638 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.7, JULY 2002

A Survey on Software Architecture
Analysis Methods

Liliana Dobrica and Eila Niemela, Member, IEEE Computer Society

Abstract—The purpose of the architecture evaluation of a software system is to analyze the architecture to identify potential risks and
to verify that the quality requirements have been addressed in the design. This survey shows the state of the research at this moment,
in this domain, by presenting and discussing eight of the most representative architecture analysis methods. The selection of the
studied methods tries to cover as many particular views of objective reflections as possible to be derived from the general goal. The
role of the discussion is to offer guidelines related to the use of the most suitable method for an architecture assessment process. We
will concentrate on discovering similarities and differences between these eight available methods by making classifications,

comparisons and appropriateness studies.

Index Terms—Software architecture, analysis techniques and methods, quality attributes, scenarios.

1 INTRODUCTION

ONE of the major issues in software systems development
today is quality. The idea of predicting the quality of a
software product from a higher-level design description is
not a new one. In 1972, Parnas [44] described the use of
modularization and information hiding as a means of high-
level system decomposition to improve flexibility and
comprehensibility. In 1974, Stevens et al. [52] introduced
the notions of module coupling and cohesion to evaluate
alternatives for program decomposition. During recent
years, the notion of software architecture (SA) has emerged
as the appropriate level for dealing with software quality.
This is because the scientific and industrial communities
have recognized that SA sets the boundaries for the software
qualities of the resulting system [7].

Recent efforts towards the systematization of the im-
plications of using design patterns and architectural styles
contribute, frequently in an informal way, to the guarantee
of the quality of a design [16], [19]. It is recognized that it is
not possible to measure the quality attributes of the final
system based on SA design [12]. This would imply that the
detailed design and implementation represent a strict
projection of the architecture. The aim of analyzing the
architecture of a software system is to predict the quality of
a system before it has been built and not to establish precise
estimates but the principal effects of an architecture [27].
The purpose of the evaluation is to analyze the SA to
identify potential risks and verify that the quality require-
ments have been addressed in the design [38].

e L. Dobrica is with the Faculty of Automatic Control and Computers,
University Politehnica of Bucharest, Spl. Independentei 313, Sect. 6,
Bucharest, 77206 Romania. E-mail: liliana@ciid.pub.ro.

o E. Niemeld is with the Software Architectures Group, Embedded Software,
VTT Electronics, P.O. Box 1100 FIN-90571 Oulu, Finland. E-mail:
eila.niemela@uott fi.

Manuscript received 3 July 2000; revised 22 Mar. 2001; accepted 9 July 2001.
Recommended for acceptance by D. Rosenblum.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 112394.

More formal efforts are concentrated on ensuring that the
quality is addressed at the architectural level. Different
communities of the software metrics, scenario-based, and
attribute model-based analysts have developed their own
techniques. The software metrics community has used
module coupling and cohesion notions to define predictive
measures of software quality [15]. Other methods include a
more abstract evaluation of how the SA fulfills the domain
functionality and other nonfunctional qualities [27]. Instead
of presenting metrics for predictive evaluation, they
exemplify the argument for performing a more qualitative
or quantitative evaluation. Methods based on scenarios
could be considered mature enough since they have been
applied and validated over the past several years, but the
development of attribute model-based architecture evalua-
tion methods is still ongoing.

Future work is needed to develop systematic ways of
bridging quality requirements of software systems with
their architecture. The open problem is how to take better
advantage of software architectural concepts to analyze
software systems for quality attributes in a systematic and
repetitive way. Being a new research domain, most of the
structural methods for assessing the quality of SAs have
been presented in conference and journal papers. Although
refinement and experiments for validating some of the
methods are ongoing, they deserve our attention because
they contribute to the development of what is still an
immature research area. Therefore, we decided to study
such methods in order to cover as many particular points of
view of objective reflections as possible to be derived from
the general goal. SA is considered the first product in an
architecture-based development process and, from this
point of view, the analysis at this level should reveal
requirement conflicts and incomplete design descriptions
from a particular stakeholder’s perspective. The analysis
could be associated with the design of an iterative
improvement of the architecture of a green software system
or with the reengineering of an existent one. Prediction
methods of a single quality attribute are meant to minimize

0098-5589/02/$17.00 © 2002 IEEE

DOBRICA AND NIEMELA: A SURVEY ON SOFTWARE ARCHITECTURE ANALYSIS METHODS 639

risks only from that attribute perspective at a fine level. This
might not be sufficient if the quality of a system is
represented by a variety of attributes that interact with
each other and a balance between them should be
established.

The discussed methods include the scenario-based
architecture analysis method (SAAM) [26] and its three
particular cases of extensions, one founded on complex
scenarios (SAAMCS) [35], and two extensions for reusa-
bility, ESAAMI [43] and SAAMER [41], the architecture
trade-off analysis method (ATAM) [29], scenario-based
architecture reengineering (SBAR) [8], architecture level
prediction of software maintenance (ALPSM) [10], and a
software architecture evaluation model (SAEM) [18].

This survey puts all these developments in the same
perspective by reviewing the state of the software archi-
tecture analysis methods. The beginning of this study is
dedicated to the definitions of the terminology that is
frequently used in the context of the methods. Based on
these general elements and others related to methodology
characterization, we define a conceptual framework for
presentation and comparison of the analysis methods while
trying to look for 1) their progress towards refinement over
time, 2) their main contributions, and 3) advantages
obtained by using them. The discussions surrounding the
selected methods focus on 1) discovering differences and
similarities and 2) making classifications, comparisons and
appropriateness studies. Finally, we will draw conclusions
from the real level of the current research as well as the
future work in this domain defined by the presented
methods.

2 DEFINITIONS OF THE MAIN TERMINOLOGY

2.1 Quality Attributes and the Quality Model

A quality attribute is a nonfunctional characteristic of a
component or a system. A software quality is defined in
IEEE 1061 [22] and it represents the degree to which
software possesses a desired combination of attributes.
Another standard, ISO/IEC Draft 9126-1 [23], defines a
software quality model. According to this, there are six
categories of characteristics (functionality, reliability, us-
ability, efficiency, maintainability, and portability), which
are divided into subcharacteristics. These are defined by
means of externally observable features for each software
system. In order to ensure its general application, the
standard does not determine which these attributes are nor
how they can be related to the subcharacteristics.

An investigation into the literature has shown that a
large number of definitions of quality attributes exist that
are related to similar abilities of a software system. For
example, maintainability, flexibility, and modifiability
definitions are described as follows:

Maintainability is a set of attributes that have a bearing on the
effort needed to make specified modifications [23]. Modifica-
tions may include corrections, improvements or adapta-
tions of software to changes in environment, and in
requirements and functional specification.

Modifiability is the ability to make changes quickly and cost-
effectively [7]. Modifications to a system can be categorized

as extensibility (the ability to acquire new features), deleting
unwanted capabilities (to simplify the functionality of an
existing application), portability (adapting to new operat-
ing environments), or restructuring (rationalizing system
services, modularizing, creating reusable components).

Flexibility is the ease with which a system or component can be
modified for use in applications or environments other than
those for which it was specifically designed [21].

Although different in wording, the definitions are almost
identical in their semantics. The limitation of these defini-
tions with respect to the purpose of analyzing SAs is that
their scope is too broad. The scope has to be narrowed,
based on the relevant context.

2.2 Software Architecture Definition and
Description

Definition. The software architecture of a system is defined
as “the structure or structures of the system, which
comprise software components, the externally visible
properties of those components, and the relationships
among them” [7]. This definition focuses only on the
internal aspects of a system and most of the analysis
methods are based on it. Another brief definition given by
Garlan and Perry [45], [49] establishes SA as “the structure
of components in a program or system, their interrelation-
ships, and the principles and guides that control the design
and evolution in time,” This process-centered definition is
used by SAEM because it takes into account the presence of
principles and guidelines in the architecture description.
For an analysis of flexibility, the external environment is
just as important as an internal entity of a system [37]. The
SA definition should consist of two parts, namely of a
macroarchitecture which focuses on the environment of the
system, and a microarchitecture which covers the internal
structure of a system.

Description. The research in the SA description ad-
dresses the different perspectives one could have of the
architecture. Each perspective is described as a view.
Although there is still no general agreement about which
views are the most useful, the reason behind multiple views
is always the same: Separating different aspects into separate
views help people manage complexity. Several models have
been proposed that introduce a number of views that
should be described in the SA [33]. The view models share
the fact that they address a static structure, a dynamic
aspect, a physical layout, and the development of the
system. Bass et al. [7] introduce the concept of architecture
structures as being synonymous to view. In general, it is the
responsibility of the architect to decide which view to use to
describe the SA.

From the point of view of quality analysis at the
architectural level, the possible representations could be
very relevant in quality prediction and effort estimation
(Fig. 1). An evaluation method may need structures, which
are concerned with the decomposition of the functionality
that the products need to support, the realization in a
detailed design of the conceptual abstractions from which
the system is built, logical concurrency, hardware, files, and
directories. Components and relations of each structure are
representative. For instance, logical concurrency structure

640 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.7, JULY 2002

+ ARCHITECTURE +

DESCRIPTION

Multiple views

complement each other

Taxonomy of Orthogonal
Properties of SA (TOPSA)

| Abstraction Level | | Dynamism | | Aggregation Level |

v

v

v

v

v

Decomposition
of Functionality Detailed Design Logical Hardware Files and
-Conceptual- —Realisation- Concurrency Directories
v v v v v
commonalties maintainability performance availability managing
variabilities modifiability reliability capacity administrative
reusability security bandwidth control
portability

Fig. 1. Architecture description and the relevance to analysis of quality attributes.

contains units that are refined to processes and threads. Its
relations include synchronizes-with, is-higher-priority-than,
sends-data-to, can’t-run-without, etc. Properties relevant to
this structure include priority, preemptibility, and execu-
tion time.

A taxonomy of formally-defined orthogonal properties
of SAs (TOPSA) that extends the first SA definition is given
in [14]. The TOPSA space has three dimensions: abstraction
level (conceptual, realization), dynamism (static, dynamic),
and aggregation level that can facilitate discussions regarding
SA during development and evolution. The TOPSA and the
architecture representation based on multiple views com-
plement each other (Fig. 1). Different views offer valuable
examples for abstraction, dynamism, and aggregation
dimensions. An analysis method can exploit these relation-
ships in the form of a defined set of rules, which states
which view in the TOPSA space is the most appropriate for
a given quality attribute.

Descriptions of component types and their topology, of
patterns of data and control interactions among the
components, and the benefits and drawbacks of using them
are also documented in architectural styles [49], [16] and
design patterns [19]. Compositions of patterns that might be
used in a SA are evaluated in various quality terms in [32].

2.3 Evaluation Techniques at the Architecture Level

Two basic classes of evaluation techniques, questioning and
measuring, available at the architecture level are defined in
two important research reports [1], [7]. Questioning techni-
ques generate qualitative questions to be asked of an
architecture and they can be applied for any given quality.
This class includes scenarios, questionnaires, and check-
lists. Measuring techniques suggest quantitative measure-
ments to be made on an architecture. They are used to
answer specific questions and they address specific soft-
ware qualities and, therefore, they are not as broadly
applicable as questioning techniques. This class includes
metrics, simulations, prototypes and experiences. General-
ity, level-of-detail, phase, and what is evaluated represent a

four-dimensional framework of comparison of these tech-
niques [7]. Regarding generality, the techniques could be
general (questionnaire), domain-specific (checklists, proto-
type), or system-specific (scenarios). The level of detail
(coarse-grained, medium, or fine) indicates how much
information about the architecture is required to perform
the evaluation. There are three phases of interest to
architecture evaluation: early-, middle-, and postdeploy-
ment. These phases occur after the initial high-level
architectural decisions (questionnaire, prototype), at any
point after some elaboration of the architecture design
(scenarios, checklists), and after the system has been
completely designed, implemented, and deployed.

In terms of quantitative and qualitative aspects, both
classes of techniques are needed for evaluating architec-
tures. Various analyzing models expressed in formal
methods are included in quantitative techniques. Qualita-
tive techniques illustrate SA evaluations using scenarios. A
description of the changes that are needed for each scenario
represents a qualitative method of evaluation. From this
perspective, scenarios are necessary but not sufficient to
predict and control quality attributes and they have to be
supplemented with other evaluation techniques and, parti-
cularly, quantitative interpretations. For example, including
questions about quality indicators in the scenarios enriches
the architecture evaluation. Quantitative interpretations of
scenario evaluations could be ranking between the effects of
scenarios (i.e., a five level scale (++,+,+/—,—, ——)) or an
absolute statement, which estimates the size of modifica-
tions or different metrics, such as lines of code, function
points, or object points.

Most of the considered architecture analysis methods use
scenarios. The existing practices with scenarios are system-
atized in [30]. Scenarios are a good way of synthesizing
individual interpretations of a software quality into a
common view [34]. This view is more concrete than the
general definition of software quality [21] and it also
incorporates the specifics of a system to be developed
(i.e., it is more context-sensitive [3]).

DOBRICA AND NIEMELA: A SURVEY ON SOFTWARE ARCHITECTURE ANALYSIS METHODS 641

TABLE 1
Framework Elements for Characterization and Comparison of Analysis Methods

Framework elements

Description

Specific method’s goal

What is the specific goal of the method?

Evaluation techniques

Which of the evaluation techniques are included in the method?

Quality attributes

On what quality attributes and what number of quality attributes is the
method considered to have specific assessment?

involvement

SA description What architectural views are the foci of the analysis methods? Which is
the development phase of the SA?
Stakeholders’ Which stakeholders participate in the evaluation process?

Method’s activities

method represent?

In what order and in what way are the evaluation techniques used to
accomplish the method’s specific goal? What does the result of the

Reusability of an existent

knowledge base reusability?

Is any knowledge base considered? How is it structured for effective

Method validation

Has the method been validated in practical industrial cases?

Scenarios are a postulated set of uses or modifications of
the system. The modifications could be a change to how one or
more components perform an assigned activity, the addition of a
component to perform some activity, the addition of a connection
between existing components, or a combination of these factors. In
creating and organizing scenarios, it is important that all
roles relevant to that system are considered since design
decisions may be made to accommodate any of these roles.
Different roles represent stakeholders related to a system.
Such stakeholders may be the end user, who is responsible
for executing the software; the system administrator, who is
responsible for managing the data repositories used by the
system; the developer, who is responsible for modifying the
runtime functions of the system and the organization
responsible for approving new requirements.

2.4 A Framework for Characterisation and
Comparison of Analysis Methods

A framework for presentation and comparison of the
SA analysis methods is described and motivated by the
main concepts stated above and methodologies” character-
izations (Table 1). Methods include a predefined and
organized collection of techniques. However, in addition
to a set of techniques, a method should include a set of rules
that establishes how to conduct an activity which has a
precise goal regarding the result to be achieved. The rules
state by whom, in what order, and in what way the techniques are
used to accomplish the method objective.

3 OVERVIEW OF ANALYSIS METHODS

3.1 Scenario-Based Architecture Analysis Method
(SAAM)

SAAM appeared in 1993, corresponding with the trend for a
better understanding of general architectural concepts, as a
foundation for proof that a software system meets more
than just functional requirements [26], [27]. Thus, in the
early stage of a system’s development, the correction of
architectural mistakes detected by the analysis is still
possible without causing excessively high costs. The main
method’s activities are presented in an article where

different user interface architectures are assessed with
respect to modifiability [28].

Specific goals. A SAAM’s goal is to verify basic
architectural assumptions and principles against the docu-
ments describing the desired properties of an application.
Additionally, the analysis offers a contribution to assess the
risks inherent to the architecture. SAAM guides the
inspection of the architecture focusing on potential trouble
spots, such as requirement conflicts or incomplete design
specification from a particular stakeholder’s perspective.
The capability of SAAM to evaluate the suitability of
architecture with respect to the desired properties of a
specific system can also be used to compare different
architectures.

The evaluation technique. Scenarios represent the
foundation for illuminating the properties of SA. They
illustrate the kinds of activities that the system must
support and the kinds of anticipated changes that will be
made to the system. During the analysis, it is determined
whether a scenario requires modifications to the architec-
ture. Scenarios that require no modifications are called direct
and those that require modifications are called indirect.

The quality attributes. The fundamental characteristic of
this method is the concretization of any quality attribute in
the form of scenarios. However, it is considered that
modifiability is still the quality attribute analyzed by
SAAM.

The stakeholders” involvement. SAAM harmonizes
various interests of the stakeholder groups, thus setting
up a common understanding of the SA as a base for later
decisions.

SA description. The method is applied to a final version
of the SA but prior to the detailed design. The description of
the SA should be in a form that is easily understandable by
all stakeholders. Functionality, structure, and allocation are
the three perspectives defined for describing SAs. Function-
ality is what the system does. A small and simple lexicon is
used for describing structures for a common level of
understanding and comparing different architectures. SA
should be presented in a static representation (system

642 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.7, JULY 2002

r

Problem
description

Scenario iterate Architecture

development |«—P»| description(s)

Requirements
analysis v

—P SAAM <

Req.
statement

Architecture
design

Arch.
description(s)

Fig. 2. SAAM inputs and activities.

computation, data components, data and control connec-
tions) and a dynamic representation of how the system
behaves over time. The allocation of function to structure
identifies how the domain functionality is realized in the
software structure. The components could be described
either as modules in the sense of Parnas [44] or as
cooperating sequential processes.

Method’s activities. The main inputs of SAAM are
problem description, requirements statement and architec-
ture description(s). Fig. 2 presents the inputs associated to
the activities of SAAM carried out either for a single
architecture or for comparison of multiple ones.

In the case of a single SA analysis, the activities are
scenario development, SA description, individual scenario
evaluation and scenario interaction. In the scenario devel-
opment, SAAM requires the presence of all stakeholders
that identify possible scenarios as described above. SAAM
considers the set of scenarios to be complete when the
addition of a new scenario no longer disturbs the design.
The second activity, SA description, is recommended to be
carried out in parallel with the first activity in an iterative
mode. The final version of SA description together with the
scenarios serves as the input for the subsequent activities of
the method.

SAAM evaluates a scenario by investigating which
architectural elements are affected by that scenario. Table 2
is an example of scenario evaluation for an architecture that
contains components called A, B, C, D, and E. For a single
architecture analysis, the purpose is to determine which

i and e

Individual scenario I
evaluation
Overall
* | or evaluation
Scenario interaction
| Comparing multiple

Single architecture analysis | architectures

scenarios interact, i.e., which ones affect the same compo-
nent. The cost of the modifications associated with each
indirect scenario is estimated by listing the components and
the connectors that are affected and then counting the
number of changes. If the analysis is performed with the
intention of choosing among several architectural alter-
natives, the results of the candidates can be compared in a
final SAAM activity. To this end, scenarios and the scenario
interactions are weighted in terms of their relative
importance. This weighting is then used to determine an
overall evaluation of the candidate architectures.

Results interpretation. High interaction of unrelated
scenarios could indicate a poor separation of functionality.
The amount of scenario interaction is related to metrics such
as structural complexity, coupling, and cohesion and,
therefore, is correlated with the number of defects in the
final product. SAAM cannot give precise measures or
metrics of fitness. The result is a set of small metrics that
permits a comparison per scenario-basis of competing SA.

Reusability of the existing knowledge base. SAAM
does not consider this issue.

Method validation. SAAM is a mature method, vali-
dated in various case studies. An enumeration of the case
studies includes global information systems, air traffic
control, WRCS (revision control system), user interface
development environments, Internet information systems,
keyword in context (KWIC) systems, and embedded audio
systems.

TABLE 2
Scenario Evaluation
Stakeholder Scenario | Scenario Direct/ Architecture Changes
Description | Indirect

User Ul Indirect Modifications to A and B components

U2 Direct -
Maintainer M1 Indirect Modifications to A, B, C, D and E components

M2
Administrator | Al

A2

DOBRICA AND NIEMELA: A SURVEY ON SOFTWARE ARCHITECTURE ANALYSIS METHODS

Categories
of complex
scenarios

Scenario
development

Architecture '
description

—

and

Macro and s
micro arch. SAAMCS < E"al“it:e:ll;izque“ of
description S S

A Single architecture analysis

Measurement \
instrument

Fig. 3. Inputs and activities of SAAMCS.

3.2 SAAM Founded on Complex Scenarios
(SAAMCS)

SAAMCS considers that the complexity of scenarios is the

most important factor for risk assessment [35]. SAAMCS

contributions for extending SAAM are, on one hand,

directed to the way of looking for the scenarios and, on

the other, to where their impact is evaluated.

Specific goal. Risk assessment represents the only goal
of SAAMCS.

The included evaluation technique. SAAMCS is looking
for scenarios that are possibly complex to realize. Based on
the initiator of the scenario, SA description, and version
conflicts, a list of classes of scenarios that are complicated to
implement is provided.

The quality attributes. Flexibility represents the quality
attribute analyzed by SAAMCS.

The stakeholders’ involvement. The method appreciates
stakeholders” involvement and identifies the important role
of the initiator of a scenario. The initiator is the organiza-
tional unit that has most interest in the implementation of
that scenario.

SA description. SAAMCS is applied to the final version
of the architecture, which is described in sufficient detail. In
this method, the idea of the systems within a domain not
being isolated but instead integrated within an environment
is advanced. As a result, the description of the SA is divided
into macroarchitecture and microarchitecture.

Method’s activities. Fig. 3 describes the inputs and
activities of SAAMCS. In the scenario development, a two-
dimensional framework diagram (five categories of com-
plex scenarios, four sources of changes) that may help to
discover complicated scenarios is defined. Sources of
changes are functional requirements, quality requirements,
external components, and the technical environment.
Categories of complex scenarios are adaptations to the
system with external effects, to the environment with effects

643

design

analysis
Problem i Req.
description slatement

Reusable arch.
+ analysis
template

Reusable arch.
+ analysis
template

Domain-spec
analysis
template

Fig. 4. ESAAMI inputs [43].

to the system, to the macroarchitecture and to the
microarchitecture, and the introduction of version conflicts.

Regarding the scenario impact evaluation, SAAMCS
introduces and uses a measurement instrument to express
the effect of scenarios. The defined instrument includes
factors that influence the complexity of scenarios. Three
different factors are identified: four levels of impact of the
scenario (no impact 1), affects one component 2), affects
several components 3), affects SA 4)), the number of owners
involved in the information system and four levels regarding the
presence of version conflicts (no problem with different
versions 1), the presence is undesirable but not prohibitive
2), creates complications related to configuration manage-
ment 3), creates conflicts 4)). The results are expressed in a
table similar to Table 3.

Reusability of the existing knowledge base. SAAMCS
does not consider this issue.

Method validation. SAAMCS has been validated for
business information systems.

3.3 Extending SAAM by Integration in the Domain
(ESAAMI)
Specific goal. The SAAM applied in an architectural-centric
development process considers only the problem descrip-
tion, requirements statement and architecture description.
ESAAMI is a combination of analytical and reuse
concepts and is achieved by integrating the SAAM in the
domain-specific and reuse-based development process [43].
The degree of reuse is improved by concentrating on the
domain. ESAAMI is similar to SAAM with regards to the
evaluation technique, the quality attributes, the stakehol-
der’s involvement, and SA description. However, an
improvement is seen in the reuse of domain knowledge
defined by SAs and analysis templates. Fig. 4 describes the
main inputs of ESAAMI and the relationship between them.
A reusable SA is packaged with a tailored analysis template
focused on the distinctive characteristics of the architecture.
All these packages represent inputs for the selection process

TABLE 3
Result of Scenario Evaluation in SAAMCS
Change Initiator Macro architecture level Micro architecture level
scenario Impact Multiple | Versions | Impact Multiple | Versions
level owners conflicts | level owners conflicts
S1 User 1 +/- 4 2 +/- 4

644 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.7, JULY 2002

of a reusable architecture. The selected SA is a starting point
for the architecture design, being adapted and refined to
meet the new system properties.

SA description. A reusable SA to be deployed in the new
system is selected in the first step of ESAAML. It has to be
ensured that SA provides an adequate basis for the system
to meet its requirements. Three factors influence the
reusability of an architecture. The author identifies a
common basis for a variety of systems in a domain,
sufficient flexibility to cope with variation among systems,
and the documentation of properties to make SA available
for selection.

Reusability of the existing knowledge base. ESAAMI
proposes packages of analysis templates which represent
the essential features of the domain. An analysis template is
formulated on an abstraction level defined by the common-
alities of the systems in the domain and without referring to
system-specific architectural elements. Analysis templates
collect reusable products that can be deployed in the
various steps of the method. These products are proto-
scenarios, evaluation protocols, proto-evaluations, and
architectural hints and weights. Protoscenarios are generic
descriptions of reuse situations or interactions with the
system. These are intended for use in the scenario
development phase of subsequent architecture analyses
after a selection and refinement process. The other products
are used in the scenario evaluation phase and are identified
in the protocols of the earlier evaluations in different
projects, examples of descriptions of how the scenario can
be performed using a set of abstract architecture elements,
and hints associated to each scenario indicating which
structures would make the scenario convenient to handle.
Weights, established in old projects in the domain, can
make the results of the analysis comparable.

Method’s activities are similar to SAAM, but they
consider the existence of a reusable knowledge base. The
results of the current analysis are part of the newly built
system.

Method validation. The method is still in the improve-
ment process.

3.4 Software Architecture Analysis Method for
Evolution and Reusability (SAAMER)

Specific goal. From the point of view of two particular
quality attributes, evolution, and reusability, SAAM is
extended in SAAMER [41]. SAAMER better suggests how
a system could support each of the quality objectives or the
risk levels for evolution or how to reuse it.

The evaluation technique. Scenarios are the main
drivers for evaluating various areas of SA. They describe
an important functionality that the system must support, or
recognize where the system may need to be changed over
time. Scenarios are developed based on the stakeholders’
and architectural objectives and considering the funda-
mental uses of the system. Scenarios and the structural view
are effective in identifying components that need to be
modified, or are useful for preventive and adaptive
maintenance activities.

The quality attributes. Evolution and reusability are
considered. Evolution integrates new quality objectives
(maintainability and modifiability) obtained from domain
experts.

Stakeholders’ involvement is similar to SAAM. Addi-
tionally, two kinds of sources of information, the required
changes and domain experts’ experiences, are considered.

SA description. SAAMER considers the following
architectural views as critical: static, map, dynamic, and
resource. The static view integrates and extends SAAM to
address the classification and generalization of a system’s
components and functions and the connections between
components. These extensions facilitate the estimation of
cost or effort required for changes to be made. The dynamic
view is appropriate for the evaluation of the behavior
aspect, to validate the control and communication to be
handled in an expected manner. The mapping between
components and functions could reveal the cohesion and
coupling aspects of a system.

Method’s activities. SAAMER provides a framework of
activities that are useful for the analysis process. This
framework consists of four activities: gathering information
about stakeholders [13], SA, quality, and scenarios; model-
ing usable artifacts; analysis; evaluation. The last two
activities are similar to SAAM. However, in the scenario
development phase of SAAMER, a practical answer to the
question regarding when to stop generating scenarios is
given. Two techniques are applied here. First, scenario
generation is closely tied to various types of objectives:
stakeholder, architecture, and quality. Based on the objec-
tives and domain experts’ knowledge, the scenarios are
identified and clustered to make sure that each objective is
well covered. The second technique applied to validate the
balance of scenarios with respect to the objective is Quality
Function Deployment (QFD) [13], [17]. From stakeholder
and architectural objectives to quality attributes, a cascade
of matrices is generated to show the relational strengths.
Finally, quality attributes are translated to scenarios to
reveal the coverage of each one. An imbalance factor is then
calculated for each quality attribute by dividing the cover-
age by the priority of the quality. If the factor is less than 1,
more scenarios should be developed to address the attribute
in accord with the stakeholder, SA, and quality importance.

Result interpretation. Analysis of scenario interaction is
considered a critical step that provides the result of the
analysis. A high degree of interaction may indicate that a
component is poorly isolated. Still, an SA view may show
that this is just the nature of a particular pattern.

Reusability of the existing knowledge base. SAAMER
does not consider this issue.

The method has been applied to a telecommunication
software system.

3.5 The Architecture Trade-Off Analysis Method
(ATAM)
ATAM has grown out of the work on architectural analysis
of individual quality attributes: SAAM for analyzes of
modifiability, performance, availability, and security.
ATAM was considered a spiral model of designs in 1998
[29] and in May 1999 [25] a spiral model of analysis and
design, which explains its recent evolution and progress.
Specific goals. The objective of ATAM is to provide a
principle way of understanding an SA’s capability with
respect to multiple competing quality attributes [5]. ATAM
recognizes the necessity of a trade-off among multiple
software quality attributes when the SA of a system is
specified and before the system is developed.

DOBRICA AND NIEMELA: A SURVEY ON SOFTWARE ARCHITECTURE ANALYSIS METHODS 645

conduct Analysts
ATAM activities ——
that consider scenarios
Scenario ¢
brainstorming ABASs

(knowledge reuse)

Scenario coverage
checking

involvement

<—

Scenario grouping

RS Stakeholders
and prioritization

Map high priority scenarios
onto the architecture

Fig 5. ATAM activities that consider scenarios.

The quality attributes. Multiple competing quality
attributes are analyzed by ATAM. For the beginning
modifiability, security, performance and availability have
been considered.

Stakeholders’ involvement. ATAM requires all the
stakeholders’” involvement in the activities related to
scenarios and requirements gathering. An SA designer
can also be involved.

SA description. The space of architecture is constrained
by legacy systems, interoperability, and failures of the
previous projects. SA is described on the basis of five
foundational structures, which are derived from Kruchten’s
“4+1 views” [33] (his logical view is divided into function
and code structures). These structures plus the appropriate
mappings between them can describe an architecture
completely. Also, ATAM requires several different views:
a dynamic view, showing how systems communicate; a
system view, showing how software was allocated to
hardware; and a source view, showing how components
and systems were composed of objects. SA description is
annotated with a set of message sequences charts showing run-
time interactions and scenarios. ATAM is applied during
SA design or on the final version of the SA by an external
team of analysts.

The included evaluation techniques. ATAM can be
considered a framework for different evaluation techniques
depending on the quality attributes. It integrates the best
individual theoretical model of each considered attribute in
an efficient and practical way [20], [42], [52].

Another evaluation technique is scenario. Three types of
scenario probes the system from different architectural
views. These are: use cases, which involve typical uses of the
system and are exploited for the information elicitation;
growth scenarios, which cover anticipated changes; and
exploratory scenarios, which cover extreme changes that are
expected to “stress” a system. There is a triple scenario role
in this method. This technique helps to put vague and
unquantified requirements and constraints in concrete
terms. Also, scenarios facilitate communication between
stakeholders because they force them to agree on their
perception of the requirements. Finally, scenarios explore
the space defined by an attribute model by helping to put
the model parameters that are not part of the SA into
concrete terms.

PIIASE IV Action PHASE 1
Trade-otfs plan Scenarios
- 1. Collect and
7. Identify N requirements

Trade-offs Scenarios

gathering

6. Identify

eIt 2. Collect Requirements/
Sensitivities

Constraints/Environment]

5. Attribute-Specific| [[3. Describe Architectural
Analyses Views
(best individual
theoretical models) 4 Realise

Scenarios

PHASE 11
Architectural views

and
Scenario realization

PHASE 111
Attribute model building and
analyses

Fig. 6. ATAM phases [29].

ATAM also considers qualitative analysis heuristics, that
are derived from an attribute-based architecture style
(ABAS) [32] and are meant to be coarse-grain versions of
the kind of analysis that is performed when a precise
analytic model of a quality attribute is built. An existent
taxonomy of each attribute is another base for ATAM. The
taxonomies help to ensure attribute coverage and offer a
rationale for asking elicitation questions. ATAM also uses
screening questions, which guide or focus the elicitation on
more “influential” places of the SA. These serve to limit the
portion of the architecture under scrutiny. Asking these
questions is more practical than building attribute quanti-
tative models at a moment. They capture the essence of the
typical problems that are discovered by a more rigorous
and formal analysis.

Method’s activities. The method is divided into four
main areas of activity, or phases [29]. These are the
gathering of scenarios and requirements, architectural
views and scenario realization, attribute model building
and analysis, and trade-offs. Fig. 5 details activities that
include scenarios and Fig. 6 describes the steps associated
with each phase and possible iterations for SA design and
analysis improvement.

Attribute experts independently create and analyze their
models and then they exchange information (clarifying and
creating new requirements). The attribute analyses are
interdependent because each attribute has implications on
others. The attribute interactions are discovered in two
ways: using sensitivity analysis to find trade-off points and
by examining the assumptions. Recognized from a knowl-
edge base, unbounded sensitivity points are informally
referred properties that have not yet been bound to the
architecture. A sensitivity point is a property of one or more
components (and/or component relationship) that is critical
for achieving a particular quality. In practice, therefore,
changes to the architecture parameters significantly affect
the modeled values. This can be obtained by using the
stimuli and architectural parameters branches of attributes
taxonomies [4], [5]. Trade-off points are architectural
elements that multiple elements are sensitive to. A trade-
off point is a property that affects more than one attribute
and is a sensitivity point for at least one attribute.

646 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28,

During the architecture design, ATAM provides an
iterative improvement. In addition to the requirements
typically derived from scenarios that are generated through
interviews with the stakeholders, there are assumptions
regarding behavior patterns and the execution environ-
ment. Because attributes “trade off” against each other, each
assumption is subject to inspection, validation, and ques-
tioning as a result of ATAM. When all these actions have
been completed, the results of the analysis are compared to
the requirements. If the system-predicted behavior comes
adequately close to its requirements, the designers can
proceed to a more detailed level of the design or
implementation. In the event of the analysis revealing a
problem, an action plan for changing the SA, the models or
the requirements is developed. This leads to another
iteration of the method. ATAM does not require that all
attributes be analyzed in parallel, thus allowing the
designer to focus on primary attributes, and then introduce
others later on. This leads to cost benefits since what may be
costly analyses for secondary attributes need not be applied
to architecture that was unsuitable for the primary
attributes.

Reusability of a domain knowledge base is maintained
in ABASs. ABAS helps to move from the notion of
architectural styles toward the ability to reason based on
quality attribute-specific models. The goals of having a
collection of ABASs are to make architectural design more
routine-like and more predictable, to have a standard set of
attribute-based analysis questions, and to tighten the link
between design and analysis [32].

The method has been applied to several software
systems but is still under research.

3.6 Scenario-Based Architecture Reengineering
(SBAR)

The contribution of this method is not only in the
architecture design but also in the scenario-based evalua-
tion of the software qualities of a detailed architecture of a
system [8].

Specific goal. SBAR estimates the potential of the
designed architecture to reach the software quality
requirements.

The included evaluation techniques. Four different
techniques for assessing quality attributes are identified:
scenarios, simulation, mathematical modeling, and experi-
ence-based reasoning. For each quality attribute, the
suitable technique is selected. Scenarios are recommended
for the quality attributes of the development, such as
maintainability and reusability, which are exemplified in
the paper [8]. The selected scenarios concretize the actual
meaning of the attribute (i.e., scenarios that capture typical
changes in requirements may specify the maintainability).
The performance of the architecture in the context defined
by each individual scenario for a quality attribute is
assessed by the analysis. Simulation completes the scenario-
based approach, being useful for evaluating operational
software qualities such as performance or fault-tolerance.
Mathematical models allow a static evaluation of architec-
tural design models and are an alternative to simulation
since both approaches are primarily suitable for assessing
operational software qualities. To evaluate operational
software qualities, the existent mathematical models
developed by various research communities for high

NO. 7, JULY 2002

Functionality-
based arch.
redesign

Architecture
improvements

Quality attribute [
improvement
transformations

Requirements
specification

Software
architecture
t OK .
no Evaluate quality

attribute

oK

Implementation]

Fig. 7. SBAR activities. SA analysis and design [8].

performance-computing [50], reliability [48], and real-time
systems [39] could be used. Experience-based reasoning is
founded on experience and logical reasoning based on that
experience. This technique is different from the others
because is less explicit and more based on subjective
factors such as intuition and experience and it makes use
of the tacit knowledge of the people.

Quality attributes. SBAR focuses on multiple software
qualities. A number of quality attribute research commu-
nities have proposed their own methods for developing
real-time [39], high performance [50], and reusable systems
[24]. All these methods focus on a single quality attribute
and treat all others as having secondary importance, if any
at all. SBAR considers these approaches unsatisfactory
because a balance of various quality attributes is needed in
the design of any realistic system.

Stakeholders’ involvement. SBAR does not require the
involvement of many stakeholders. The evaluator is the
designer of the SA.

SA description. A particularity of this method is that for
assessing the architecture of the existing system, the system
itself can be used. SBAR uses a detailed design of SA.

Method’s activities. The assessment process consists of
defining a set of scenarios for each software quality,
manually executing the scenarios on the architecture and
interpreting the results (Fig. 7). The method can be
performed in a complete or statistical manner. In the first
approach, a set of scenarios is defined and combined
together, they cover the concrete instances of the software
quality. If all scenarios are executed without problems, the
quality attribute of the architecture is optimal. The second
approach is to define a set of scenarios that makes a
representative sample without covering all possible cases.
The ratio between scenarios that the architecture can handle
and scenarios not handled well by the architecture provides
an indication of how well the architecture fulfils the
software quality requirements. Both approaches obviously
have disadvantages. A disadvantage of the first approach is
that it is generally impossible to define a complete set of
scenarios. The definition of a representative set of scenarios
is the weak point in the second approach since it is unclear
how one decides that a scenario set is representative. The
results from each analysis of the architecture and scenario
are summarized into overall results, e.g., the number of
accepted scenarios versus the number not accepted. SBAR

DOBRICA AND NIEMELA: A SURVEY ON SOFTWARE ARCHITECTURE ANALYSIS METHODS 647

TABLE 4
SBAR Method’s Results Organization

Quality | Scenario | Iteration number

attribute 0 |1 |.|n

QA1 Al - +

A2 - +

... - - - +

QA2 Bl + |+ |+ |+
B2 - - - |-

- -+ |+

provides guidelines for SA improvements. A structure
similar to Table 4 is organized to express the results. Design
and analysis combination is performed for a number of
iterations until most of the scenarios per each quality
attribute are satisfied (+).

Reusability of the existing knowledge base. SBAR does
not consider this issue.

SBAR has been validated for a measurement software
system.

3.7 Architecture Level Prediction of Software
Maintenance (ALPSM)

Specific goal. ALPSM analyzes maintainability of a soft-

ware system by looking at the impact of scenarios at the

SA level [10]. Similar to the software maintenance commu-

nity [11], it uses the size of changes as a predictor for the

effort needed to adapt the system into a scenario.

The included evaluation technique. ALPSM defines a
maintenance profile, like a set of change scenarios repre-
senting perfective and adaptive maintenance tasks. A
scenario describes an action or a sequence of actions that
might occur as related to the system. Hence, a change
scenario describes a certain maintenance task.

Stakeholder’s involvement. Only the designer is in-
volved in the method activities.

SA description. ALPSM is applied to the final version
of SA.

Method’s activities. The method has a number of inputs:
the requirements statement, the description of the archi-
tecture, expertise from software engineers and possibly
historical maintenance data (Fig. 8). ALPSM consists of the
following six steps:

the identification of categories of maintenance tasks,
synthesis scenarios,

assignation of a weight to each scenario,

estimation of the size of all elements,

scripting the scenarios, and

6. calculation of the predicted maintenance effort.

AEE Il S

The first step formulates classes of expected changes
based on the application or program description, then for
each of the maintenance tasks, a representative set of
scenarios is defined. The scenarios are assigned a weight
based on their probability of occurring during a particular
time interval. To be able to assess the size of changes, the
size of all components of the system is determined. One of
the three techniques can be used for estimating the size of
components: using the estimation technique of choice, an

Req.
statement
Arch.
description ALPSM
(Maintenance Estimated
- prediction maintenace
Expertise from method) effort
soft. engineers | |

Historical
maintenance

Fig. 8. ALPSM inputs and result.

adaptation of an object-oriented metric or, when historical
data from similar applications or earlier releases is
available, existing size data can be used and extrapolated
to new components. The total maintenance effort is
predicted by summing up the size of the impact of the
scenarios multiplied by their probability. The size of the
impact of each scenario realization is calculated by
determining the components that are affected and to what
extent will they be changed.

Reusability of a knowledge base is not considered, but
historical data from similar applications or earlier releases
are needed. Previous data are extrapolated to new
components.

The method has been applied to a haemodialysis system.

3.8 A Software Architecture Evaluation Model
(SAEM)

The evaluation process of the quality requirements of the
SA is rigorously formalized, especially in relation to metrics
in the model described in [18]. A quality model based on
standard software quality assessment process [23] is chosen
and a conceptual framework that relates quality require-
ments, metrics, and internal attributes of the SA and the
final system is proposed. The elements required for quality
evaluation of a software system, based on standard
specification, are a quality model, a method for evaluation,
metrics, and the supporting tools.

Specific goal of the method. SAEM establishes the basis
for the SA quality evaluation and prediction of the final
system quality.

The evaluation technique. SAEM tries to define metrics
of quality based on the goal-question-metric (GQM)
technique. The goal of metrics is to discover whether
certain attributes meet the values specified in the quality
specification for each software characteristic.

The quality attributes. The quality specification is
divided into external and internal categories. The external
quality expresses the user’s view and the internal quality
expresses the developer’s view. The internal quality
attributes are composed of special elements (such as func-
tional elements or data elements) denoting quality char-
acteristics and intrinsic properties resulting from the
development process (such as size, modularity, complexity,
coupling, and cohesion). It is necessary to establish a
relative importance between internal attributes and their
values; QFD [47] is recommended as a suitable technique
for this purpose.

648 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.7, JULY 2002

The framework for SA analysis methods

Fig. 9. Main elements of the comparison framework.

The stakeholders’ involvement. Experts’ knowledge
and a company’s accumulated data are used in the
mapping of quality requirements to internal attributes.

SA description. SA is considered from two different
viewpoints, that of the developer and that of the user.
Therefore, the SA is either a final product or an inter-
mediate in the software system development process. The
architecture development process constrains the internal
attributes, so the result of the measurement process can
improve architecture as a form of feedback. The architecture
description language (ADL) model should have attached
questioning or inspection techniques (such as SA models
walkthrough) to detect the presence or absence of special
elements. The intrinsic properties can only be detected by
measuring techniques applied to the SA representation
formalized through an ADL.

Method’s activities. SAEM gives a quality evaluation
model based on data collection, measurement, and analysis
of the results. The analysis process is divided into external
and internal processes and is adapted to users” or
developers’ views. The specified quality requirements are
mapped to internal attributes that will be present on the SA,
based on the experts’ knowledge and company accumu-
lated data.

Reusability of the existing knowledge base is not
considered. However, the evaluation model assumes the
existence of a previous internal quality specification, which
defines the expected internal attributes with their values
and their evaluation procedure.

SAEM has not been validated on any software system.

4 DISCUSSION

The purpose of this discussion is to offer guidelines related to
the selection of the most suitable method for an architecture
assessment process. Fig. 9 presents the main issues exam-
ined. The opening part focuses on a study that identifies the
collective goal and how this goal is divided in each of the
analysis methods. Then, several classifications of the
methods are established. Included evaluation techniques,
the number of quality attributes, the stakeholders” involve-
ment, and SA description, or when the method is applied in
the architecture-based development process are the main
criteria of classification. To maintain a pertinent discussion
in exemplification, we consider only the most representative

comparison
Scenarios
Stakeholders’ —
Specific - involvement —pp| Questioning : .
goal of the method techniques Scenarios Scenarios
h s development evaluation
e evaluation
3 > technique —
The number of _
considered e | casuing Quality attribute
quality attributes Software architecture techniques analytic model
B description >
Reusability of the
existent knowledge o Method's Motrics
P validation >

methods. Common activities such as scenarios development
and evaluation with their different approaches about when
to stop generating scenarios and how the scenarios” impact
on a considered architecture is evaluated are identified in the
scenario-based analysis methods. The final part discusses the
special case of the evolution of ATAM from SAAM and how
the existing knowledge is reused by the analysis methods.
Finally, we conclude with a summary of the considered
SA analysis methods.

4.1 Appropriateness Study—Methods’ Specific
Goals

Objective views are considered a basis for establishing
which analysis method is most suitable for an architecture
assessment process. Although each method has its particu-
larity in the definition of its objectives, we can identify in all
of them a collective goal, which is the prediction of the
quality of a system before it has been built. In each method,
this goal is reflected under different angles and perspec-
tives. The reflections are oriented to: guide the inspection of
the SA, focusing on potential trouble spots (SAAM,
ESAAMI); risk assessment (SAAMCS); evaluate the poten-
tial of the designed SA to reach the software quality
requirements (SBAR, SAAMER); predict one quality attri-
bute of a software system based on its architecture
(ALPSM); establish the basis for SA evaluation and
prediction of the final system quality (SAEM); locate and
analyze trade-offs in an SA, for these are the areas of highest
risk in an architecture (ATAM). The collective and
particular characteristics of the goals lead to similarities
and differences between all these presented methods.

4.2 Classifications of the Methods

Based on the evaluation techniques, we can establish a possible
classification of the methods considering the techniques
they use. From this point of view, some of the methods are:
purely scenario-based, like SAAM; scenario-based and
attribute model-based analysis technique, like ATAM;
proposing various evaluation techniques depending on
the attribute, like SBAR, and related to metrics, like SAEM.
A quality model of attributes for quantitative evaluation is
treated during the assessment process in two of the
methods, but from this angle we identified different
approaches. SAEM tries to define metrics based on the
GQM technique, while ATAM considers that analysis

DOBRICA AND NIEMELA: A SURVEY ON SOFTWARE ARCHITECTURE ANALYSIS METHODS 649

techniques indigenous to the various quality attribute
communities can provide a foundation for performing SA
evaluation. It is not necessary to invent attribute-specific
techniques and metrics, but to integrate existing ones into
systematic methods. ATAM provides flexibility in the
integration of the best individual theoretical model of each
considered attribute.

Based on the considered number of quality attributes, some
methods are centered on the evaluation of a single quality
attribute. However, for a better understanding of the
strengths and weaknesses of a complex real system and
its parts, the performance of a multiattribute analysis is
required. An important feature revealed by studying the
analysis methods is the number of quality attributes a
method focuses on. We can distinguish multiple quality
attributes (ATAM, SBAR). For example, ATAM considers
the architectural elements where multiple attributes inter-
act. There are also single quality attributes (SAAM) and a
specific quality model (SAEM).

Based on stakeholders’ involvement, although it is recog-
nized that the involvement in the evaluation process of all
the stakeholders facilitates communication between them,
not all the methods consider their presence mandatory.
ALPSM differs from SAAM in that it does not involve all
stakeholders and, thus, requires less resources and time.
Instead, it provides an instrument for the software
architects that allows them to repeatedly evaluate the
architecture during design. Due to the need of a stakehol-
der’s commitment, this method could be used in combina-
tion with SAAM. In SAAM and ATAM, architecture is
evaluated by the analysts in cooperation with stakeholders
prior to the detailed design, while, in SBAR, architecture is
evaluated on a detailed design for reengineering without
the stakeholders’ involvement, although at the same time
posing typical quality questions.

When is the method applied? This question gets different
responses when considering the architecture-based devel-
opment process. A similar approach, which combines
architecture analysis and design into an iterative improve-
ment process, could be identified in ATAM and SBAR. But,
while SBAR includes guidelines on how to transform the
architecture in order to meet certain quality requirements,
ATAM concentrates on identifying sensitivities and trade-
off points. However, ATAM could also be applied to the
evaluation on the SA final version. SAAM, SAAMCS,
ESAAMI, and SAAMER are also applied to the final version
of the SA. ALPSM is applied during the design to predict
adaptive and perfective software maintenance. SAEM is
applied to the final version, but, here, it should be noted
that the evaluation model considers SA from two different
viewpoints, the developer’s and the user’s. Therefore, the
SA is either a final product or an intermediate one in the
system development process. The rigorous ambition of
SAEM makes it hard to believe that it will be suitable for
usage in an iterative SA design process.

4.3 Common Activities and Different Approaches in
Scenario-Based Methods

The activities of the methods differ in complexity and

granularity/aggregation level. Complexity represents the

difficulty, measured in time or the number of other tools

or documents needed to perform that activity. All the

methods are performed manually and, for the moment,

there is no requirement for any software tools. Documents
are necessary in some of the methods and are contained in a
reusable knowledge base. Granularity/aggregation level
means that an activity may represent a group of subactiv-
ities or a phase that is divided into steps. For example,
SAAMER defines a framework of four activities and one of
them includes all the activities of SAAM. ATAM also
consists of four phases, each one with multiple steps.

Scenario-based assessment is particularly appropriate for
qualities related to software development. Software quali-
ties such as maintainability, reusability, modifiability,
adaptability, and portability can be expressed very natu-
rally through change scenarios. As Poulin [46] concluded
when considering reusability, no predominant approach for
assessing this quality attribute exists. The use of scenarios
for evaluating architectures is recommended as one of the
best industrial practices [1]. To this end, we discuss, in the
following, different proposals for scenarios development
and scenario impact evaluation.

Scenarios development. A common activity of scenario-
based methods is scenarios development. We identified
different solutions that try to answer to the question, “when
to stop generating scenarios?” during this activity. SAAM
considers that the set of scenarios is complete when the
addition of a new scenario no longer disturbs the design.
Scenarios are also elicited considering all the stakeholders’
opinions. In SBAR, two approaches are discussed. One is to
define a complete set, which is generally impossible. The
other is to define a representative set, which has the weak
point of how to define which is the representative set. The last
one is based only on the creativity and subjectivity of the
software engineer. SAAMCS considers that the relevant
scenarios are those that are possibly complex to realize. A
two-dimensional framework diagram (five categories of
complex scenarios, four sources of changes) that may help
to discover complicated scenarios is defined. SAAMER
defines a practical two-steps procedure. In the first step, a
coverage guarantee is obtained. The scenarios are identified
and clustered based on the objectives and domain experts’
knowledge and the coverage is checked against the objectives
of stakeholders, architecture, and quality. The second step
validates the balance of scenarios with respect to the objective
based on the QFD technique. The decision to develop more
scenarios is made based on comparison against one of a
calculated imbalance factor for each quality attribute. ATAM
uses a set of standard quality attribute-specific questions to
ensure proper coverage of an attribute by the scenarios. The
boundary conditions should be covered. A standard set of
quality-specific questions gives one the possibility to elicit
the information needed to analyze that quality in a pre-
dictable, repeatable fashion. ALPSM defines a representative
set of scenarios for each expected maintenance task.

Scenario Evaluation. There are variances in the evalua-
tion of the scenarios’ effects on the considered architecture.
SAAM investigates which architectural elements are af-
fected by each scenario. The cost of the modifications
associated with each indirect scenario is estimated by
relationships—listing the components and the connectors
that are affected and then counting the number of changes.
In ALPSM, the effort needed to implement the scenario is
predicted by estimating the size of the components and the
extent to which they are affected. This activity may need

650 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.7, JULY 2002

historical maintenance data. SAAMCS defines and uses a
measurement instrument to express the effect of scenarios.
The instrument indicates the impact of a scenario, whether
multiple owners are involved and whether it leads to
version conflicts. In SAAMER, a classification and general-
ization of the architectural elements facilitates the estima-
tion of the cost or effort required for changes to be made.
The required changes, specified in scenarios and domain
experts” experiences, suggest how each of the objectives or
the risks for the systems evolution or reuse across
applications could be supported. Finally, in SBAR, the
evaluation can be performed in a complete or statistical
manner. The optimality of a quality attribute could be
obtained using the former approach and the fulfilment of a
quality attribute using the latter one.

4.4 A Discussion of Methods’ Evolution

A special case of qualitative and quantitative progress is
observed at ATAM. Considering the uses of scenarios,
ATAM is based on SAAM. Unlike SAAM, which focuses on
the use of scenarios for architectural modifiability evalua-
tion, ATAM focuses on finding trade-off points in the
architecture from the perspective of quality requirements of
the product. In addition, ATAM prescribes formal or
informal analytic models for assessing the quality attributes
of the system, but relies on the existence of such techniques
for the quality attributes relevant to each case. In the case of
modifiability analysis, ATAM builds an informal model like
SAAM with inspection and review methods. Scenario
interactions are interpreted as sensitivity points.

4.5 The Reusability of an Existing Knowledge Base

Similarities at a coarse-grain level could also be identified
between ATAM and ESAAMI. Both methods are based on
SAAM. Considering the reusability of the existing knowl-
edge, ATAM uses ABASs and ESAMI proposes packages of
analysis templates and reusable architectures. However,
when we talk about systematization of information, there is
no possible comparison. ESAAMI allows making domain-
respective architecture-specific experience available in an
intuitive form, while ATAM is anchored in a very well-
structured knowledge base of quality attributes commu-
nities and architectural styles. ABASs provide a set of
prepackages of analyses and questions including known
solutions to commonly recurring problems and known
difficulties in employing those solutions. ATAM is based on
a set of materials that describe many of the evaluation
artifacts, like ABASs, quality attribute-specific questions
that aid the evaluator in probing an architecture and
questions that aid the analyst in gathering the information
needed to build an analytic model of the quality attribute.

4.6 About Choosing Analysis Methods in Practice

The selection of a suitable method depends on how well
each comparison element fits into the problem context. It is
not the purpose of this survey to suggest a ranking list of
analysis methods to the practitioners, but to give an
understanding of how the methods differ.

A summary of this discussion is depicted in Table 5
and 5a.

In practice, one of the purposes for using a software
architecture analysis method is to decrease the costs caused
from corrections and to increase quality of products. For

that reason, a method 1) should be able to be used in an
early or middle phase of the SA design process (smaller and
cheaper errors), 2) should support all possible quality
attributes or as many as possible (the scope of use), and
3) should be easy to apply and integrate to the design
process (it takes less time to apply, by a designer). If all
these criteria are supported by a method, it can be selected
and applied in practice. From Table 5, we can see that,
except SBAR (applied on a reengineered SA design) and
ESAAMI (applied on a selected architecture design from a
domain database), all the others may fulfill 1). Point 2 is
supported by ATAM and SBAR and point 3 by SBAR,
ALPSM, and ATAM (when analysis is performed by a
designer). The result is that ATAM satisfies as many as
possible of the proposed criteria.

Only one selection criterion could be insufficient to
indicate the most suitable method for a defined purpose.
The included evaluation techniques, the ease with which
the method’s activities are performed, and the existence of a
knowledge base may represent other criteria that have to be
considered in the selection process. An important element
to think about is how well and in what software domain a
method has been validated in practice.

5 CoNcLUSIONS AND FUTURE WORK

This survey has shown the real level of the research at this
moment, in this domain, by presenting and discussing eight
of the most representative architecture analysis methods.
This section is organized to reveal the general progress,
existing problems, and future work for improvement and
refinement.

5.1 Progress ldentification and Methods

Improvement Techniques

Progress in risk assessment. The purpose of the evaluation
is to analyze the architecture to identify potential risks, by
predicting the quality of the system before it has been built.
Regarding potential risks identification, the reflections of
this general goal have been distinguished in all the studied
methods. In this sense, the uses of change scenarios and
scenario interaction reveal potential problem areas in the
architecture. The degree of modification captured when
evaluating a system’s response to a scenario represents a
measured risk. The complexity of scenarios is also an
important factor for risk assessment. The required changes
and domain experts’ experiences represent another mod-
ality of suggestion of how the system could support the risk
levels for evolution or reuse. The chances of surfacing
decisions at risk are optimized by using exploratory
scenarios. The potential risk is also minimized by analyzing
attribute interactions. Iterative methods promote analysis at
multiple resolutions as a means of minimizing risk to an
acceptable level of time and effort. Areas of high risk are
analyzed more profoundly (simulated, modeled, or proto-
typed) than the rest of the architecture. Each level of
analysis helps to determine where to analyze more deeply
in the next iteration.

A possible combination of methods. Looking at the
existing analysis techniques, the possibility of combining a
coarse-grain and broad technique with a fine-level one
would provide an improved result, but the costs of time and
effort would also be increased. Scenario-based analysis

DOBRICA AND NIEMELA: A SURVEY ON SOFTWARE ARCHITECTURE ANALYSIS METHODS 651

TABLE 5
Software Architecture Analysis Methods

existing knowledge

Method SAAM SAAMCS ESAAMI SAAMER
Comparison element
The evaluation Scenarios. Scenarios. Scenarios. Scenarios.
technique
Quality attributes Modifiability Flexibility Similar to SAAM. Evolution and
reusability.
Stakeholders’ All All All All
involvement
The phase of SA design |In the final version of | In the final version of |In the final version of the |In the final version
the SA. the SA. SA. of the SA.
When to stop If the addition of a new |Defines a framework to |Similar to SAAM, but it Uses a practical
generating scenarios? |scenario no longer discover all the considers protoscenarios, |two-step procedure.
perturbs the design. complicated scenarios. [too.
Scenarios impact Relationships. Relationships, owners, |Similar to SAAM. Estimates the cost
evaluation versions. required for a
change to be made.
Reusability of the Not considered. Not considered. Analysis templates and Not considered.

reusable SAs in the
domain.

techniques can be combined with a specific analysis
technique for quality attributes. For example, a scenario
may identify a critical path of execution, which can then be
examined in detail using a real-time analysis method like
rate monotonic analysis (RMA) [2], [31], or other analysis
techniques for scrutinizing the dynamic properties of an

application.
Metrics—more precise techniques in evaluating attri-

butes in terms of architecture. Most of the researchers in

the domain consider metrics to be a more precise technique
in evaluating attributes in terms of architecture [28], [41].
Metrics specification must contain the selected measure for
a quality attribute, a measurement scale, and a set of
methods for measurement. Two approaches could be
identified: to adapt existing metrics [9] or to define new
ones [18]. The adaptation of object-oriented metrics which
were validated as good predictors of software maintenance
[38] is required because the metrics suite uses data that can
only be collected from the source code and, at the

TABLE 5a
TABLE 5 (cont.)

Method ATAM SBAR ALPSM SAEM
Comparison element
The included evaluation | Integrates existent Depends on the attribute: | Scenarios. Metrics. Different
technique questioning and scenarios, mathematical metrics based on GQM
measuring techniques modeling, simulators, technique.
objective reasoning
Quality attributes Multiple quality Multiple quality Maintainability A quality model.
attributes attributes
Stakeholders’ All or Designer only Designer Designer Not applied
involvement
The phase of SA design |In the final version or |Combined with the SA [During design to In the final version of
combined with the SA [design into an iterative |predict adaptive and |the SA.
design into an iterative [improvement process perfective software
improvement process. | and re-engineering. maintenance.
When to stop Uses a standard set of | Defines a complete set | Defines a set of Not applied

generating scenarios? |quality attribute-specific |or a representative set of [scenarios for each

base with known solutions.

questions. scenarios. expected maintenance
task.
Scenarios impact Similar to SAAM when |Optimized or fulfilled. |Estimates the size of |Not applied.
evaluation applied. the components and
the extent to which
they are affected.
Reusability of the A set of pre-packages |Not considered. Not considered. Not applied.
existing knowledge analyses and questions

652 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.7, JULY 2002

architecture level, no prototype or source exists. Consider-
ing the other approach, GQOM [6] is a good technique to
define new metrics following a certain reasoning process.
The main activities of GQM are: to define a goal in terms of
purpose, perspective, and environment; to establish the
questions that indicate the attributes related to the goal; and
to answer to each question. The purpose is related to the
SA evaluation, indication, and comparison, and the end
product quality prediction. The perspective depends on the
aims of the assessment and it is closely related to the role of
evaluation staff: a developer, user, management, and
maintainer. There are two suitable environments: the
SA representation considered as an intermediate design
product or as an end product in itself.

QFD—a technique to be considered. QFD is a technique
that should be considered as a future research topic. It has
been used in SAAMER and it is recommended by SAEM to
developers, in order to establish the relative importance
between attributes and their values. Equally, this technique
is seen as useful in the process of formalization of the
relationship between internal quality attributes and the
quality characteristics/subcharacteristics which must be
studied for specific application domains, development
processes, and ADL.

5.2 Open Problems and Future Work

Scenarios and quality attributes naming problems. One
problem with scenario-based analysis is that the result and
expressiveness of the analysis are dependent on the
selection of the scenarios and their relevance for identifying
critical assumptions and weaknesses within the architec-
ture. There is no fixed minimum number of scenarios, the
evaluation of which guarantees that the analysis is mean-
ingful. According to this, the definition of a set of complex
scenarios and a two-dimensional framework is a solution,
but a future study of this set completeness and on the
relative importance of each of the framework cells is
needed. The idea of using an instrument which should
include all aspects relevant to the complexity of changes is
original and useful, but the measures must be comparable
to allow results” interpretation.

Future studies are needed in order to investigate how
domain knowledge and the degree of expertise affect the
coverage of the selected scenarios. By the same token,
quality attributes prediction methods could be improved by
studying their sensitivities for different variations of the
inputs and how significant the used assumptions para-
meters are for the results. For instance, how sensitive
ALPSM is to the representative sample of the maintenance
scenario profile, or how critical the size estimation for the
results is.

An examination of the existent methods reveals a lack of
understanding of quality attributes in the software engi-
neering community at the moment. The same interpretation
but with different attribute names could be identified for
flexibility [37], which has the same meaning as modifiability
in [26] or maintainability in [10].

Future work for methods improvement and refining.
Until now, SAAM has been the only method that has
appeared in a book [7]. This is a confirmation of its
maturity. SAAM has been used for different quality
attributes like modifiability, performance, availability, and

security. It has also been applied in several domains. This is
another validation of its completeness. The other methods
are still young and are undergoing refinement and
improvement. Future work is needed to evaluate the effects
of their various usages and to create a repeatable method
based on repositories of scenarios, screening, and elicitation
questions (ATAM). In this respect, ABASs and qualitative
analysis heuristics are developing. Building a handbook of
ABASs requires collection, documentation, and testing of
many examples of problems, quality attributes measures,
stimuli, and parameters.

The extension of the reengineering method for more
nonfunctional requirements and the application of the
method in more industrial case studies are the main future
objectives of SBAR. The authors of this method consider it
important to obtain a reasonable balance between the
different quality requirements in the top-level architectural
design. A small taxonomy is defined for performance and
modifiability, and eight design guidelines are formulated.
Each guideline is associated with a quality requirement in
the taxonomy. Future work is desirable, in order to extend
these guidelines to other quality requirements.

A stronger methodical integration in the development
process is also required. ESAAMI needs to provide
complete support for the reuse-based and architecture-
driven development approaches. Integrating the technique
into reuse-based and architecture-centric development
processes should provide a refinement of the method.

REFERENCES

[1] G. Abowd, L. Bass, P. Clements, R. Kazman, L. Northop, and A.
Zaremski, “Recommended Best Industrial Practice for Software
Architecture Evaluation,” Technical Report, CMU/SEI-96-TR-025,
1997.

[2] A. Alonso, M. Garcia-Valls, and J.A. de la Puente, “Assessment of
Timing Properties of Family Products,” Proc. Second Int’l ESPRIT
ARES Workshop, pp. 161-169, Feb. 1998.

[3] M. Barbacci, M. Klein, and C. Weinstock, “Principles for
Evaluating the Quality Attributes of a Software Architecture,”
Technical Report, CMU /SEI-96-TR-036, ESC-TR-96-136, 1997.

[4] M. Barbacci, M. Klein, T. Longstaff, and C. Weinstock, “Quality
Attributes,” Technical Report CMU/SEI-95-TR-021, ESC-TR-95-
021, 1995.

[5] M. Barbacci, S. Carriere, P. Feiler, R. Kazman, M. Klein, H. Lipson,
T. Longstaff, and C. Weinstock, “Steps in an Architecture Tradeoff
Analysis Method: Quality Attribute Models and Analysis,”
Technical Report, CMU/SEI-97-TR-029 ESC-TR-97-029, 1998.

[6] V.R.Basili and H.D. Rombach, “Goal/Question/Metric Paradigm:
The TAME Project: Towards Improvement-Oriented Software
Environments,” IEEE Trans. Software Eng., vol. 14, no. 6, 1988.

[71 L. Bass, P. Clements, and R. Kazman, Software Architecture in
Practice. Reading, Mass.: Addison-Wesley, 1998.

[8] P.O. Bengtsson and J. Bosch, “Scenario-Based Architecture
Reengineering,” Proc. Fifth Int’l Conf. Software Reuse (ICSR 5), 1998.

[9] P.O. Bengtsson, “Towards Maintainability Metrics on Software
Architecture: An Adaptation of Object Oriented Metrics,” Proc.
First Nordic Workshop Software Architecture (NOSA '98), Aug. 1998.

[10] P.O. Bengtsson and J. Bosch, “Architecture Level Prediction of
Software Maintenance,” Proc. Third European Conf. Software
Maintenance and Reeng., pp. 139-147, Mar. 1999.

[11] R.S. Arnold and S.A. Bohner, Software Change Impact Analysis. Los
Alamitos, Calif.: IEEE Computer Society, 1996.

[12] J. Bosch and P. Molin, “Software Architecture Design: Evaluation
and Transformation,” Proc. IEEE Eng. of Computer Based Systems
Symp. (ECBS 99), Dec. 1999.

[13] S. Bot, C.-H. Lung, and M. Farrell, “A Stakeholder—Centric
Software Architecture Analysis Approach,” Proc. Int’l Software
Architecture Workshop (ISAW 2), 1996.

DOBRICA AND NIEMELA: A SURVEY ON SOFTWARE ARCHITECTURE ANALYSIS METHODS

(14]

(15]

[lo]

(17]

(18]

(19]

(20]
(21]

[22]

(23]

[24]

[25]

[20]

(27]

(28]

[29]

(30]

(31]

(32]

[33]

(34]

(35]

[36]

(371

(38]

L. Bratthall and P. Runeson, “A Taxonomy of Orthogonal
Properties of Software Architecture,” Proc. Second Nordic Software
Architecture Workshop (NOSA ’99), 1999.

L.C. Briand, S. Morasca, and V.R. Basili, “Measuring and
Assessing Maintainability at the End of High Level Design,” Proc.
IEEE Conf. Software Maintenance, 1993.

F. Buschmann, R. Meunier, P. Sommerland, and M. Stal, Pattern-
oriented Software Architectures, a System of Patterns. Chichester:
Wiley & Sons, 1996.

R. Day, Quality Function Deployment. Linking a Company with Its
Customers. Milwaukee, Wisc.: ASQC Quality Press, 1993.

J.C. Duenas, W.L. de Oliveira, and J.A. de la Puente, “A Software
Architecture Evaluation Model,” Proc. Second Int’l ESPRIT ARES
Workshop, pp. 148-157, Feb. 1998.

E. Gamma, R. Helm, R. Johnson, and]. Vlissides, Design
Patterns—Elements of Reusable Object-Oriented Software. Reading,
Mass.: Addison-Wesley, 1995.

A. Tannino, “Software Reliability Theory, Encyclopedia of Software
Eng.,].J. Marciniak, ed., vol. 2, pp. 1237-1253, 1994.

IEEE Standard Glossary of Software Engineering Terminology. IEEE
Std. 610.12-1990, 1990.

IEEE Standard 1061-1992, Standard for Software Quality Metrics
Methodology, New York: Institute of Electrical and Electronics
Engineers, 1992.

ISO/IEC91—Int’l Organization of Standardisation and Int’l
Electrotechnical Commission, Information Technology—Software
Product Evaluation—Quality Characteristics and Guidelines for Their
Use, ISO/IEC 9216: 1991(E), 1991.

Software Reuse, a Holistic Approach. E. Karlsson ed., Chichester:
Wiley & Sons, 1995.

R. Kazman, M. Barbacci, M. Klein, S.J. Carriere, and S.G. Woods,
“Experience with Performing Architecture Tradeoff Analysis,”
Proc. Int’l Conf. Software Eng. (ICSE “99), pp. 54-63, May 1999.

R. Kazman, G. Abowd, L. Bass, and P. Clements, “Scenario-Based
Analysis of Software Architecture,” IEEE Software, pp. 47-55, Nov.
1996.

R. Kazman, G. Abowd, L. Bass, and M. Webb, “Analyzing the
Properties of User Interface Software Architectures,” Technical
Report, CMU-CS-93-201, Carnegie Mellon Univ., School of
Computer Science, 1993.

R. Kazman, L. Bass, G. Abowd, and M. Webb, “SAAM: A Method
for Analyzing the Properties of Software Architectures,” Proc. 16th
Int’l Conf. Software Eng., pp. 81-90, 1994.

R. Kazman, M. Klein, M. Barbacci, H. Lipson, T. Longstaff, and S.].
Carriere, “The Architecture Tradeoff Analysis Method,” Proc.
Fourth Int’l Conf. Eng. of Complex Computer Systems (ICECCS '98),
Aug. 1998.

R. Kazman, S.J. Carriere, and S.G. Woods, “Toward a Discipline of
Scenario-Based Architectural Engineering,” Annals of Software
Eng., vol. 9, 2000, http://www.cgl.uwaterloo.ca/~rnkazman/
SE-papers.html.

M. Klein, T. Ralya, B. Pollak, R. Obenza, and M. Gonzales
Harbour, A Practitioner’s Handbook for Real-Time Analysis. Boston:
Kluwer Academic, 1993.

M. Klein, R. Kazman, L. Bass, S.J. Carriere, M. Barbacci, and H.
Lipson, “Attribute-Based Architectural Styles,” Proc. First Working
IFIP Conf. Software Architecture (WICSA 1), pp. 225-243, Feb. 1999.
P.B. Krutchen, “The 4+1 View Model of Architecture,” IEEE
Software, pp. 42-50, Nov. 1995.

N.H. Lassing, D.B.B. Rijsenbrij, and J.C. van Vliet, “Flexibility in
ComBAD Architecture,” Proc. First Working IFIP Conf. Software
Architecture (WICSA 1), Feb. 1999.

N. Lassing, D. Rijsenbrij, and H. van Vliet, “On Software
Architecture Analysis of Flexibility, Complexity of Changes: Size
Isn’t Everything,” Proc. Second Nordic Software Architecture Work-
shop (NOSA '99), pp. 1103-1581, 1999.

N. Lassing, D. Rijsenbrij, and H. van Vliet, “The Goal of Software
Architecture Analysis: Confidence Building or Risk Assessment,”
Proc. First Benelux Conf. State-of-the-art of ICT Architecture, 1999.
N. Lassing, D. Rijsenbrij, and H. van Vliet, “Towards a Broader
View on Software Architecture Analysis of Flexibility,” Proc.
Asian-Pacific Software Eng. Conf. (APSEC '99), 1999.

W. Li and S. Henry, “Object-Oriented Metrics that Predict
Maintainability,” J. Systems and Software, vol. 23, no. 2, pp. 111-
122, 1993.

(39]

(40]

(41]

(42]

(43]

(44]

(43]

[40]
[47]
(48]
(49]
[50]

(511

(52]

653

JWS. Liu and R. Ha, “Efficient Methods of Validating Timing
Constraints,” Advances in Real-Time Systems, S.H. Son ed., pp. 199-
223, 1995.

L. Lundberg,]J. Bosch, D. Hdggander, and P.O. Bengtsson,
“Quality Attributes In Software Architecture Design,” Proc.
IASTED Third Int’l Conf. Software Eng. and Applications, pp. 353-
362, Oct. 1999.

C. Lung, S. Bot, K. Kalaichelvan, and R. Kazman, “An Approach
to Software Architecture Analysis for Evolution and Reusability,”
Proc. CASCON ’97, Nov. 1997.

J.A. McCall, “Quality Factors,” Encyclopedia of Software Eng.,
J.J. Marciniak ed., vol. 2, pp. 958-971, 1994.

G. Molter, “Integrating SAAM in Domain-Centric and Reuse-
Based Development Processes,” Proc. Second Nordic Workshop
Software Architecture (NOSA '99), pp. 1103-1581, 1999.

D. Parnas, “On the Criteria to be Used in Decomposing Systems
into Modules,” Comm. ACM, vol. 15, no. 12, pp. 1053-1058, 1972.
D. Perry and A. Wolf, “Foundation for the Study of Software
Architecture,” SIGSOFT Software Eng. Notes, vol. 17, no. 4, pp. 40-
52,1992.

J.S. Poulin, “Measuring Software Reusability,” Proc. Third Conf
Software Reuse, Nov. 1994.

B.M. Reed and D.A. Jacobs, Quality Function Deployment for Large
Space Systems. Nat'l Aeronautics and Space Administration, 1993.
P. Runeson and C. Wohlin, “Statistical Usage Testing for Software
Reliability Control,” Informatica, vol. 19, no. 2, pp. 195-207, 1995.
M. Shaw and D. Garlan, Software architecture. Perspectives on an
Emerging Discipline. Upper Saddle River, N.J.: Prentice Hall, 1996.
C. Smith, Performance Engineering of Software Systems. Reading,
Mass.: Addison-Wesley, 1990.

C. Smith and L. Williams, “Software Performance Engineering: A
Case Study Including Performance Comparison with Design
Alternatives,” IEEE Trans. Software Eng., vol. 19, no. 7, pp. 720-
741, July 1993.

W.P. Stevens, G.J. Myers, and L.L. Constantine, “Structured
Design,” IBM Systems ., vol. 13, no. 2, pp. 115-139, 1974.

Liliana Dobrica received the MSc degree in
1991 in process control software engineering
and PhD degree in 1998 in control systems from
the Politehnica University of Bucharest, Roma-
nia. She is an associate professor in the
Department of Control and Industrial Informatics
of Faculty of Automation and Computers
Science at the Politehnica University of Buchar-
est, Romania. In 2000, she joined Software
Architectures Research Group, VTT Electronics,

Oulu, Finland, where she was a postdoctoral research associate for nine
months. Her research interests include software design and analysis for
embedded, real-time, and distributed systems, software architecture,
and product-line architecture, quality attributes analysis techniques, with
emphasis on integrating quality attribute analysis techiques into the
software development process. Her current research projects include
modeling and analysis of software product-line architecture for middle-
ware services domain. She has published several journal and
conference technical papers.

Eila Niemela received the MSc degree in
information processing science from the Uni-
versity of Oulu, Finland, in 1995. Between 1995
and 1998, she worked as a researcher in the
Software Architectures Group at VTT Electro-
nics. She was a visiting researcher at Napier
University, Edinburg, UK in 1998-99. Since
October 1999, she has worked as a group
manager in the Software Architectures Group of
the Embedded Software research area. In 2000,

she obtained the PhD degree in information processing science from the
University of Oulu, a component framework of a distributed control
systems family as a topic. Since 2001, she has worked as a research
professor at VTT Electronics. She has published several conference
papers about software architectures and components, as well as
embedded middleware services. She is a member of the IEEE
Computer Society.

> For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dilb.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

