
33

Chapter 3 Domain Engineering15

15 This is a chapter from K. Czarnecki. Generative Programming: Principles and Techniques of Software
Engineering Based on Automated Configuration and Fragment-Based Component Models. Ph.D. thesis,
Technische Universität Ilmenau, Germany, 1998. This material will be also publi shed in the upcoming
book K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Techniques, and
Applications. Addison-Wesley, to appear in 1999.

3.1 What Is Domain Engineering?

Domain Engineering

Generative Programming, K. Czarnecki34

Most software systems can be classified according to the business area and the kind of tasks
they support, e.g. airline reservation systems, medical record systems, portfolio management
systems, order processing systems, inventory management systems, etc. Similarly, we can also
classify parts of software systems according to their functionalit y, e.g. database systems,
synchronization packages, workflow systems, GUI libraries, numerical code libraries, etc. We
refer to areas organized around classes of systems or parts of systems as domains.16

Obviously, specific systems or components within a domain share many characteristics since
they also share many requirements. Therefore, an organization which has built a number of
systems or components in a particular domain can take advantage of the acquired knowledge
when building subsequent systems or components in the same domain. By capturing the
acquired domain knowledge in the form of reusable assets and by reusing these assets in the
development of new products, the organization will be able to deli ver the new products in a
shorter time and at a lower cost. Domain Engineering is a systematic approach to achieving
this goal.

Domain Engineering is the activity of collecting, organizing, and storing past
experience in building systems or parts of systems in a particular domain in the form
of reusable assets (i.e. reusable workproducts), as well as providing an adequate
means for reusing these assets (i.e. retrieval, qualification, dissemination,
adaptation, assembly, etc.) when building new systems.

Domain Engineering encompasses three main process components17 Domain Analysis,
Domain Design, and Domain Implementation. The main purpose of each of these components
is given in Table 3.

The results of Domain Engineering are reused during Application Engineering, i.e. the
process of building a particular system in the domain (see Figure 8).

Table 3 makes the distinction between the conventional software engineering and Domain
Engineering clear: while the conventional software engineering concentrates on satisfying the
requirements for a single system, Domain Engineering concentrates on providing reusable
solutions for families of systems. By putting the quali fier “ domain” in front of analysis,

16 We give a precise definiti on of a domain in Section 3.6.1.

17 Most of the current Domain Engineering methods still refer to the process components as phases.
Following a recent trend in the software development methods field, we do not refer to analysis, design,
and implementation as phases since the term phase implies some rigid, waterfall -style succession of
engineering steps. Modern process models, such as the Rational Objectory Process, consider analysis,
design, and implementation as process components. These are independent of the time dimension,
which is itself divided into phases (see Section 4.5.1). In this newer terminology, however, phases
indicate the maturity of the project over time. Important note: In order to be consistent with the original
literature, the descriptions of the existing Domain Engineering methods in Section 3.7 use the term
phase in its older meaning (i.e. to denote process components).

Domain Analysis,
Domain Design, and
Domain
Implementation

Application
Engineering

Domain Engineering
process component

Main purpose

Domain Analysis defining a set of reusable requirements for the systems in the
domain

Domain Design establi shing a common architecture for the systems in the
domain

Domain Implementation implementing the reusable assets, e.g. reusable components,
domain-specific languages, generators, and a reuse infrastructure

Table 3 Three Main Process Components of Domain Engineering

Domain Engineering 35

design, and implementation, we emphasize exactly this family orientation of the Domain
Engineering process components.

Indeed, if you take a look at the intentions of most of the current software engineering
methods (including object-oriented analysis and design methods), you will reali ze that these
methods aim at the development of “ this specific system for this specific customer and for this
specific context.” We refer to such methods software system engineering methods.

Domain Engineering, on the other hand, aims at the development of reusable software, e.g. a
generic system from which you can instantiate concrete systems or components to be reused in
different systems. Thus, Domain Engineering has to take into account different sets of
customers (including potential ones) and usage contexts. We say that Domain Engineering
addresses multi-system scope development.

Domain Engineering can be applied to a variety of problems, such as development of domain-
specific frameworks, component libraries, domain-specific languages, and generators. The
Domain Analysis process subcomponent of Domain Engineering, in particular, can also be
applied to non-software-system-specific domains. For example, it has been used to prepare
surveys, e.g. a survey of Architecture Description Languages [Cle96, CK95].

At the beginning of this section, we said that there are domains of systems and domains of
parts of systems (i.e. subsystems). The first kind of domains is referred to as vertical domains
(e.g. domain of medical record systems, domain of portfolio management systems, etc.) and
the second kind is referred to as horizontal domains (e.g. database systems, numerical code
libraries, financial components library, etc.). The product of Domain Engineering applied to a
vertical domain is reusable software which we can instantiate to yield any concrete system in
the domain. For example, we could produce a system framework (i.e. reusable system
architecture plus components) covering the scope of a entire vertical domain. On the other
hand, applying Domain Engineering to a horizontal domain yields reusable subsystems, i.e.
components. We will come back to the notion of vertical and horizontal domains in Section
3.6.2.

In our terminology, a component is a reusable piece of software which is used to build more
complex software. However, as already indicated, components are not the only workproducts
of Domain Engineering. Other workproducts include reusable requirements, analysis and
design models, architectures, patterns, generators, domain-specific languages, frameworks,
etc. In general, we refer to any reusable workproduct as a reusable asset.

3.2 Domain Engineering and Related Approaches
Domain Engineering addresses the following two aspects:

• Engineering of reusable software: Domain Engineering is used to produce reusable
software.

• Knowledge management: Domain Engineering should not be a “ one-shot” activity.
Instead, it should be a continuous process whose main goal is to maintain and update the
knowledge in the domain of interest based on experience, scope broadening, and new
trends and insights (see [Sim91] and [Arr89]).

Current Domain Engineering methods concentrate on the first aspect and do not support
knowledge evolution. The knowledge management aspect is addressed more adequately in the
work on Organizational Memory [Con97, Buc97], Design Rationale [MC96], and Experience
Factory [BCR94]. Three approaches have much in common with Domain Engineering,
although they all come from different directions and each of them has a different focus:

• Domain Engineering concentrates on deli vering reusable software assets.

• Organizational Memory concentrates on providing a common medium and an organized
storage for the informal communication among a group of designers.

Software system
engineering methods

Multi-system scope
development

Components and
other reusable assets

Organizational
Memory, Design
Rationale, and
Experience Factory

Generative Programming, K. Czarnecki36

• Design Rationale research is concerned with developing effective methods and
representations for capturing, maintaining and reusing records of the issues and trade-offs
considered by designers during design and the ultimate reasons for the design decisions
they make.

• Experience Factory provides a means for documenting the experience collected during
past projects. It primarily concentrates on conducting mostly quantitative measurements
and the analysis of the results.

As the research in these four areas advances, the overlap between them becomes larger. We
expect that future work on Domain Engineering will address the knowledge management
aspect to a larger degree (e.g. [Bai97]). In this chapter, however, we exclusively focus on the
“engineering reusable software” aspect of Domain Engineering.

3.3 Domain Analysis
The purpose of Domain Analysis is to

• select and define the domain of focus and

• collect relevant domain information and integrate it into a coherent domain model.

The sources of domain information include existing systems in the domain, domain experts,
system handbooks, textbooks, prototyping, experiments, already known requirements on
future systems, etc.

It is important to note that Domain Analysis does not only involve recording the existing
domain knowledge. The systematic organization of the existing knowledge enables and
encourages us to actually extend it in creative ways. Thus, Domain Analysis is a creative
activity.

A domain model is an explicit representation of the common and the variable properties of the
systems in a domain and the dependencies between the variable properties. In general, a
domain model consists of the following components:

• Domain definition: A domain definition defines the scope of a domain and characterizes
its contents by giving examples of systems in a domain, counterexamples (i.e. systems
outside the domain), and generic rules of inclusion or exclusion (e.g. “Any system having
the capability X belongs to the domain.”).

• Domain lexicon: A domain lexicon defines the domain vocabulary.

• Concept models: Concept models describe the concepts in a domain expressed in some
appropriate modeling formalism (e.g. object diagrams, interaction and state-transition
diagrams, or entity-relationship and data-flow diagrams).

• Feature models: Feature models define a set of reusable and configurable requirements
for specifying the systems in a domain. Such requirements are generally referred to as
features. A feature model prescribes which feature combinations are meaningful: It
represents the configuration aspect of the reusable software. We discuss feature models in
Chapter 5.4 in great detail.

Domain model:
commonalities,
variabilities, and
dependencies

Domain Definition

Domain Lexicon

Concept model

Feature model

Domain Engineering 37

Domain Analysis generally involves the following activities:

• Domain planning, identification, and scoping: planning of the resources for performing
domain analysis, identifying the domain of interest, and defining the scope of the domain;

• Domain modeling: developing the domain model.

Table 4 gives you a more detailed list of Domain Analysis activities. This list was compiled by
Arrango [Arr94] based on the study of eight different Domain Analysis methods.

��������� 	

�	���
 ����� �
��������� 	

�	���
 ����� � ��������� 	�������� ��	��������� 	�������� ��	

� ������� 	
��� � ��

��������� �������
��������� ��

! ������������� "���� � �����
����	 ! � ����������� ��	

#�$�%'&'(�)
*�+�%�, -�.
#�$�%'&'(�)
*�+�%�, -�.

#�$�%'&'(�)
*�+�/�+�0 (�1�2
)3+�.4&

#�$�%'&'(�)
*�+�/�+�0 (�1�2
)3+�.4&

	���5
����6���� �����7��	����

8 � ������� 	�����"������ ! � �

 ��	������������
8 ����	��������������
8 �����9"���	���	����

	���5
����6�� ��������	����

7"�"�
 � ������� ��	�:�	���� 	�������� 	��

��������� 	;:�	���� 	�������� 	��

��������� 	
<��9"�
 ���7��	������

��� ��	

��������� 	
<��9"�
 ���7��	������

��� ��	

=���6���� �����7��	����

�	���
 ����� �

=���6���� �����7��	����

�	���
 ����� �

������� ��	

�	���
 ����� �

<�	������������
��� ��	

��	 �?> �����

�����������7���
	���� � �

� ������� 	
@�	���57
 � � ���

"���� � �����

Figure 8 Software development based on Domain Engineering (adapted from [MBSE97])

Domain planning,
identification, and
scoping

Domain modeling

Generative Programming, K. Czarnecki38

Domain Analysis major
process components

Domain Analysis activities

Domain characterization

(domain planning and
scoping)

Select domain

Perform business analysis and risk analysis in order to determine which
domain meets the business objectives of the organization.

Domain description

Define the boundary and the contents of the domain.

Data source identification

Identify the sources of domain knowledge.

Inventory preparation

Create inventory of data sources.

Data collection Abstract recovery

Recover abstractions

(domain modeling) Knowledge elicitation

Elicit knowledge from experts

Literature review

Analysis of context and scenarios

Data analysis Identification of entities, operations, and relationships

(domain modeling) Modularization

Use some appropriate modeling technique, e.g. object-oriented analysis
or function and data decomposition. Identify design decisions.

Analysis of similarity

Analyze similarities between entities, activities, events, relationships,
structures, etc.

Analysis of variations

Analyze variations between entities, activities, events, relationships,
structures, etc.

Analysis of combinations

Analyze combinations suggesting typical structural or behavioral
patterns.

Trade-off analysis

Analyze trade-offs that suggest possible decompositions of modules and
architectures to satisfy incompatible sets of requirements found in the
domain.

Taxonomic classification Clustering

Cluster descriptions.

(domain modeling) Abstraction

Abstract descriptions.

Classification

Classify descriptions.

Generalization

Generalize descriptions.

Vocabulary construction

Evaluation Evaluate the domain model.

Table 4 Common Domain Analysis process by Arrango [Arr94]

Domain Engineering 39

3.4 Domain Design and Domain Implementation
The purpose of Domain Design is to develop an architecture for the systems in the domain.
Shaw and Garlan define software architecture as follows [SG96]:

“ Abstractly, software architecture involves the description of elements from which
systems are built , interactions among those elements, patterns that guide their
composition, and constraints on these patterns. In general, a particular system is defined
in terms of a collection of components and interactions among these components. Such a
system may in turn be used as a (composite) element in a larger system design.”

Buschmann et al. offer another definition of software architecture [BMR+96]:

A software architecture is a description of the subsystems and components of a software
system and the relationships between them. Subsystems and components are typicall y
specified in different views to show the relevant functional and nonfunctional properties
of a software system. The software architecture of a system is an artifact. It is the result
of the software development activity.

Just as the architecture of a building is usually represented using different views (e.g. static
view, dynamic view, specification of materials, etc.), the adequate description of a software
architecture also requires multiple views. For example, the 4+1 View Model of software
architecture popularized by the Rational methodologist Philippe Kruchten consists of a logical
view (class, interaction, collaboration, and state diagrams), a process view (process diagrams),
a physical view (package diagrams), a deployment view (deployment diagrams), plus a use
case model (see Figure 17).

The elements and their connection patterns in a software architecture are selected to satisfy
the requirements on the system (or the systems) described by the architecture. When
developing a software architecture, we have to consider not only functional requirements, but
also nonfuctional requirements such as performance, robustness, failure tolerance, throughput,
adaptability, extendibility, reusability, etc. Indeed, one of the purposes of software architecture
is to be able to quickly tell how the software satisfies the requirements. Eriksson and Penker
[EP98] say that “architecture should serve as a map for the developers, revealing how the
system is constructed and where specific functions or concepts are located.”

Certain recurring arrangements of elements have proven to be particularly useful in many
designs. We refer to these arrangements as architectural patterns. Each architectural pattern
aims at satisfying a different set of requirements. Buschman et al. have compiled a (partial)
list of architectural patterns (see [BMR+96] for a detailed description of these patterns):

• Layers pattern: An arrangement into groups of subtasks in which each group of subtasks
is at a particular level of abstraction.

• Pipes and filters pattern: An arrangement that processes a stream of data, where a
number of processing steps are encapsulated in filter components. Data is passed through
pipes between adjacent filters, and the filters can be recombined to build related systems
or system behavior.

• Blackboard pattern: An arrangement where several specialized subsystems assemble their
knowledge to build a partial or approximate solution to a problem for which no
deterministic solution strategy is known.

• Broker pattern: An arrangement where decoupled components interact by remote service
invocations. A broker component is responsible for coordinating communication and for
transmitting results and exceptions.

• Model-view-controller pattern: A decomposition of an interactive system into three
components: A model containing the core functionality and data, one or more views

Software
architecture

Architectural
patterns

Generative Programming, K. Czarnecki40

displaying information to the user, and one or more controllers that handle user input. A
change-propagation mechanism ensures consistency between user interface and model.

• Microkernel pattern: An arrangement that separates a minimal functional core from
extended functionality and customer-specific parts. The microkernel also serves as a
socket for plugging in these extensions and coordinating their collaboration.

It is important to note that real architectures are usually based on more than one of these and
other patterns at the same time. Different patterns may be applied in different parts, views,
and at different levels of an architecture.

The architectural design of a system is a high-level design: it aims at coming up with a
flexible structure which satisfies all important requirements and still leaves a large degree of
freedom for the implementation. The architecture of a family of systems has to be even more
flexible since it must cover different sets of requirements. In particular, it has to include an
explicit representation of the variability (i.e. configurability) it covers so that concrete
architectures can be configured based on specific sets of requirements. One way to capture this
variability is to provide configuration languages for the configurable parts of the architecture.
We will see a concrete example of a configuration language in Chapter 10.

A flexible architecture is the prerequisite for enabling the evolution of a system. As a rule, we
use the most stable parts to form the “skeleton” and keep the rest flexible and easy to evolve.
But even the skeleton has to be sometimes modified. Depending on the amount of flexibility
an architecture provides, we distinguish between generic and highly flexible architectures
[SCK+96]:

• Generic architecture: A system architecture which generally has a fixed topology but
supports component plug-and-play relative to a fixed or perhaps somewhat variable set of
interfaces. We can think of a generic architecture as a frame with a number of sockets
where we can plug in some alternative or extension components. The components have to
clearly specify their interfaces, i.e. what they expect and what they provide.

• Highly flexible architecture: An architecture which supports structural variation in its
topology, i.e. it can be configured to yield a particular generic architecture. The notion of
a highly flexible architecture is necessary since a generic architecture might not be able to
capture the structural variability in a domain of highly diverse systems. In other words, a
flexible architecture componentizes even the “skeleton” and allows us to configure it and
to evolve it over time.

Software architecture is a relatively young field with a very active research. You will find
more information on this topic in [SG96, BMR+96, Arch, BCK98].

Domain Design is followed by Domain Implementation. During Domain Implementation we
apply appropriate technologies to implement components, generators for automatic
component assembly, reuse infrastructure (i.e. component retrieval, qualification,
dissemination, etc.), and application production process.18

3.5 Application Engineering
Application Engineering is the process of building systems based on the results of Domain
Engineering (see Figure 8). During the requirements analysis for a new systems, we take
advantage of the existing domain model and select the requirements (features) from the
domain model which match customer needs. Of course, new customer requirements not found
in the domain model require custom development. Finally, we assemble the application from

18 Some authors (e.g. [FPF96, p. 2]) divide Domain Engineering into only two parts, Domain Analysis
and Domain Implementation, and regard the development of an architecture merely as an activity in the
Domain Implementation.

Generic vs. highly
flexible architectures

Domain
Implementation

Domain Engineering 41

the existing reusable components and the custom-developed components according to the
reusable architecture, or, ideally, let a generator do this work.

3.6 Selected Domain Engineering Concepts
In the following sections, we discuss a number of basic concepts related to Domain
Engineering: domain, domain scope, relationships between domains, problem space and
solution space, and speciali zed Domain Engineering methods.

3.6.1 Domain
The American Heritage Dictionary of the English Language gives us a very general definition
of a domain [Dict]:

“ Domain: A sphere of activity, concern, or function; a field, e.g. the domain of history.”

According to this definition, we can view a domain as a body of knowledge organized around
some focus, such as a certain professional activity.

Simos et al. note that the term domain is used in different disciplines and communities, such
as linguistics, cultural research, artificial intelligence (AI), object-oriented technology (OO),
and software reuse, in somewhat different meanings [SCK+96, p. 20]. They distinguish two
general usage categories of this term:

1. domain as the “ real world” ;

2. domain as a set of system.

The notion of domain as the “ real world” is used in the AI and knowledge-engineering
communities. For example, the guidebook on Knowledge-Based Systems Analysis and Design
Support (KADS), which is a prominent method for developing knowledge-based systems,
gives the following definition [TH93, p. 495]:

“ Domain: An area of or field of speciali zation where human expertise is used, and a
Knowledge-Based System application is proposed to be used within it.”

Domain as the “real world” encapsulates the knowledge about the problem area (e.g.
accounts, customers, deposits and withdrawals, etc., in a bank accounting domain), but not
about the software from this problem area. This notion of domain as the “real world” is also
used in object-oriented technology. For example, the UML (Unified Modeling Language)
glossary defines domain as follows [UML97a]:

“ Domain: An area of knowledge or activity characterized by a set of concepts and
terminology understood by practitioners in that area.”

In the context of software reuse and particularly in Domain Engineering, the term domain
encompasses not only the “real world” knowledge but also the knowledge about how to build
software systems in the domain of interest. Some early definitions even equate domain to a set
of systems, e.g. [KCH+90, p. 2]:

“ Domain: A set of current and future applications which share a set of common
capabiliti es and data.”

or [Bai92, p. 1]:

“ Domains are famili es of similar systems.”

This domain as a set of systems view is more appropriately interpreted as the assertion that a
domain encompasses the knowledge used to build a family of software systems.

Generative Programming, K. Czarnecki42

It is essential to realize that a domain is defined by the consensus of its stakeholders, i.e.
people having an interest in the domain, e.g. marketing and technical managers,
programmers, end-users, and customers, and therefore it is subject to both politics and
legacies.

Srinivas makes the key observation that the significance of a domain is externally attributed
[Sri91]:

Nothing in the individual parts of a domain either indicates or determines the cohesion
of the parts as a domain. The cohesion is external and arbitrary—a collection of entities
is a domain only to an extent that it is perceived by a community as being useful for
modeling some aspect of realit y.

Shapere explains this community-based notion of a domain as follows [Sha77] (paraphrase
from [Sri91]):

In a given community, items of real-world information come to be associated as bodies of
information or problem domains having the following characteristics:

• deep or comprehensive relationships among the items of information are
suspected or postulated with respect to some class of problems;

• the problems are perceived to be signifi cant by the members of the community.

Finally, it is also important noting that the kinds of knowledge contained in a domain include
both

• formal models, which can often be inconsistent among each other, e.g. different domain
theories, and

• informal expertise, which is difficult or impossible to formalize (as exemplified by the
problems in the area of expert systems [DD87]).

As a conclusion, we will adopt the following definition of a domain:

Domain: An area of knowledge

• scoped to maximize the satisfaction of the requirements of its stakeholders,

• including a set of concepts and terminology understood by practitioners in that
area, and

• including knowledge of how to build software systems (or parts of software
systems) in that area.

3.6.2 Domain Scope
There are two kinds of domain scope with respect to the software systems in a domain (see
Figure 1, p. 7):

• Horizontal scope or system category scope: How many different systems are in the
domain? For example, the domain of containers (e.g. sets, vectors, lists, maps, etc.) has a
larger horizontal scope than the domain of matrices since more application need
containers than matrices.

• Vertical scope or per-system scope: Which parts of these systems are in the domain? The
vertical scope is the larger the larger parts of the systems are in the domain. For example,
the vertical scope of the domain of containers is smaller than the vertical scope of the
domain of portfolio management systems since containers capture only a small slice of
the functionality of a portfolio management system.

Horizontal and
vertical scope

Domain Engineering 43

Based on the per-system scope, we distinguish between the following kinds of domains
[SCK+96]:

• vertical vs. horizontal domains;

• encapsulated vs. diffused domains.

Vertical domains contain complete systems (see Figure 9). Horizontal domains contain only
parts of the systems in the domain scope. Encapsulated domains are horizontal domains
where the system parts in the domain are well-localized with respect to their systems. Diffused
domains are also horizontal domains, but they contain several, different parts of each system
in the domain scope.19

The scope of a domain can be determined using different strategies [SCK+96]:

1. choose a domain from the existing “native” domains (i.e. a domain which is already
recognized in an organization);

2. define an innovative domain based on

• a set of existing software systems sharing some commonalities (i.e. a family of
systems) and/or

• some marketing strategy.

The last two strategies are closely related to the following two concepts:

• Product family: “A product family is a group of products that can be built from a
common set of assets.” [Wit96, p. 16] A product family is defined on the basis of
similarities between the structure of its member products. A product family shares at least

19 Please note that, in Domain Engineering, the terms horizontal and vertical are used in a different
sense than in the Object Management Architecture (OMA) defined by the Object Management Group
(OMG, see www.omg.org). The OMG uses the term vertical domain interfaces to denote component
interfaces specific to a specialized market (e.g. manufacturing, finance, telecom, transportation, etc.)
and the term horizontal facilities (or common facilities) to denote generic facilities such as printing,
database facilities, electronic mail facilities, etc. Thus, the OMG distinguishes between horizontal and
vertical components, whereas in Domain Engineering we say that components have a horizontal nature
in general since their scope does not cover whole systems but rather parts of systems. In Domain
Engineering terms (see Section 6.4.1), OMG horizontal components are referred as modeling
components (i.e. they model some general aspect such as persistency or printing) and the OMG vertical
components are referred to as application-specific components. On the other hand, it is correct to say
that modeling components have a larger horizontal scope than application-specific components.

Vertical, horizontal,
encapsulated, and
diffused domains

���������
	��
���������
	�

���������
	���� �����������������
��������� ��� !�� �����#" $
% � ����&���� %'% �()�#� �

���������
	���� ���������������������
����� ��� !�� �����#" $

�*����������& " ����� %'% �()�#� �

���������
	,+

���������
	���� �����������������
�����.-��*�/��� ���#" % �()�#� �

���������
	��
���������
	�

���������
	,+

���������
	��
���������
	�

���������
	,+

Figure 9 Vertical, horizontal, encapsulated, and diffused domains. (Each rectangle represents a system.
The shaded areas depict system parts belonging to the domain.)

Native vs. innovative
domains

Product lines vs.
product families

Generative Programming, K. Czarnecki44

a common generic architecture. Product families are scoped based on commonalities
between the products.

• Product line: “A product line is a group of products sharing a common, managed set of
features that satisfy the specific needs of a selected market.” [Wit96, p. 15] Thus, the
definition of a product line is based on a marketing strategy rather than similarities
between its member products. The features defined for a product line might require totally
different solutions for different member products. A product line might be well served
with one product family; however, it might also require more than one product family.
On the other hand, a product family could be reused in more then one product line.
Product lines are scoped based on a marketing strategy.

Unfortunately, the terms product family and product line are often used interchangeably in the
literature.

We determine the scope of a domain during the domain scoping activity of Domain Analysis.
The scope of a domain is influenced by several factors, such as the stability and the maturity
of the candidate areas to become parts of the domain, available resources for performing
Domain Engineering, and the potential for reuse of the Domain Engineering results within
and outside an organization. In order to ensure a business success, we have to select a domain
that strikes a healthy balance among these factors. An organization which does not have any
experience with Domain Engineering should choose a small but important domain, e.g. some
important aspect of most systems it builds. The resulting components and models can be
reused on internal projects or sold outside the organization. After succeeding with the first
domain, the organization should consider adding more and more domains to cover its product
lines.

3.6.3 Relationships Between Domains
We recognize three major types of relationships between domains:

• A is contained in B: All knowledge in domain A also belongs to domain B, i.e. A is a
subdomain of B.20 For example, the domain of matrix packages is a subdomain of the
domain of matrix computation packages since matrix computations cover both matrices
and matrix computation algorithms.

• A uses B: Knowledge in A references knowledge in B in a significant way, i.e. it is
worthwhile to represent aspects of A in terms of B. We say that B is a support domain of
A. For example, the storage aspect of a matrix package implemented using different
containers from a container package. In other words, the domain of container packages is
a support domain of the domain of matrix packages.

• A is analogous to B [SCK+96]: There is a considerable amount of similarity between A
and B; however, it is not necessarily worthwhile to express one domain in terms of the
other. We say that A is an analogy domain of B. For example, the domain of numerical
array packages is an analogy domain of the domain of matrix packages. They are both at
a similar level of abstraction (in contrast to the more fundamental domain of containers,
which could be a support domain for the domain of numerical array and the domain
matrix packages) and clearly have different focuses (see Section 10.1.1.2.6). Yet still
there is a considerable amount of similarity between them and studying one domain may
provide useful insights into the other one.

20 In [SCK+96] B is referred to as generalization of A and A as specialization of B.

Subdomains

Support domains

Analogy domains

Domain Engineering 45

3.6.4 Problem and Solution Space
The set of all valid system specifications in a domain (e.g. valid feature combinations) is
referred to as the problem space and the set of all concrete systems in the domain is referred
as to as the solution space (see Figure 10). One of the goals of Domain Engineering is to
produce components, generators, production processes, etc., which automate the mapping
between the system specifications and the concrete systems.

A problem space contains the domain concepts that application programmers wold like to
interact with when specifying systems, whereas the solution space contains the
implementation concepts. There is natural a tension between these two spaces because of their
different goals: The domain concepts have a structure that allows direct and intentional
expression of problems. On the other hand, when we design the implementation concepts, we
strive for small, atomic components that can be combined in as many ways as possible. We
want to avoid any code duplication by factoring out similar code sections into small,
(parameterized) components. This is potentially at odds with the structure of the problem
space since not all of these small components should be visible to the application programmer.
There is a number of other issues to consider when we design both spaces. We discuss them in
Section 9.4.3.

The overall structure of the solution space is referred to as the target architecture. For
example, the target architecture of the generative matrix computation library described in
Chapter 10 is a special form of a layered architecture referred to as the GenVoca architecture
(see Section 6.4.2). The target architecture defines the framework for the integration of the
implementation components.

The system specifications in the problem space are usually expressed using a number of
domain-specific languages (DSLs), i.e. languages specialized for the direct and declarative
expression of system requirements in a given domain. These languages define the domain
concepts. We discuss the advantages of DSLs in Section 7.6.1 and the issues concerning their
design and implementation in Section 9.4.1.

3.6.5 Specialized Methods
Different kinds of systems require different modeling techniques. For example, most
important aspects of interactive systems are captured by use cases and scenarios. On the other
hand, large data-centric applications are sometimes more appropriately organized around
entity-relationship diagrams or object diagrams. Additional, special properties such as real-
time support, distribution, and high availability and fault tolerance require specialized
modeling techniques. Thus, different categories of domains will require different specialized
domain engineering methods, i.e. methods deploying specialized notations and processes. We
will discuss this issue in Chapter 4. In Chapter 9, we present DEMRAL, a specialized Domain
Engineering method for developing reusable algorithmic libraries.

���������	��

�
�����	� �	� �����
� �
�

���������	���
�
�����	� �	� �����
� �
�

���������	���
�
�����	� �	� �����
� �
�

�������! "$#
% �'&)(*"

% �+ ,*-	. �)/
% �'&)(*"

���������	��0
�
�����	� �	� �����
� �
�

���������	��

� �1�
2 �	�3�
�������
� �
�

���������	���
� �1�
2 �	�3�
�������
� �
�

���������	���
� �1�
2 �	�3�
�������
� �
�

���������	��0
� �1�
2 �	�3�
�������
� �
�

Figure 10 Problem and solution space

Domain-specific
languages

Generative Programming, K. Czarnecki46

3.7 Survey of Domain Analysis and Domain Engineering
Methods
There is a large number of Domain Analysis and Domain Engineering methods. Two of them
deserve special attention since they belong to the most mature and best documented (including
case studies) methods currently available: Feature-Oriented Domain Analysis and
Organization Domain Modeling. We describe them in Sections 3.7.1 and 3.7.2. Sections 3.7.3
through 3.7.8 contain short descriptions of twelve other Domain Engineering methods or
approaches. Each of them has made important contributions to some aspects of Domain
Engineering (such as conceptual clustering, rationale capture, formal approaches, etc.).

Two surveys of Domain Analysis methods have been published to date: [WP92] and the more
comprehensive [Arr94]. Compared to these surveys, the following sections also reflect the
newest development in the field of Domain Engineering.

Please note that, in order to be consistent with the original descriptions of the Domain
Engineering methods in the literature, the survey uses the term phase in its older meaning,
i.e. to denote process components (cf. footnote on page 33).

3.7.1 Feature-Oriented Domain Analysis (FODA)
FODA is a Domain Analysis method developed at the Software Engineering Institute (SEI).
The method is described in [KCH+90]. Tool support for FODA is outlined in [Kru93] and a
comprehensive example of applying FODA to the Army Movement Control Domain is
described in [CSJ+92, PC91]. A number of other military projects to use FODA are listed in
[CARDS94, p. F.2]. FODA has also been applied in the area of telecommunication systems,
e.g. [Zal96, VAM+98].

Figure 11 Example of a FODA structure diagram: The structure diagram of the Army Movement
Control Domain (from [PC91])

Domain Engineering 47

3.7.1.1 FODA Process
The FODA process consists of two phases [MBSE97]:21

1. Context Analysis: The purpose of Context Analysis is to define the boundaries of the
domain to be analyzed.

2. Domain Modeling: The purpose of Domain Modeling is to produce a domain model.

We describe these phases in the following two subsections.

3.7.1.1.1 Context Analysis

The FODA Context Analysis defines the scope of a domain that is likely to yield useful
domain products.22 In this phase, the relationships between the domain of focus and other
domains or entities are also established and analyzed for variability. The results of the context
analysis along with factors such as availability of domain expertise and project constraints are
used to limit the scope of the domain [MBSE97]. The results of the Context Analysis are the
context model which includes a structure diagram (see Figure 11) and a context diagram (see
Figure 12).

21 Originally, FODA contained a third phase called Architectural Modeling (see [KCH+90]). This phase
is no longer part of FODA, but instead it was converted into the Domain Design phase, which follows
FODA in the overall framework of Model-Based Software Engineering (see Section 3.7.1.3).

22 The FODA Context Analysis corresponds to the domain planning and domain scoping activities
defined in Section 3.3.

Figure 12 Example of a FODA context diagram: The context diagram of the Army
Movement Control Domain (from [PC91]). A FODA context diagram is a typical
data-flow diagram: "The arrows represent the information received or generated by
the movement control domain. The closed boxes represent the set of sources and sinks
of information. The open-ended boxes represent the databases that the movement
control domain must interact with." [MBSE97]

Generative Programming, K. Czarnecki48

3.7.1.1.2 Domain Modeling

During the FODA Domain Modeling phase the main commonaliti es and variabiliti es between
the applications in the domain are identified and modeled. This phase involves the following
steps [MBSE97]:

1. Information Analysis: The main purpose of Information Analysis is to capture domain
knowledge in the form of domain entities and the relationships between them. The
particular modeling technique used in this phase could be semantic networks, entity-
relationship modeling, or object-oriented modeling. The result of Information Analysis is
the information model, which corresponds to the concept model mentioned in Section 3.3.

2. Features Analysis: “Features Analysis captures a customer’s or end-user’s understanding
of the general capabiliti es of applications in a domain. For a domain, the commonaliti es
and differences among related systems of interest are designated as features and are
depicted in the features model.” 23 [MBSE97]

3. Operational Analysis: Operational Analysis yields the operational model which
represents how the application works by capturing the relationships between the objects
in the information model and the features in the features model.

Another important product of this phase is a domain dictionary which defines all the
terminology used in the domain (including textual definitions of the features and entities in
the domain).

3.7.1.2 The Concept of Features
In FODA, features are the properties of a system which directly affect end-users24:

“Feature: A prominent and user-visible aspect, quality, or characteristic of a software system
or systems.” [KCH+90, p. 2]

For example, “when a person buys an automobile a decision must be made about which
transmission feature (e.g. automatic or manual) the car will have.” [KCH+90, p. 35] Thus,
FODA features can be viewed as features in the sense of Conceptual Modeling (see Section
2.2) with the additional requirement of directly affecting the end-user.

In general there are two definitions of features found in Domain Engineering literature:

1. a end-user-visible characteristic of a system, i.e. the FODA definition, or

2. a distinguishable characteristic of a concept (e.g. system, component, etc.) that is relevant
to some stakeholder of the concept. The latter definition is used in the context of ODM
(see Section 3.7.2) and Capture (see Section 3.7.4) and is full y compatible with the
understanding of features in Conceptual Modeling.

We prefer the latter definition since it is more general and covers the important case of
software components.

The features of a software system are documented in a features model. An important part of
this model is the features diagram. An example of a simple features diagram of an automobile
is shown in Figure 13. This example also ill ustrates three types of features25:

23 The FODA term “features model” is equivalent to the term “feature model” defined in Section 3.3.

24 A user may be a human user or another system with which appli cations in a domain typicall y interact.

Two definitions of
feature

Mandatory,
alternative, and
optional features

Domain Engineering 49

1. mandatory features, which each application in the domain must have, e.g. all cars have a
transmission;

2. alternative features, of which an application can posses only one at a time, e.g. manual or
automatic transmission;

3. optional features, which an application may or may not have, e.g. air conditioning.

The features diagram has the form of a tree in which the root represents the concept being
described and the remaining nodes denote features. The relationships are consists-of
relationships denoting, for example, that the description of a transmission consists of the
descriptions of manual and automatic transmissions.

The FODA-style of featural description subsumes both the featural and the dimensional
descriptions from the classical conceptual modeling, which we discussed in Sections 2.2.1 and
2.3.6. This is illustrated in Figure 14.

Feature interdependencies are captured using composition rules (see Figure 13). FODA
utilizes two types of composition rules:

25 Strictly speaking, we have to distinguish between direct features of a concept and subfeatues of
features. Direct features of an application may be mandatory, alternative, or optional with respect to all
applications within the domain. A subfeature may be mandatory, alternative, or optional with respect to
only the applications which also have its parent feature. We explain this idea in Chapter 5.4.1.

�������������	��
����

 ���	���������

������
 �������

 ���	����������������	�������

 ���	��������� ���	�� "!$#���%&!'�

(����)�*����
���
 ���+����� ��,
-�.�/ 021�3�4�5	/ 6�/ 3�4�/ 4�7�-80�9�:�;�/ 0�9�<

-�=�3�0�<�9�>�3�?@9�0�-BA2C�D�D

���	��
 ������� ��,
-FE2.�4�;�.�G -8E23�0�9+H�;�9�G�9�H�H�/ 1�/ 9�4�6

I �KJML� 	NPO � 	O �	L

NQJML�R"J$S

T JM�

JMR I �@NQJ I O T

J$O � T �	L�U8O I O �	L	O L�V

Figure 13 Example showing features of a car (from [KCH+90, p. 36]).
Alternative features are indicated by an arc and optional features by an empty
circle.

J T �	L T !$# I

W !	J I R��K!YXW !	J I R��K!YZW !	J I R��K!Y[

b. dimensional descriptiona. featural description

J T �	L T !$# I

U8O NQ!'L� 	O �	L\Z

] J$S R"!Y[�^ [] J$S R"!Y[�^ Z

U8O NQ!'L� 	O �	L\[

] J$S R"!YZB^ [] J$S R"!YZB^ Z

Figure 14 Representation of featural and dimensional descriptions using FODA feature notation

Generative Programming, K. Czarnecki50

1. requires rules: Requires rules capture implications between features, e.g. “air
conditioning requires horsepower greater than 100” (see Figure 13).

2. mutually-exclusive-with rules: These rules model constraints on feature combinations. An
example of such a rule is “manual mutually exclusive with automatic”. However, this
rule is not needed in our example since manual and automatic are alternative features. In
general, mutually-exclusive-with rules allow us to exclude combinations of features where
each feature may be seated in quite different locations in the feature hierarchy.

We can also annotate features with rationales. A rationale documents the reasons or trade-offs
for choosing or not choosing a particular feature. For example, manual transmission is more
fuel efficient than automatic one. Rationales are necessary since, in practice, not all issues
pertaining to the feature model can be represented formally as composition rules (due to the
complexity involved or limited representation means). Theoretically, fuel efficient in Figure
13 could be modeled as a feature. In this case, the dependency between manual and fuel
efficient could be represented as the following composition rule: fuel efficient requires
manual. However, one quickly recognizes that the dependency between fuel efficient and
manual is far more complex. First, we would need some measure of fuel efficiency and,
second, fuel efficiency is influenced by many more factors than just the type of car
transmission. The problem becomes similar to the problem of representing human expertise in
expert systems [DD87]. Thus, stating the rationale informally allows us to avoid dealing with
this complexity. In general, rationale refers to factors that are outside of the considered model.

The usage of the term rationale in the Domain Engineering literature is inconsistent. There
are roughly two definitions of this term:

1. the trade-offs for choosing or not choosing a particular feature, i.e. the FODA definition
(this notion is similar to the forces section in the description of a design pattern
[GHJV95]);

2. the particular reason for choosing a specific feature after considering a number of trade-
offs (this would correspond to recording the information about which forces were directly
responsible for arriving at the decision made). The latter definition is used in Capture
(Section 3.7.4) and in ODM (Section 3.7.2). This definition is motivated by the work on
design rationale capture [Shu91, Bai97], the goal of which is to record the reason for
selecting a particular design alternative by a (not necessarily software) designer during
the design of a specific system.

Based on the purpose of a feature, the FODA features model distinguishes between context,
representation, and operational features [MBSE97]:26

1. Context features “are those which describe the overall mission or usage patterns of an
application. Context features would also represent such issues as performance
requirements, accuracy, and time synchronization that would affect the operations.”
[MBSE97]

2. Representation features “are those features that describe how information is viewed by a
user or produced for another application (i.e., what sort of input and output capabilities
are available).” [MBSE97]

3. Operational features “are those features that describe the active functions carried out
(i.e., what the application does).” [MBSE97]

Of course, other types of features are also possible. For example, Bailin proposes the following
feature types: operational, interface, functional, performance, development methodology,
design, and implementation features [Bai92].

26 The original FODA description in [KCH+90] uses a slightly different categorization; it distinguishes
between functional, operational, and presentation features.

Composition rules

Rationale

Two definitions of
rationale

Domain Engineering 51

Finally, FODA features are classified according to their binding time into compile-time,
activation-time, and runtime features [KCH+90]:

1. Compile-time features are “features that result in different packaging of the software and,
therefore, should be processed at compile time. Examples of this class of features are
those that result in different applications (of the same family), or those that are not
expected to change once decided. It is better to process this class of features at compile
time for efficiency reasons (time and space).”

2. Activation-time features (or load-time features) are those “features that are selected at the
beginning of execution but remain stable during the execution. [...] Software is
generalized (e.g. table-driven software) for these features, and instantiation is done by
providing values at the start of each execution.”

3. Runtime features are those “features that can be changed interactively or automatically
during execution. Menu-driven software is an example of implementing runtime
features.”

The FODA classification of features according to binding time is incomplete. There are also
other times, e.g. linking time, or first-call time (e.g. when a method is called the first time;
this time is relevant for just-in-time compilation [Kic97]). In general, feature binding time can
be classified according to the specific times in the life cycle of a software system. Some
specific products could have their specific times (e.g. debugging time, customization time,
testing time, or, for example, the time when something relevant takes place during the use of
the system, e.g. emergency time, etc.). Also, when a component is used in more than one
location in a system, the allowed component features could depend on this location.
Furthermore, binding could depend on the context or setting in which the system is used. For
this reason, Simos et al. introduced the term binding site ([SCK+96]) which covers all these
cases (i.e. binding time and context). We will discuss this concept in Section 5.4.4.3 in more
detail.

The features model describes the problem space in a concise way: “The features model is the
chief means of communication between the customers and the developers of new applications.
The features are meaningful to the end-users and can assist the requirements analysts in the
derivation of a system specification that will provide the desired capabilities. The features
model provides them with a complete and consistent view of the domain.” [MBSE97]

To summarize, a FODA features model consists of the following four key elements:

1. features diagram, i.e. a representation of a hierarchical decomposition of features
including the indication whether or not each feature is mandatory, alternative, or
optional;

2. feature definitions for all features including the indication of whether each feature is
bound at compile time, activation time, or at runtime (or other times);

3. composition rules for features;

4. rationale for features indicating the trade-offs.

We will come back to this topic in Chapter 5, where we define a more comprehensive
representation of feature models.

3.7.1.3 FODA and Model-Based Software Engineering
FODA is a part of Model-Based Software Engineering (MBSE), a comprehensive approach to
family-oriented software engineering based on Domain Engineering, being developed by SEI

Binding time,
binding location, and
binding site

Generative Programming, K. Czarnecki52

(see [MBSE97] and [Wit94]).27 MBSE deploys a typical family-oriented process architecture
consisting of two processes: Domain Engineering and Application Engineering (see Figure 8).
The Domain Engineering process, in turn, consists of Domain Analysis, Domain Design, and
Domain Implementation, where FODA takes the place of Domain Analysis.

3.7.2 Organization Domain Modeling (ODM)
ODM is a domain engineering method developed by Mark Simos of Synquiry Ltd. (formerly
Organon Motives Inc.). The origins of ODM date back to Simos’s work on the knowledge-
based reuse support environment Reuse Library Framework (RLF) [Uni88]. Since then ODM
has been used and refined on a number projects, most notably the STARS project (see Section
3.8), and other projects involving organizations such as Hewlett-Packard Company, Lockheed
Martin (formerly Loral Defense Systems-East and Unisys Government Systems Group), Rolls-
Royce, and Logicon [SCK+96]. During its evolution, ODM assimilated many ideas from other
domain engineering approaches as well as work in non-software disciplines such as
organization redesign and workplace ethnography [SCK+96]. The current version 2.0 of
ODM is described in [SCK+96], a comprehensive guidebook comprising almost five hundred
pages. This guidebook replaces the original ODM description in [SC93].

Some of the unique aspects of ODM include

• Focus on stakeholders and settings: Any domain concepts and features defined during
ODM have explicit traceability links to their stakeholders and relevant contexts (i.e.
settings). In addition, ODM introduces the notion of a grounded abstraction, i.e.
abstraction based on stakeholder analysis and setting analysis, as opposed to the “right”
abstraction (a term used in numerous textbooks on software design), which is based on
intuition.

• Types of domains: ODM distinguishes between horizontal vs. vertical, encapsulated vs.
diffused, and native vs. innovative domains (see Sections 3.6.1 and 3.6.2).

• More general notion of feature: ODM uses a more general notion of feature than FODA
(see Section 3.7.1.2). An ODM feature does not have to be end-user visible; instead, it is
defined as a difference between two concepts (or variants of a concept) that “makes a
significant difference” to some stakeholder. ODM features directly correspond to the
notion of features discussed in Chapter 2.

• Binding site: In FODA, a feature can be bound at compile, start, or runtime (see Section
3.7.1.2). ODM goes beyond that and introduces the notion of binding site, which allows
for a broader and finer classification of binding times and contexts depending on domain-
specific needs. We discuss this idea in Section 5.4.4.3

• Analysis of feature combinations: ODM includes explicit activities aimed towards
improving the quality of features, such as feature clustering (i.e. co-occurrence of
features), as well as the building of a closure of feature combinations (i.e. enumerating all
valid feature combinations). The latter can lead to the discovery of innovative system
configurations which have not been considered before.

• Conceptual modeling: ODM uses a very general modeling terminology similar to that
introduced in Chapter 2. Therefore, ODM can be specialized for use with any specific
system modeling techniques and notations, such as object-oriented analysis and design
(OOA/D) methods and notations or structured methods. We discuss this topic in Chapter
4. Also, in Chapter 9, we present a specialization of ODM for developing algorithmic
libraries.

• Concept starter sets: ODM does not prescribe any particular concept categories to look
for during modeling. While other methods specifically concentrate on some concept

27 FODA was conceived before the work on MBSE started.

Unique aspects of
ODM

Domain Engineering 53

categories such as objects, functions, algorithms, data structures, etc., ODM uses concept
starter sets consisting of different combinations of concept categories to jumpstart
modeling in different domains.

• Scoping of the asset base: ODM does not require the implementation of the full domain
model. There is an explicit ODM task, the goal of which is to determine the part of the
domain model to be implemented based on project and stakeholder priorities.

• Flexible architecture: ODM postulates the need for a flexible architecture since a generic
architecture is not suff icient for domains with a very high degree of variabilit y (see
Section 3.4).

• Tailorable process: ODM does not commit itself to any particular system modeling and
engineering method, or any market analysis, or any stakeholder analysis method. For the
same reason, the user of ODM has to provide these methods, select appropriate notations
and tools (e.g. feature notation, object-oriented modeling, etc.), and also invest the effort
of integrating them into ODM.

The following section gives a brief overview of the ODM process.

3.7.2.1 The ODM Process
The ODM process—as described in [SCK+96]—is an extremely elaborate and detailed
process. It consists of three main phases:

1. Plan Domain: This is the domain scoping and planning phase (Section 3.3)
corresponding to Context Analysis in FODA (Section 3.7.1.1.1).

2. Model Domain: In this phase the domain model is produced. It corresponds to Domain
Modeling in FODA (3.7.1.1.2).

3. Engineer Asset Base: The main activities of this phase are to produce the architecture for
the systems in the domain and to implement the reusable assets.

Plan Domain and Model Domain clearly correspond to a typical Domain Analysis. Engineer
Asset Base corresponds to Domain Design and Domain Implementation.

Each of the three ODM phases consists of three sub-phases and each sub-phase is further
divided into three tasks. The complete ODM process is shown in Figure 15.

Generative Programming, K. Czarnecki54

The ODM phases and sub-phases are described in Table 5.

Figure 15 Phases of the ODM process (from [SCK+96, p. 40])

Domain Engineering 55

28 The tasks listed in this column do not exactly correspond to the formal ODM tasks. The latter are
shown in Figure 15.

ODM
Phase

ODM
Sub-Phase

Performed Tasks28

Plan
Domain

Set
objectives

• determine the stakeholders (i.e. any parties related to the project), e.g.
end-users, customers, managers, third-party suppliers, domain experts,
programmers, subcontractors

• analyze stakeholders’ objectives and project objectives

• select stakeholders and objectives from the candidates

Scope
domain

• scope the domain based on the objectives (issues include choosing
between vertical vs. horizontal, encapsulated vs. diffused, native vs.
innovative domains)

Define
domain

• define the domain boundary by giving examples of systems in the
domain, counterexamples (i.e. systems outside the domain), as well as
generic rules defining what is in the domain and what not

• identify the main features of systems in the domain and the usage
settings (e.g. development, maintenance, customization contexts) for the
systems

• analyze the relationships between the domain of focus and other
domains

Model
Domain

Acquire
domain
information

• plan the domain information acquisition task

• collect domain information from domain experts, by reverse-engineering
existing systems, literature studies, prototyping, etc.

• integrate the collected data, e.g. by pre-sorting the key domain terms,
identifying the most important system features

Describe
domain

• develop a lexicon of domain terms

• model the semantics of the key domain concepts

• model the variability of concepts by identifying and representing their
features

Refine
domain

• integrate the models produced so far into an overall consistent model

• model the rationale for variability, i.e. the trade-offs for using or not
using certain features

• improve the quality of features by clustering and experimenting with
innovative feature combinations

Scope asset
base

• correlate identified features and customers

• prioritize features and customers

• based on the priorities, select the portion of the modeled functionality
for implementation

Engineer
Asset
Base

Architect
asset base

• determine external architecture constraints (e.g. external interfaces and
the allocation of features to the external interfaces)

• determine internal architecture constraints (e.g. internal interfaces,
allocation of groups of related features to internal interfaces)

• define asset base architecture based on these constraints

Implement
asset base

• plan asset base implementation (e.g. selection of tools, languages, and
other implementation strategies)

• implement assets

• implement infrastructure (e.g. domain-specific extensions to general
infrastructures, asset retrieval mechanisms, asset qualification
mechanisms)

Table 5 Description of ODM phases and sub-phases

Generative Programming, K. Czarnecki56

3.7.3 Draco
Draco is an approach to Domain Engineering as well as an environment based on
transformation technology. Draco was developed by James Neighbors in his Ph.D. work
[Nei80] to be the first Domain Engineering approach. Furthermore, the main ideas introduced
by Draco include domain-specific languages and components as sets of transformations. This
section gives a brief overview of Draco. A more detailed discussion is given in Section 6.4.1.

The main idea of Draco is to organize software construction knowledge into a number of
related domains. Each Draco domain encapsulates the needs and requirements and different
implementations of a collection of similar systems. Specifically, a Draco domain contains the
following elements ([Nei84, Nei89]):

• Formal domain language (also referred to as “surface” language) : The domain language
is used to describe certain aspects of a system. The domain language is implemented by a
parser and a pretty printer. The internal form of parsed code is a parse tree. The term
domain language is equivalent to the term domain-specific language introduced in
Section 3.6.4.

• Set of optimization transformations: These transformations represent rules of exchange of
equivalent program fragments in the domain language and are useful for performing
optimizations on the parse tree.

• Set of transformational components: Each component consists of one or more refinement
transformations capable of translating the objects and operations of the source domain
language into one or more target domain languages of other, underlying domains. There
is one component for each object and operation in the domain. Thus, components
implement a program in the source domain language in terms of the target domains.
Draco refers to the underlying target domains as refinements of the source domain. As a
result, the construction knowledge in Draco is organized into domains connected by
refinement relationships.

• Domain-specific procedures: Domain-specific procedures are used whenever a set of
transformations can be performed algorithmically. They are usually applied to perform
tasks such as generating new code in the source domain language or analyzing programs
in the source language.

• Transformation tactics and strategies (also called optimization application scripts):
Tactics are domain-independent and strategies are domain-dependent rules helping to
determine when to apply which refinement. Optimizations, refinements, procedures,
tactics, and strategies are organized into metaprograms (i.e. programs generating other
programs).

It is important to note that, in Draco, a system is represented by many domain languages
simultaneously.

The results of applying Draco to the domain of real-time applications and the domain of
processing standardized tests are described in [Sun83] and [Gon81], respectively.

3.7.4 Capture
Capture, formerly known as KAPTUR (see [Bai92, Bai93]), is an approach and a commercial
tool for capturing, organizing, maintaining, and representing domain knowledge. Capture was
developed by Sidney Bailin of CTA Inc. (currently with Knowledge Evolution Inc.).

The Capture tool is a hypertext-based tool allowing the user to navigate among assets (e.g.
architectures and components). The assets are documented using informal text and various
diagrams, such as entity-relationship diagrams. The assets are annotated by their distinctive
features, which document important design and implementation decisions. Features are

Domain Engineering 57

themselves annotated with trade-offs that were considered and rationale for the particular
decision made.29 [Bai92]

3.7.5 Domain Analysis and Reuse Environment (DARE)
DARE is both a Domain Analysis method and a tool suite supporting the method [FPF96].
DARE was developed by Willi am Frakes (Software Engineering Guild) and Rubén Prieto-
Díaz (Reuse Inc.) and represents a commercial product.

The DARE tool suite includes lexical analysis tools for extracting domain vocabulary from
system descriptions, program code, and other sources of domain knowledge. One of the most
important tools is the conceptual clustering tool, which clusters words according to their
conceptual similarity. The clusters are further manually refined into facets, which are main
categories of words and phrases that fall i n the domain [FPF96]. The idea of using facets to
describe and organize systems and components in a domain has its roots in the application of
library science techniques, such as faceted classification, to component retrieval [Pri85, Pri87,
PF87, Pri91a, Pri91b, OPB92].

The main workproducts of DARE include a facet table, feature table, system architecture,
and domain lexicon and are organized into a domain book. The DARE tool suite includes
appropriate tools for creating and viewing these workproducts.

3.7.6 Domain-Specific Software Architecture (DSSA) Approach
The DSSA approach to Domain Engineering was developed under the Advanced Research
Project Agency’s (ARPA) DSSA Program (see [Hay94, TTC95]). The DSSA approach
emphasizes the central role of the concept of software architecture in Domain Engineering.
The overall structure of the DSSA process is compatible with the generic process structure
described in Sections 3.3 through 3.5 (see [CT93, TC92] for descriptions of the DSSA
process). The main workproducts of the DSSA process include the following [Tra95]:

1. Domain Model: The DSSA Domain Model corresponds to the concept model in Section
3.3 (i.e. concept model in ODM or information model in FODA) rather than a full
domain model.

2. Reference Requirements: The DSSA Reference Requirements are equivalent to the
feature model in Section 3.3. Each reference requirement (or feature in the terminology
of Section 3.3) is either mandatory, optional, or alternative. The DSSA Reference
Requirements include both functional and non-functional requirements.30

3. Reference Architecture: A DSSA Reference Architecture is an architecture for a family of
systems consisting mainly of an architecture model, configuration decision tree (which is
similar to the FODA features diagram in Section 3.7.1.2), design record (i.e. description
of the components), and constraints and rationale (the latter two correspond to
configuration rules and rationale in FODA in Section 3.7.1.2).

The need to formally represent the components of an architecture and their interrelationships
led to the development of so-called Architecture Description Languages or ADLs. The
concept of ADLs is described in [Cle96, Arch, SG96].

The DSSA approach has been applied to the avionics domain under the Avionics Domain
Application Generation Environment (ADAGE) project involving Loral Federal Systems and
other contractors (see [ADAGE]). As a result of this effort, a set of tools and other products
supporting the DSSA process have been developed, including the following [HT94]:

29 Note that this terminology is different from the FODA terminology, according to which rationale and
trade-offs are synonyms (see Section 3.7.1.2).

30 Note that the DSSA Reference Requirements are not part of the DSSA Domain Model, whereas the
feature model is part of the domain model in Section 3.3.

Clusters and facets

Generative Programming, K. Czarnecki58

• DOMAIN: a hypermedia-based Domain Analysis and requirements capture environment;

• MEGEN: an application generator based on module expressions;

• LILEANA: an ADL based on the ADA annotation language ANNA [LHK87] and the
module interconnection language LIL [Gog83] (LILEANA is described in [Tra93,
GT96]).

Other DSSA program efforts resulted in the development of other Domain Engineering tools
and products (see [HT94] for more details), most notably the ADLs ArTek (developed by
Teknowledge [THE+94]), ControlH and MetaH (developed by Honeywell [BEJV93]), and
Rapide (developed at Stanford University [LKA+95]).

3.7.7 Algebraic Approach
The algebraic approach to Domain Engineering was proposed by Yellamraju Srinivas in
[Sri91] (see [Smi96, SJ95] for more recent work). This section gives a brief overview of this
approach. A more detailed description follows in Section 6.4.4.

The main idea of this approach is to formalize domain knowledge in the form of a network of
related algebraic specifications (also referred to as theories). An algebraic specification
defines a language and constrains its possible meanings through axioms and inference rules.
Algebraic specifications can be related using specification morphisms. Specification
morphisms define translations between specification languages that preserve the theorems
(i.e. all statements which can be derived from the axioms using the inference rules). Thus, in
the algebraic approach, the domain model is represented as a number of formal languages
including translations between them. From this description, it is apparent that the algebraic
approach and the Draco approach (Section 3.7.3) are closely related.31 In fact, the only
difference is that the algebraic approach is based on the algebraic specification theory (e.g.
[LEW96]) and the category theory (e.g. [BW85]). Similarly to Draco, the algebraic approach
lends itself well to implementation based on transformations. The inference rules of a
specification correspond to the optimization transformations of Draco, and the specification
morphisms correspond to refinement transformations.

First success reports on the practical use of the algebraic approach include the application of
the transformation-based system KIDS (Kestrel Interactive Development System, see
[Smi90]) in the domain of transportation scheduling by the Kestrel Institute. According to
[SPW95], the scheduler generated from a formal domain model using KIDS is over 20 times
faster than the standard, hand-coded system deployed by the customer. This proves the
viability of the algebraic approach in narrow, well-defined domains. A successor system to
KIDS is SPECWARE [SJ95], which is explicitly based on category theory (i.e. it uses
category theory concepts both in its design and user interface).

3.7.8 Other Approaches
Other approaches to Domain Engineering include the following:

• SYNTHESIS: SYNTHESIS [SPC93] is a Domain Engineering method developed by the
Software Productivity Consortium in the early nineties. The structure of the SYNTHESIS
process is principally consistent with the generic process structure described in Sections
3.3 through 3.5 (although it uses a slightly different terminology). A unique aspect of
SYNTHESIS is the tailorability of its process according to the levels of the Reuse
Capability Model [SPC92]. This tailorability allows an organization to control the impact
of the reuse process installation on its own structures and processes.

31 As indicated in [Sri91, p. 91], the work on Draco has had a major influence on the algebraic approach
to Domain Engineering.

Domain Engineering 59

• Family-Oriented Abstraction, Specifi cation, and Translation (FASST): FASST is a
Domain Engineering method developed by David Weiss et al. at Lucent Technologies
Bell Laboratories [Wei96]. FASST has been greatly influenced by the work on
SYNTHESIS (Weiss was one of the developers of SYNTHESIS).

• Defense Information Systems Agency’s Domain Analysis and Design Process (DISA
DA/DP): DISA DA/DP [DISA93] is similar to MBSE (Section 3.7.1.3) and ODM
(Section 3.7.2). However, it only includes Domain Analysis and Domain Design. DISA
DA/DP uses the object-oriented Coad-Yourdon notation [CY90].

• Joint Integrated Avionics Working Group (JIAWG) Object-Oriented Domain Analysis
Method (JODA): JODA [Hol93] is a Domain Analysis method similar to FODA (see
Section 3.7.1; however, JODA does not include a feature model) and is based on the
object-oriented Coad-Yourdon notation and analysis method [CY90].

• Gomaa: [Gom92] describes an early object-oriented Domain Engineering method
developed by Hassan Gomaa. An environment supporting the method is set out in
[GKS+94].

• Reusable Ada Products for Information Systems Development (RAPID): RAPID is a
Domain Analysis approach developed by Vitaletti and Guerrieri [VG90], utilizing a
similar process to the afore-presented Domain Engineering methods.

• Intelli gent Design Aid (IDeA): IDeA is a design environment supporting Domain
Analysis and Domain Design [Lub91]. IDeA was developed by Mitchell Lubars. The
unique aspect of IDeA is its iterative approach to Domain Analysis, whereby specific
problems are analyzed one at a time and each analysis potentially leads to an update of
the domain model.32

Since the main concepts and ideas of Domain Engineering have already been illustrated based
on the methods presented in previous sections, we refrain from describing the approaches
mentioned in this section in more detail.

3.8 Historical Notes
The idea of Domain Engineering can be traced back to the work on program families by
Dijkstra [Dij70] and Parnas [Par76]. Parnas defines program family as follows [Par76, p. 1]:

“We consider a set of programs to constitute a family, whenever it is worthwhile to study
programs from the set by first studying the common properties of the set and then
determining the special properties of the individual family members.”

The term Domain Analysis was first defined by Neighbors in his Ph.D. work on Draco [Nei80,
pp. xv-xvi] as

“the activity of identifying objects and operations of a class of similar systems in a
particular problem domain.”

Major efforts aimed at developing Domain Analysis methods (including SEI’s FODA and the
work by Prieto-Diaz et al. at the Software Productivity Consortium) followed in the late
eighties. A comprehensive bibliography of work related to Domain Engineering from the
period 1983-1990 can be found in [HNC+90].

A large share of the work on Domain Engineering was sponsored by the U.S. Department of
Defense research programs related to software reuse including Software Technology for

32 In [Lub91] the term domain engineering is defined as the phase in which reusable assets identified
during domain analysis are constructed. This terminology is inconsistent with the terminology currently
recognized in the Domain Engineering community.

Generative Programming, K. Czarnecki60

Adaptable, Reliable Systems (STARS) [STARS94], Comprehensive Approach to Reusable
Defense Software (CARDS) [CARDS], and DSSA (Section 3.7.6).

Domain Engineering methods such as MBSE, ODM 2.0, and FASST (Sections 3.7.1.3, 3.7.2,
3.7.8) can be classified as second generation methods. The most recent trend in the field is to
integrate Domain Engineering and OOA/D methods (see Chapter 4).

A partial genealogy of Domain Engineering methods is shown in Figure 16.

3.9 Discussion
Domain Engineering represents a valuable approach to software reuse and multi-system-scope
engineering. Table 6 compares conventional software engineering and Domain Engineering
based on their workproducts. Another important difference is the split of software engineering
into engineering for reuse (Domain Engineering) and engineering with reuse (Application
Engineering).

Domain Engineering moves the focus from code reuse to reuse of analysis and design models.
It also provides us with a useful terminology for talking about reuse-based software
engineering.

�������
�	��
���
��
� �	��
������

��� �	��
�
���� ����������� ��� �	�	��� �	�	�

 �!��"�
#"$��

�&%�')(+* ��,)�

-/.�#"$
#"$��

� 0 � ���213�

�"#"#"�
� (54 �213�

�+
�
��	���	�
� �+
�
�6�6��

� �
�
���
879����� ���	�	�

:	�	�	;+� ��<��	�

����	
��������	���	��� �	�

 ��+#"# 4
0 ��� ���
� 0 ��� �)=��

!���-?>�@ ,
#+� A5�	�

� # '�%�* �)=��

�+� BC:	���	
��
� �+� B8D�,)�

!���-
#+� A5�	�
� # ' �)E��

% �+F 4"G"H
.���� � � �
� .���� ��>��

' ��������
��
.���� � � �

�"� H $
� �F� ��)=��

F	
	� �����	I
��J ��K

� F	
	� ����
��

F	
	� �����	I
��J ��K
� F	
	� 6�D)�

�"
��	�	�
L5��� ��M�
���
��
� L5��� 6�,)�

#37N�	��M	����� ��OP>�Q
#"F '

� #"F ' �)E��

#37N�	��M	����� ��OP��Q
#"F '
�P����,

�	
�����
���A
�	��A�� � � ���
F���
��	�	�
� F���
�D)=��

% ���"#
% �����	
����
� #"A�� ��,)�

#"
	� ��� R��	�
� #"
	� �����

#"F	$ ')0 � H $
% �����	
����
� #�S��)T��

Figure 16 Partial genealogy of Domain Engineering (based on [FP96])

Domain Engineering 61

Based on the discussion of the various Domain Engineering methods, we arrive at the
following conclusions:

1. The described methods and approaches are quite similar regarding the process. They use
slightly different terminology and different groupings of activities, but they are, to a large
degree, compatible with the generic process described in Sections 3.3 through 3.5. This
process is also well exemplified by MBSE and ODM (Sections 3.7.1 and 3.7.2).

2. However, as the overall process framework remains quite stable, significant variations
regarding the concrete modeling techniques and notations, approaches to software
architecture, and component implementation techniques are possible. In particular,
questions regarding the relationship between Domain Engineering and object-oriented
technology are interesting. How do OOA/D and Domain Engineering fit together? We
will address this topic in Chapter 4. Furthermore, we need to look for adequate
technologies for implementing domain models. We will discuss some implementation
technologies in Chapter 6 and Chapter 7.

3. Some of the presented Domain Engineering approaches make specific contributions with
respect to the issue of concrete modeling techniques and implementation technologies:

• As exemplified by Draco and the algebraic approach (Sections 3.7.3 and 3.7.7),
formal methods, formal domain-specific languages, and transformation systems are
well suited for mature and narrow domains. More work is needed in order to
investigate a broader scope of applicability of these techniques.

• The importance of informal techniques has also been recognized, e.g. the application
of hypermedia systems for recording requirements, rationale, and informal expertise
(Capture, Section 3.7.4), and the utilization of lexical analysis for domain vocabulary
extraction (DARE, Section 3.7.5).

4. Which modeling techniques are most appropriate depends on the kind of the domain. For
example, important aspects of GUI-based applications are captured by use cases and
scenarios, whereas in scientific computing, algorithms are best captured using
pseudocode. Furthermore, if the applications have some special properties, such as real-
time aspects or distribution aspects, we need to apply additional, specialized modeling
techniques. The organization of the Domain Engineering process itself depends on the
organization and its business objectives. Thus, there will not be one Domain Engineering
method appropriate for all possible domains and organizations. We will rather have
specialized methods for different kinds of domains with tailorable processes for different
organizational needs.

5. A major problem of all the existing Domain Engineering methods is that they do not
address the evolution aspect of Domain Engineering. In [Arr89], Arrango emphasized
that Domain Engineering is a continuous learning process, in which each new experience

Software Engineering Domain Engineering

Requirements Analysis

 requirements for one system

Domain Analysis

 reusable requirements for a class of systems

System Design

 design of one system

Domain Design

 reusable design for a class of systems

System Implementation

 implemented system

Domain Implementation

 reusable components, infrastructure, and production process

Table 6 Comparison between conventional software engineering and Domain Engineering

Generative Programming, K. Czarnecki62

in building new applications based on the reusable models produced in the Domain
Engineering process is fed back into the process, resulting in the adjustment of the
reusable models. None of the existing methods properly addresses these issues. They
rather address only one full Domain-Engineering cycle and do not explain how to
organize an eff icient iterative process. The aspect of learning is usually treated as part of
the reuse infrastructure, i.e. the results of using an asset should be fed back into the asset
base. But since the reuse infrastructure is a product of Domain Engineering, its feed-back
aspect is detached from the Domain Engineering process itself.

6. The methods also do not address how and when the infrastructure and the application
production process are planned, designed, and implemented (only to include an
infrastructure implementation activity in Domain Implementation is clearly insuff icient).

3.10 References
[ADAGE] WWW home page of the DSSA/ADAGE project at http://www.owego.com/dssa/

[Arch] WWW home page of the Architecture Resources Guide at http://www-ast.tds-gn.lmco.com/arch/guide.html

[Arr88] G. Arango. Domain Engineering for Software Reuse. Ph.D. Dissertation, Department Information and
Computer Science, University of Cali fornia, Irvine, Cali fornia, 1988

[Arr89] G. Arrango. Domain Analysis: From Art Form to Engineering Discipline. In ACM SIGSOFT Software
Engineering Notes, vol. 14, no. 3, May 1989, pp. 152-159

[Arr94] G. Arrango. Domain Analysis Methods. In Software Reusabilit y, Schäfer, R. Prieto-Díaz, and M.
Matsumoto (Eds.), Elli s Horwood, New York, New York, 1994, pp. 17-49

[Bai92] S. Baili n. KAPTUR: A Tool for the Preservation and Use of Engineering Legacy. CTA Inc., Rockvill e,
Maryland, 1992, http://www-ast.tds-gn.lmco.com/arch/kaptur.html

[Bai93] S. Baili n. Domain Analysis with KAPTUR. In Tutorials of TRI-Ada’93, Vol. I, ACM, New York, New
York, September 1993

[Bai97] S. Baili n. Applying Multi -Media to the Reuse of Design Knowledge. In the Proceedings of the Eighth
Annual Workshop on Software Reuse, 1997, http://www.umcs.maine.edu/~ftp/wisr/wisr8/papers.html

[BC96] L. Brownsword and P. Clements. A Case Study in Successful Product Line Development. Technical
Report, SEI-96-TR-016, Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania, October, 1996 , http://www.sei.cmu.edu

[BCK98] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison-Wesley, 1998

[BCR94] V. Basili , G. Caldiera and D. Rombach, The Experience Factory. In Encyclopedia of Software
Engineering, Wiley, 1994, ftp://ftp.cs.umd.edu/pub/sel/papers/fact.ps.Z

[BEJV93] P. Binns, M. Englehart, M. Jackson, and S. Vestal. Domain-Specific Software Architectures for Guidance,
Navigation, and Control, Honeywell Technology Center, 1993, http://www-ast.tds-
gn.lmco.com/arch/dssa.html

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented Software
Architecture. A System of Patterns. Wiley, Chichester, UK, 1996

[BP89] T. Biggerstaff and A. Perlis. Software Reusabilit y. Volume I: Concepts and Models. ACM Press, Frontier
Series, Addison-Wesley, Reading, 1989

[Buc97] S. Buckingham Shum. Negotiating the Construction and Reconstruction of Organisational Memories. In
Journal of Universal Computer Science, Special Issue on IT for Knowledge Management, vol. 3, no. 8,
1997, pp. 899-928, http://www.iicm.edu/jucs_3_8/negotiating_the_construction_and/, also see
http://kmi.open.ac.uk/~simonb/DR.html

[BW85] M. Barr and C. Wells. Toposes, triples and theories. Grundlagen der mathematischen Wissenschaften, vol.
278, Springer-Verlag, New York, New York, 1985

[CARDS] WWW home page of the Comprehensive Approach to Reusable Defense Software (CARDS) Program at
http://www.cards.com

[CARDS94] Software Technology For Adaptable, Reliable Systems (STARS). Domain Engineering Methods and Tools
Handbook: Volume I — Methods: Comprehensive Approach to Reusable Defense Software (CARDS).
STARS Informal Technical Report, STARS-VC-K017R1/001/00, December 31, 1994,
http://nsdir.cards.com/libraries/HTML/CARDS_documents.html

[Cle96] P. Clements. A Survey of Architecture Description Languages. In Proceedings of Eighth International
Workshop on Software Specification and Design, Paderborn, Germany, March 1996

Domain Engineering 63

[CK95] P. Clements and P. Kogut. Features of Architecture Description Languages. In Proceedings of the 7th
Annual Software Technology Conference, Salt Lake City UT, April 1995

[Con97] E. Conklin. Designing Organizational Memory: Preserving Intellectual Assets in a Knowledge Economy.
Technical Note, Group Decision Support Systems, http://www.gdss.com/DOM.htm, 1997

[CSJ+92] S. Cohen, J. Stanley, S. Peterson, and R. Krut. Application of Feature-Oriented Domain Analysis to the
Army Movement Control Domain. Technical Report, CMU/SEI-91-TR-28, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, 1992, http://www.sei.cmu.edu

[CT93] L. Coglianese and W. Tracz. Architecture-Based Development Guidelines for Avionics Software. Version
2.1, Technical Report, ADAGE-IBM-92-03, 1993

[CY90] P. Coad and E. Yourdon. Object-Oriented Analysis. Prentice-Hall , Englewood Cli ffs, New Jersey, 1990

[DD87] H. Dreyfus and S. Dreyfus. Künstliche Intelli genz: von den Grenzen der Denkmaschine und dem Wert
der Intuition. Rowohlt, rororo Computer 8144, Reinbek, 1987

[Dict] The American Heritage Dictionary of the English Language. Third Edition, Houghton Miff lin Company,
1992

[Dij70] E. Dijkstra. Structured Programming. In Software Engineering Techniques, J. Buxton and B. Randell ,
(Eds.), NATO Scientific Affairs Division, Brussels, Belgium, 1979, pp. 84-87

[DISA93] DISA/CIM Software Reuse Program. Domain Analysis and Design Process, Version 1. Technical Report
1222-04-210/30.1, DISA Center for Information Management, Arlington Virginia, March 1993

[DP98] P. Devanbu and J. Poulin, (Eds.). Proceedings of the Fifth International Conference on Software Reuse
(Victoria, Canada, June 1998). IEEE Computer Society Press, 1998

[EP98] H.-E. Eriksson and M. Penker. UML Toolkit. John Wiley & Sons, 1998

[FP96] B. Frakes and R. Prieto-Díaz. Introduction to Domain Analysis and Domain Engineering. Tutorial Notes,
The Fourth International Conference on Software Reuse, Orlando, Florida, April 23-26, 1996

[FPF96] W. Frakes, R. Prieto-Díaz, and Christopher Fox. DARE: Domain Analysis and Reuse Environment. Draft
submitted for publication, April 7, 1996

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995

[GKS+94] H. Gomaa, L. Kerschberg, V. Sugumaran, C. Bosch, and I. Tavakoli . A Prototype Domain Modeling
Environment for Reusable Software Architectures. In Proceedings of the Third International Conference
on Software Reuse, Rio de Janeiro, Brazil , W. Frakes (Ed.), IEEE Computer Society Press, Los Alamitos,
Cali fornia, 1994, pp. 74-83

[Gog83] J. Goguen. LIL – A Library Interconnection Language. In Report on Program Libraries Workshop, SRI
International, Menlo Park, Cali fornia, October 1983, pp. 12-51

[Gom92] H. Gomaa. An Object-Oriented Domain Analysis and Modeling Method for Software Reuse. In
Proceedings of the Hawaii International Conference on System Sciences, Hawaii , January 1992

[Gon81] L. Gonzales. A domain language for processing standardized tests. Master' s thesis, Department of
Information and Computer Science, University of Cali fornia, 1981

[GT96] J. Goguen and W. Tracz. An Implementation-Oriented Semantics for Module Composition. Draft available
from [ADAGE], 1996

[Hay94] F. Hayes-Roth. Architecture-Based Acquisition and Development of Software: Guidelines and
Recommendations from the ARPA Domain-Specific Software Architecture (DSSA) Program. Version
1.01, Informal Technical Report, Teknowledge Federal Systems, February 4, 1994, available from
[ADAGE]

[HNC+90] J. Hess, W. Novak, P. Carroll , S. Cohen, R. Holibaugh, K. Kang, and A. Peterson. A Domain Analysis
Bibliography. Technical Report, CMU/SEI-90-SR-3, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pennsylvania, 1990. Reprinted in [PA91], pp. 258- 259. Also available from
http://www.sei.cmu.edu

[Hol93] R. Holibaugh. Joint Integrated Avionics Working Group (JIAWG) Object-Oriented Domain Analysis
Method (JODA). Version 1.3, Technical Report, CMU/SEI-92-SR-3, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pennsylvania, November 1993, http://www.sei.cmu.edu

[HT94] F. Hayes-Roth and W. Tracz. DSSA Tool Requirements For Key Process Functions. Version 2.0,
Technical Report, ADAGE-IBM-93-13B, October 24, 1994, available from [ADAGE]

[KCH+90] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson. Feature-Oriented Domain Analysis (FODA)
Feasibilit y Study. Technical Report, CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pennsylvania, November 1990

Generative Programming, K. Czarnecki64

[Kru93] R. Krut. Integrating 001 Tool Support into the Feature-Oriented Domain Analysis Methodology. Technical
Report, CMU/SEI-93-TR-11, ESC-TR-93-188, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pennsylvania, 1993, http://www.sei.cmu.edu

[Kic97] G. Kiczales. Verbal Excerpt from the ECOOP’97 tutorial on “Designing High-Performance Reusable
Code”, Jyväskylä, Finland, 1997

[LEW96] J. Loeckx, H. Ehrich, and M. Wolf. Specification of Abstract Data Types. Wiley & Teubner, 1996

[LHK87] D. Luckham, F. von Henke, B. Krieg-Brückner, and O. Owe. Anna: A Language For Annotating Ada
Programms. Language Reference Manual. Lecture Notes in Computer Science, no. 260, Springer-Verlag,
1987

[LKA+95] D. Luckham, J. Kenney, L. Augustin, J. Vera, D. Bryan, and W. Mann. Specification and Analysis of
System Architecture Using Rapide. In IEEE Transaction on Software Engineering, vol. 21, no. 4, April
1995, pp. 336-355

[Lub91] M. Lubars. Domain Analysis and Domain Engineering in IDeA. In [PA91], pp. 163-178

[MBSE97] Software Engineering Institute. Model-Based Software Engineering. WWW pages, URL:
http://www.sei.cmu.edu/technology/mbse/, 1997 (viewed)

[MC96] T. Moran and J. Carroll , (Eds.). Design Rationale: Concepts, techniques, and use. Lawrence Erlbaum
Associates, Hill sdale, New Jersey, 1996

[Nei80] J. Neighbors. Software construction using components. Ph.D. dissertation, (Tech. Rep. TR-160),
Department Information and Computer Science, University of Cali fornia, Irvine, 1980

[Nei84] J. Neighbors. The Draco Approach to Construction Software from Reusable Components. In IEEE
Transactions on Software Engineering, vol. SE-10, no. 5, September 1984, pp. 564-573

[Nei89] J. Neighbors. Draco: A Method for Engineering Reusable Software Systems. In [BP89], pp. 295-319

[OPB92] E. Ostertag, R. Prieto-Díaz, and C. Braun. Computing Similarity in a Reuse Library System: An AI-Based
Approach. In ACM Transactions on Software Engineering and Methodology, vol. 1, no. 3, July 1992,
pp. 205-228

[PA91] R. Prieto-Diaz and G. Arrango (Eds.). Domain Analysis and Software Systems Modeling. IEEE
Computer Society Press, Los Alamitos, Cali fornia, 1991

[Par76] D. Parnas. On the design and development of program famili es. In IEEE Transactions on Software
Engineering, vol. SE-2, no. 1, 1976, pp. 1-9

[PC91] S. Peterson and S. Cohen. A Context Analysis of the Movement Control Domain for the Army Tactical
Command and Control System. Technical Report, CMU/SEI-91-SR-3, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pennsylvania, 1991

[PF87] R. Prieto-Díaz and P. Freeman. Classifying Software for Reusabilit y. In IEEE Software, January 1987, pp.
6-16

[Pri85] R. Prieto-Díaz. A Software Classification Scheme. Ph.D. Dissertation, Department of Information and
Computer Science, University of Cali fornia, Irvine, 1985

[Pri87] R. Prieto-Díaz. Domain Analysis For Reusabilit y. In Proceedings of COMPSAC' 87, 1987, pp. 23-29 and
reprinted in [PA91], pp. 63-69

[Pri91a] R. Prieto-Díaz. Implementing Faceted Classification for Software Reuse. In Communications of the ACM,
vol. 34, no. 5, May 1991, pp. 88-97

[Pri91b] R. Prieto-Díaz. Reuse Library Process Model. Technical Report, IBM STARS 03041-002, Electronic
Systems Division, Air Force Systems Command, USAF, Hanscom Air Force Base, Hanscom,
Massachusetts, July, 1991

[SC93] M. Simos and R.E. Creps. Organization Domain Modeling (ODM), Vol. I - Conceptual Foundations,
Process and Workproduct Descriptions. Version 0.5, Unisys STARS Technical Report No. STARS-UC-
05156/024/00, STARS Technology Center, Arlington, Virginia, 1993

[SCK+96] M. Simos, D. Creps, C. Klinger, L. Levine, and D. Allemang. Organization Domain Modeling (ODM)
Guidebook, Version 2.0. Informal Technical Report for STARS, STARS-VC-A025/001/00, June 14,
1996, http://www.organon.com

[Sha77] D. Shapere. Scientific Theories and Their Domains. In The Structure of Scientific Theories, F. Suppe
(Ed.), University of Illi nois Press, 1977, pp. 519-565

[Shu91] S. Shum, Cognitive Dimensions of Design Rationale. In People and Computers VI: Proceedings of
HCI’ 91, D. Diaper and N. Hammond, (Eds.), Cambridge University Press, Cambridge, 1991, pp. 331-344,
http://kmi.open.ac.uk/~simonb/DR.html

[Sim91] M. Simos. The Growing of an Organon: A Hybrid Knowledge-Based Technology for Software Reuse. In
[PA91], pp. 204-221

Domain Engineering 65

[SG96] M. Shaw and D. Garlan. Software Architecture: Perspectives on a Emerging Discipline. Prentice-Hall ,
1996

[SJ95] Y. Srinivas and R. Jülli g. SpecwareTM: Formal Support for Composing Software. In Proceedings of the
Conference on Mathematics of Program Construction, B. Moeller, (Ed.), Lecture Notes in Computer
Science, vol. 947, Springer-Verlag, Berlin, 1995, also http://www.kestrel.edu/

[Smi90] D. Smith. KIDS: A Semiautomatic Program Development System. In IEEE Transactions on Software
Engineering, vol. 16, no. 9, September 1990, pp. 1024-1043

[Smi96] D. Smith. Toward a Classification Approach to Design. In Proceedings of Algebraic Methodology &
Software Technology, AMAST' 96, Munich, Germany, July 1996, M. Wirsing and M. Nivat (Eds.), LCNS
1101, Springer, 1996, pp. 62-84

[SPC92] Software Productivity Consortium. Reuse Adoption Guidebook. Technical Report, SPC-92051-CMC,
Software Productivity Consortium, Herndon, Virginia, 1992, http://www.asset.com

[SPC93] Software Productivity Consortium. Reuse-Driven Software Processes Guidebook. Version 02.00.03,
Technical Report, SPC-92019-CMC, Software Productivity Consortium, Herndon, Virginia, November
1993, http://www.asset.com

[SPW95] D. Smith, E. Parra, and S. Westfold. Synthesis of High-Performance Transportation Schedulers. Technical
Report, KES.U.1, Kestrel Institute, February 1995, http://www.kestrel.edu/

[Sri91] Y. Srinivas. Algebraic specification for domains. In [PA91], pp. 90-124

[STARS94] Software Technology For Adaptable, Reliable Systems (STARS). Army STARS Demonstration Project
Experience Report. STARS Informal Technical Report, STARS-VC-A011R/002/01, November 30, 1994

[Sun83] S. Sundfor. Draco domain analysis for real time application: The analysis. Technical Report, RTP 015,
Department of Information and Computer Science, University of Cali fornia, Irvine, 1983

[TC92] W. Tracz and L. Coglianese. DSSA Engineering Process Guidelines. Technical Report, ADAGE-IBM-
9202, IBM Federal Systems Company, December 1992

[TH93] D. Tansley and C. Hayball . Knowledge-Based Systems Analysis an Design: A KADS Developer’s
Handbook. Prentice Hall , 1993

[THE+94] A. Terry, F. Hayes-Roth, L. Erman, N. Coleman, M. Devito, G. Papanagopoulos, B. Hayes-Roth.
Overview of Teknowledge’s Domain-Specific Software Architecture Program. In ACM SIGSOFT
Software Engineering Notes, vol. 19, no. 4, October 1994, pp. 68-76, see
http://www.teknowledge.com/DSSA/

[Tra93] W. Tracz. Parameterized programming in LILEANA. In Proceedings of ACM Symposium on Applied
Computing, SAC’93, February 1993, pp. 77-86

[Tra95] W. Tracz. Domain-Specific Software Architecture Pedagogical Example. In ACM SIGSOFT Software
Engineering Notes, vol. 20, no. 4, July 1995, pp. 49-62, also available from [ADAGE]]

[TTC95] R. Taylor, W. Tracz, and L. Coglianese. Software Development Using Domain-Specific Software
Architectures: CDRL A011 – A Curriculum Module in the SEI Style. In ACM SIGSOFT Software
Engineering Notes, vol. 20, no. 5, December 1995, pp. 27-37, also available from [ADAGE]

[UML97a] Rational Software Corporation. UML (Unified Modeling Language) Glossary. Version 1.0 1, 1997,
http://www.rational.com

[Uni88] Unisys. Reusabilit y Library Framework AdaKNET and AdaTAU Design Report. Technical Report, PAO
D4705-CV-880601-1, Unisys Defense Systems, System Development Group, Paoli , Pennsylvania, 1988

[VAM+98] A. D. Vici, N. Argentieri, A. Mansour, M. d’Alessandro, and J. Favaro. FODAcom: An Experience with
Domain Analysis in the Italian Telecom Industry. In [DP98], pp. 166-175, see http://www.intecs.it

[VG90] W. Vitaletti and E. Guerrieri. Domain Analysis within the ISEC Rapid Center. In Proceedings of Eighth
Annual National Conference on Ada Technology, March 1990

[Wei96] D. Weiss. Creating Domain-Specific Languages: The FAST Process. Transparencies presented at The first
ACM-SIGPLAN Workshop on Domain-Specific Languages, Paris, France, January 18, 1997, http://www-
sal.cs.uiuc.edu/~kamin/dsl/index.html

[Wit94] J. Withey. Implementing Model Based Software Engineering in your Organization: An Approach to
Domain Engineering. Draft, Technical Report, CMU/SEI-94-TR-01, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pennsylvania, 1994

[Wit96] J. Withey. Investment Analysis of Software Assets for Product Lines. Technical Report, CMU/SEI-96-TR-
010, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, November
1996, http://www.sei.cmu.edu

[WP92] S. Wartik and R. Prieto-Díaz. Criteria for Comparing Domain Analysis Approaches. In International
Journal of Software Engineering and Knowledge Engineering, vol. 2, no. 3, September 1992, pp. 403-
431

Generative Programming, K. Czarnecki66

[Zal96] N. Zalman. Making The Method Fit: An Industrial Experience in Adopting Feature-Oriented Domain
Analysis (FODA). In Proceedings of the Fourth International Conference on Software Reuse, M.
Sitaraman, (Ed.), IEEE Computer Society Press, Los Alamitos, California, 1996, pp. 233-235

