, we were accompanied by the developer and maintainers of the

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

14

system. Next to the overall requirements of the INEDIS system we focused on the

requirements that were specific for atomic transactions [Tekinerdogan 95b][Tekinerdogan 96].

From this study we were able to set up the basic requirements that we expressed in use cases.

Figure 6 represents the use case model for transaction processing. It has one actor, Dealer, and

four use cases, namely initiate transaction, start transaction, abort transaction, and commit

transaction. The use case initiate transaction will be performed for describing and preparing a

program to be used as a transaction. The use case start transaction will invoke the operations

to access the transaction objects. Finally, the use cases abort transaction and commit transaction

will describe the abort respectively the commit actions.

initiate transaction

start transaction

commit transaction

abort transaction

Dealer

Figure 6. A use case model for the transaction processing in the INEDIS system

For a more detailed requirements analysis we refer to the project’s requirements analysis

documents [Tekinerdogan 95a][Tekinerdogan 95b][Tekinerdogan 96].

4.4.2 Technical Problem Analysis

The requirements analysis process provides an understanding of the client perspective of the software

system. As it is described in Figure 5, the next step involves the technical problem analysis process in

which client requirements are mapped to technical problems. This is to say that the architecture

design process is to be considered as a problem solving process in which the solution represents an

architecture design. The problem analysis process consists of the following steps:

1. Generalize the Requirements: whereby the requirements are abstracted and generalized.

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

15

2. Identify the Sub-Problems: whereby technical problems are identified from the generalized

requirements.

3. Specify the Sub-Problems: whereby the overall technical problem is decomposed into sub-problems.

4. Prioritize the Sub-Problems: whereby the identified technical problems are prioritized before they

are processed.

Let us explain these processes in more detail now.

Generalize the requirements

Discovering the problems from a requirement specification is not a straightforward task. The reason

for this is that the clients may not be able to accurately describe the initial state and the desired goals

of the system. The client requirements may be specific and provide only specific wordings of a more

general problem. Therefore, to provide the broader view and identify the right problems we abstract

and generalize from the requirement specification and try to solve the problem at that level4. Often,

this abstraction and generalization process allows to define the client’s wishes in entirely different

terms and therefore may suggest and help to discover problems that were not thought of in the initial

requirements.

Identify sub-problems

Once the requirement specification has been put into a more general and broader form, we derive the

technical problem that consists usually of several sub-problems. At this phase, architecture design is

considered as a problem solving process. Problem solving is defined as the operation of a process by

which the transformation from the initial state to the goal is achieved [Newell & Simon 76]. We need

thus first to discover and describe the problem. For this, in the generalized requirement specification

we look for the important aspects that needs to be considered in the software architecture design

[Tekinerdogan & Aksit 99]. These aspects are identified by considering the terms in the generalized

requirements specification, the general knowledge of the software architect and the interaction with

the clients. This process is supported by the results of the requirements analysis phase and utilizes the

provided use-case models, scenarios, prototypes and formal requirements models.

4 In mathematics, solving a concrete problem by first solving a more general problem is termed as the Inventor’s

Paradox [Polya 57] [Lieberherr 96]. The paradox refers to the fact that a general problem has paradoxically a
simpler solution than the concrete problem.

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

16

Specify sub-problems

The identification of a sub-problem goes in parallel with its specification. The major distinction

between the identification and the specification of a problem is that the first activity focuses on the

process for finding the relevant problems, whereas the second activity is concerned with its accurate

formalization. A problem is defined as the distance between the initial state and the goal. Thereby, the

specification of the technical problems consist of describing its name, its initial state and its goal.

Prioritize sub-problems

After the decomposition of the problem into several sub-problems the process for solving each of the

sub-problems can be started. The selection and ordering in which the sub-problems are solved,

though, may have an impact on the final solution. Therefore, it is necessary to prioritize and order the

sub-problems and process the sub-problems according to the priority degrees. The prioritization of

the sub-problems may be defined by the client or the solution domain itself. The latter may be the

case if a sub-problem can only be solved after a solution for another sub-problem has been defined.

Example

We generalized the INEDIS requirement specification [Ahsmann & Bergmans 95] and

mapped these to the technical problems. For example, we generalized the requirements for

the various scheduling techniques. In the original requirement specification and the interview

with the stakeholders we identified that only two concurrency control approaches were used,

namely optimistic and aggressive locking. Attempts were made to adapt between these two

concurrency control mechanisms. After our discussion with the stakeholders [Tekinerdogan

95b] it followed that the system needed also other types of concurrency control protocols and

the run-time adaptation had to be defined for these as well.

• P0

Name: Provide adaptable architecture of atomic transactions

Initial State: This is the overall problem. Initially no transaction architecture design was

available.

Goal: Identify the fundamental abstractions of transactions and design the atomic transaction

software architecture that can be reused for different dealers and includes dynamic

adaptation mechanisms for the different transaction protocols.

In parallel with our generalization of the requirements we were able to define the different

sub-problems, which are listed in the following:

• P1

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

17

Name: Provide transparent concurrency control.

Initial State: Limited concurrency control techniques.

Goal: Determine the set of concurrency control techniques that are required and provide this

in a reusable form.

• P2

Name: Provide transparent recovery techniques.

Initial State: Limited recovery techniques based on simple data types.

Goal: Determine the set of recovery techniques that can be used for various kinds of data

types and provide this in a reusable form.

• P3

Name: Provide transparent transaction management techniques.

Initial State: Transaction management is primitive and is based on flat transactions only. The

Start, Commit and Abort protocols are fixed.

Goal: Provide various transaction management techniques that can be applied for advanced

transactions such as long transactions and nested transactions. Provide the various start,

commit and abort protocols in a reusable format.

• P4

Name: Provide adaptable transaction protocols based on transaction, system and data criteria.

Initial State: Selection of transaction protocols such as transaction management, concurrency

control and recovery protocol is fixed.

Goal: Provide the means to adapt the transaction protocols both on compile-time and run-

time. Adaptation mechanism should be determined by programmers, operating system

or the data object characteristics.

After interactive discussions with the stakeholders the above sub-problems have been

prioritized in the given order, thus, P1, P2, P3 and P4. Figure 7 represents the problem structure

diagram. In the problem structure diagram the nodes represent the technical problems and

the lines the nesting relations. The nodes are numbered according to their nesting level. The

problem structure diagram helps to sharpen and improve the understanding of the problem

and can be used to reach a consensus with the client on the addressed problems. Note that the

problem structure diagram in Figure 7 includes also the sub-problems of the problems that

we described above. These sub-problems have been only identified during the refinement

process after the solution domain analysis process. We will explain these in later sections.

From this it follows that the problem structure diagram is not static but probably changes

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

18

during the architecture design process because the problem may not be analyzed from a

complete isolation from the solution domain [Cross 89].

P0. Adaptable Atomic
Transaction Architecture

P1. Transparent
Concurrency Control

P4. Adaptable
Transaction
Protocols

P3. Transparent
Transaction
Management

P2. Transparent
Recovery

P2.1 Recovery from
Transaction Failures

P2.1 Recovery from
System Failures

P3.1 Start Protocol

P3.2 Commit/Abort
Protocol

P3.3 Nested
Transactions

P1.2 Performance Failure
Detection

P1.1 Syntactic
Synchronization

Figure 7. Problem structure diagram for the example project

4.4.3 Solution Domain Analysis

The Solution Domain Analysis process aims to provide a solution domain model that will be utilized

to extract the architecture design solution. It consists of the following activities:

1. Identify and prioritize the solution domains for each sub-problem

2. Identify and prioritize knowledge sources for each solution domain.

3. Extract solution domain concepts from solution domain knowledge.

4. Structure the solution domain concepts.

5. Refine the solution domain concepts.

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

19

In the following we will explain these sub-processes. In Figure 5, the first four activities are

represented from plan 3.1 to plan 3.4. The refinement of the solution domain concepts is represented

by a directed arrow from plan 0.3 to plan 0.1.

To understand the relations between these activities Figure 8 represents a conceptual model for

illustrating the relations between the concepts Technical Problem, Sub-Problem, Solution Domain, and

Solution Domain Concept.

Solution
Domain

Knowledge
Source

Technical
Problem

includes

Solution Domain
Concept

Sub-Problem

includes

solution
provided by derive

solution
provided by

solves

solves*

1..*

1..*1..*

1..*

Figure 8. The relations from Problem to Solution Domain Concept

Hereby, the rounded rectangles represent the concepts and the directed arrows represent the

associations between these concepts. From the figure it follows that for each Technical Problem a

solution is provided by one or more Solution Domains. The concept Problem includes zero or more Sub-

Problems. Each Solution Domain includes 1 or more Knowledge Sources from which 1 or more Solution

Domain Concepts may be derived that solves the concepts Problem and Sub-Problem.

Identify and Prioritize the Solution Domains

For the overall problem and each sub-problem we search for the solution domains that provide the

solution abstractions to solve the technical problem. The solution domains for the overall problem are

more general than the solution domains for the sub-problems. In addition, each sub-problem may be

recursively structured into sub-problems requiring more concrete solution domains on their turn.

An obstacle in the search for solution domains may be the possibly large space of solution domains

leading to a time-consuming search process. To support this process, we look for categorizations of

the solution domain knowledge into smaller sub-domains. There are different categorization

possibilities [Glass & Vessey 95]. In library science, for example, the categories are represented by

facets that are groupings of related terms that have been derived from a sample of selected titles

[Rubin 98]. In [Aksit 00], the solution domain knowledge is categorized into application, mathematical

and computer science domain knowledge. The application domain knowledge refers to the solution

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

20

domain knowledge that defines the nature of the application, such as reservation applications,

banking applications, control systems etc. Mathematical solution domain knowledge refers to

mathematical knowledge such as logic, quantification and calculation techniques, optimization

techniques, etc. Computer science domain refers to knowledge on the computer science solution

abstractions, such as programming languages, operating systems, databases, analysis and design

methods etc. This type of knowledge has been recently compiled in the so-called Software

Engineering Body of Knowledge (SWEBOK) [Bourque et al. 99]. Notice that our approach does not

favor a particular categorization of the solution domain knowledge and likewise other classifications

besides of the above two approaches may be equally used.

If the solution domains have been adequately organized one may still encounter several problems

and the solution domain analysis may not always warrant a feasible solution domain model. This is

especially the case if the solution domains are not existing or the concepts in the solution domain are

not fully explored yet and/or compiled in a reusable format. Figure 9 shows the flow diagram for the

feasibility study on solution domain analysis. Hereby, the diamonds represent decisions, the

rectangles the processes and the rounded rectangle the termination of the flow process.

Solution Domain
Existing?

Solution Domain
(Sufficiently)
Specified?

Reuse Solution
Domain Model

Specify Solution
Domain Model

Initiate Research

Terminate
Feasibility Analysis

Yes

Yes

No

No

Figure 9. Flow diagram for feasibility study on solution domain analysis

If the solution domain knowledge is not existing, one can either terminate the feasibility analysis

process or initiate a scientific research to explore and formalize the concepts of the required solution

domain. The first case leads to the conclusion that the problem is actually not (completely) solvable

due to lack of knowledge. The latter case is the more long-term and difficult option and falls outside

the project scope.

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

21

If a suitable solution domain is existing and sufficiently specified, it can be (re)used to extract the

necessary knowledge and apply this for the architecture development. It may also happen that the

solution domain concepts are well-known but not formalized [Shaw & Garlan 96]. In that case it is

necessary to specify the solution domain.

Identify and Prioritize Knowledge Sources

Each identified solution domain may cover a wide range of solution domain knowledge sources.

These knowledge sources may not all be suitable and vary in quality. For distinguishing and

validating the solution domain knowledge sources we basically consider the quality factors of

objectivity and relevancy. The objectivity quality factor refers to the solution domain knowledge

sources itself, and defines the general acceptance of the knowledge source. Solution domain

knowledge that is based on a consensus on a community of experts has a higher objectivity degree

than solution domain knowledge that is just under development. The relevancy factor refers to the

relevancy of the solution domain knowledge for solving the identified technical problem.

The relevancy of the solution domain knowledge is different from the objectivity quality. A solution

domain knowledge entity may have a high degree of objective quality because it is very precisely

defined and supported by a community of experts, though, it may not be relevant for solving the

identified problem because it addresses different concerns. To be suitable for solving a problem it is

required that the solution domain knowledge is both objective and relevant. Therefore, the identified

solution domain knowledge is prioritized according to their objectivity and relevancy factors. This

can be expressed in the empirical formula [Aksit 00]:

priority(s) = (objectivity(s), (relevance(s))

Hereby priority, objectivity and relevance represent functions that define the corresponding quality

factors of the argument s, that stands for solution domain knowledge source. For solving the problem,

first the solution domain knowledge with the higher priorities is utilized. The measure of the

objectivity degree can be determined from general knowledge and experiences. The measure for the

relevancy factor can be determined by considering whether the identified solution domain source

matches the goal of the problem. Note, however, that this formula should not be interpreted too

strictly and rather be considered as an intuitive and practical aid for prioritizing the identified

solution domain knowledge sources rather.

Example

Let us now consider the identification and the prioritization of the solution domains for the

given project example. For the overall problem a solution is provided by the solution domain

Atomic Transactions. Table 1 provides the solution domains for every sub-problem.

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

22

SUB-PROBLEM SOLUTION DOMAIN

P1 Transaction Management

P2 Concurrency Control

P3 Recovery

P4 Adaptability

Table 1. The solution domains for the sub-problems

The prioritization of these solution domains was defined as in the above order from the top to

the bottom.

For the overall problem and the corresponding solution domain of Atomic Transactions, we

could find sufficient knowledge sources. Our identified solution domain knowledge sources

consisted of managers, system developers, maintainers, documentation, literature on

transactions and the existing NEDIS system. However, among these different knowledge

sources we assigned higher priority values to the literature on atomic transaction systems.

Table 2 provides the selected set of knowledge sources for the overall solution domain.

ID KNOWLEDGE SOURCE FORM

KS1
Concurrency Control & Recovery in Database
Systems [Bernstein et al. 87] Textbook

KS2 Atomic Transactions [Lynch et al. 94] Textbook

KS3 An Introduction to Database Systems [Date 90] Textbook

KS4
Database Transaction Models for Advanced
Applications [Elmagarmid 92] Textbook

KS5
The design and implementation of a distributed
transaction system based on atomic data types
[Wu et al. 95]

Journal. paper

KS6 Transaction processing: concepts and techniques
[Gray & Reuter 93] Textbook

KS7 Principles of Transaction Processing
[Bernstein & Newcomer 97] Textbook

KS8 Transactions and Consistency in Distributed
Database Systems [Traiger et al. 82] Journal paper

Table 2. A selected set of the identified knowledge sources for the overall solution domain

The table consists of three columns that are labeled as ID, Knowledge Source and Form that

respectively represent the unique identifications of the knowledge sources, the title of the

knowledge source and the representation format of the knowledge source. The table includes

the knowledge sources that describe atomic transactions in a general way. Knowledge

sources that deal with a specific aspect of transaction systems, for example such as deadlock

detection mechanisms, have been temporarily omitted and are identified when the

corresponding sub-problems are considered.

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

23

In the same manner we looked for knowledge sources for the individual sub-problems and

we were able to identify many knowledge sources for the solution domains Transaction

Management, Concurrency Control and Recovery. The solution domain Adaptability was more

difficult to grasp than the other ones. For this we did a thorough analysis on the notion of

adaptability and studied various possibly related publications such as control theory [Roxin

97][Foerster 79][Umplebey 90]. In addition we organized a workshop on Adaptability in

Object-Oriented Software Development [Tekinerdogan & Aksit 97] [Aksit et al. 96].

As an example, Table 3 shows a selected set of the identified knowledge sources for the

solution domain Concurrency Control.

ID KNOWLEDGE SOURCE FORM

KS1
Concurrency Control in Advanced Database
Applications [Barghouti & Kaiser 91] Journal paper

KS2
Concurrency Control in Distributed Database
Systems [Cellary et al. 89] Textbook

KS3
The theory of Database Concurrency Control
[Papadimitriou 86]. Textbook

KS4
Concurrency Control & Recovery in Database
Systems [Bernstein et al. 87] Textbook

KS5
Concurrency Control and Reliability in Distributed
Systems [Bhargava 87] Journal paper

KS6
Concurrency Control in Distributed Database
Systems [Bernstein & Goodman 83] Textbook

Table 3. A selected set of the identified knowledge sources for

the solution domain CONCURRENCY CONTROl

Note that the knowledge source KS4 has also been utilized for the overall solution domain.

The reason for this is that this knowledge source is both sufficiently abstract to be suitable for

the overall solution domain and provides detailed information on the solution domain

Concurrency Control.

Extract Solution Domain Concepts from Solution Domain Knowledge

Once the solution domains have been identified and prioritized, the knowledge acquisition from the

solution domain sources can be initiated. The solution domain knowledge may include a lot of

knowledge that is covered by books, research papers, case studies, reference manuals, existing

prototypes/systems etc. Due to the large size of the solution domain knowledge, the knowledge

acquisition process can be a labor-intensive activity and as such a systematic approach for knowledge

acquisition is required [Partridge & Hussain 95], [Gonzales & Dankel 93], [Wielinga et al. 92].

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

24

In our approach we basically distinguish between the knowledge elicitation and concept formation

process. Knowledge elicitation focuses on extracting the knowledge and verifying the correctness and

consistency of the extracted data. Hereby, the irrelevant data is disregarded and the relevant data is

provided as input for the concept formation process. Knowledge elicitation techniques have been

described in several publications and its role in the knowledge acquisition process is reasonably well-

understood [Wielinga et al. 92], [Meyer & Booker 91], [Diaper 89a], [Firlej & Hellens 91].

The concept formation process utilizes and abstracts from the knowledge to form concepts5. In the

literature, several concept formation techniques have been identified6 [Parsons & Wand 97][Reich &

Fenves 91][Lakoff 87]. One of the basic abstraction techniques in forming concepts is by identifying

the variations and commonalities of extracted information from the knowledge sources [Stillings et al.

95][Howard 87]. Usually a concept is defined as a representation that describes the common

properties of a set of instances and is identified through its name.

Example

We analyzed and studied the identified solution domain knowledge according to the defined

priorities and extracted the fundamental concepts. After considering the commonalities and

variabilities of the extracted information from the solution domains we could extract the

following solution domain concepts:

ATOMIC TRANSACTION SYSTEMS

An atomic transaction system is a well-known and fundamental abstraction which provide

the necessary concurrency control and recovery mechanisms for the application programs.

Transactions relieve application programmers of the burden of considering the effects of

concurrent access to objects or various kinds of failures during execution. Transactions

simplify the treatment of failures and concurrency and may thereby provide the application

programmer location transparency, replication transparency, concurrency transparency and

failure transparency. Informally atomic transactions are characterized by two properties:

serializability and recoverability [Bernstein et al. 87]. Serializability means that the concurrent

execution of a group of transactions is equivalent to some serial execution of the same set of

5 Recall from chapter 3 that there are basically three views of concepts, including the classical view, the prototype

view and the exemplar view. Concept forming through abstraction from instances is basically applied in the
classical view and the prototype view [Lakoff 87].

6 This process of concept abstraction is usually considered as a psychological activity that is often associated with

the term ’experience’ [Stillings et al. 95]. Experts, i.e. persons with lots of experience, own a larger set of concepts
and are better in forming concepts than persons who lack this experience.

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

25

transactions. Recoverability means that each execution appears to be all or nothing; either it

executes successfully to completion or it has no effect on data shared with other transactions.

TRANSACTION

The concept Transaction represents a transaction block as defined by the programmer.

TRANSACTION MANAGEMENT

The concept TransactionManager provides mechanisms for initiating, starting and terminating

the transaction. It keeps a list of the objects that are affected by the transaction. If a transaction

reaches its final state successfully, then TransactionManager sends a commit message to the

corresponding objects to terminate the transaction. Otherwise an abort message is sent to all

the participating objects to undo the effects of the transaction. The TransactionManager

concept includes knowledge about a variety of commit and abort protocols.

POLICY MANAGEMENT

The concept PolicyManager determines the mechanisms for adapting transaction protocols. In

most publications, the PolicyManager is included in the TransactionManager. We considered

defining transaction policies as a different concern and therefore defined it as a separate

concept.

SCHEDULER

The concept Scheduler is responsible for the concurrency control mechanism. It provides the

concurrency control by restricting the order in which the operations are processed. Incoming

operations may be accepted, rejected or put in a delay queue. Concurrency control may be

based on syntactic ordering of the operations (e.g. read, write) or it may use semantic

information of the transaction, such as information on the accessed data types. Traditional

concurrency control techniques are locking, timestamp ordering and optimistic scheduling.

RECOVERY MANAGER

The concept Recovery Manager is responsible for the recovery in case of transaction aborts,

system failures and/or media failures. Failures may have an effect on data objects and on

transactions that read the data objects. Recovery of the data objects needs caching and

undo/redo mechanisms. Recovery of the effected transactions requires scheduling for

recovery so that failures are prevented.

DATA MANAGER

The concept DataManager controls the access to its object and keeps it consistent by applying

concurrency control and recovery mechanisms. Further it may be responsible for the version

management and the replication management of the data objects.

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

26

DATA OBJECT

The concept Data Object represents a data object that needs to be accessed in a consistent way.

This means that the object must fulfill the consistency constraints set by the application.

Structure the Solution Domain Concepts

The identified solution domain concepts are structured into taxonomies and partimonies using

specialization- and aggregation relations respectively. In addition, also other structural association

relations are used. Like the concepts themselves the structural relations between the concepts are also

derived from the solution domains.

For the structuring and representation of concepts so-called concept graphs are used. A concept graph is

a graph which nodes are consisting of concepts and the edges between the nodes represent conceptual

relations. The notation of concept graphs is given in the following figure:

operation1()
operation2()
...

attribute1()
attribute2()
...

<concept>
ConceptName

Association

Aggregation

Specialization

Figure 10. Notation for Concept Graphs

The notation for a concept is a stereotype of the class notation in the Unified Modeling Language

[Booch et al. 99]. A stereotype represents a subclass of a modeling element with the same form but

with a different intent. The stereotype for a concept Figure 10 is identified by the keyword

<concept>7.

Example

Figure 11 shows the structuring of the solution domain concepts in the top-level concept

graph of transaction systems. The concept Transaction Manager has an association relation

manages with the concept Transaction Application. This means that Transaction Manager is

7 Note that a class may not be similar to a concept. Although both classes and concepts are generally formed

through an abstraction process this does not imply that every abstraction is a concept. A concept is a well-defined
and stable abstraction in a given domain.

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

27

responsible for the atomic execution of TransactionApplication. The association relation

manages between concept DataManager and Atomic Object defines the consistency

maintenance.

For keeping the Atomic Object consistent the Datamanager utilizes and coordinates the

concepts Scheduler and Recovery Manager by means of the association relation coordinates. The

concept PolicyManager coordinates the activities of the concepts Transaction Manager and Data

Manager and defines the adaptation policy. Finally, the association relation accesses between

Transaction Application and Atomic Object defines a read/update relation between these two.

<concept>
TransactionApplication

<concept>
TransactionManager

<concept>
PolicyManager

<concept>
DataManager

<concept>
RecoveryManager

<concept>
Scheduler

<concept>
AtomicObject

manages manages

coordinates

coordinates

accesses

Figure 11. The top-level concept graph of an atomic transaction system

Refinement of Solution Domain Concepts

After identifying the top-level conceptual architecture we focus on each sub-problem and follow the

same process. Recall that in Figure 5, this refinement process is represented by the arrow directed

from plan 0.3 to plan 0.1. The refinement may be necessary if the architectural concepts have a

complex structure themselves and this structure is of importance for the eventual system.

The ordering of the refinement process is determined by the ordering of the problems with respect to

their previously determined priorities. Architectural concepts that represent problems with higher

priorities are handled first. In the following we will refine the architectural concepts according to this

ordering. The refinement requires executing the plans 0.1 to 0.3 for each selected concept. However,

due to space limitations we will only describe these plans globally.

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

28

Example

In the following we will shortly describe the refinement for each concept of the atomic

transaction architecture.

Refining the TransactionManager concept

To refine the TransactionManager concept we looked for the knowledge sources that

specifically dealt with transaction management or included detailed information about this.

We identified several publications for this purpose [Elmagarmid 92][Bernstein & Newcomer

97],[Moss 85][Jajodia & Kerschberg 97].

In parallel with the solution domain analysis process we tried to refine problem P3 for

transparent transaction management, as it has been described in the problem structure

diagram in Figure 7. This resulted in the definition of the sub-problems P3.1 Start Protocol,

describing the need for defining a transaction start protocol, P3.2 Commit/Abort Protocol,

describing the need for a commit/abort protocol and P3.3 Nested Transactions, describing the

need for nested transactions. The specifications of these sub-problems were again defined in

close interaction with the client. After comparison of the concepts in these knowledge sources

we could extract the commonalities and derive the architecture for the concept

TransactionManager as it is given in Figure 12.

<concept>
Transaction Parent

Authority

<concept>
Nested Transaction

Management

<concept>
Transaction Management

<concept>
Flat Transaction

Management

<concept>
Initiation Protocol

<concept>
Commit Protocol

<concept>
Child Management

applies <concept>
Abort Protocol

Figure 12. Conceptual Architecture of TransactionManager

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

29

The concept Transaction Manager applies the concepts Initiation Protocol, Abort Protocol and

Commit Protocol for starting and terminating a transaction. The Initiation Protocol represents

the starting of the transaction and prepares the program to be executed. The Abort Protocol

and Commit Protocol concepts refer to the protocols that terminate the transaction. The Abort

Protocol will be executed if the transaction has failed and its effects on the data objects and the

other transactions need to be restored. The Commit Protocol will be executed if the transaction

protocol has succeeded and the results need to be made persistent.

Transactions may consist of other transactions as well. The composition of sub-transactions

into one transaction is called a nested transaction [Moss 85]. Hereby the transactions are

hierarchically ordered whereby a parent transaction includes several other sub-transactions.

The advantages of nested transactions over flat transactions is that they provide internal

parallelism of the sub-transactions and finer control over failures by limiting the effects of the

failure to a sub-transaction. This is especially important for long and complex transactions

that have, for example, higher failure risks. In Figure 12, the concept Transaction Parent

Authority refers to the authority of the parent on the sub-transactions with respect to the

commit protocols. In the literature, basically a distinction is made between closed nested

transactions and open nested transactions [Elmagarmid 92]. In closed nested transactions the sub-

transactions are not allowed to commit before the parent transaction commits, whereas in

open nested transactions the sub-transactions can commit before the parent commits. The

concept Child Management refers to the composition strategy of the sub-transactions into a one

complete transactions. Usually this is done at compile time, but several approaches have

illustrated the practical use of dynamic composition and decomposition of sub-transactions

[Pu et al. 88]

Refining the DataManager concept

Figure 13 shows the architecture for the concept DataManager. The basic knowledge sources

that we adopted to identify the common abstractions of data management techniques are

derived from several publications [Weihl 90][Wu et al. 95][Guerraoui 94].

The concept Datamanager coordinates the concepts Scheduler and RecoveryManager, which are

respectively responsible for the scheduling of the incoming concurrent operations and the

recovery in case of failures. In addition the concept DataManager uses the concepts

VersionManager and ReplicationManager for respectively managing multiple versions of the

data item and the replication of it at different locations. The version management and the

replication management were not addressed as separate problems in the problem analysis

phase. After interaction with the client it was decided to omit these two issues and only

consider the concurrency control and recovery in the data management. If these were

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

30

addressed as important problems then we would update the problem structure diagram and

attempt to provide solutions for these problems in the later phases of the approach.

<concept>
Scheduler

<concept>
DataManager

<concept>
RecoveryManager

<concept>
VersionManager

uses

<concept>
ReplicationManager

coordinates

Figure 13. Conceptual Architecture of DataManager

Refining the Scheduler concept

Figure 14 represents the architecture of the concept Scheduler. The selected knowledge sources

that we identified to extract this structure have been listed in Table 3 in the sub-section on

identifying and prioritizing knowledge sources. In parallel with the solution domain analysis

we refined the problem structure diagram for the concept Scheduler and added the sub-

problems P1.1 Syntactic Synchronization and P1.2 Performance Failure Detection. These problems

correspond to the solution domain concepts in the conceptual architecture of Scheduler that

consists of three sub-concepts: Synchronization Scheme, Synchronization Strategy and

Performance Failure Detector.

<concept>
Synchronization Scheme

<concept>
Scheduler

<concept>
Synchronization Strategy

<concept>
Performance Failure Detector

adopts

Figure 14. Conceptual Architecture of Scheduler

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

31

The concept Synchronization Scheme defines the synchronization approach by accepting,

rejecting or delaying the incoming operations. It addresses the problem P1.1 Syntactic

Synchronization in the problem structure diagram of Figure 7. The syntactic synchronization

may be basically through locking, timestamp-ordering and optimistic concurrency control

schemes. The concept Synchronization Strategy also addresses the problem P1.1 Syntactic

Synchronization and refers to the adopted strategy in the applied concurrency control

algorithm. Basically a distinction is made between conservative and aggressive schedulers. A

conservative scheduler tends to delay operations whereas an aggressive scheduler avoids

these delays and aborts the operation sooner. The concept Performance Failure Detector

addresses the problem P1.2 Performance Failure Detection and concerns the detection of

performance failures such as deadlocks that are side effects of the used concurrency control

algorithms.

Refining the Recovery Manager Concept

The concept RecoveyManager is related to the problem P2. Transparent Recovery that is depicted

in the problem structure diagram in Figure 7. It has been derived from the publications on

recovery in transaction systems [Bernstein et al. 87][Bhargava et al. 86][Hadzilacos

88][Haerder & Reuter 83]. In parallel with refining the concept RecoveyManager we refined

problem P2 and defined the sub-problems P2.1 Recovery from Transaction Failures and P2.2

Recovery from System Failures. The architecture for the concept RecoveryManager is given in

Figure 15.

<concept>
RecoveryManager

<concept>
LogManager

<concept>
Restarting

<concept>
Checkpointing

optimized
by

<concept>
Failure Atomicity

Synchronizer

inspects

Figure 15. Conceptual Architecture of RecoveryManager

The concept RecoveryManager consists of four sub-concepts Failure Atomicity Synchronizer,

Restarting, LogManager and Checkpointing. The effects of a transaction can be both on the

accessed data objects and on other transactions that access the same data object. To undo the

effects of failures on data objects the sub-concept LogManager is used for logging the data

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

32

object. The sub-concept Failure Atomicity Synchronizer order transaction operations to provide

the all-or-nothing property. The sub-concept Restarting is responsible for recovering from

system failures and initializes the transaction to its last recoverable state by inspecting the

logs of the LogManager. Thereby it uses algorithms for undoing the actions of aborted and

active transactions and redoing the effects of transactions that have been committed before

but not made persistent yet. The sub-concept Checkpointing represents the optimization of the

restart process by making a snapshot or checkpoint of the basic events in the system that may

be used by the protocols of the concept Restarting.

Refining the Policy Manager Concept

The concept PolicyManager is related to the technical problem P4. Provide Adaptable Transaction

Protocols. The identified knowledge sources for the concept PolicyManager have been derived

from several publications on control systems [Dorf & Bishop 98][Shinners 98] and

performance modeling [Kumar 96][Atkins & Coady 92][Highleyman 89][Agrawal 87][Carey

84]. The PolicyManager evaluates a number of performance metrics and selects the preferred

transaction protocols with respect to these parameters. Examples of performance metrics are

the following:

1. Transaction throughput rate, which is the number of transactions completed per second.

2. Response time, which is the measure of the time difference between a transaction initiation

and a successful termination of the transaction.

3. Blocking ratio, which is the average number that a transaction has to block per commit.

4. Restart ratio, which is the average number that a transaction has to restart per commit.

The conceptual architecture of PolicyManager is given in Figure 16. It consists of the sub-

concepts Sensor, Comparator, Decider and Actuator.

<concept>
PolicyManager

<concept>
Sensor

<concept>
Comparator

<concept>
Decider

<concept>
Actuator

<concept>
Controlled System

provide
sensor info

provide
error

provide
decision

sensed by adapt

Figure 16. Conceptual Architecture of PolicyManager

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

33

The concept Sensor keeps track of the changes in the system state and the values of the

performance parameters and provides this information to the sub-concept Comparator that

compares this information according to the initialized criteria and goals that need to be met.

For example, Comparator may have defined different threshold values for the throughput

parameter and compares this with the perceived values of the throughput parameter and

inform the sub-concept Decider about the difference. Decider will then select an adequate

transaction protocol and inform the sub-concept Actuator about this decision. Actuator will

actually adapt the system with the required transaction protocols. Note that this architecture

may be implemented in various ways such as a very adaptation algorithm or an expert-

system based selection.

4.4.4 Alternative Space Analysis

We define the alternative space as the set of possible design solutions that can be derived from a given

conceptual software architecture. The Alternative Design Space analysis aims to depict this space and

consists of the sub-processes Define the Alternatives for each Concept and Describe the Constraints. Let us

now explain these sub-processes in more detail.

Define the Alternatives for each Concept

In the synthesis-based design approach the various architecture design alternatives are largely dealt

with by deriving architectural abstractions from well-established concepts in the solution domain that

have been leveraged to the identified technical problems. Each architectural concept is an abstraction

from a set of instantiations and during the analysis and design phases the architecture is realized by

selecting particular instances of the architectural concepts. An instance of a concept is considered as

an alternative of that concept. The total set of alternatives per concept may be too large and/or not

relevant for solving the identified problems. Therefore, to define the boundaries of the architecture it

is necessary to identify the relevant alternatives and omit the irrelevant ones.

Let us now consider the process of alternative selection. The alternatives of a given concept may be

explicitly identified and published [Tekinerdogan 94]. In that case, selecting alternatives for a concept

is rather straightforward and depends only on the solution domain analysis process. If the concepts

have complex structures consisting of sub-concepts then an alternative is defined as a composition of

instances of separate sub-concepts. The set of alternatives may be too large to provide a name for each

of them individually. Nevertheless, we need to depict the total set of alternatives so that every one of

them can be derived if necessary. We do this by identifying the alternatives of each sub-concept first

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

34

and then considering the various compositions of these alternatives to provide the higher-level

alternatives.

Example

Let us now consider the alternatives for the concepts in the top-level architecture. We depict

the alternative space by providing a table in which the column headers represent the sub-

concepts and each table entry represents an instance of the sub-concept in the column header.

For example, Table 4 represents the alternative space for the concept Scheduler. It has 4

columns, the first one represents the numbering of alternatives and the second to the fourth

columns represents the sub-concepts of the concept Scheduler.

A.
SYNCHRONIZATION

SCHEME

B.
SYNCHRONIZATION

STRATEGY

C.
PERFORMANCE FAILURE

DETECTOR

1. Two Phase Locking Aggressive Deadlock Detector
2. Timestamp Ordering Conservative Infinite Blocking Detector
3. Optimistic Infinite Restart Detector
4. Serial Cyclic Restart Detector

Table 4. Alternatives of the sub-concepts of Scheduler

The sub-concept Synchronization Decision has four alternatives, namely, Two-phase locking,

Timestamp Ordering, Optimistic and Serial. The sub-concept Synchronization Strategy has the

alternatives Aggressive or Conservative. The alternatives of the sub-concept Performance Failure

Detector detect performance failures that may consist of deadlock, permanent blocking, cyclic

restarting and infinite restarting. Deadlock is defined as a state where two transactions are

mutually waiting for each other to release data objects necessary for their completion.

Permanent blocking occurs when a transaction waits indefinitely for a data object granting

because of a steady stream of other transactions whose data access requests are always

granted before. Cyclic restarting occurs when two or more transactions continually cause

mutual abortion of each other. Infinite restarting occurs when a transaction is infinitely

aborted because of a steady stream of other transactions whose operations are always granted

before.

An alternative of the concept Scheduler is a composition of selections of the alternatives of the

sub-concepts. For instance, an alternative that may be derived from Table 4 is the tuple (Two

Phase Locking, Conservative, Deadlock Detector) which represents a scheduler that uses

aggressive two phase locking protocol whereby a deadlock detection mechanism is used to

remove the deadlocks that may occur.

Table 5 represents the alternative space for the concept RecoveryManager.

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

35

A.
LOGMANAGER

B.
FAILURE ATOMICITY

SYNCHRONIZER

C.
RESTARTING

D.
CHECKPOINTING

1. Operation Logging Recoverable Undo / Redo Commit-Consistent
2. Deferred-Update Cascadeless No-Undo / Redo Cache-Consistent
3. Update-In-Place Strict Undo / No-Redo Fuzzy

No-undo / No-redo

Table 5. Alternatives of the sub-concepts of RecoveryManager

The sub-concept LogManager consists of three alternatives of logging techniques. Operation

Logging the transaction’s operations that access a data object are logged. In case of aborts

other operations are executed to undo the effects of the operations that were logged. Another

logging technique is to make a copy of the state of the object, which is called image logging.

Hereby, either the copy may be accessed or the original. The former is called Deferred-Update

Logging because updates to the original data objects are deferred until commit time. The latter

is called Update-In-Place logging whereby the copy of the data object is installed on abort and

originals are left on commit. The sub-concept Failure Atomicity Synchronizer orders operation

in three possible ways and provides either recoverable, cascadeless aborts or strict executions.

Restarting can be performed as a combination of undo and redo protocols and as such there

are four alternatives here. Finally, the sub-concept Checkpointing consists of the three

alternatives Commit-Consistent, Cache-Consistent and Fuzzy checkpointing mechanisms.

An alternative of the concept RecoveryManager is the tuple (Operation Logging, Strict, Undo-

Redo, Commit-consistent), that represents a RecoveryManager which applies Operation Logging,

Strict executions, adopts Undo-Redo algorithm in case of restarts and a Commit-Consistent

checkpointing mechanism for optimizing the restart procedure.

Describe Constraints between Alternatives

An architecture consists of a set of concepts that are combined in a structure. An instantiation of an

architecture is a composition of instantiations of concepts [Aksit et al. 99][Aksit et al. 98]. The

instantiations of these various concepts may be combined in many different ways and likewise this

may lead to a combinatorial explosion of possible solutions. Hereby, it is generally impossible to find

an optimal solution under arbitrary constraints for an arbitrary set of concepts.

To manage the architecture design process and define the boundaries of the architecture it is

important to adequately leverage the alternative space. Leveraging the alternative space means the

reduction of the total alternative space to the relevant alternative space. A reduction in the space is

defined by the solution domain itself that defines the constraints and as such the possible combination

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

36

of alternatives. The possible alternative space can be further reduced by considering only the

combinations of the instantiations that are relevant from the client’s perspective and the problem

perspective.

Constraints may be defined for the sub-concepts within a concept as well as among higher-level

concepts. We describe first the constraints among the sub-concepts within a concept and later among

the concepts. Binary constraints are the constraints among two concepts. Constraints may be also

defined for more than two concepts together. We use the Object Constraint Language (OCL) [Warmer &

Kleppe 99] that is part of the UML to express the constraints over the various concepts.

Constraint identification is not only useful for reducing the alternative space but it may also help in

defining the right architectural decomposition. The existence of many constraints between the

architectural components provides a strong coupling and as such it may refer to a wrong

decomposition. This may result in a reconsideration of the identified architectural structure of each

concept.

Example

From the solution domain we could identify several constraints that restrict the alternative

space of the architecture. In the following we will describe examples of the constraints for the

sub-concepts of the concepts Scheduler and RecoveryManager [Weihl 90][Weihl 89][Guerraoui

94] using the Object Constraint Language (OCL). In addition we will provide the constraints

among the concepts Scheduler and RecoveryManager.

Figure 17 illustrates three constraints for the sub-concepts of Scheduler. The first constraint

defines that for a scheduler with a two-phase locking synchronization scheme and a

synchronization strategy that is conservative either a deadlock detector or an infinite blocking

detector is needed. The reason for this is that the other two performance failures, infinite restart

and cyclic restart, can never occur for this alternative of a scheduler [Cellary et al. 89]. The

second constraint indicates that optimistic and timestamp ordering schedulers either need an

infinite restart or cyclic restart detector. Finally, the third constraint defines that a serial

scheduler does not lead to performance failures because it orders operations of transactions

serially and never delays or aborts transactions.

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

37

1. Conservative Two Phase Locking schedulers need only either a Deadlock Detector or an

Infinite Blocking Detector.

if (self.SynchronizationScheme = ’TwoPhaseLocking’)

and (self.SynchronizationStrategy=’Conservative’)

then (self.PerformanceFailureDetector=’Deadlock Detector’) or

 (self.PerformanceFailureDetector=’Infinite Blocking Detector’)

endif

2. Optimistic and timestamp ordering schedulers need only detectors for either an infinite

restart or a cyclic restart.

if (self.SynchronizationScheme = ’Optimistic’) or

(self.SynchronizationScheme = ’Timestamp Ordering’)

then (self.PerformanceDailureDetector=’Infinite Restart Detector’) or

 (self.PerformanceFailureDetector=’Cyclic Restart Detector’)

endif

3. A serial scheduler does not need to detect failures.

if (self.SynchronizationScheme = ’Serial’)

then self.PerformanceFailureDetector= nil

endif

Figure 17. Constraints for the sub-concepts of Scheduler

Figure 18 illustrates the constraints for RecoveryManager. The first constraint defines that a

deferred-update recovery technique does not require an undo process in case of restarts. This

is because original data objects are not accessed during the execution of transactions and only

the copies are affected. The second constraint defines that an update-in-place does not require

a redo process. The reason for this is that the original data objects are already accessed during

execution of transactions and on commit it is not necessary anymore to install the effects of

the transactions.

Figure 19 illustrates a constraint among the concept Scheduler and RecoveryManager. It defines

that a serial scheduler will not use a synchronization protocol to provide atomicity, simply

because no concurrency is allowed for this scheduler.

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

38

1. Deferred-Update does not require undo process

if (self.LogManager = ’Deferred-Update’)

then (self.Restarting = ’No-Undo/Redo’ or self.Restarting = ’No-Undo/No-Redo’)

endif

2. Update-In-Place does not require redo process

if (self.LogManager = ’Update-In-Place Logging’)

then (self.Restarting = ’No-Redo/Undo’ or self.Restarting ’No-Redo/No-Undo’)

endif

Figure 18. Constraints for the sub-concepts of RecoveryManager

1. A serial scheduler does not synchronize operations for recovery.

if (scheduler.SynchronizationScheme = ’Serial’)

then (recoveryManager.FailureAtomicitySynchronizer=nil)

endif

Figure 19. A constraint between Scheduler and RecoveryManager

Other constraints are identified for example for the commit and abort protocols of the

TransactionManager, which must be understood by the different data managers in the system.

If the protocols of the TransactionManager are changed, then the protocols of the data

managers must change accordingly. Due to space limitations we will not further elaborate on

the other constraints in this thesis.

4.4.5 Architecture Specification

It consists of the two sub-processes defining semantics of the architecture and defining dynamic behavior of

the architecture.

Defining Semantics of the Architecture

We consider each concept separately to derive its semantics from the solution domains to provide a

more formal, but corresponding, specification. As a format for writing a formal specification we use:

<operation><pre-condition><post-condition>

Hereby, <operation> represents the name of the operation of a concept. The name and the type of

each concept variable are described in the part <declarations>. The part <pre-conditions> describe the

conditions and assumptions made about the values of the concept variables at the beginning of

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

39

<operation>. The part <post-conditions> describe what should be true about the values of the

variables upon termination of <operation>.

Example

Creating and Terminating Transactions

The architecture component Transaction represents the application program that is executed

as an atomic transaction. We can derive the semantics for this component from the solution

domain. For example, the following represents the semantics of Transaction, as it has been

adapted from [Lynch et al. 94].

Transaction::Start
postcondition:

self.status=”running”

Transaction::Commit
postcondition:

self.status=”success”

Transaction::Abort
postcondition:

self.status=”fail”

….
// Additional operations

Figure 20. Specification of the interface of Transaction

A transaction can be started using the operation Start, which initializes the transaction

parameters and may include application specific operations before the starting the

transaction. The variable status represents the state of the transaction and can have the values

running, success or fail. The operations Commit and Abort respectively commit and abort the

transaction and may include specific operations after the termination of the transaction. These

three operations are generic for most transaction applications. Other operations may be

added for specific transaction applications. For example, in a car dealer system, operations

such as Reserve_Car, Order_Car and Request_CarInfo would be defined.

Every transaction will be managed by a TransactionManager that is basically responsible for

the creation, initialization and termination of the transactions. The semantics of

TransactionManager for managing flat transactions as adapted from [Bernstein et al. 87] is

presented in Figure 21:

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

40

TransactionManager::Start(T:Transaction)
postcondition:

self.transaction_started=true;
self.transaction = T;

TransactionManager::Request_Commit(T:Transaction)
precondition:

self.transaction_started= true;
self.transaction_committed = false;
self.transaction_aborted=false;

postcondition:
 self.transaction_commitrequested= true;

TransactionManager::Commit(T:Transaction)
precondition:

self.transaction_commitrequested= true;
postcondition:

self.transaction_committed= true;
self.transacttion = nil.

TransactionManager::Abort(T:Transaction)
precondition:

self.transaction_started = true;
self.transaction_committed = false;
self.transaction_aborted=false;

postcondition:
self.transaction_aborted=true;
self.transaction = nil;

Figure 21. Specification of the interface for TransactionManager dealing with flat transactions

TransactionManager includes the operations Start, RequestCommit, Commit and Abort. Further it

includes 5 boolean variables transaction_started, transaction_committed, transaction_aborted,

commit_requested and one variable transaction that keeps the Transaction object. The operation

Start initates the transaction and sets the boolean variable transaction_started to true. The

initiation of a transaction may include the assignment of, for example, unique transaction id

and/or timestamp. A commit of a transaction must always be requested before, which is

done by executing the operation Request_Commit. This operation is only allowed if the

transaction has been started but not completed yet. The operations Commit and Abort

terminate the transaction, set the boolean variables accordingly and initialize the variable

transaction to nil, so that a new transaction can be started.

TransactionManager component may also express nested transactions. The specification of

additional operations for a transaction manager for nested transactions that we have adapted

from the solution domain on nested transaction [Moss 85] is given in Figure 22.

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

41

TransactionManager::Create_SubTransaction(T:Transaction)
postcondition:

self.subtransactions = self.subtransactions ∪{T};
T.parent = self.

TransactionManager::getParent()
postcondition:

if self.transaction is not top_transaction then return self.parent
else return self

TransactionManager::Report_Commit(T:Transaction)
postcondition:

parent.committed_subtransactions = parent.committed_subtransactions ∪{T};

TransactionManager::Report_Abort(T:Transaction)
postcondition:

parent.aborted_subtransactions = parent.aborted_subtransactions ∪{T};

Figure 22. Specification for additional operations of TransactionManager for nested transactions

The operation Create_Subtransaction creates a subtransaction for the corresponding transaction

and sets the parent of the sub-transaction. A parent transaction is not allowed to complete its

own activity until its subtransactions have terminated. This means that the commit and abort

operations need to be implemented accordingly. If a subtransaction aborts, the parent can

choose different actions, such as ignoring, triggering another transaction or aborting itself. In

flat transactions, after the confirmation of a commit from the datamanagers the transaction

was able to commit or to abort. In nested transactions, the transaction needs first to report the

result of the termination to its parent transaction. In Figure 22, the operations Report_Commit

and Report_Abort inform the parent transactions on respectively the commit and the abort of

the sub-transaction. Depending on whether open nested transactions or closed nested

transactions are implemented the implementation of the commit and abort operations may

change accordingly.

Scheduler

The component Scheduler deals with the concurrency control of transaction operations in

order to keep the data object consistent. Figure 23 represents an example of the semantics of

the Scheduler that is based on two phase locking.

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

42

Scheduler::HandleOperation(T:Transaction, m: Operation)
for kind(m) = "read"
precondition:

there do not exist (T’,n) such that (T,m) conflicts with (T,m);
postcondition:

self.readlock_holders = self.readlock_holders ∪ (T,m);

Scheduler::HandleOperation(T:Transaction, m: Operation)
for kind(m) = "write"
precondition:

there do not exist (T’,n) such that (T,m) conflicts with (T,m);
postcondition:

self.writelock_holders = self.writelock_holders ∪ (T,m);

Scheduler::CommitRequest(T:Transaction)
precondition:

there do not exist (T’,n) such that (T,m) conflicts with (T,m);
postcondition:

self.commit_requested = self.commit_requested ∪ T;

Scheduler::Commit(T:Transaction)
precondition:

T ∈ self.commit_requested;
postcondition:

self.committed= self.committed ∪{T};
self.readlock_holders = self.readlock_holders - T;
self.writelock_holders = self.writelock_holders - T.

Scheduler::Abort(T:Transaction)
precondition:
postcondition:

self.aborted= self.aborted ∪{T};
self.readlock_holders = self.readlock_holders - T;
self.writelock_holders = self.writelock_holders - T.

Figure 23. Specification of the interface of Scheduler based on Locking

There are five operations, HandleOperation for read, HandleOperation for write, CommitRequest,

Commit and Abort. The operation HandleOperation checks whether the operation can be

abstracted to a read or write operation. This means that the original operation does not need

to be a read or write at all. Subsequently, a check is done on whether the corresponding

operation conflicts with previously submitted operations of other transactions. The conflict

operation is hereby encapsulated and may depend on different conflict rules for different

operations. Before a Commit operation can occur first a CommitRequest operation must be

invoked. A CommitRequest operation may also conflict with other operations and therefore

this is also explicitly checked. The Commit and Abort operations result in the release of the

locks that have been hold in the sets readlock_holders and writelock_holders of the

corresponding transaction are released.

For the same architectural component Scheduler we may derive other semantics from the

solution domain on concurrency control. Figure 24 defines, for instance, the specification of

the operations of a timestamp ordering scheduler [Bernstein et al. 87].

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

43

Scheduler::HandleOperation(T:Transaction, m: Operation)
for kind(m) = "read"
precondition:

there do not exist (T',n) such that if (T’,n) conflicts with (T,m)
and timestamp(T’) > timestamp(T)

postcondition:
self.max_readtimestamp = timestamp(T);

Scheduler::HandleOperation(T:Transaction, m: Operation)
for kind(m) = "write"
precondition:

there do not exist (T',n) such that (T,m) conflicts with (T,m)
and timestamp(T’) > timestamp(T)

postcondition:
self.max_writetimestamp = timestamp(T)

Scheduler::CommitRequest(T:Transaction)
precondition:

there do not exist (T',n) such that (T,m) conflicts with (T,m);
postcondition:

self.commit_requested = self.commit_requested ∪ T;

Scheduler::Commit(T:Transaction)
precondition:

T ∈ self.commit_requested;
postcondition:

self.committed= self.committed ∪{T};

Scheduler::Abort(T:Transaction)
precondition:
postcondition:

self.aborted= self.aborted ∪{T};

Figure 24. Specification of the interface of Scheduler based on timestamp ordering

The timestamp ordering scheduler orders conflicting operations according to their

timestamps that have been assigned by TransactionManager. If two operation p and q are

conflicting then the timestamp ordering scheduler processes p before q if timestamp(p) <

timestamp(q).

RecoveryManager

Figure 25 represents a specification of the interface of RecoveryManager that has been

adapted from the solution domain on recovery [Bhargava 87]. In this example, the

RecoveryManager has 5 operations. The operation HandleOperation will either log the

operation or the state of the data object that is being accessed. The operation Commit makes

the effect of the transaction persistent by storing this in stable storage. The operation Abort

rollbacks the effects of the transaction by using the logged information. The operation Restart

will be invoked in case of system failures. This operation uses the logged information to undo

the effects of the aborted or active transactions and redo the effects of the committed

transactions that have not been made persistent yet. Finally, the operation Checkpoint is

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

44

regularly invoked to make a snapshot of the system so that the Restart operation is optimized.

In Figure 25 only a generic interface for recovery is presented. However, the semantics for

each of the different variations on these recovery protocols can be easily derived from the

solution domains.

RecoveryManager::HandleOperation(T:Transaction, m: Operation)
postcondition:

operation (T,m) or the accessed object state is logged;

RecoveryManager::Commit(T:Transaction)
postcondition:

make effects of transaction T persistent;

RecoveryManager::Abort(T:Transaction)
postcondition:

undo effects of transaction T;

RecoveryManager::Restart()
postcondition:

undo effects of active aborted transactions
redo effects of committed transactions;

RecoveryManager::Checkpoint()
postcondition:

store the state of the system in stable storage.

Figure 25. Specification of the operations of RecoveryManager

PolicyManager

An example specification for (a part of) the interface of the PolicyManager component is

given in Figure 26.

PolicyManager::AddParameter(P: PerformanceParameter)
postcondition:

self.performanceParameters = self.performanceParameters ∪ P;

PolicyManager::RemoveParameter(P: PerformanceParameter)
postcondition:

self.performanceParameters = self.performanceParameters - P;

PolicyManager::ReadParameterValues()
postcondition:

self.performanceParameters determined;

PolicyManager::ChooseTransactionProtocols(T:Transaction)
postcondition:

T.transactionProtocols determined;

PolicyManager::DeterminePolicy()
postcondition:

self.policy = priority(user, system, data).

Figure 26. Specification of the interface of PolicyManager

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

45

PolicyManager is responsible for dynamic adaptation of the transaction protocols based on

selected performance parameters such as transaction throughput, transaction response time,

transaction blocking ratio and transaction restart ratio [Agrawal 87]. The operations

AddParameter and RemoveParameter respectively add and remove a performance parameter

from the set performanceParameters. The operation ReadSystemParameters senses the system and

derives the values for the parameters in the set performanceParameters. These values are used

by the operation ChooseTransactionProtocols to determine appropriate transaction protocols

such as scheduling and recovery algorithms. Finally, the operation DeterminePolicy defines the

policy for the dynamic adaptation mechanism. The choice of transaction protocols may not

always be defined by the system characteristics but the transaction or data characteristics may

also impose some constraints on the selection of the transaction protocols. For example, for

long transaction a locking scheduler may be preferred over an optimistic scheduler [Agrawal

87]. Large binary data objects may prefer to adopt operation logging techniques instead of

image logging to optimize the memory space [Elmagarmid 92]. PolicyManager must therefore

balance between these different wishes of the transaction programmer, the system

performance parameters and the data object characteristics.

Correctness of Transaction Semantics

We have shown that the semantics for the components of the atomic software architecture can

be derived from the solution domains and gave some examples of the semantics of the

architectural components of the atomic transaction architecture. Besides of the rich semantics

that we could derive from the solution domain an important issue is whether the provided

semantics is correct. In this thesis we will not provide the correctness proofs but refer to the

related literature on atomic transactions. For example, in [Lynch et al. 94] the I/O automaton

model is described, which is a formal model for modeling concurrent, and distributed

systems. Hereby, each system component, concept or technique is analyzed and expressed as

an automaton, a mathematical object with states and named transitions between them8. The

actions of the automaton can be classified as input, output or internal. The input actions

represent events from the environment, the output actions represent events that components

performs itself and finally the internal actions represent the events internal in a component

that are not externally observable (such as changing a local variable). For each automaton the

8 This is almost similar to a non-deterministic finite-state automaton. One difference is that in the I/O automaton
model an automaton need not be finite-state, but can have an infinite state set.

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

46

actions are described with an action signature. An automaton can put restrictions on when it

will perform an output or internal action, but is unable to restrict input actions.

The correctness criteria for a concurrent system that is modeled as automata are expressed as

restrictions on the sequences of actions that are part of the interface of the data items and its

users. The basic assumption is that a sequence of actions is correct if it can be generated by a

serial system.

An automaton is defined as a tuple consisting of four components [Lynch et al. 94]:

• an action signature sig(A)

• a set states(A) of states

• a nonempty set start(A) ⊆ states(A) of start states, and

• a transition relation steps(A) ⊆ states(A) x acts(sig(A)) x states(A), with the property that

for every state s’ and input action π there is a transition (s’, π, s) in steps(A).

In [Lynch et al. 94] states are generally determined by giving values to a collection of

variables. Further, the transition relations of an automaton are not described by listing all its

elements as triples but rather a simple specification language is used where an effect is

described for each action and a precondition for each local action.

Using this model the authors formalize and analyze transaction processing theories,

serializability, logging, locking, nesting, timestamping etc. For a more detailed description of

this automaton model we refer to [Lynch et al. 94]. We use this model to proof the semantics

of the architectural concepts that we derived. It follows that since we derive the abstract

semantics from the solution domain, the link to the formal models is easily identified and we

can utilize these to validate the software architecture. For this, we map each architectural

concept to an automaton and define the operations in the specification of the concept as

internal and input actions of the newly identified automaton. To define the output actions we

look for the architectural concepts that the corresponding concept communicates with and

define the operations of other concepts that are invoked as the output operations of the

automaton. These operations together will provide the complete action signature of the

automaton. Consider for example the specification of the concept TransactionManager as

presented in Figure 21. We could define an automaton called TransactionManager that

includes the operations as defined in Figure 21. Since all of these operations are invoked by

other components we map these to input operations of the automaton. There are no internal

operations. The output operations can be identified in the specification of the concept

Transaction in Figure 20 and this completes the action signature of the automaton

TransactionManager. Subsequently the start states of the automaton and the transition

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

47

relations can be relatively easily defined. Once the automaton is described we use it to

continue with the correctness proofs of the adopted transaction semantics. Since many

publications exist on correctness proofs of the semantics of transaction protocols

[Papadimitriou 86], [Cellary et al. 89] and [Bernstein et al. 87] and it is not our goal to extend

the transaction theory we will not elaborate on this issue in this thesis.

Define Dynamic Behavior of the Architecture

The specifications of the architectural components are used to model the dynamic behavior of the

architecture. For this purpose we use the so-called collaboration diagrams which are interaction

diagrams to illustrate the dynamic view of a system [Booch et al. 99]. Collaboration diagrams show

the structural organization of the components and the interaction among these components. We

derive the collaboration diagrams from the pre-defined specifications of the architectural concepts.

Example

Figure 27 represents an example of a collaboration diagram for the atomic transaction

architecture. The components in the collaboration diagram represent instances of the

architectural components, which is represented by a double colon preceding the name of the

architectural component. The flow of control is represented by means of directed arrows that

are labeled with messages. To indicate the temporal sequencing the messages are numbered.

The collaboration diagram shows the interactions for starting, handling operations,

committing and aborting transactions.

The messages with the sequence number 1 are part of the scenario for starting a transaction.

A transaction is started by the object t:TransactionApplication that sends a start operation to

the object tm:TransactionManager. The tm object informs the starting of the new transaction

to the object pm:PolicyManager that reads the values of the performance parameters and

chooses the appropriate transaction protocols for the transaction.

The messages with sequence numbers 2 define a scenario for handling transaction operations.

After the transaction has started, the operations that are send by the object

t:aTransactionApplication will be captured and handled by the object

tm:TransactionManager. The operation will be forwarded to the policy manager and the data

manager object. The object dm:DataManager will request the scheduler and the recovery

manager object to provide a decision on the acceptance or reject of the operation. If the

operation is allowed to execute then it will be dispatched to the atomic object.

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

48

Finally, the messages with the sequence numbers 3 and 4 define respectively the scenarios for

committing and aborting transactions. The control flow for these scenarios can be easily

derived from Figure 27.

t:TransactionApplication tm:TransactionManager

pm:PolicyManager

dm:DataManager

rm:RecoveryManagersched:Scheduler

a:AtomicObject

1:start(t)

1.1:start(t)

1.2b:chooseTransactionProtocols(t)

2:handleOperation(t, o)

2.1:handleOperation(t, o)

2.2:handleOperation(t, o)

2.4:dispatch(o)

3:commit(t)

3.1:commit(t)

3.2 commit(t)

1.2a:readParameterValues()

4:abort(t)

4.1:abort(t)

4.2:abort(t)

2.3b:handleOperation(t, o)
3.3a commit(t)
4.3b:abort(t)

2.3a:handleOperation(t, o)
3.3a commit
4.3a:abort(t)

Figure 27. Collaboration diagram for the atomic transaction software architecture

4.5 Discussion and Conclusions

In this chapter we presented the synthesis-based software architecture design approach. This approach is

derived from the concept synthesis of mature engineering disciplines whereby the initial problem is

decomposed into sub-problems that are solved separately and later integrated in the overall solution.

During the synthesis process design alternatives are searched and selected based on the existing

solution domain knowledge.

An important issue in software architecture design is to find the right abstractions and the adequate

leveraging of the architecture. The novelty of the synthesis-based software architecture design approach

with respect to the existing architecture design approaches is that it makes the processes of problem

analysis, solution domain analysis and alternative space analysis explicit. During the problem analysis, the

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

49

client requirements are mapped onto the technical problems providing a more objective and reliable

description of the problem. During the solution domain analysis, stable architectural components with

rich semantics are derived from the solution domain concepts that are well-defined and stable

themselves. The solution domain analysis itself is leveraged by the pre-identified technical problems

so that the right detail of the solution domain model is ensured. The alternative space analysis explicitly

depicts the possible set of design alternatives that can be derived from the architectural components.

We have illustrated the approach by applying it to the design of an atomic transaction architecture for

a distributed car dealer system in a project of Siemens-Nixdorf. Apart from this, experimental studies

have been carried out with earlier versions of this approach in pilot studies that were carried out by

MSc students. For example, in [Vuijst 94], a software architecture for image algebra was derived for

the laboratory for clinical and experimental image processing. The basic solution domain for this

architecture was image algebra and several related publications could be identified from which

sufficient stable abstractions were derived for the design of the software architecture. The atomic

transaction and the image algebra domain appeared to be examples of well-defined and sufficiently

formalized domains. The experimental studies have been, however, also applied on domains that are

less formalized. In [Arend 99], for example, a software architecture has been derived for a Quality

Management Systems for efficient information retrieval and in [Willems 98], a software architecture

has been derived for insurance systems. In both cases, several publications could be identified on the

corresponding domains, but in addition it was also necessary to refer to the factual knowledge and

experiences for the design of the software architecture. The solution domain may thus consist of a

combination of various forms of solution techniques such as theories, solution domain experts, and

experiences in the corresponding domain.

In the following we will list the conclusions that we could obtain from our experience in applying the

synthesis approach to the project on atomic transactions.

1. Explicit mapping of requirements to technical problems facilitates the identification and leveraging of the

necessary solution domains.

After our requirements analysis and technical problem analysis processes as defined in sections 4.4.1

and 4.4.2 respectively, it appeared that the given client requirements did not fully describe the right

detail of the desired problem. The basic requirement was to provide adaptable transactions protocols

that were derived from the various expected needs of different dealers in different countries. From

the initial requirement specification, however, it followed that with adaptability of transaction

protocols it was only referred to a restricted number of concurrency control protocols. During the

problem analysis phase we generalized this requirement to the adaptation of various transaction

protocols including transaction management, concurrency control, recovery and data management

techniques. After interactions with the client and a study of the car dealer distribution system it

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

50

appeared that many transaction protocols were relevant although they had not been explicitly

mentioned in the requirement specification. We observed that the technical problem identification is

an iterative process between the technical problem analysis and solution domain analysis processes.

On the one hand, we directed and leveraged our solution domain analysis using the identified

technical problems. Since every (sub-)problem corresponds only to a restricted set of solution domain

we did not need to consider the whole solution domain space at once. For example, for the concept

DataManager we did not need to consider version management and replication management because

this was deliberately put out of the scope of the project. For the concept Scheduler we ruled out the

solution domain that dealt with semantic concurrency control techniques. The identified technical

problems provided us the means where to search or not to search for the solution domain.

On the other hand, the technical problems could be better defined after the solution domains were

better understood. For example, only after a solution domain analysis on concurrency control, as

described in section 4.4.3, we were better able to accurately define the sub-problems related with the

concept Scheduler. This observation may imply that for the problem analysis phase one may require a

domain engineer who is an expert on the corresponding domain and knows the different technical

problems that are related to the domain. In our example project typically a transaction domain expert

at the early phase of problem analysis would be of much help.

2. Solution domain provides stable architectural abstractions

The synthesis-based approach provides an explicit solution domain analysis process for identifying

the right abstractions. After analyzing and comparing the solution domain on transaction theory it

appears that it is rather stable and does not change abruptly but only shows a gradual specialization

of the transaction concepts. Because the solution domain is stable it provides a reliable source for

providing stable architectural abstractions. In the solution domain analysis process as described in

section 4.4.3 we illustrated how we could derive stable concepts for the design of the atomic

transaction architecture. We were able to derive both the overall architecture and refine the

architectural concepts to the required detail level.

The requirement of stable solution domains in the synthesis-based approach implies that a given

problem can only be solved to the extent that it has been explored in the solution domain. If it appears

that the solution domain is not well-established the software engineer may decide to terminate the

synthesis process, reformulate the technical problem or initiate a research on the solution domain. The

latter decision shows that the synthesis process may provide important input for the scientific

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

51

research because it may indicate the issues that need to be resolved in the corresponding solution

domains9.

3. Solution domains provide rich semantics for realization and verification of the architecture.

Solution domains not only provide stable abstractions but in addition these abstractions have rich

semantics which is important for the realization and verification of the software architecture. As

described in section 4.4.5 on architecture specification, we could derive rich semantics for the

architectural abstractions directly from the solution domain knowledge of atomic transactions. We

have illustrated this process for various components in the atomic transaction architecture.

The solution domain is not only useful for deriving architectural abstractions, but in addition it is also

a reliable source for validating the correctness of the developed architecture. We were able to identify

many publications that explicitly deal with correctness proofs of various transaction protocols. We

validated the architectural components and their semantics by utilizing these knowledge sources.

4. Adaptability of an architecture can be determined by an explicit alternative space analysis of the solution

domain.

In the synthesis-based software architecture design approach, alternative space analysis is an explicit

process. Thereby, for each concept the set of alternatives are described and constraints are defined

among these alternatives. This together results in a depiction of the set of possible alternative designs

or alternative space, that may be derived from the given software architecture. As described in section

4.4.4 we have, for instance, defined the alternatives for the concepts Scheduler and RecoveryManager.

From the solution domain analysis we extracted the constraints within each of these concepts and

constraints that apply among alternatives of these concepts. We had two problems in the alternative

space analysis process for the example project. First, although we have derived the conceptual

architectures from the solution domain itself, during the alternative definition process it followed that

not all the alternatives were explicitly described in the literature. For example, for the concept

Scheduler we could identify only around 10-15 scheduler types that were described in the literature.

The other alternatives are primarily seen as variations of these basic scheduler types. In our approach

we could depict every single alternative explicitly. The second problem that we encountered was that

the constraints within and among the alternatives of the concepts are generally not explicitly stated in

the literature and finding these is very time-consuming. Defining constraints of solution domain

concepts requires the full understanding of these concepts. The existence of an explicit description of

these constraints may indicate the maturity level of the corresponding solution domain. It appears

9 Note that this represents an example of the interaction between engineering and scientific research

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

52

that the transaction literature has many well-established concepts and we could also identify some

publications that explicitly dealt with the constraints among the concepts, however, this is not the

case for all the concepts.

4.6 References

[Agrawal 87] Agrawal, R., Carey, M., & Livney, M. Concurrency control performance modelling:
Alternatives and implications. ACM Transactions on Database Systems, Vol. 12, No. 4, pp. 609-
654, December 1987.

[Ahsmann & Bergmans 95] Ahsmann F & Bergmans L. I-NEDIS: New European Dealer System, Project
plan I-NEDIS, 1995.

[Aksit 00] Aksit, M. Course Notes: Design Software Architectures. Post-Academic Organization, 2000.

[Aksit et al. 98] Aksit, M., Marcelloni, F., & Tekinerdogan B. Developing Object-Oriented Frameworks
using domain models, ACM computing surveys, 1998.

[Aksit et al. 99] Aksit, M., Tekinerdogan, B., Marcelloni, F., & Bergmans, L. Deriving Object-Oriented
Frameworks from Domain Knowledge. in M. Fayad, D. Schmidt, R. Johnson (eds.), Building
Application Frameworks: Object-Oriented Foundations of Framework Design, Wiley & Sons,
1999.

[Aksit et al. 96] Aksit, M., Tekinerdogan, B, & Bergmans, L. Achieving adaptability through separation and
composition of concerns, in Max Muhlhauser (ed), Special issues in Object-Oriented
Programming, Workshop Reader of the 10th European Conference on Object-Oriented
Programming, ECOOP ’96, Linz, Austria, July, 1996.

[Arend 99] Arend, E. van der. Design of an Architecture for a Quality Management Push Framework. MSc
thesis, Dept. of Computer Science, University of Twente, 1999.

[Arrango 94] Arrango, G. Domain Analysis Methods. In Software Reusability, Schäfer, R. Prieto-Díaz, and
M. Matsumoto (Eds.), Ellis Horwood, New York, New York, pp. 17-49, 1994.

[Atkins & Coady 92] Atkins, M.S. & Coady, M.Y. Adaptable Concurrency Control for Atomic Data Types.
ACM Transactions on Computer Systems, Vol. 10, No. 3, pp. 190-225, August 1992.

[Barghouti & Kaiser 91] Barghouti, N.S., & Kaiser, G.E. Concurrency Control in Advanced Database
Applications, ACM Computing Surveys, Vol. 23, No. 3, September, 1991.

[Bass et al. 98] Bass, L., Clements, P., & Kazman, R. Software Architecture in Practice, Addison-Wesley
1998.

[Bernstein & Goodman 83] Bernstein, A., & Goodman, N. Concurrency Control in Distributed Database
Systems, ACM Transactions on Database Systems, 8(4): 484-502, 1983.

[Bernstein & Newcomer 97] Bernstein, P.A., & Newcomer, E. Principles of Transaction Processing,
Morgan Kaufman Publishers, 1997.

[Bernstein et al. 87] Bernstein, P.A., Hadzilacos, V., & Goodman, N. Concurrency Control & Recovery in
Database Systems, Addison Wesley, 1987.

[Bhargava 87] Bhargava, B.K. editor. Concurrency Control and Reliability in distributed Systems,Van
Nostrand Reinhold, 1987.

[Booch et al. 99] Booch, G., Jacobson, I., & Rumbaugh, J. The Unified Modeling Language User Guide,
Addison-Wesley, 1999.

[Bourque et al. 99] Bourque, P., Dupuis, R., Abran, A., Moore, J.W., & Tripp, L. The Guide to the
Software Engineering Body of Knowledge, Vol. 16, No. 6, pp. 35-45, November/December, 1999.

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

53

[Buschmann et al. 99] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. Pattern-
Oriented Software Architecture: A System of Patterns, John Wiley & Sons, 1999.

[Carey 84] Carey, M., & Stonebraker, M. The performance of concurrency control algorithms for database
management systems. In Proceedings of the 10th International Conference on Very Large Data
Bases, Singapore, pp. 107-118, 1984.

[Cellary et al. 89] Cellary, W., Gelenbe, E., & Morzy, T. Concurrency Control in Distributed Database
Systems, North-Holland Press, 1989.

[Coyne et al. 90] Coyne, R.D., Rosenman, M.A., Radford, A.D., Balachandran, M., & Gero, J.S.
Knowledge-Based Design Systems, Addison-Wesley, 1990.

[Cross 89] Cross, N. Engineering Design Methods, Wiley and Sons, 1989.

[Date 90] Date, C.J. An Introduction to Database Systems, Vol. 3, Addison Wesley, 1990.

[Diaper 89a] Diaper, D. (ed.). Knowledge Elicitation, Ellis Horwood, Chichester, 1989.

[Diaper 89b] Diaper, D. Task Analysis for Human Computer Interaction, Wiley & Sons, 1989.

[Dorf & Bishop 98] Dorf, R.C., & Bishop, R.H. Modern Control Systems. Addison-Wesley, 1998.

[Elmagarmid 92] Elmagarmid, A.K. editor. Database Transaction Models for AdvancedApplications
Transaction Management in Database Systems, Morgan Kaufmann Publishers, 1992.

[Firlej & Hellens 91] Firlej, M., & Hellens, D. Knowledge elicitation: a practical handbook, New York,
Prentice Hall, 1991.

[Foerster 79] Foerster, H. Von., Cybernetics of Cybernetics, in: Klaus Krippendorff (ed.), Communication
and Control in Society, New York: Gordon and Breach, 1979.

[Gajski et al. 92] Gajski, D.D., Dutt, N.D., Wu, A., & Lin, S. High-level synthesis : introduction to chip and
system design, Boston : Kluwer Academic Publishers, 1992.

[Glass & Vessey 95] Glass, R.L., & Vessey, I. Contemporary Application-Domain Taxonomies, IEEE
Software, Vol. 12, No. 4, July 1995.

[Gonzales & Dankel 93] Gonzalez, A.J., & Dankel, D.D. The Engineering of Knowledge-Based Systems,
Prentice Hall, Englewood Cliffs, NJ, 1993.

[Gray & Reuter 93] Gray, J., & Reuter, A. Transaction processing: concepts and techniques, San Mateo,
Morgan Kaufmann Publishers 1993.

[Guerraoui 94] Guerraoui, R. Atomic Object Composition. In Proceedings of the European Conference
on Object-Oriented Programming, LNCS 821, Springer-Verlag, pp. 118-138, 1994.

[Hadzilacos 88] Hadzilacos, V. A theory of reliability in Database Systems, Journal of the ACM, 35(1):
121-145, January 1988.

[Haerder & Reuter 83] Haerder, T., & Reuter, A. Principles of Transaction-Oriented Database Recovery.
ACM Computing Surveys, Vol. 15. No. 4. pp. 287-317, 1983.

[Highleyman 89] Highleyman, W.H. Performance analysis of transaction processing systems, Englewood
Cliffs, NJ : Prentice Hall, 1989.

[Howard 87] Howard, R.W. Concepts and Schemata: An Introduction, Cassel Education, 1987.

[Jacobson et al. 99] Jacobson, I., Booch, G., & Rumbaugh, J., The Unified Software Development Process,
Addison-Wesley, 1999.

[Jajodia & Kerschberg 97] Jajodia, S., & Kerschberg, L. Advanced Transaction Models and Architectures,
Boston: Kluwer Academic Publishers, 1997.

[Kruchten 95] Kruchten, Philippe B. The 4+1 View Model of Architecture. IEEE Software, Vol 12, No 6,
pp. 42-50, November 1995.

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

54

[Kumar 96] Kumar, V. Performance of Concurrency Control Mechanisms in Centralized Database Systems.
Prentice-Hall, 1996.

[Lakoff 87] Lakoff, G. Women, Fire, and Dangerous Things: What Categories Reveal about the Mind, The
University of Chicago Press, 1987.

[Lieberherr 96] Lieberherr, K.J. Adaptive Object-Oriented Software: The Demeter Method with Propagation
Patterns, PWS Publishing Company, Boston, 1996.

[Loucopoulos & Karakostas 95] Loucopoulos, P., & Karakostas, V. System requirements engineering,
London [etc.] : McGraw-Hill, 1995.

[Lynch et al. 94] Lynch, N., Merrit, M., Weihl, W., & Fekete, A. Atomic Transactions. Morgan
Kaufmann Publishers, 1994.

[Maher 90] Maher, M.L., Process Models for Design Synthesis, AI-Magazine, pp. 49-58, Winter 1990.

[Maimon & Braha 96] Maimon, O., & Braha, D. On the Complexity of the Design Synthesis Problem, IEEE
Transactions on Systems, Man, And Cybernetics-Part A: Systems and Humans, Vol. 26, No. 1,
January 1996.

[Meyer & Booker 91] Meyer, M., & Booker, J. Eliciting and Analyzing Expert Judgment: A practical Guide,
Volume 5 of Knowledge-Based Systems, London: Academic Press, 1991.

[Moss 85] Moss, J.E.B. Nested Transactions : an approach to reliable distributed computing, Cambridge,
MA: MIT Press, 1985.

[Newell & Simon 76] Newell, A., & Simon, H.A., Human Problem Solving, Prentice-Hall, Englewood
Clifss, NJ, 1976.

[Papadimitriou 86] C.H. Papadimitriou. The theory of Database Concurrency Control. Computer Science
Press, 1986.

[Parsons & Wand 97] Parsons, J., & Wand, Y. Choosing Classes in Conceptual Modeling,
Communications of the ACM, Vol 40. No. 6., pp. 63-69, 1997

[Partridge & Hussain 95] Partridge, D., & Hussain, K.M. Knowledge-Based Information Systems,
McGraw-Hill, 1995.

[Prieto-Diaz & Arrango 91] Prieto-Diaz, R., & Arrango, G. (Eds.). Domain Analysis and Software Systems
Modeling. IEEE Computer Society Press, Los Alamitos, California, 1991.

[Polya 57] Polya, G. How to solve it : a new aspect of mathematical method, New York, Doubleday, 1957.

[Pu et al. 88] Pu, C., Kaiser, G., & Hutchinson, N. Split-transactions for open-ended activities. In
Proceedings of the 14th VLDB Conference, 1988.

[Reich & Fenves 91] Reich, Y., & Fenves, S.J. The formation and use of abstract concepts in design, in:
Concept Formation: Knowledge and Experience in Unsupervised Learning, D.H.J. Fisher,
M.J. Pazzani, & P. Langley (eds.), Los Altos, CA, pp. 323--353, Morgan Kaufmann, 1991.

[Roxin 97] Roxin, E.O. Control theory and its applications. Amsterdam, Gordon and Breach Science
Publishers, 1997.

[Rubin 98] Rubin, R. Foundations of library and information science. New York, Neal-Schuman, 1998.

[Shaw & Garlan 96] Shaw, M. & Garlan, D. Software Architectures: Perspectives on an Emerging
Discipline,. Englewood Cliffs, NJ: Prentice-Hall, 1996.

[Shaw 98] Shaw, M. Moving from Qualities to Architectures: Architectural Styles, in: L. Bass, P. Clements,
& R. Kazman (eds.), Software Architecture in Practice, Addison-Wesley, 1998.

[Shinners 98] Shinners, S.M. Modern Control System Theory and Design. Wiley, 1998.

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

55

[Stillings et al. 95] Stillings, N.A., Weisler, S.E., Chase, C.H., Feinstein, M.H., Garfield, J.L., & Rissland,
E.L., Cognitive Science: An Introduction. Second Edition, The MIT Press, Cambridge,
Massachusetts, 1995.

[Sommerville & Sawyer 97] Sommerville, I., & Sawyer, P. Requirements engineering: a good practice
guide, Chichester, Wiley, 1997.

[Stillings et al. 95] Stillings, N.A., Weisler, S.E., Chase, C.H., Feinstein, M.H., Garfield, J.L., & Rissland,
E.L., Cognitive Science: An Introduction. Second Edition, The MIT Press, Cambridge,
Massachusetts, 1995.

[Tekinerdogan 94] Tekinerdogan, B. Design of an object-oriented framework for atomic transactions, MSc.
thesis, University of Twente, Dept of Computer Science, 1994.

[Tekinerdogan 95a] Tekinerdogan, B., Overall Requirements Analysis for INEDIS, Siemens-
Nixdorf/University of Twente, INEDIS project, 1995.

[Tekinerdogan 95b] Tekinerdogan, B. Requirements for Transaction Processing in INEDIS, Siemens-
Nixdorf/University of Twente, INEDIS project, 1995.

[Tekinerdogan 96] Tekinerdogan, B. Reliability problems and issues in a distributed car dealer information
system, INEDIS project, 1996.

[Tekinerdogan & Aksit 97] Tekinerdogan, B., & Aksit, M. Adaptability in object-oriented software
development, Workshop report, in M. Muhlhauser (ed), Special issues in Object-Oriented
Programming, Dpunkt, Heidelberg, 1997.

[Tekinerdogan & Aksit 99] Tekinerdogan, B., & Aksit, M. Deriving design aspects from conceptual models.
In: Demeyer, S., & Bosch, J. (eds.), Object-Oriented Technology, ECOOP ’98 Workshop
Reader, LNCS 1543, Springer-Verlag, pp. 410-414, 1999.

[Tracz & Coglianese 92] W. Tracz and L. Coglianese. DSSA Engineering Process Guidelines. Technical
Report, ADAGE-IBM-9202, IBM Federal Systems Company, December, 1992.

[Thayer et al. 97] Thayer, R.H., Dorfman, M., & Bailin, S.C. Software requirements engineering, Los
Alamitos, IEEE Computer Society Press, 1997.

[Traiger et al. 82] Traiger, I.L., Gray, J., Caltiere, C.A., & Lindsay, B.G. Transactions and Consistency in
Distributed Database Systems, ACM Transactions on Database Systems, Vol. 7, No. 3,
September 1982, pp 323-342.

[Umplebey 90] Umplebey, S.A., The Science of Cybernetics and the Cybernetics of Science, Cybernetics and
Systems, Vol. 21, No. 1, 1990, pp. 109-121, 1990.

[Vuijst 94] Vuijst, C. Design of an Object-Oriented Framework for Image Algebra. MSc thesis, Dept. of
Computer Science, University of Twente, 1994.

[Warmer & Kleppe 99] Warmer, J.B., & Kleppe, A.G. The Object Constraint Language : Precise Modeling
With Uml, Addison-Wesley, 1999.

[Wartik & Prieto-Diaz 92] Wartik, S., & Prieto-Díaz, R. Criteria for Comparing Domain Analysis
Approaches. In International Journal of Software Engineering and Knowledge Engineering,
vol. 2, no. 3, pp. 403-431, September 1992.

[Weihl 89] Weihl, W. The impact of recovery on concurrency control. Proceedings of the eigth ACM
SIGACT-SIGMOD-SIGART symposium on Principles of Database Systems March 29 - 31,
Philadelphia, PA USA, 1989.

[Weihl 90] Weihl, W.E. Linguistic support for atomic data types. ACM Transactions on Programming
Languages and Systems, Vol. 12, No. 2, 1990.

[Wielinga et al. 92] Wielinga, B.J., Schreiber, T., & Breuker, J.A., KADS: a modeling approach to knowledge
engineering, Academic Press, 1992.

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

56

[Willems 98] Willems, R. Ontwikkelen van verzekeringsproducten, dutch, translation: Development of
Insurance Products, MSc thesis, Dept. of Computer Science, University of Twente, 1999.

[Wu et al. 95] Wu, Z., Stroud, R.J., Moody, K., & Bacon, J. The design and implementation of a distributed
transaction system based on atomic data types, Distributed Syst, Engineering, 2, pp. 50-64, 1995.

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

57

Table of Contents

4.1 INTRODUCTION.. 2

4.2 SYNTHESIS.. 3

4.2.1 SYNTHESIS IN TRADITIONAL ENGINEERING.. 4

4.2.2 DEFINING THE SOFTWARE ARCHITECTURE SYNTHESIS MODEL .. 5

Mapping Client Requirements to Technical Problems.. 5

Deriving Architectural Abstractions from Solution Domain Models.. 6

Leveraging Solution Domain Models to the Identified Technical Problems ... 6

Defining Architecture Iteratively and Recursively... 7

The Software Architecture Synthesis Model .. 8

4.3 EXAMPLE PROJECT: TRANSACTION SOFTWARE ARCHITECTURE DESIGN10

4.4 SYNTHESIS-BASED SOFTWARE ARCHITECTURE DESIGN...12

4.4.1 REQUIREMENTS ANALYSIS...13

4.4.2 TECHNICAL PROBLEM ANALYSIS...14

Generalize the requirements ...15

Identify sub-problems...15

Specify sub-problems..16

Prioritize sub-problems ..16

4.4.3 SOLUTION DOMAIN ANALYSIS ..18

Identify and Prioritize the Solution Domains..19

Identify and Prioritize Knowledge Sources ...21

Extract Solution Domain Concepts from Solution Domain Knowledge ...23

Structure the Solution Domain Concepts ...26

Refinement of Solution Domain Concepts...27

4.4.4 ALTERNATIVE SPACE ANALYSIS ..33

Define the Alternatives for each Concept ..33

Describe Constraints between Alternatives...35

4.4.5 ARCHITECTURE SPECIFICATION...38

Defining Semantics of the Architecture ..38

Define Dynamic Behavior of the Architecture ...47

4.5 DISCUSSION AND CONCLUSIONS ...48

4.6 REFERENCES..52

CHAPTER 4 - ARCHITECTURE SYNTHESIS PROCESS

58

