chepter 3 Domain Engineering™

3.1 What IsDomain Engineering?

Domain Engineering

5 Thisis a chapter from K. Czarnecki. Generative Programming: Principles and Techniques of Software
Engineeing Based on Automated Configuration and Fragment-Based Component Models. Ph.D. thesis,
Technische Universitét [Imenau, Germany, 1998 This material will be dso pubished in the upcoming
book K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Techniques, and
Applications. Addison-Wesley, to appea in 1999

34 Generative Programming, K. Czarnedi

Most software systems can be dassfied acoording to the businessarea and the kind of tasks
they support, e.g. airline reservation systems, medical recrd systems, portfolio management
systems, order procesgng systems, inventory management systems, etc. Similarly, we @an also
clasdfy parts of software systems acoording to their functionality, e.g. database systems,
synchronization packages, workflow systems, GUI libraries, numerical code libraries, etc. We
refer to areas organized around classes of systems or parts of systems as domains.*®

Obvioudly, spedfic systems or components within a domain share many characteristics snce
they also share many requirements. Therefore, an organization which has built a number of
systems or components in a particular domain can take advantage of the acquired knowledge
when building subsequent systems or components in the same domain. By capturing the
acquired domain knowledge in the form of reusable assts and by reusing these assts in the
development of new products, the organization will be able to deliver the new products in a
shorter time and at a lower cost. Domain Engineering is a systematic approach to achieving
thisgoal.

Domain Engineering is the activity of collecting, organizing, and storing past
experience in building systems or parts of systemsin a particular domain in the form
of reusable assets (i.e. reusable workproducts), as well as providing an adequate
means for reusing these assets (i.e. retrieval, qualification, dissemination,
adaptation, assembly, etc.) when building new systems.

Domain Engineaing encompasss three main process components'’ Domain Analysis, Domain Analysis,

Domain Design, and Domain Implementation. The main purpose of each of these mmponents Domain Design, and

isgivenin Table 3. Domein
Implementation

The results of Domain Engineging are reused duing Application Engineering, i.e. the

processof building a particular system in the domain (seeFigure 8). éﬁgi 'ncif:g
Domain Engineering Main purpose
process component
Domain Analysis defining a set of reusable requirements for the systemsin the
domain
Domain Design establi shing a common architedure for the systemsin the
domain
Domain Implementation | implementing the reusable asts, e.g. reusable aomponents,
domain-spedfic languages, generators, and a reuse infrastructure

Table3 Three Main Process Components of Domain Engineering

Table 3 makes the digtinction between the @nventional software engineging and Domain
Engineaing clear: whil e the mnventional software engineeing concentrates on satisfying the
requirements for a single system, Domain Engineeing concentrates on providing reusable
solutions for families of systems. By putting the qualifier “domain” in front of analyss,

8 \We give aprecise definition of adomain in Section 3.6.1.

Y Most of the current Domain Engineging methods gill refer to the process components as phases,
Foll owing a recent trend in the software development methods field, we do not refer to analysis, design,
and implementation as phases since the term phase implies some rigid, waterfall-style successon of
engineeing steps. Modern process models, such as the Rational Objectory Process consider analysis,
design, and implementation as process components. These ae independent of the time dimension,
which is itself divided into phases (see Section 4.5.1). In this newer terminology, however, phases
indicate the maturity of the project over time. Important note: In order to be consistent with the original
literature, the descriptions of the existing Domain Engineaing methods in Section 3.7 use the term
phasein its older meaning (i.e. to denote processcomponents).

Software system
engineering methods

Multi-system scope
development

Components and
other reusable assets

Organizational
Memory, Design
Rationale, and
Experience Factory

Domain Engineeing 35

design, and implementation, we emphasize eactly this family orientation of the Domain
Engineging processcomponents.

Indeed, if you take a lodk at the intentions of most of the arrent software engineaing
methods (including ohjed-oriented analysis and design methods), you will realize that these
methods aim at the devel opment of “ this specific system for this specific customer and for this
specific context.” We refer to such methods software system engineering methods.

Domain Engineeing, on the other hand, aims at the development of reusable software, e.g. a
generic system from which you can instantiate oncrete systems or componentsto be reused in
different systems. Thus, Domain Engineaing has to take into acoount different sets of
customers (including potential ones) and usage mntexts. We say that Domain Engineeing
addresses multi-system scope devel opment.

Domain Engineeing can be applied to a variety of problems, such as development of domain-
spedfic frameworks, component libraries, domain-spedfic languages, and generators. The
Domain Analysis process sibcomponent of Domain Engineeing, in particular, can also be
applied to non-software-system-spedfic domains. For example, it has been used to prepare
surveys, e.g. asurvey of Architedure Description Languages [Cle96, CK95].

At the beginning of this sdion, we said that there are domains of systems and domains of
parts of systems (i.e. subsystems). The first kind of domainsis referred to as vertical domains
(e.g. domain of medical recrd systems, domain of portfolio management systems, etc.) and
the second kind is referred to as horizontal domains (e.g. database systems, numerical code
libraries, financial components library, etc.). The product of Domain Engineging applied to a
vertical domain is reusable software which we @n instantiate to yield any concrete system in
the domain. For example, we wuld produce a system framework (i.e. reusable system
architedure plus components) covering the scope of a entire vertical domain. On the other
hand, applying Domain Engineeaing to a horizontal domain yields reusable subsystems, i.e.
components. We will come back to the notion of vertical and horizontal domains in Sedion
3.6.2.

In our terminology, a component is a reusable pieceof software which is used to build more
complex software. However, as already indicated, components are not the only workproducts
of Domain Engineging. Other workproducts include reusable requirements, analysis and
design models, architedures, patterns, generators, domain-spedfic languages, frameworks,
etc. In general, we refer to any reusable workproduct as a reusable asset.

3.2 Domain Engineering and Related Approaches

Domain Engineaing addresses the foll owing two aspeds:

« Engineering of reusable software: Domain Engineeing is used to produce reusable
software.

 Knowedge management: Domain Engineaing should not be a “one-shot” activity.
Instead, it should be a continuous processwhose main goal is to maintain and updite the
knowledge in the domain of interest based on experience scope broadening, and new
trends and insights (see[Sim91] and [Arr89)]).

Current Domain Engineging methods concentrate on the first asped and do not support
knowledge evolution. The knowledge management asped is addressed more adequately in the
work on Organizational Memory [Con97, Buc97], Design Rationale [MC96], and Experience
Factory [BCR94]. Three approaches have much in common with Domain Engineeaing,
although they all come from different diredions and each of them has a different focus:

» Domain Engineging concentrates on delivering reusable software assts.

e Organizaional Memory concentrates on providing a common medium and an organized
storage for the informal communication among a group of designers.

36 Generative Programming, K. Czarnecki

 Dedign Rationale research is concerned with developing effective methods and
representations for capturing, maintaining and reusing records of the issues and trade-offs
considered by designers during design and the ultimate reasons for the design decisions
they make.

» Experience Factory provides a means for documenting the experience collected during
past projects. It primarily concentrates on conducting mostly quantitative measurements
and the analysis of the results.

As the research in these four areas advances, the overlap between them becomes larger. We
expect that future work on Domain Engineering will address the knowledge management
asgpect to a larger degree (e.g. [Bai97]). In this chapter, however, we exclusively focus on the
“engineering reusable software” aspect of Domain Engineering.

3.3 DomainAnalysis

The purpose of Domain Analysisisto
» sdect and define the domain of focus and
e collect relevant domain information and integrate it into a coherent domain model.

The sources of domain information include existing systems in the domain, domain experts,
system handbooks, textbooks, prototyping, experiments, aready known requirements on
future systems, etc.

It is important to note that Domain Analysis does not only involve recording the existing
domain knowledge. The systematic organization of the existing knowledge enables and
encourages us to actually extend it in creative ways. Thus, Domain Analysis is a creative
activity.

A domain model is an explicit representation of the common and the variable properties of the
systems in a domain and the dependencies between the variable properties. In genera, a
domain modd consists of the following components:

e Domain definition: A domain definition defines the scope of a domain and characterizes
its contents by giving examples of systems in a domain, counterexamples (i.e. systems
outside the domain), and generic rules of inclusion or exclusion (e.g. “Any system having
the capability X belongs to the domain.”).

e Domain lexicon: A domain lexicon defines the domain vocabulary.

e Concept models: Concept models describe the concepts in a domain expressed in some
appropriate modeling formalism (e.g. object diagrams, interaction and state-transition
diagrams, or entity-relationship and data-flow diagrams).

* Feature models: Feature models define a set of reusable and configurable requirements
for specifying the systems in a domain. Such requirements are generally referred to as
features. A feature model prescribes which feature combinations are meaningful: It
represents the configuration aspect of the reusable software. We discuss feature models in
Chapter 5.4 in great detail.

Domain model:
commonalities,
variabilities, and
dependencies

Domain Definition

Domain Lexicon

Concept model

Feature model

Domain Engineering 37

Domain Engineering

domain domain architec-
knowledge model ture(s)

+domain-specific

new
reqirements languages

*generators

*components

new

customer requirements

needs

product

product
configuration

Application Engineering |

Figure8 Software development based on Domain Engineering (adapted from [MBSE97])

Domain Analysis generally involves the following activities:

Domain planning, e Domain planning, identification, and scoping: planning of the resources for performing
identification, and domain analysis, identifying the domain of interest, and defining the scope of the domain;
scoping

Domainmodeling « Domain modeling: developing the domain mode.

Table 4 gives you amore detailed list of Domain Analysis activities. This list was compiled by
Arrango [Arr94] based on the study of eight different Domain Analysis methods.

38

Generative Programming, K. Czarnecki

Domain Analysis major
process components

Domain Analysis activities

Domain characterization

(domain planning and
scoping)

Select domain

Perform business analysis and risk analysis in order to determine which
domain meets the business objectives of the organization.

Domain description
Define the boundary and the contents of the domain.

Data source identification
Identify the sources of domain knowledge.

Inventory preparation
Create inventory of data sources.

Data collection

(domain modeling)

Abstract recovery
Recover abstractions

Knowledge elicitation
Elicit knowledge from experts

Literature review

Analysis of context and scenarios

Data analysis

(domain modeling)

I dentification of entities, operations, and relationships

Modularization

Use some appropriate modeling technique, e.g. object-oriented analysis
or function and data decomposition. Identify design decisions.

Analysis of smilarity

Analyze similarities between entities, activities, events, relationships,
structures, etc.

Analysis of variations

Analyze variations between entities, activities, events, relationships,
structures, etc.

Analysis of combinations

Analyze combinations suggesting typical structural or behavioral
patterns.

Trade-off analysis

Analyze trade-offs that suggest possible decompositions of modules and
architectures to satisfy incompatible sets of requirements found in the
domain.

Taxonomic classification

(domain modeling)

Clustering
Cluster descriptions.

Abstraction
Abstract descriptions.

Classification
Classify descriptions.

Generalization
Generalize descriptions.

Vocabulary construction

Evaluation

Evaluate the domain model.

Table4 Common Domain Analysis process by Arrango [Arr94]

Sdtware
architedure

Architedural
patterns

Domain Engineering 39

3.4 Domain Design and Domain I mplementation

The purpose of Domain Design is to develop an architedure for the systems in the domain.
Shaw and Garlan define software architecture as follows [SG96]:

“Abstractly, software architedure involves the description d elements from which
systems are built, interactions among thase dements, patterns that guide their
compasition, and constraints on these patterns. In general, a paticular systemis defined
in terms of a colledion d comporents andinteractions amongthese cmporents. Stch a
system may in turn be used as a (composite) element in alarger systemdesign.”

Buschmann et a. offer another definition of software architecture [BMR+96]:

A software architedure is a description d the subsystems and comporents of a software
system and the relationships between them. Sulsystems and comporents are typically
spedfied in dfferent views to show the relevant functiond and norfiunctiond properties
of a software system. The software architedure of a systemis an atifact. It is the result
of the software devdopment activity.

Just as the architecture of a building is usually represented using different views (e.g. static
view, dynamic view, specification of materials, etc.), the adequate description of a software
architecture also requires multiple views. For example, the 4+1 View Modd of software
architecture popularized by the Rational methodologist Philippe Kruchten consists of a logical
view (class, interaction, collaboration, and state diagrams), a process view (process diagrams),
a physical view (package diagrams), a deployment view (deployment diagrams), plus a use
case model (see Figure 17).

The elements and their connection patterns in a software architecture are selected to satisfy
the requirements on the system (or the systems) described by the architecture. When
developing a software architecture, we have to consider not only functional requirements, but
also nonfuctional requirements such as performance, robustness, failure tolerance, throughput,
adaptability, extendibility, reusahility, etc. Indeed, one of the purposes of software architecture
is to be able to quickly tell how the software satisfies the requirements. Eriksson and Penker
[EP98] say that “architecture should serve as a map for the developers, revealing how the
system is constructed and where specific functions or concepts are located.”

Certain recurring arrangements of elements have proven to be particularly useful in many
designs. We refer to these arrangements as architedural patterns. Each architectural pattern
aims at satisfying a different set of requirements. Buschman et a. have compiled a (partial)
list of architectural patterns (see [BMR+96] for a detailed description of these patterns):

e Layers pattern: An arrangement into groups of subtasks in which each group of subtasks
isat aparticular level of abstraction.

* Pipes and filters pattern: An arrangement that processes a stream of data, where a
number of processing steps are encapsulated in filter components. Data is passed through
pipes between adjacent filters, and the filters can be recombined to build related systems
or system behavior.

e Blackboard patern: An arrangement where several specialized subsystems assemble their
knowledge to build a partial or approximate solution to a problem for which no
deterministic solution strategy is known.

e Broker pattern: An arrangement where decoupled components interact by remote service
invocations. A broker component is responsible for coordinating communication and for
transmitting results and exceptions.

e Model-view-controller pattern: A decomposition of an interactive system into three
components: A model containing the core functionality and data, one or more views

40 Generative Programming, K. Czarnecki

displaying information to the user, and one or more controllers that handle user input. A
change-propagation mechanism ensures consistency between user interface and moddl.

e Microkernel pattern: An arrangement that separates a minimal functional core from
extended functionality and customer-specific parts. The microkernel also serves as a
socket for plugging in these extensions and coordinating their collaboration.

It isimportant to note that real architectures are usually based on more than one of these and
other patterns at the same time. Different patterns may be applied in different parts, views,
and at different levels of an architecture.

The architectural design of a system is a high-level design: it aims at coming up with a
flexible structure which satisfies all important requirements and still leaves a large degree of
freedom for the implementation. The architecture of a family of systems has to be even more
flexible since it must cover different sets of requirements. In particular, it has to include an
explicit representation of the variability (i.e. configurability) it covers so that concrete
architectures can be configured based on specific sets of requirements. One way to capture this
variability is to provide configuration languages for the configurable parts of the architecture.
We will see a concrete example of a configuration language in Chapter 10.

A flexible architecture is the prerequisite for enabling the evolution of a system. Asarule, we
use the most stable parts to form the “skeleton” and keep the rest flexible and easy to evolve.
But even the skeleton has to be sometimes modified. Depending on the amount of flexibility
an architecture provides, we distinguish between generic and highly flexible architectures
[SCK+96]:

e Generic architecture: A system architecture which generally has a fixed topology but
supports component plug-and-play relative to a fixed or perhaps somewhat variable set of
interfaces. We can think of a generic architecture as a frame with a number of sockets
where we can plug in some alternative or extension components. The components have to
clearly specify their interfaces, i.e. what they expect and what they provide.

» Highly flexible architecture: An architecture which supports structural variation in its
topology, i.e. it can be configured to yield a particular generic architecture. The notion of
a highly flexible architecture is necessary since a generic architecture might not be able to
capture the structural variability in a domain of highly diverse systems. In other words, a
flexible architecture componentizes even the “skeleton” and allows us to configure it and
to evolveit over time.

Software architecture is a relatively young field with a very active research. You will find
more information on this topic in [SG96, BMR+96, Arch, BCK98].

Domain Design is followed by Domain Implementation. During Domain Implementation we
apply appropriate technologies to implement components, generators for automatic
component assembly, reuse infrastructure (i.e. component retrieval, qualification,
dissemination, etc.), and application production process.*®

3.5 Application Engineering

Application Engineering is the process of building systems based on the results of Domain
Engineering (see Figure 8). During the requirements analysis for a new systems, we take
advantage of the existing domain model and select the requirements (features) from the
domain modd which match customer needs. Of course, new customer requirements not found
in the domain modd require custom development. Finally, we assemble the application from

8 Some authors (e.q. [FPF96, p. 2]) divide Domain Engineering into only two parts, Domain Analysis
and Domain Implementation, and regard the development of an architecture merely as an activity in the
Domain Implementation.

Generic vs. highly
flexible architectures

Domain
Implementation

Domain Engineering 41

the existing reusable components and the custom-developed components according to the
reusable architecture, or, ideally, let a generator do this work.

3.6 Seected Domain Engineering Concepts

In the following sections, we discuss a number of basic concepts related to Domain
Engineering: domain, domain scope, relationships between damains, problem space and
solution space, and spedalized Domain Engineaing methods.

3.6.1 Doman

The American Heritage Dictionary of the English Language gives us a very general definition
of adomain [Dict]:

“Domain: A sphere of activity, concern, or function; a field, e.g. the domain of history.”

According to this definition, we can view a domain as a body of knowledge organized around
some focus, such as a certain professional activity.

Simos et al. note that the term domain is used in different disciplines and communities, such
as linguigtics, cultural research, artificial intelligence (Al), object-oriented technology (OO),
and software reuse, in somewhat different meanings [SCK+96, p. 20]. They distinguish two
general usage categories of thisterm:

1. domain asthe “real world”;
2. domain asa set of system.

The notion of domain as the “real world” is used in the Al and knowledge-engineering
communities. For example, the guidebook on Knowledge-Basaed Systems Analysis and Design
Support (KADS), which is a prominent method for developing knowledge-based systems,
gives the following definition [TH93, p. 495]:

“Domain: An area o or field of spedalization where human expertise is used, and a
Knowledge-Based System apgicationis proposed to be used within it.”

Domain as the “real world” encapsulates the knowledge about the problem area (eg.
acoourts, customers, deposits and withdrawals, etc., in a bark accourting damain), but not
about the software from this problem area. This notion of domain as the “real world” is also
usad in object-oriented technology. For example, the UML (Unified Modeling Language)
glossary defines domain as follows [UML97a]:

“Domain: An area of knowledge or activity characterized by a set of concepts and
terminology understood ty practitioners in that area.”

In the context of software reuse and particularly in Domain Engineering, the term domain
encompasses not only the “real world” knowledge but aso the knowledge about how to build
software systems in the domain of interest. Some early definitions even equate domain to a set
of systems, e.g. [KCH+90, p. 2]:

“Domain: A set of current and future apgications which share a set of commnon
capaliliti esand dda.”

or [Bai92, p. 1]:
“Domains are famili es of similar systems.”

Thisdomain as a set of systems view is more appropriately interpreted as the assertion that a
domain encompasses the knowledge used to build a family of software systems.

42 Generative Programming, K. Czarnecki

It is essential to realize that a domain is defined by the consensus of its stakehalders, i.e.
people having an interest in the domain, eg. marketing and technical managers,
programmers, end-users, and customers, and therefore it is subject to both politics and
legacies.

Srinivas makes the key observation that the significance of a domain is externally attributed
[Sri91]:
Nothing in the individud parts of a damain either indicates or determines the awhesion
of the partsas a damain. The whesionis exerna and abitrary—a colledion d entities
is a damain ony to an extent that it is perceived by a comnunity as being wseful for
modeling some asped of reality.

Shapere explains this community-based notion of a domain as follows [Sha77] (paraphrase
from [Sri91]):

In a gven comnunity, items of real-world information come to be assciated as bodes of
information a problem domains having the foll owing characteristics:

e deg o comprehensive relationships among the items of information ae
suspeded o postulated with resped to some dassof problems;

» theproblemsare perceved to be significant by the members of the comnunity.

Finally, it is also important noting that the kinds of knowledge contained in a domain include
both

« formal modes, which can often be inconsistent among each other, e.g. different domain
theories, and

« informal expertise, which is difficult or impossible to formalize (as exemplified by the
problemsin the area of expert systems [DD87]).

Asaconclusion, we will adopt the following definition of a domain:

Domain: An area of knomMedge
e scoped to maximize the satisfaction d the requirements of its dakehdders,

e including aset of concepts and terminology understood ky practitioners in that
area, and

e including knoMedge of how to buld software systems (or parts of software
systems) in that area.

3.6.2 Domain Scope

There are two kinds of domain scope with respect to the software systems in a domain (see
Figure 1, p. 7):

e Horizontal scope or system category scope: How many different systems are in the
domain? For example, the domain of containers (e.g. sets, vectors, lists, maps, etc.) has a
larger horizontal scope than the domain of matrices since more application need
containers than matrices.

e Vertical scope or per-system scope: Which parts of these systems are in the domain? The
vertical scopeisthelarger thelarger parts of the systems are in the domain. For example,
the vertical scope of the domain of containers is smaller than the vertical scope of the
domain of portfolio management systems since containers capture only a small dice of
the functionality of a portfolio management system.

Horizontal and
vertical scope

Vertical, horizontal,
encapsulated, and
diffused domains

Native vs. innovative
domains

Product lines vs.
product families

Domain Engineering 43

Basaed on the per-system scope, we distinguish between the following kinds of domains
[SCK+96]:

» vertical vs. horizontal domains;

e encapsulated vs. diffused domains.

System C m
System Bl 22 M
SysfemA % m

System C System (|
System B / System B

2

System A // / System A

systems in the scope systems in the scope of systems in the scope
of a vertical domain a horizontal, of a horizontal,
encapsulated domain diffused domain

Figure9 Vertical, horizontal, encapsulated, and diffused domains. (Each rectangle represents a system.
The shaded areas depict system parts belonging to the domain.)

Vertical domains contain complete systems (see Figure 9). Horizontal domains contain only
parts of the systems in the domain scope. Encapsulated domains are horizontal domains
where the system partsin the domain are well-localized with respect to their systems. Diffused
domains are also horizontal domains, but they contain several, different parts of each system
in the domain scope.™®

The scope of a domain can be determined using different strategies [SCK+96]:

1. choose a domain from the existing “native” domains (i.e. a domain which is aready
recognized in an organization);

2. define an innovative domain based on

e ast of existing software systems sharing some commonalities (i.e. a family of
systems) and/or

* some marketing strategy.
The last two strategies are closdaly related to the following two concepts:
e Product family: “A product family is a group of products that can be built from a

common set of assets.” [Wit96, p. 16] A product family is defined on the basis of
similarities between the structure of its member products. A product family shares at least

° Please note that, in Domain Engineering, the terms horizontal and vertical are used in a different
sense than in the Object Management Architecture (OMA) defined by the Object Management Group
(OMG, see www.omg.org). The OMG uses the term vertical domain interfaces to denote component
interfaces specific to a specialized market (e.g. manufacturing, finance, telecom, transportation, etc.)
and the term horizontal facilities (or common facilities) to denote generic facilities such as printing,
database facilities, electronic mail facilities, etc. Thus, the OMG distinguishes between horizontal and
vertical components, whereas in Domain Engineering we say that components have a horizontal nature
in general since their scope does not cover whole systems but rather parts of systems. In Domain
Engineering terms (see Section 6.4.1), OMG horizontal components are referred as modeling
components (i.e. they model some general aspect such as persistency or printing) and the OMG vertical
components are referred to as application-specific components. On the other hand, it is correct to say
that modeling components have alarger horizontal scope than application-specific components.

44 Generative Programming, K. Czarnecki

a common generic architecture. Product families are scoped based on commonalities
between the products.

e Product line: “A product line is a group of products sharing a common, managed set of
features that satisfy the specific needs of a sdected market.” [Wit96, p. 15] Thus, the
definition of a product line is based on a marketing strategy rather than similarities
between its member products. The features defined for a product line might require totally
different solutions for different member products. A product line might be well served
with one product family; however, it might also require more than one product family.
On the other hand, a product family could be reused in more then one product line.
Product lines are scoped based on a marketing strategy.

Unfortunately, the terms product family and product line are often used interchangeably in the
literature.

We determine the scope of a domain during the domain scoping activity of Domain Analyss.
The scope of a domain is influenced by several factors, such as the stability and the maturity
of the candidate areas to become parts of the domain, available resources for performing
Domain Engineering, and the potential for reuse of the Domain Engineering results within
and outside an organization. In order to ensure a business success, we have to select a domain
that strikes a healthy balance among these factors. An organization which does not have any
experience with Domain Engineering should choose a small but important domain, e.g. some
important aspect of most systems it builds. The resulting components and models can be
reused on internal projects or sold outside the organization. After succeeding with the first
domain, the organization should consider adding more and more domains to cover its product
lines.

3.6.3 Reationships Between Domains
We recognize three major types of relationships between domains:

* A iscontained in B: All knowledge in domain A also belongs to domain B, i.e. A isa
subdomain of B.?’ For example, the domain of matrix packages is a subdomain of the
domain of matrix computation packages since matrix computations cover both matrices
and matrix computation algorithms.

e A uses B: Knowledge in A references knowledge in B in a significant way, i.e it is
worthwhile to represent aspects of A in terms of B. We say that B is a support domain of
A. For example, the storage aspect of a matrix package implemented using different
containers from a container package. In other words, the domain of container packagesis
a support domain of the domain of matrix packages.

e Aisanalogous to B [SCK+96]: There is a considerable amount of similarity between A
and B; however, it is not necessarily worthwhile to express one domain in terms of the
other. We say that A is an analogy domain of B. For example, the domain of numerical
array packagesis an analogy domain of the domain of matrix packages. They are both at
asimilar level of abstraction (in contrast to the more fundamental domain of containers,
which could be a support domain for the domain of numerical array and the domain
matrix packages) and clearly have different focuses (see Section 10.1.1.2.6). Yet till
there is a considerable amount of similarity between them and studying one domain may
provide useful insightsinto the other one.

% |n [SCK+96] B is referred to as generalization of A and A as specialization of B.

Subdomains

Support domains

Analogy domains

Domain-specific
languages

Domain Engineering 45

system A
implementation

system B
implemem’afion=‘
>. system C
implementation

system D
implementation

specification

system B
specification)

. system C
specification

system D
specification

solution
space

Figure10 Problemand solution space

3.6.4 Problemand Solution Space

The set of all valid system specifications in a domain (e.g. valid feature combinations) is
referred to as the problem space and the set of all concrete systems in the domain is referred
as to as the solution space (see Figure 10). One of the goals of Domain Engineering is to
produce components, generators, production processes, etc., which automate the mapping
between the system specifications and the concrete systems.

A problem space contains the domain concepts that application programmers wold like to
interact with when specifying systems, whereas the solution space contains the
implementation concepts. Thereis natural atension between these two spaces because of their
different goals: The domain concepts have a structure that allows direct and intentional
expression of problems. On the other hand, when we design the implementation concepts, we
strive for small, atomic components that can be combined in as many ways as possible. We
want to avoid any code duplication by factoring out similar code sections into small,
(parameterized) components. This is potentialy at odds with the structure of the problem
space since not all of these small components should be visible to the application programmer.
Thereisanumber of other issues to consider when we design both spaces. We discuss them in
Section 9.4.3.

The overall structure of the solution space is referred to as the target architecture. For
example, the target architecture of the generative matrix computation library described in
Chapter 10 is a special form of a layered architecture referred to as the GenVoca architecture
(see Section 6.4.2). The target architecture defines the framework for the integration of the
implementation components.

The system specifications in the problem space are usualy expressed using a number of
domain-specific languages (DSLS), i.e. languages specialized for the direct and declarative
expression of system requirements in a given domain. These languages define the domain
concepts. We discuss the advantages of DSLs in Section 7.6.1 and the issues concerning their
design and implementation in Section 9.4.1.

365 Specidized Methods

Different kinds of systems require different modeling techniques. For example, most
important aspects of interactive systems are captured by use cases and scenarios. On the other
hand, large data-centric applications are sometimes more appropriately organized around
entity-relationship diagrams or object diagrams. Additional, special properties such as real-
time support, distribution, and high availability and fault tolerance require specialized
modding techniques. Thus, different categories of domains will require different specialized
domain engineering methods, i.e. methods deploying specialized notations and processes. We
will discussthisissuein Chapter 4. In Chapter 9, we present DEMRAL, a specialized Domain
Engineering method for devel oping reusable algorithmic libraries.

46 Generative Programming, K. Czarnecki

3.7 Survey of Domain Analysis and Domain Engineering
M ethods

Thereis alarge number of Domain Analysis and Domain Engineering methods. Two of them
deserve special attention since they belong to the most mature and best documented (including
case studies) methods currently available: Feature-Oriented Domain Analysis and
Organization Domain Modeling. We describe them in Sections 3.7.1 and 3.7.2. Sections 3.7.3
through 3.7.8 contain short descriptions of twelve other Domain Engineering methods or
approaches. Each of them has made important contributions to some aspects of Domain
Engineering (such as conceptual clustering, rationale capture, formal approaches, etc.).

Two surveys of Domain Analysis methods have been published to date: [WP92] and the more
comprehensive [Arr94]. Compared to these surveys, the following sections also reflect the
newest development in the field of Domain Engineering.

Please note that, in order to be consistent with the original descriptions of the Domain
Engineering methods in the literature, the survey uses the term phase in its older meaning,
i.e. to denote process components (cf. footnote on page 33).

3.7.1 Festure-Oriented Domain Analysis (FODA)

FODA is a Domain Analysis method developed at the Software Engineering Institute (SEI).
The method is described in [KCH+90]. Tool support for FODA is outlined in [Kru93] and a
comprehensive example of applying FODA to the Army Movement Control Domain is
described in [CSH92, PC91]. A number of other military projects to use FODA are listed in
[CARDS94, p. F.2]. FODA has also been applied in the area of telecommunication systems,
e.g. [Zal96, VAM+98].

Commeon Applications Software
Command EFA-Unique Applications | - Force Level Control (FLC)
& Control - System Management
Applications - Movement Control
Software
{Layer 4} | Applications-Layer Reuse Library |

Workstation Data Common Standing
Common Managernent Management Messzge Management Fequestfor
ATCCS Services Information
Support [SRI] Services
fl:,fr Machine Interface Computer Inter-5oftwrare)
Software h o -~ Security
{CASS) Toolkit Communication s iZommunication s
{Layer 3)
Real-Time Services
System - Operating Systemn(IHIX)
53 piort - DEMS [(5dL) T
are . - Graphics Support - #fda Bindings
EOTS} Commercial Off-The-Shelf Software | - Spreadahecte - Communication Drivers
{ yer2:l -Word Processing
CHS Based Computer Systems
Hamdware
{Layer 1}
Zomputers Printer Comrunication £ Interface Units
Cizplay s Tape Cizks

Figure 11 Example of a FODA structure diagram: The structure diagram of the Army Movement
Control Domain (from [PC91])

Domain Engineering 47
3711 FODA Process
The FODA process consists of two phases [MBSE97]:%*

1. Context Analysis: The purpose of Context Analysis is to define the boundaries of the
domain to be analyzed.

2. Domain Modeling: The purpose of Domain Modeling is to produce a domain model.

We describe these phasesin the following two subsections.

Exacute

Camrman der
Gujdance

Planning

Crperational

Consideration Crders

E=stirnate

Movement

Positi
etk Control

Reports

. Crrder Status
Zonstraints

and Gption

Eattlefield
Crata

Grrders

Tactical and Termrai Weather, Friendly &]
C?Zﬁ'l;?ai?rts {5;1;? Enemy Information flovement File
{dynamic)

Figure 12 Example of a FODA context diagram: The context diagram of the Army
Movement Control Domain (from [PC91]). A FODA context diagram is a typical
data-flow diagram: "The arrows represent the information received or generated by
the movement control domain. The closed boxes represent the set of sources and sinks
of information. The open-ended boxes represent the databases that the movement
control domain must interact with." [MBSE97]

37111 Context Analysis

The FODA Context Analysis defines the scope of a domain that is likely to yied useful
domain products.? In this phase, the relationships between the domain of focus and other
domains or entities are also established and analyzed for variability. The results of the context
analysis along with factors such as availability of domain expertise and project constraints are
used to limit the scope of the domain [MBSE97]. The results of the Context Analysis are the
context model which includes a structure diagram (see Figure 11) and a context diagram (see
Figure 12).

2 Originally, FODA contained a third phase called Architectural Modeling (see [KCH+90]). This phase
is no longer part of FODA, but instead it was converted into the Domain Design phase, which follows
FODA in the overall framework of Model-Based Software Engineering (see Section 3.7.1.3).

2 The FODA Context Analysis corresponds to the domain planning and domain scoping activities
defined in Section 3.3.

48 Generative Programming, K. Czarnedi

37112 Domain Modding

During the FODA Domain Modding phase the main commonaliti es and variabiliti es between
the applications in the domain are identified and modeled. This phase involves the foll owing
steps [MBSEQ7]:

1. Information Analysis: The main purpose of Information Analysis is to capture domain
knowledge in the form of domain entities and the relationships between them. The
particular modeling technique used in this phase culd be semantic networks, entity-
relationship modeling, or oljed-oriented modeling. The result of Information Analysisis
the information model, which corresponds to the @mncept model mentioned in Sedion 3.3.

2. Features Analysis. “Features Analysis captures a customer’s or end-user’s understanding
of the general capahiliti es of applications in a domain. For a domain, the ammmonaliti es
and dfferences among related systems of interest are designated as features and are
depicted in the features model.” 2 [MBSE97]

3. Operational Analysiss Operational Analysis yields the operational model which
represents how the application works by capturing the relationships between the objeds
in the information model and the features in the features modd.

Another important product of this phase is a domain dictionary which defines all the
terminology used in the domain (including textual definitions of the features and entities in
the domain).

3712 The Concept of Features
In FODA, features are the properties of a system which directly affect end-users®*:

‘Feature: A prominent and user-visible aspect, quality, or characteristic of a software system
or systems.” [KCH+90, p. 2]

For example, “when a person buys an automohile a dedsion must be made about which
transmisgon feature (e.g. automatic or manual) the ar will have” [KCH+90, p. 35 Thus,
FODA features can be viewed as features in the sense of Conceptual Moddling (see Sedion
2.2) with the additional requirement of diredly affeding the end-user.

In general there are two definiti ons of features found in Domain Engineeing literature:
1. aend-user-visible dharacteristic of a system, i.e. the FODA definition, or

2. adigtinguishable dharacteristic of a concept (e.g. system, component, etc.) that is relevant
to some stakeholder of the mncept. The latter definition is used in the mntext of ODM
(see Sedion 3.7.2) and Capture (see Sedion 3.7.4) and is fully compatible with the
understanding of features in Conceptual Modeling.

We prefer the latter definition since it is more general and covers the important case of
software @mponents.

The features of a software system are documented in a features model. An important part of
this model is the features diagram. An example of a smple features diagram of an automobile
is shown in Figure 13. This example also ill ustrates threetypes of features™:

3 The FODA term “feaures model” is equivalent to the term “feature model” defined in Section 3.3.

24 A user may be ahuman user or another system with which applications in a domain typically interact.

Two definitions of
feature

Mandatory,
alternative, and
optional features

Domain Engineering 49

1. mandatory features, which each application in the domain must have, e.g. all cars have a
transmission;

2. alternative features, of which an application can posses only one at atime, e.g. manual or
automatic transmission;

3. optional features, which an application may or may not have, e.g. air conditioning.

car
optional
mandatory feature
transmission 7€a7Ures popsepower air conditioning

composition rule:
"air conditioning" requires
"horsepower" > 100

alternative
features
manual automatic

rationale:
"manual" more fuel efficient

Figure 13 Example showing features of a car (from [KCH+90, p. 36]).
Alternative features are indicated by an arc and optional features by an empty
circle.

The features diagram has the form of a tree in which the root represents the concept being
described and the remaining nodes denote features. The relationships are consists-of
relationships denoting, for example, that the description of a transmission consists of the
descriptions of manual and automatic transmissions.

The FODA-style of featural description subsumes both the featural and the dimensional
descriptions from the classical conceptual modeling, which we discussed in Sections 2.2.1 and
2.3.6. Thisisillustrated in Figure 14.

a concept a concept
dimension 1 dimension 2
feature 1 feature 2 feature 3 value 1.1 value 1.2 value 2.1 value 2.2
a. featural description b. dimensional description

Figure 14 Representation of featural and dimensional descriptions using FODA feature notation

Feature interdependencies are captured using composition rules (see Figure 13). FODA
utilizes two types of composition rules:

5 Strictly speaking, we have to distinguish between direct features of a concept and subfeatues of
features. Direct features of an application may be mandatory, alternative, or optiona with respect to all
applications within the domain. A subfeature may be mandatory, alternative, or optional with respect to
only the applications which also have its parent feature. We explain thisideain Chapter 5.4.1.

50 Generative Programming, K. Czarnecki

1. requires rules. Requires rules capture implications between features, eg. “air
conditioning requires horsepower greater than 100" (see Figure 13).

2. mutually-exclusive-with rules: These rules model constraints on feature combinations. An
example of such a rule is “manual mutually exclusive with automatic’. However, this
ruleis not needed in our example since manual and automatic are alternative features. In
general, mutually-exclusive-with rules allow us to exclude combinations of features where
each feature may be seated in quite different locations in the feature hierarchy.

We can also annotate features with rationales. A rationale documents the reasons or trade-offs
for choosing or not choosing a particular feature. For example, manual transmission is more
fuel efficient than automatic one. Rationales are necessary since, in practice, not all issues
pertaining to the feature model can be represented formally as composition rules (due to the
complexity involved or limited representation means). Theoretically, fuel efficient in Figure
13 could be modeled as a feature. In this case, the dependency between manual and fuel
efficient could be represented as the following composition rule: fuel efficient requires
manual. However, one quickly recognizes that the dependency between fuel efficient and
manual is far more complex. First, we would need some measure of fuel efficiency and,
second, fuel efficiency is influenced by many more factors than just the type of car
transmission. The problem becomes similar to the problem of representing human expertisein
expert systems [DD87]. Thus, stating the rationale informally allows us to avoid dealing with
this complexity. In general, rationale refers to factors that are outside of the considered mode!.

The usage of the term rationale in the Domain Engineering literature is inconsistent. There
are roughly two definitions of this term:

1. the trade-offs for choosing or not choosing a particular feature, i.e. the FODA definition
(this notion is similar to the forces section in the description of a design pattern
[GHJIV95]);

2. the particular reason for choosing a specific feature after considering a number of trade-
offs (this would correspond to recording the information about which forces were directly
responsible for arriving at the decison made). The latter definition is used in Capture
(Section 3.7.4) and in ODM (Section 3.7.2). This definition is motivated by the work on
design rationale capture [Shu9l, Bai97], the goal of which is to record the reason for
selecting a particular design alternative by a (not necessarily software) designer during
the design of a specific system.

Basad on the purpose of a feature, the FODA features modd distinguishes between context,
representation, and operational features [MBSE97]:%

1. Context features “are those which describe the overall mission or usage patterns of an
application. Context features would also represent such issues as performance
requirements, accuracy, and time synchronization that would affect the operations.”
[MBSE97]

2. Representation features “are those features that describe how information is viewed by a
user or produced for another application (i.e., what sort of input and output capabilities
are available).” [MBSE97]

3. Operational features “are those features that describe the active functions carried out
(i.e., what the application does).” [MBSE97]

Of course, other types of features are also possible. For example, Bailin proposes the following
feature types. operational, interface, functional, performance, development methodology,
design, and implementation features [Bai92].

% The original FODA description in [KCH+90] uses a slightly different categorization; it distinguishes
between functional, operational, and presentation features.

Composition rules

Rationale

Two definitions of
rationale

Binding time,
binding location, and
binding site

Domain Engineering 51

Finally, FODA features are classified according to their binding time into compile-time,
activation-time, and runtime features [KCH+90]:

1. Compile-time features are “features that result in different packaging of the software and,
therefore, should be processed at compile time. Examples of this class of features are
those that result in different applications (of the same family), or those that are not
expected to change once decided. It is better to process this class of features at compile
time for efficiency reasons (time and space).”

2. Activation-time features (or load-time features) are those “features that are selected at the
beginning of execution but remain stable during the execution. [...] Software is
generalized (e.g. table-driven software) for these features, and instantiation is done by
providing values at the start of each execution.”

3. Runtime features are those “features that can be changed interactively or automatically
during execution. Menu-driven software is an example of implementing runtime
features.”

The FODA classification of features according to binding time is incomplete. There are aso
other times, e.g. linking time, or first-call time (e.g. when a method is called the first time;
thistimeisrelevant for just-in-time compilation [Kic97]). In general, feature binding time can
be classified according to the specific times in the life cycle of a software system. Some
specific products could have their specific times (e.g. debugging time, customization time,
testing time, or, for example, the time when something relevant takes place during the use of
the system, e.g. emergency time, etc.). Also, when a component is used in more than one
location in a system, the allowed component features could depend on this location.
Furthermore, binding could depend on the context or setting in which the system is used. For
this reason, Simos et a. introduced the term binding site ([SCK+96]) which covers all these
cases (i.e. binding time and context). We will discuss this concept in Section 5.4.4.3 in more
detail.

The features model describes the problem space in a concise way: “The features modd is the
chief means of communication between the customers and the devel opers of new applications.
The features are meaningful to the end-users and can assist the requirements analysts in the
derivation of a system specification that will provide the desired capabilities. The features
model provides them with a complete and consistent view of the domain.” [MBSE97]

To summarize, a FODA features model consists of the following four key elements:
1. features diagram, i.e. a representation of a hierarchical decomposition of features
including the indication whether or not each feature is mandatory, alternative, or

optional;

2. feature definitions for al features including the indication of whether each feature is
bound at compile time, activation time, or at runtime (or other times);

3. composition rules for features;
4. rationale for featuresindicating the trade-offs.

We will come back to this topic in Chapter 5, where we define a more comprehensive
representation of feature models.

3713 FODA and M odd-Based Softwar e Engineering

FODA is a part of Model-Based Software Engineering (MBSE), a comprehensive approach to
family-oriented software engineering based on Domain Engineering, being developed by SEI

52 Generative Programming, K. Czarnecki

(see [MBSEQ7] and [Wit94]).?” MBSE deploys a typical family-oriented process architecture
consisting of two processes: Domain Engineering and Application Engineering (see Figure 8).
The Domain Engineering process, in turn, consists of Domain Analysis, Domain Design, and
Domain Implementation, where FODA takes the place of Domain Analysis.

3.7.2 Organization Domain Modeling (ODM)

ODM is a domain engineering method developed by Mark Simos of Synquiry Ltd. (formerly
Organon Matives Inc.). The origins of ODM date back to Simos's work on the knowledge-
based reuse support environment Reuse Library Framework (RLF) [Uni88]. Since then ODM
has been used and refined on a number projects, most notably the STARS project (see Section
3.8), and other projects involving organizations such as Hewlett-Packard Company, Lockheed
Martin (formerly Loral Defense Systems-East and Unisys Government Systems Group), Rolls-
Royce, and Logicon [SCK+96]. During its evolution, ODM assimilated many ideas from other
domain engineering approaches as well as work in non-software disciplines such as
organization redesign and workplace ethnography [SCK+96]. The current version 2.0 of
ODM s described in [SCK+96], a comprehensive guidebook comprising almost five hundred
pages. This guidebook replaces the original ODM description in [SC93].

Some of the unique aspects of ODM include

* Focus on stakeholders and settings: Any domain concepts and features defined during
ODM have explicit traceability links to their stakeholders and relevant contexts (i.e.
settings). In addition, ODM introduces the notion of a grounded abstraction, i.e.
abstraction based on stakeholder analysis and setting analysis, as opposed to the “right”
abstraction (a term used in numerous textbooks on software design), which is based on
intuition.

e Types of domains; ODM distinguishes between horizontal vs. vertical, encapsulated vs.
diffused, and native vs. innovative domains (see Sections 3.6.1 and 3.6.2).

e More general notion of feature: ODM uses a more general notion of feature than FODA
(see Section 3.7.1.2). An ODM feature does not have to be end-user visible; instead, it is
defined as a difference between two concepts (or variants of a concept) that “makes a
significant difference” to some stakeholder. ODM features directly correspond to the
notion of features discussed in Chapter 2.

e Binding site: In FODA, a feature can be bound at compile, start, or runtime (see Section
3.7.1.2). ODM goes beyond that and introduces the notion of binding site, which allows
for a broader and finer classification of binding times and contexts depending on domain-
specific needs. We discuss thisideain Section 5.4.4.3

e Analysis of feature combinations: ODM includes explicit activities aimed towards
improving the quality of features, such as feature clustering (i.e. co-occurrence of
features), aswell as the building of a closure of feature combinations (i.e. enumerating all
valid feature combinations). The latter can lead to the discovery of innovative system
configurations which have not been considered before.

e Conceptual modeling: ODM uses a very general modeling terminology similar to that
introduced in Chapter 2. Therefore, ODM can be specialized for use with any specific
system modeing techniques and notations, such as object-oriented analysis and design
(OOA/D) methods and notations or structured methods. We discuss this topic in Chapter
4. Also, in Chapter 9, we present a specialization of ODM for developing algorithmic
libraries.

e Concept starter sets: ODM does not prescribe any particular concept categories to look
for during modeling. While other methods specifically concentrate on some concept

2" FODA was conceived before the work on MBSE started.

Unigue aspects of
ODM

Domain Engineeing 53

categories auch as ohjeds, functions, algorithms, data structures, etc., ODM uses concept
starter sets consisting of different combinations of concept categories to jumpstart
modding in different domains.

Scoping of the asset base: ODM does not require the implementation of the full domain
model. There is an explicit ODM task, the goal of which is to determine the part of the
domain modd to be implemented based on projed and stakeholder priorities.

Flexible architecture: ODM postul ates the need for a flexible architecture since a generic
architecture is not sufficient for domains with a very high degree of variability (see
Sedion 3.4).

Tailorable process: ODM does not commit itself to any particular system modeling and
engineaing method, or any market analysis, or any stakeholder analysis method. For the
same reason, the user of ODM has to provide these methods, seled appropriate notations
and tods (e.g. feature notation, oljed-oriented modeling, etc.), and also invest the dfort
of integrating them into ODM.

Thefollowing sedion gives a brief overview of the ODM process

3721 The ODM Process

The ODM process—as described in [SCK+96]—is an extremely elaborate and detail ed
process It consists of threemain phases:

1

Plan Domain: This is the domain scoping and panning phase (Sedion 3.3)
corresponding to Context Analysisin FODA (Sedion 3.7.1.1.1).

Model Domain: In this phase the domain model is produced. It corresponds to Domain
Modeling in FODA (3.7.1.1.2).

Engineer Asset Base: The main activiti es of this phase are to produce the architedure for
the systems in the domain and to implement the reusable assts.

Plan Domain and Model Domain clearly correspond to a typical Domain Analysis. Enginea
Asst Base crresponds to Domain Design and Domain | mplementation.

Each of the three ODM phases consists of three sub-phases and each sub-phase is further
divided into threetasks. The complete ODM processis $own in Figure 15.

Generative Programming, K. Czarnecki

54

EJER
£|apoLu aieIbell|
Ppow gandiosep sideouoo ElED
UlEWOop alEBalu| [BRow w3
1eidiay| upaa|
solNEs} dojaasq
PO
[BpoLL uopsinboe
UIEWOp EIEp UE|d
Aoy
|spoLw UBIELIO)UI
SIUIEIISUDD SIND8YYDIE UIEWOP UIE LWop UEWOP
|ELLBIUI 8 Ul LLae] aulley 20U 2l nboy
SIUIBISLOD
BIMZSHYUE sannoalgo
oI Mos) YoIE 8FEQ |EUIBIXE BIEPIPLED
1868E aUljeQ NI g Ailue
uBWaog PPOW seAIBIq0 PUE Sl
SI8p|OYSHEIE
108| 8
SleSEE SipWoISnD o8
luawsdw| PUE SBINES] LIELIOP EU@IID siBpoyayEls
Slalialsna DZII0lH Juna uoioe|as 2IEPIPUED
UoljEjUBLIS| DL PUE S2uMES) o punog auleg NI
2IMOmnSEIUI 2<Eq 1o8ag UIBLLOP .
awadw| 1895E LIE|d SfeuaEnd N0 £n2o} o jsaialul
DLUE S81MjES) UIELLOp 10 SUEWOP
EN=[E=T0s g UEWCR 1ees SZIIBITEIEY Y
SEMS
O9HQ joTss 9B 15958 BYEG 19898 UIELWO| UIELD sonloelgo
\ue Wadw| 1oel oIy adoog oun _wm 5 aoom W %m

sseq l1essy Jesuibug

uBwWogued

Buuasuibug ulewog

p. 40])

Figure 15 Phases of the ODM process (from [SCK+96

The ODM phases and sub-phases are described in Table 5.

Domain Engineering

55

ODM ODM Performed Tasks™
Phase Sub-Phase
Plan Set » determine the stakeholders (i.e. any parties related to the project), e.g.
Domain | objectives end-users, customers, managers, third-party suppliers, domain experts,
programmers, subcontractors
» analyze stakeholders' objectives and project objectives
» select stakeholders and objectives from the candidates
Scope » scope the domain based on the objectives (issues include choosing
domain between vertical vs. horizontal, encapsulated vs. diffused, native vs.
innovative domains)
Define * define the domain boundary by giving examples of systems in the
domain domain, counterexamples (i.e. systems outside the domain), as well as
generic rules defining what is in the domain and what not
e identify the main features of systems in the domain and the usage
settings (e.g. devel opment, maintenance, customization contexts) for the
systems
» analyze the relationships between the domain of focus and other
domains
Modd Acquire * plan the domain information acquisition task
Domain |domain » collect domain information from domain experts, by reverse-engineering
information existing systems, literature studies, prototyping, etc.
* integrate the collected data, e.g. by pre-sorting the key domain terms,
identifying the most important system features
Describe * develop alexicon of domain terms
domain * model the semantics of the key domain concepts
* model the variability of concepts by identifying and representing their
features
Refine * integrate the models produced so far into an overall consistent model
domain * model the rationale for variability, i.e. the trade-offs for using or not
using certain features
* improve the quality of features by clustering and experimenting with
innovative feature combinations
Engineer | Scope asset |° correlate identified features and customers
Asset base * prioritize features and customers
Base » based on the priorities, select the portion of the modeled functionality
for implementation
Architect » determine external architecture constraints (e.g. external interfaces and
asset base the allocation of features to the external interfaces)
e determine internal architecture constraints (e.g. internal interfaces,
allocation of groups of related features to internal interfaces)
» define asset base architecture based on these constraints
Implement |* plan asset base implementation (e.g. selection of tools, languages, and
asset base other implementation strategies)

e implement assets

* implement infrastructure (e.g. domain-specific extensions to general
infrastructures, asset retrieval mechanisms, asset qualification
mechanisms)

Table5 Description of ODM phases and sub-phases

% The tasks listed in this column do not exactly correspond to the formal ODM tasks. The latter are
shown in Figure 15.

56 Generative Programming, K. Czarnecki

3.7.3 Draco

Draco is an approach to Domain Engineering as well as an environment based on
transformation technology. Draco was developed by James Neighbors in his Ph.D. work
[Nei80] to be the first Domain Engineering approach. Furthermore, the main ideas introduced
by Draco include domain-specific languages and components as sets of transformations. This
section gives a brief overview of Draco. A more detailed discussion isgiven in Section 6.4.1.

The main idea of Draco is to organize software construction knowledge into a number of
related domains. Each Draco domain encapsulates the needs and requirements and different
implementations of a collection of similar systems. Specifically, a Draco domain contains the
following dements ([Nei84, Nei89]):

* Formal domain language (also referred to as “surface” language) : The domain language
is used to describe certain aspects of a system. The domain language is implemented by a
parser and a pretty printer. The internal form of parsed code is a parse tree. The term
domain language is equivalent to the term domain-specific language introduced in
Section 3.6.4.

* St of optimization transformations: These transformations represent rules of exchange of
equivalent program fragments in the domain language and are useful for performing
optimizations on the parse tree.

e Set of transformational components: Each component consists of one or more refinement
transformations capable of trandating the objects and operations of the source domain
language into one or more target domain languages of other, underlying domains. There
is one component for each object and operation in the domain. Thus, components
implement a program in the source domain language in terms of the target domains.
Draco refers to the underlying target domains as refinements of the source domain. As a
result, the construction knowledge in Draco is organized into domains connected by
refinement relationships.

» Domain-specific procedures. Domain-specific procedures are used whenever a set of
transformations can be performed algorithmically. They are usually applied to perform
tasks such as generating new code in the source domain language or analyzing programs
in the source language.

» Transformation tactics and strategies (also called optimization application scripts):
Tactics are domain-independent and strategies are domain-dependent rules helping to
determine when to apply which refinement. Optimizations, refinements, procedures,
tactics, and strategies are organized into metaprograms (i.e. programs generating other
programs).

It is important to note that, in Draco, a system is represented by many domain languages
simultaneoudly.

The results of applying Draco to the domain of real-time applications and the domain of
processing standardized tests are described in [Sun83] and [Gon81], respectively.

3.74 Capture

Capture, formerly known as KAPTUR (see [Bai92, Bai93]), is an approach and a commercial
tool for capturing, organizing, maintaining, and representing domain knowledge. Capture was
developed by Sidney Bailin of CTA Inc. (currently with Knowledge Evolution Inc.).

The Capture tool is a hypertext-based tool allowing the user to navigate among assets (e.g.
architectures and components). The assets are documented using informal text and various
diagrams, such as entity-relationship diagrams. The assets are annotated by their distinctive
features, which document important design and implementation decisions. Features are

Clusters andfacets

Domain Engineeing 57

themselves annotated with trade-offs that were onsidered and rationde for the particular
dedsion made.”® [Bai92]

3.75 Doman Andyssand Reuse Environment (DARE)

DARE is bath a Domain Analysis method and a tod suite supporting the method [FPFOg].
DARE was developed by William Frakes (Software Engineeing Guild) and Rubén Prieto-
Diaz (Reuse Inc.) and represents a commercial product.

The DARE tod suite includes lexical analysis tods for extracting domain vocabulary from
system descriptions, program code, and other sources of domain knowledge. One of the most
important tods is the conceptua clustering tod, which clusters words according to their
conceptual similarity. The dusters are further manually refined into facets, which are main
categories of words and phrases that fall in the domain [FPP6]. The idea of using faces to
describe and organize systems and componentsin a domain has its roats in the application of
library sciencetedniques, such as faceted clasdfication, to component retrieval [Pri85, Pri87,
PRB7, Pri91a, Pri9lb, OPB92).

The main workproducts of DARE include a facet table, feature table, system architedure,
and domain lexcon and are organized into a domain bodk. The DARE tod suite includes
appropriate tods for creating and viewing these workproducts.

3.7.6 Domain-Spedfic Software Architedure (DSSA) Approach

The DSA approach to Domain Engineaing was developed under the Advanced Research
Projed Agency's (ARPA) DSSR Program (see [Hay94, TTC95)). The DSSA approach
emphasizes the central role of the @ncept of software architedure in Domain Engineaing.
The overall structure of the DSSA processis compatible with the generic process $ructure
described in Sedions 3.3 through 3.5 (see [CT93, TC92] for descriptions of the DSSA
proces9. The main workproducts of the DSSA processinclude the foll owing [Tra95):

1. Domain Model: The DSSA Domain Mode corresponds to the ancept modd in Sedion
3.3 (i.e. concept model in ODM or information model in FODA) rather than a full
domain modd.

2. Reference Requirements: The DSSA Reference Requirements are euivalent to the
feature modd in Sedion 3.3. Each reference requirement (or feature in the terminology
of Sedion 3.3) is either mandatory, optional, or aternative. The DSSA Reference
Requirements include both functional and non-functional requirements.*

3. Reference Architedure: A DSSA Reference Architedureis an architedure for a family of
systems consisting mainly of an architedure model, configuration dedsion tree(which is
similar to the FODA features diagram in Sedion 3.7.1.2), design record (i.e. description
of the mmponents), and constraints and rationde (the latter two correspond to
configuration rules and rationale in FODA in Sedion 3.7.1.2).

The nedl to formally represent the cmponents of an architedure and their interrelationships
led to the development of so-called Architedure Description Languags or ADLs. The
concept of ADLs isdescribed in [Cle96, Arch, SG96].

The DSSA approach has been applied to the avionics domain under the Avionics Domain
Application Generation Environment (ADAGE) projed involving Loral Federal Systems and
other contractors (see[ADAGE]). As aresult of this effort, a set of tods and other products
supporting the DSSA processhave been developed, including the following [HT94]:

29 Note that this terminology is different from the FODA terminology, acoording to which rationade and
trade-offs are synonyms (see Section 3.7.1.2).

% Note that the DSSA Reference Requirements are not part of the DSSA Domain Model, whereas the
feaure model is part of the domain model in Section 3.3.

58 Generative Programming, K. Czarnecki

* DOMAIN: a hypermedia-based Domain Analysis and requirements capture environment;
* MEGEN: an application generator based on module expressions;

e LILEANA: an ADL based on the ADA annotation language ANNA [LHK87] and the
module interconnection language LIL [Gog83] (LILEANA is described in [Tra93,
GT96]).

Other DSSA program efforts resulted in the development of other Domain Engineering tools
and products (see [HT94] for more details), most notably the ADLs ArTek (developed by
Teknowledge [THE+94]), ControlH and MetaH (developed by Honeywell [BEJV93]), and
Rapide (developed at Stanford University [LKA+95]).

3.7.7 Algebraic Approach

The algebraic approach to Domain Engineering was proposed by Ydlamragju Srinivas in
[Sri91] (see [Smi96, SI95] for more recent work). This section gives a brief overview of this
approach. A more detailed description follows in Section 6.4.4.

The main idea of this approach is to formalize domain knowledge in the form of a network of
related algebraic specifications (also referred to as theories). An algebraic specification
defines a language and constrains its possible meanings through axioms and inference rules.
Algebraic gpecifications can be related using specification morphisms. Specification
morphisms define trandations between specification languages that preserve the theorems
(i.e. all statements which can be derived from the axioms using the inference rules). Thus, in
the algebraic approach, the domain mode is represented as a number of formal languages
including trandations between them. From this description, it is apparent that the algebraic
approach and the Draco approach (Section 3.7.3) are closdly related.® In fact, the only
difference is that the algebraic approach is based on the algebraic specification theory (e.g.
[LEW96]) and the category theory (e.g. [BW85]). Similarly to Draco, the algebraic approach
lends itself well to implementation based on transformations. The inference rules of a
specification correspond to the optimization transformations of Draco, and the specification
morphisms correspond to refinement transformations.

First success reports on the practical use of the algebraic approach include the application of
the transformation-based system KIDS (Kestrel Interactive Development System, see
[Smi90]) in the domain of transportation scheduling by the Kestrel Institute. According to
[SPW95], the scheduler generated from a formal domain model using KIDS is over 20 times
faster than the standard, hand-coded system deployed by the customer. This proves the
viability of the algebraic approach in narrow, well-defined domains. A successor system to
KIDS is SPECWARE [SJ95], which is explicitly based on category theory (i.e. it uses
category theory concepts both in its design and user interface).

3.7.8 Other Approaches

Other approaches to Domain Engineering include the following:

* SYNTHESS SYNTHESIS [SPC93] is a Domain Engineering method developed by the
Software Productivity Consortium in the early nineties. The structure of the SYNTHESIS
process is principally consistent with the generic process structure described in Sections
3.3 through 3.5 (although it uses a dightly different terminology). A unique aspect of
SYNTHESIS is the tailorahility of its process according to the levels of the Reuse
Capability Model [SPC92]. Thistailorahility allows an organization to control the impact
of the reuse process installation on its own structures and processes.

* Asindicated in [Sri91, p. 91], the work on Draco has had a major influence on the algebraic approach
to Domain Engineering.

Domain Engineering 59

e Family-Oriented Abstraction, Spedfication, and Trandation (FASS): FASST is a
Domain Engineering method developed by David Weiss et al. at Lucent Technologies
Bdl Laboratories [Wei96]. FASST has been greatly influenced by the work on
SYNTHESIS (Weiss was one of the developers of SYNTHESIS).

* Defense Information §stems Agency's Domain Analysis and Design Process (DISA
DA/DP): DISA DA/DP [DISA93] is similar to MBSE (Section 3.7.1.3) and ODM
(Section 3.7.2). However, it only includes Domain Analysis and Domain Design. DISA
DA/DP uses the object-oriented Coad-Y ourdon notation [CY 90].

e Joint Integrated Avionics Working Group (JIAWG) Objed-Oriented Domain Analysis
Method (JODA): JODA [Hol93] is a Domain Analysis method similar to FODA (see
Section 3.7.1; however, JODA does not include a feature modd) and is based on the
object-oriented Coad-Y ourdon notation and analysis method [CY 90].

e Gomaa [Gom92] describes an early object-oriented Domain Engineering method
developed by Hassan Gomaa. An environment supporting the method is set out in
[GKS+94].

* Reusable Ada Products for Information Systems Devdopment (RAPID): RAPID is a
Domain Analysis approach developed by Vitaletti and Guerrieri [VG9Q], utilizing a
similar process to the afore-presented Domain Engineering methods.

* Intelligent Design Aid (IDeA): IDeA is a design environment supporting Domain
Analysis and Domain Design [Lub9l]. IDeA was developed by Mitchell Lubars. The
unique aspect of IDeA is its iterative approach to Domain Analysis, whereby specific
problems are analyzed one at a time and each analysis potentially leads to an update of
the domain model.*

Since the main concepts and ideas of Domain Engineering have already been illustrated based
on the methods presented in previous sections, we refrain from describing the approaches
mentioned in this section in more detail.

3.8 Historical Notes

The idea of Domain Engineering can be traced back to the work on program families by
Dijkstra[Dij70] and Parnas [Par76]. Parnas defines program family as follows [Par76, p. 1]:

‘We mnsider a set of programs to congtitute a family, wheneve it is worthwhil e to study
programs from the set by first studying the comnon poperties of the set and then
determining the spedal properties of the individud family members.”

The term Domain Analysis was first defined by Neighborsin his Ph.D. work on Draco [Nei80,
pp. Xv-xvi] as

‘the activity of identifying oljeds and operations of a class of similar systems in a
particular problem domain.”

Major efforts aimed at developing Domain Analysis methods (including SEI's FODA and the
work by Prieto-Diaz et al. at the Software Productivity Consortium) followed in the late
eighties. A comprehensive bibliography of work related to Domain Engineering from the
period 1983-1990 can be found in [HNC+90].

A large share of the work on Domain Engineering was sponsored by the U.S. Department of
Defense research programs related to software reuse including Sdtware Techndogy for

% In [Lub91] the term domain engineging is defined as the phase in which reusable assets identified
during domain andysis are constructed. This terminology is inconsistent with the terminology currently
recognized in the Domain Engineering community.

60 Generative Programming, K. Czarnecki

Adaptable, Reliable Systems (STARS) [STARS94], Comprehensive Approach to Reusable
Defense Software (CARDS) [CARDS], and DSSA (Section 3.7.6).

Domain Engineering methods such as MBSE, ODM 2.0, and FASST (Sections 3.7.1.3, 3.7.2,
3.7.8) can be classified as second generation methods. The most recent trend in the field isto
integrate Domain Engineering and OOA/D methods (see Chapter 4).

A partial genealogy of Domain Engineering methods is shown in Figure 16.

Dijkstra program Synthesis (1) Synthesis (2) FASST
[Dij70] —® families L SPC —® SPC W Weiss
Parnas ™ 1990 [SPC93] [Wei96]
[Par76] knowledge KAPTUR Capture
representation — pilin = Rdilin
_ _ ™ [Bai92]
library science
Draco Prieto- Prieto- DARE
Neighbors —®— Diaz ———#» Diaz [FPFS6]
[Nei80] [Pri87] [Pri9ib]
ODM ODM 2.0
Simos - Simos
Arrango [SC93] [SCK+96]
[Arr88]
DSSA

[HT94]
FODA MBSE
SEI ———————» SEI
[KCH+90] [Wit94]

IDeA
Lubars
[Lub91]
KIDS
Kestrel —_ SPECWARE
[Smi90] Kestrel

/ [S395]
Srinivas

algebraic specifications —pm [Sri91]

Figure 16 Partial genealogy of Domain Engineering (based on [FP96])

39 Discussion

Domain Engineering represents a val uable approach to software reuse and multi-system-scope
engineering. Table 6 compares conventional software engineering and Domain Engineering
based on their workproducts. Another important difference is the split of software engineering
into engineering for reuse (Domain Engineering) and engineering with reuse (Application
Engineering).

Domain Engineering moves the focus from code reuse to reuse of analysis and design models.
It also provides us with a useful terminology for talking about reuse-based software
enginesring.

Domain Engineering 61

Softwar e Engineering Domain Engineering

Requirements Analysis Domain Analysis

= reguirements for one system | <= reusable requirements for a class of systems

System Design Domain Design

- design of one system ~= reusable design for a class of systems

System Implementation Domain Implementation

-+ implemented system = reusable components, infrastructure, and production process

Table6 Comparison between conventional software engineering and Domain Engineering

Basad on the discussion of the various Domain Engineering methods, we arrive at the
following conclusions:

1

The described methods and approaches are quite similar regarding the process. They use
dightly different terminology and different groupings of activities, but they are, to alarge
degree, compatible with the generic process described in Sections 3.3 through 3.5. This
processis alsowel exemplified by MBSE and ODM (Sections 3.7.1 and 3.7.2).

However, as the overall process framework remains quite stable, significant variations
regarding the concrete modeling techniques and notations, approaches to software
architecture, and component implementation techniques are possible. In particular,
questions regarding the relationship between Domain Engineering and object-oriented
technology are interesting. How do OOA/D and Domain Engineering fit together? We
will address this topic in Chapter 4. Furthermore, we need to look for adequate
technologies for implementing domain models. We will discuss some implementation
technologies in Chapter 6 and Chapter 7.

Some of the presented Domain Engineering approaches make specific contributions with
respect to the issue of concrete modeling techniques and implementation technol ogies:

 As exemplified by Draco and the algebraic approach (Sections 3.7.3 and 3.7.7),
formal methods, formal domain-specific languages, and transformation systems are
well suited for mature and narrow domains. More work is needed in order to
investigate a broader scope of applicability of these techniques.

* Theimportance of informal techniques has also been recognized, e.g. the application
of hypermedia systems for recording requirements, rationale, and informal expertise
(Capture, Section 3.7.4), and the utilization of lexical analysis for domain vocabulary
extraction (DARE, Section 3.7.5).

Which modeling techniques are most appropriate depends on the kind of the domain. For
example, important aspects of GUI-based applications are captured by use cases and
scenarios, whereas in scientific computing, algorithms are best captured using
pseudocode. Furthermore, if the applications have some special properties, such as real-
time aspects or distribution aspects, we need to apply additional, specialized modeling
techniques. The organization of the Domain Engineering process itself depends on the
organization and its business objectives. Thus, there will not be one Domain Engineering
method appropriate for all possible domains and organizations. We will rather have
specialized methods for different kinds of domains with tailorable processes for different
organizational needs.

A major problem of all the existing Domain Engineering methods is that they do not
address the evolution aspect of Domain Engineering. In [Arr89], Arrango emphasized
that Domain Engineering is a continuous learning process, in which each new experience

62

Generative Programming, K. Czarnedi

in building new applications based on the reusable models produced in the Domain
Engineging process is fed back into the process resulting in the adjustment of the
reusable models. None of the eisting methods properly addresses these isaues. They
rather address only one full Domain-Engineaing cycle and do not explain how to
organize an efficient iterative process The asped of learning is usually treated as part of
the reuse infrastructure, i.e. the results of using an asst should be fed back into the asset
base. But sincethe reuse infrastructure is a product of Domain Engineaing, its feed-back
asped is detached from the Domain Engineeing processitsdf.

The methods also do not address how and when the infrastructure and the application
production process are planned, designed, and implemented (only to include an
infrastructure implementation activity in Domain Implementation is clearly insufficient).

3.10 References

[ADAGE] WWW home page of the DSSA/ADAGE projed at http://www.owego.com/dss/

[Arch] WWW home page of the Architedure Resources Guide at http://www-ast.tds-gn.Imco.com/arch/guide.html

[Arr88] G. Aranga Domain Engineaing for Software Reuse. Ph.D. Dis®rtation, Department Information and

Computer Science, University of California, Irvine, California, 1988

[Arr89] G. Arranga Domain Analysis From Art Form to Engineging Discipline. In ACM SIGSOFT Sdtware

Engineaing Notes, val. 14, no. 3, May 1989 pp. 152159

[Arr94] G. Arrango Domain Analysis Methods. In Sdtware Reusability, Schéfer, R. Prieto-Diaz, and M.

Matsumoto (Eds.), Elli sHorwood, New Y ork, New Y ork, 1994 pp. 17-49

[Bai92] S. Bailin. KAPTUR: A Tod for the Preservation and Use of Engineeing Legacy. CTA Inc., Rockvill g,

Maryland, 1992 http://www-ast.tds-gn.lmco.com/arch/kaptur.html

[Bai9g] S. Bailin. Domain Analysis with KAPTUR. In Tutorials of TRI-Ada’ 93, Val. I, ACM, New York, New

Y ork, September 1993

[Bai97] S. Bailin. Applying Multi-Media to the Reuse of Design Knowledge. In the Procealings of the Eighth

Annud Workshop on Stiware Reuse, 1997, http://www.umcs.maine.edu/~ftp/wisr/wisr8/papershtml

[BCOg] L. Brownsword and P. Clements. A Case Study in Successul Product Line Development. Technical

Report, SEI-96-TR-016, Software Endineeing Inditute, Carnegie Melon University, Pittsburgh,
Pennsylvania, October, 1996, http://www.sel.cmu.edu

[BCK9g) L. Bass P. Clements, and R. Kazman. Sdtware Architedurein Practice. AddisonrWedley, 1998

[BCR94] V. Badli, G. Caldiera and D. Rombach, The Experience Factory. In Encydopedia of Sdtware

Engineaing, Wiley, 1994 ftp://ftp.csumd.edu/pub/sel/ papers/fact.ps.Z

[BEIV9I3)] P. Binns, M. Endehart, M. Jackson, and S. Vestal. Domain-Spedfic Software Architedures for Guidance,

Navigation, and Cortrol, Horeywel Tedcindogy Center, 1993 http://www-ast.tds-
gn.mco.com/arch/dss.html

[BMR+96] F. Buschmann, R. Meunier, H. Rohrert, P. Sommerlad, and M. Stal. Pattern-Oriented Sdtware

Architedure. A System of Patterns. Wiley, Chichester, UK, 1996

[BP89] T. Biggerstaff and A. Perlis. Sdtware Reusability. Volume I: Concepts and Models. ACM Press Frontier

Series, Addison'Wed ey, Reading, 1989

[Buc97] S. Buckingham Shum. Negatiating the Construction and Reconstruction d Organisational Memories. In

Journal of Universal Computer Science, Spedal Isaie on IT for Knowledge Management, vol. 3, no. 8,
1997, pp. 899928 http://www.iicm.edu/jucs_3_8negatiating the construction and, also see
http://kmi.open.ac.uk/~smonb/DR.html

[BW8E] M. Barr and C. Wells. Topases, triples and theories. Grundagen der mathematischen Wissenschaften, vol.

278, Springer-Verlag, New Y ork, New York, 1985

[CARDS] WWW home page of the Comprehensive Approach to Reusable Defense Software (CARDS) Program at

http://www.cards.com

[CARDS94] Software Tecdhndogy For Adaptable, Reliable Systems (STARS). Domain Engineeing Methods and Tods

Handbod: Volume | —Methods: Comprehensive Approach to Reusable Defense Software (CARDS).
STARS Informal Tedcnical Repot, STARSVC-K017R1/001/00, Decenber 31, 1994
http://nsdir.cards.com/librariesHTML/CARDS_documents.html

[Cle96] P. Clements. A Survey of Architedure Description Languages. In Proceadings of Eighth Internationa

Workshop on Stiware Spedfication andDesign, Paderborn, Germany, March 1996

Domain Engineeing 63

[CK95]

[Con97]

[CSHO2]

[CT93]

[CY9Q]
[DD87]

[Dict]

[Dij 70]

[DISA93]

[DPOSg]

[EPOg]
[FPO8]

[FPPO6]

[GHV95]

[GKS+94]

[GogB3|

[Gom92]

[Gorg1]

[GT96|

[Hay94]

[HNC+90]

[Hol93]

[HT94]

[KCH+90]

P. Clements and P. Kogut. Features of Architedure Description Languages. In Proceedings of the 7th
Annud Sdtware Techndogy Conference, Salt Lake City UT, April 1995

E. Corklin. Designing Organizational Memory: Preserving Intelledual Assts in a Knowledge Econamy.
Tedhnical Note, Group Dedsion Suppat Systems, http://mww.gdsscom/DOM .htm, 1997

S. Cohen, J. Stanley, S. Peterson, and R. Krut. Application d Feature-Oriented Domain Analyss to the
Army Movement Cortrol Domain. Technical Repot, CMU/SEI-91-TR-28, Software Engineeing
Ingtitute, Carnegie Mellon University, Pittsburgh, Pennsylvania, 1992, http://www.sel.cmu.edu

L. Cogdianese and W. Tracz Architedure-Based Development Guidelines for Avionics Software. Verson
2.1, Technical Report, ADAGE-IBM-92-03, 1993

P. Coad and E. Y ourdon Objed-Oriented Analysis. Prentice-Hall, Englewood Cliffs, New Jersey, 1990

H. Dreyfus and S. Dreyfus. Kuinstliche Intelligenz: von den Grenzen der Denkmaschine und dem Wert
der Intuition. Rowohit, rororo Computer 8144 Reinbek, 1987

The American Heritage Dictionary of the English Language. Third Edition, Houghton Mifflin Company,
1992

E. Dijkstra. Structured Programming. In Sdtware Engineging Techniques, J. Buxton and B. Randell,
(Eds.), NATO Scientific Affairs Divison, Brussls, Belgium, 1979 pp. 84-87

DISA/CIM Software Reuse Program. Domain Analysis and Design Process Version 1. Technical Report
1222:04-210'30.1, DISA Center for Information Management, Arlington Virginia, March 1993

P. Devanbu and J. Poulin, (Eds.). Procealings of the Fifth Internationa Conference on Sdtware Reuse
(Victoria, Canada June 1998. IEEE Computer Society Press 1998

H.-E. Eriksonand M. Penker. UML Toolkit. JohnWiley & Sons, 1998

B. Frakes and R. Prieto-Diaz. Introduction to Domain Analysis and Domain Engineaing. Tutorial Notes,
The Fourth International Conference on Software Reuse, Orlandg, Florida, April 23-26, 1996

W. Frakes, R. Prieto-Diaz, and Christopher Fox. DARE: Domain Analysis and Reuse Environment. Draft
submitted for publication, April 7, 1996

E. Gamma, R. Hdm, R. Johrson, and J. Vlissdes. Design Patterns: Elements of Reusable Objed-
Oriented Sdtware. Addison-Wedey, 1995

H. Gomag L. Kerschberg, V. Sugumaran, C. Bosch, and I. Tavakoli. A Prototype Domain Modeling
Environment for Reusable Software Architedures. In Proceealings of the Third Internationd Conference
on Sdtware Reuse, Rio de Janeiro, Brazil, W. Frakes (Ed.), IEEE Computer Society Press Los Alamitos,
California, 1994 pp. 74-83

J. Goguen. LIL — A Library Interconredion Language. In Report on Program Libraries Workshop, SRI
International, Menlo Park, California, October 1983 pp. 12-51

H. Gomaa An Objed-Oriented Domain Analyss and Modding Method for Software Reuse. In
Procealings of the Hawaii Internationd Conferenceon System Sciences, Hawaii, January 1992

L. Gorzales. A domain language for processng standardized tests. Master' s thesis, Department of
Informationand Computer Science, University of California, 1981

J. Goguen and W. Tracz. An Implementation-Oriented Semantics for Module Compaosition. Draft avail able
from [ADAGE], 1996

F. Hayes-Roth. Architedure-Based Acquistion and Development of Software: Guidelines and
Remommendations from the ARPA Domain-Spedfic Software Architedure (DSSA) Program. Verson
1.01, Informal Technical Report, Teknowledge Federal Systems, February 4, 1994 available from
[ADAGE]

J. Hess W. Novak, P. Carroll, S. Cohen, R. Holibaugh, K. Kang, and A. Peterson. A Domain Analysis
Bibliography. Technical Report, CMU/SEI-90-SR-3, Software Engineeing Ingitute, Carnegie Mellon
University, Pittsburgh, Pennsylvania, 199Q Reprinted in [PA91], pp. 258 259. Also available from
http://www.sel.cmu.edu

R. Holibaugh. Joint Integrated Avionics Working Group (JAWG) Objed-Oriented Domain Analysis
Method (JODA). Verson 1.3, Technica Repot, CMU/SEI-92-SR-3, Software Engineeing Ingtitute,
Carnegie Mélon University, Pittsburgh, Pennsylvania, November 1993 http://www.sel.cmu.edu

F. HayesRoth and W. Tracz DSSA Tod Requirements For Key Process Functions. Verson 2.0,
Tedhnical Report, ADAGE-IBM-93-13B, October 24, 1994 avail able from [ADAGE]

K. Kang, S. Cohen, J. Hess W. Nowak, and S. Peterson. Feature-Oriented Domain Analysis (FODA)
Feashbility Study. Technica Repot, CMU/SEI-90-TR-21, Software Engineeing Ingitute, Carnegie
Méellon University, Pittsburgh, Pennsylvania, November 1990

64

[Kru93

[Kic97]

[LEWO9S]

[LHKS7]

[LKA+95]

[Lub91]

[MBSE97]

[MC96]

[Neig0]

[Neig4]

[Neigg]

[OPB9Z]

[PA91]

[Par76]

[PCY1]

[PRB7]

[Prigs]

[Pri87]

[Pri9la]

[Pri91b]

[SC93]

[SCK+96]

[Shat7]

[Shu91]

[Sim91]

Generative Programming, K. Czarnedi

R. Krut. Integrating 001 Tod Suppat into the Feature-Oriented Domain Analyss Methoddogy. Technical
Report, CMU/SEI-93-TR-11, ESC-TR-93-188 Software Engneeing Inditute, Carnegie Méelon
University, Pittsburgh, Pennsylvania, 1993 http://www.sel.cmu.edu

G. Kiczales Verbal Except from the ECOOP97 tutorial on “Designing High-Performance Reusable
Code", Jyvaskyld, Finland, 1997

J. Loedkx, H. Ehrich, and M. Wolf. Spedfication d Abstract Data Types. Wiley & Teubner, 1996

D. Luckham, F. von Henke, B. Krieg-Briickner, and O. Owe. Anna: A Languag For Annatating Ada
Programns. Langua@ Reference Manud. Ledure Notesin Computer Science no. 260, Springer-Verlag,
1987

D. Luckham, J. Kenrey, L. Augustin, J. Vera, D. Bryan, and W. Mann. Spedfication and Analyss of
System Architedure Using Rapide. In I[EEE Transaction on Sdtware Engineeing, vol. 21, no. 4, April
1995 pp. 336-355

M. Lubars. Domain Analysisand Domain Enginegingin IDeA. In [PA91], pp. 163-178

Software Engineeing Indgtitute. Mode-Based Software Engineging. WWW pages, URL:
http://www.sel.cmu.edu/technd ogy/mbse/, 1997 (viewed)

T. Moran and J. Carrall, (Eds). Design Rationde: Concepts, techniques, and wse. Lawrence Erlbaum
Assciates, Hill sdale, New Jersey, 1996

J. Neighbas. Software @ngtruction using comporents. Ph.D. dissrtation, (Tedh. Rep. TR-160),
Department Information and Computer Science, University of California, Irvine, 1980

J. Neighbas The Draco Approach to Construction Software from Reusable Comporents. In IEEE
Transactions on Sdtware Engineeing, vol. SE-10, no. 5, September 1984 pp. 564573

J. Neighbas. Draco: A Methodfor Engineeing Reusable Software Systems. In[BP89], pp. 295319

E. Ogtertag, R. Prieto-Diaz, and C. Braun. Computing Simil arity in a Reuse Library System: An Al-Based
Approach. In ACM Transactions on Sdtware Engineering andMethoddogy, vol. 1, no. 3, July 1992
pp. 205228

R. Prieto-Diaz and G. Arrango (Eds). Domain Analysis and Sdtware Systems Modeling. |IEEE
Computer Society Press Los Alamitos, California, 1991

D. Parnas. On the design and development of program families In IEEE Transactions on Sdtware
Engineaing, vol. SE-2, no. 1, 1976 pp. 1-9

S. Peterson and S. Cohen. A Cortext Analysis of the Movement Control Domain for the Army Tactical
Command and Cortrol System. Technical Report, CMU/SEI-91-SR-3, Software Engineaing Inditute,
Carnegie Mélon University, Pittsburgh, Pennsylvania, 1991

R. Prieto-Diaz and P. Freeman. Classfying Software for Reusability. In |EEE Sdtware, January 1987, pp.
6-16

R. Prieto-Diaz. A Software Classfication Scheme. Ph.D. Dis®rtation, Department of Information and
Computer Science, University of California, Irvine, 1985

R. Prieto-Diaz. Domain Analysis For Reusability. In Procealings of COMPSAC' 87, 1987, pp. 23-29 and
reprinted in [PA91], pp. 63-69

R. Prieto-Diaz. Implementing Faceted Classfication for Software Reuse. In Comnunications of the ACM,
val. 34, no. 5, May 1991, pp. 88-97

R. Prieto-Diaz. Reuse Library Process Modd. Technical Report, IBM STARS 03041002, Eledronic
Systems Division, Air Force Sysems Command, USAF, Hanscom Air Force Base, Hanscom,
Massachusetts, July, 1991

M. Simos and R.E. Creps. Organization Domain Modeling (ODM), Voal. | - Conceptual Foundations,
Processand Workproduct Descriptions. Version 0.5, Unisys STARS Tednical Report No. STARS-UC-
05158024/00, STARS Techndogy Center, Arlington, Virginia, 1993

M. Simos, D. Creps, C. Klinger, L. Levine, and D. Allemang. Organization Domain Modeling (ODM)
Guidebodk, Verson 2.0. Informal Technical Report for STARS, STARS-VC-A025001/00, June 14,
1996 http://www.organoncom

D. Shapere. Scientific Theories and Their Domains. In The Structure of Scientific Theories, F. Suppe
(Ed.), University of lllinais Press 1977, pp. 519565

S. Shum, Cogritive Dimensions of Design Rationale. In People and Computers VI: Procealings of
HCI' 91, D. Diaper and N. Hammond (Eds.), Cambridge University Press Cambridge, 1991, pp. 331-344,
http://kmi.open.ac.uk/~smonb/DR.html

M. Simos. The Growing d an Organon A Hybrid Knowledge-Based Techndogy for Software Reuse. In
[PA91], pp. 204221

Domain Engineeing 65

[SG96]

[SJ99]

[Smi9o]

[Smi96]

[SFC92]

[SFCO3]

[SPWO5]

[Sri91]
[STARS94]

[Suns3]

[TC92]

[THO3|

[THE+94]

[Tra93]

[Tragg]

[TTCO5]

[UMLO74]

[Unisg]

[VAM+98]

[VGIQ]

[Wei96]

[Wit94]

[Wit96]

[WP92]

M. Shaw and D. Garlan. Sdtware Architedure: Perspedives on a Emerging Discipline. Prentice-Hall,
1996

Y. Srinivas and R. Jillig. Speavare™: Formal Suppat for Compasing Software. In Proceedings of the
Conference on Mathematics of Program Construction, B. Modller, (Ed.), Ledure Notes in Computer
Science, vol. 947, Springer-Verlag, Berlin, 1995 also hitp://www.kestrel .edu/

D. Smith. KIDS: A Semiautomatic Program Development System. In |IEEE Transactions on Sdtware
Engineaing, vol. 16, no. 9, September 199Q pp. 10241043

D. Smith. Toward a Classfication Approach to Design. In Procealings of Algebraic Methoddogy &
Sdtware Techndogy, AMAST' 96Munich, Germany, July 1996 M. Wirsingand M. Nivat (Eds), LCNS
1101, Springer, 1996 pp. 62-84

Software Productivity Consortium. Reuse Adoption Guidebodk. Tedhnical Report, SRC-92051CMC,
Software Productivity Consortium, Herndon Virginia, 1992 http://www.asst.com

Software Productivity Consortium. Reuse-Driven Software Proces®s Guidebodk. Verson 02.00.03,
Tedhnical Report, SRC-92019CMC, Software Productivity Consortium, Herndon Virginia, November
1993 http://www.asst.com

D. Smith, E. Parra, and S. Westfold. Synthesis of High-Performance Transportation Schedulers. Technical
Report, KES.U.1, Kestrel Ingtitute, February 1995 http://www.kestrel.edu/

Y. Srinivas. Algebraic spedficationfor domains. In[PA91], pp. 90-124

Software Techndogy For Adaptable, Reliable Systems (STARS). Army STARS Demondtration Projed
ExperienceReport. STARS Informal Tedhnical Report, STARS-VC-A011R/002/01, November 30, 1994

S. Sundfor. Draco damain analysis for real time application: The analysis. Technical Report, RTP 015,
Department of Informationand Computer Science, University of California, Irvine, 1983

W. Tracz and L. Coglianese. DSSA Engineaing Process Guiddines. Technical Report, ADAGE-IBM-
9202 I1BM Federal Systems Company, Decenber 1992

D. Tandey and C. Hayball. Knowledge-Based Systems Analysis an Design: A KADS Devdoper’s
Handbodk. PrenticeHall, 1993

A. Terry, F. HayesRoth, L. Erman, N. Coleman, M. Devito, G. Papanagopailos, B. Hayes-Roth.
Overview of Teknowledge's Domain-Spedfic Software Architedure Prog'am. In ACM SIGSOFT
Sdtware Engineeing Notes, vol. 19, no 4, October 1994 pp. 6876, <see
http://www.teknowledge.com/DSSA/

W. Tracz. Parameterized programming in LILEANA. In Proceadings of ACM Symposium on Applied
Computing, SAC' 93, February 1993 pp. 77-86

W. Tracz Domain-Spedfic Software Architedure Pedagogcal Example. In ACM SIGSOFT Sdtware
Engineaing Notes, vol. 20, no. 4, July 1995 pp. 49-62, also avail able from [ADAGE]]

R. Taylor, W. Tracz, and L. Codianese. Software Development Using Domain-Spedfic Software
Architedures CDRL A011 —A Curriculum Module in the SEI Style. In ACM SIGSOFT Sdtware
Engineeing Notes, vol. 20, no. 5, Decanber 1995 pp. 27-37, also avail able from [ADAGE]

Rational Software Corporation. UML (Unified Modeling Language) Glossary. Verson 1.0 1, 1997,
http://ww.rational.com

Unisys. Reusability Library Framework AdakKNET and AdaTAU Design Report. Technical Report, PAO
D4705CV-8806011, Unisys Defense Systems, System Development Group, Paoli, Pennsylvania, 1988

A. D. Vid, N. Argentieri, A. Mansour, M. d’ Alessandro, and J. Favaro. FODAcom: An Experience with
Domain Analysisin the Italian Telecm Industry. In [DP98], pp. 166-175, seehttp://www.intecs.it

W. Vitaletti and E. Guerrieri. Domain Analysis within the ISEC Rapid Center. In Proceadings of Eighth
Annud Nationd Conference on Ada Techndogy, March 1990

D. Welss Creating Domain-Spedfic Languages The FAST Process Transparencies presented at The first
ACM-SIGPLAN Workshop onDomain-Spedfic Languages, Paris, France, January 18, 1997, http://mww-
sal.cs.uiuc.edu/~kamin/dsl/i ndex.html

J. Withey. Implementing Model Based Software Engineeing in yaur Organization: An Approach to
Domain Engineaing. Draft, Technical Report, CMU/SEI-94-TR-01, Software Engineging Ingtitute,
Carnegie Mélon University, Pittsburgh, Pennsylvania, 1994

J. Withey. Investment Analysis of Software Assets for Product Lines. Technical Report, CMU/SEI-96-TR-
010, Software Engineaing Ingtitute, Carnegie Mélon University, Pittsburgh, Pennsylvania, November
1996 http://mwww.sei.cmu.edu

S. Wartik and R. Prieto-Diaz. Criteria for Comparing Domain Analysis Approaches. In Internationa
Journal of Sdtware Engineeing andKnowiedge Engineering, vol. 2, no. 3, September 1992 pp. 403
431

66 Generative Programming, K. Czarnecki

[zal96] N. Zalman. Making The Method Fit: An Industrial Experience in Adopting Feature-Oriented Domain
Analysis (FODA). In Proceedings of the Fourth International Conference on Software Reuse, M.
Sitaraman, (Ed.), |IEEE Computer Society Press, Los Alamitos, California, 1996, pp. 233-235

