
A UML-based Aspect-Oriented Design Notation
For AspectJ

Dominik Stein, Stefan Hanenberg, and Rainer Unland
Institute for Computer Science
University of Essen, Germany

{dstein,shanenbe,unland R} @ cs.uni-essen.de

ABSTRACT
Aapect] is a well-established programming language for the im-
plementation of aspect-oriented progr~m~ It supports the aspect-
oriented programming paradigm by providing a special unit,
called "aspect", which encapsulates crosscutting code. While with
Aspect] a suitable aspect-oriented programming language is at
hand, no feasible modeling language is available that supports the
design of AspectJ progr,m,. In this work, such a design notation
for AspectJ program~ is presented based 'on the UML. It provides
representations for all language constructs in AspectJ and speci-
fies an UML implementation of AspectJ's weaving mechanism.
The design notation eases the perception of aspect-orientation and
Aspect] programs. It carries over the advantages o f aspect-
orientation to the design level.

1. INTRODUCTION
Aspect-oriented programming (AOP) [12] is a new software
development paradigm that aims to increase comprehensibility,
adaptability, and reusability by introducing a new modular unit..
called "aspect", for the specification of crosscutting concerns.
Aspecff [2] is a programming language that supports the aspect-
oriented programming paradigm by providing new language
constructs to implement crosscutting code. At present, no design
notation is available that appears to be appropriate for the design
of aspect-oriented programs in Aspecff. The need of such a design
notation is obvious. First, it would ease the development of As-
pectJ programs. A graphical notation helps developers m design
and comprehend Aspect/programs. Further, it would facilitate the
perception of aspect-orientation. A design notation helps develop-
ers to assess the erossentfing effects of aspects on their base
classes. Its application carries over the advantages o f aspect-
orientation to the design level and facilitates adaptation and reuse
o f existing design constructs.

In this work, an approach is presented that extends the Unified
Modeling Language (UML) [13] with the aspect-oriented design
concepts as they are specified in AspectJ (in the following, the
appmacah is referred to as the "aspect-oriented design model", or
AODM for short). The approach reproduces these concepts by

Permission to m=k¢ digital c~ hard copies of all or part of this w~rk for
penmud or classroom use is granted without fee provided that copies are
not made or distributed for profit or comntercial advantage and that
copies bear lifts notice and the full citation on the fivat page. To copy
otherwise, to repubfish, to post on servers or to redislribute to lists.
requires priv~ specific permission and/os a fee.
AOSD 2002, Ensched¢. The Netherlands
Copyright 2002 ACM 1-58113-469-X/02/0004...$5.00

extending existing UML concepts using UML's standard exten-
sion mechanisms. Doing so assures an immediate understanding
of aspect-oriented design models end enables rapid support by a
wide variety of CASE tools. Further, the approach reproduces
Aspect]'s weaving process in the U M L Doing so helps to per-
ceive the effects of aspect-orientation in Aspect/pmgram.~ (e.g.,
tools may be developed that generate woven design models).

The remainder of this work is structured as follows. After a short
overview of Aspect] and the ~ section 2 introduces UML
representations for each Aapecff language consmlct. Section 3
describes an UML implementation o f AspectJ's weaving mecha-
nism. A new relationship is introduced to represent this weaving
mechanism. In section 4, existing approaches m extend the UML
with aspect-oriented design concepts are regarded with respect to
their compliance with AspectI's semantic. Section 5 concludes
this paper and gives a short outlook on the oncoming work to do.

1.1 AspectJ
Aspect] [2] is an implementation o f aspect-oriented programming
for Java (cE [1], [8]). It adds to Java several program elements
that define modular units of crosscutting code. Aspect] provides
the concept of join points end pointcuts to enable dynamic (i.e.,
context-dependent) ernsscurdng of behavior. It comes with a pre-
processor that weaves the crosscutting code of aspects into the
code of the base classes. It is part of the aspect to specify where
its crosscutting code has to be woven into the base classes. In the
following, the language consmtcts of AspectJ and their semantic
axe explained briefly.

Joi , points in Aspect /are "principled points in the dyD.miC exe-
cution of a program" [11] [1]. These points come to pass at sev-
eral actions, such as method and constructor calls, method and
constructor executions, field accesses, as well as object and class
initializations. Join points can be considered as distinct points in a
dynamic object call graph. In this call graph, control passes
through each of those distinct points twice, once the control is
passed down to the called object, and once control flows back up.

Pointcuts are sets o f join points. Pointcuts are used to specify at
which join points crosscutting behavior is to be executed. Point-
cuts are defined in terms of pointcut designators. Some of those
poin~ut designators (such as this, target, args, cflow,
cflowbelow, or if) select join points based on the dynamic
context they come to pass in.

Advice defines code to be executed whenever a join point o f a
particular set of join points is reached. It is part of the advice
declaration to specify this set o f join points (in terms of pointcut
designators). As "control passes through each join point twice"

1 0 6

[11] (i.e., once the communication is dispatched, and once the
communication has been fulfilled) the designer needs to specify at
what point in time relative to the execution of the communication
(i.e., before, after, or around) the advice is to be executed.

Introductions are used to crosscut the static type structure of the
classes. That is, with introductions additional class members like
constructors, methods, and fields may be inserted into classes as if
they were declared in the classes themselves. Further, introduc-
tions may change the classes' super-classes and super-interfaees
by inserting new generalization and realization relationships into
the class structure.

Aspects are "modular units of crosscutting implementation" [11]
and serve as containers for pointcuts, pieces of advice, inuroduc-
tions, and ordinary Java members. Aspects in AspectJ are instan-
tiated by an extraordinary instantiation mechanism. This mecha-
nism allows to iustantiate aspects per object, per control flow, or
once for the global environment.

1 , 2 T h e U n i f i e d M o d e l i n g L a n g u a g e
The Unified Modeling Language (UML) [13] is an object-oriented
design notation that provides basic building blocks to model
software-intensive systems, such as abstractions that represent
structure and behavior of a system, relationships that state how
the abslractions relate to each other, and diagrams that show
interesting excerpts of a set of abstractions and relatonships (cf.
[3]). The most important characteristics of the UML in respect to
the issue tackled in this work are its extension mechanisms. These
mechanisms are briefly introduced in the following.

UML's extension mechanisms provide standardized means to
extend existing UML building blocks with new properties, called
tagged values, or with new semantic, called constraints. Tagged
values may be used to attach arbitrary information to a model
element, like management information (e.g., author, due date,
status) or code generation information (e.g., optlmiT~tion level,
container class). With conswaints, new semantic can be specified
for a model element.

Besides the alteration of existing building blocks, the UML may
be extended with completely new building blocks that are derived
from existing ones. These new building blocks, called stereotypes,
have the same structure (attributes, associations, operations) as the
base building block they are derived from. However, they may
have a different semantic and may specify additional well-
formedness rules or required tagged values that apply to each
building block of that stereotype. Stereotypes may be used to
indicate a difference in meaning or usage between two building
blocks with identical structure (cf. [13]).

2. ASPECTJ'S BASIC ABSTRACTIONS
In this section, UML representations are presented for each of
AspectYs basic abstractions, such as join points, pointcuts, pieces
of advice, introductions, and aspects. To do so, the S~mantic of
these concepts is thoroughly analyzed and checked against rhe
existing model elements in the UML.

2.1 Join Points
Join points are no distinct language construct of Aspect_l. Rather.
they denote abslract points in the dynamic execution of a pro-
gram. Nevertheless, it is necessary to find a suitable representa-
tion for join points in the UMJ., to visualize pointcuts (being sets
of join points) and to implement AspectJ's weaving mechanism.
Looking for an appropriate UML representation for join points,

l/nks can be identified as the one model element which represents
them best.

In the UML, linkg serve as communication colmection for stimuli.
A stimulus mifies a communication between two instances that is
dispatched by an action, such as an invocation of an operation, a
request to create or to destroy an instance, or a raise of a (asyn-
chronous) signal. This means that control is passed from one
instance to another via communication links. Hence,]inks in the
UML represent "principled points in the dynamic execution of a
program" just like join points do in AspectJ. And just like join
points in AspectJ, control passes each communication link in the
UML two times, once the conUrol is passed down to the called
instance, and once conurol flows back up again.

However, whether a link actually represents a join point depends
on the exact commnnicafion that is dispawhed over the link. A
]ink used to communicate the destruction of an instance, for ex-
ample, does not represent a join point in the sense of AspectJ.
AspectJ's join point model defines precisely which kind of com-
muuicafions promotes an ordinary link to a representation of a
join point_

In the ~ some communications such as field references or
field assignments do not dispatch stimuli. This means that control
flow passes no link at all, and no]ink can be assigned to represent
the respective join points. To solve this problem, in the AODM.
these communications are stereotyped as "pseudo" invocations of
"pseudo" operations that have no other purpose than to read or
write (respectively) a specific field. Similar, no link can be identi-
fied to represent execution and initialization join points. Consider-
ing that the execution of an operation or a constructor or the ini-
tialization of an object never occurs without a (preceding) opera-
tion or constructor call, it is legitimate to use one link (i.e., the one
associated with the call or create action) to represent all two (or
three) join points. To represent the order in which control passes
these join points, corresponding call, execute, and initialize ac-
tions are organized to an UML action sequence.

Join points may be visualized in UML interaction diagrams by
highlighting messages. In the UML, interaction diagrama are

1. But ton:bl [

cUckO
" gl~'eate~ "= I I

~onsemao~ =allC~ -W y[Somc4~ass: c l

¢x=cut='Vl..tcoxs~u == e=~-uue=~ I

~e]d assiglmleN[~., ~ e t (a l I , val).~..i
%1

,
[field mfmrence~., tCalt) ~ 1

• =at.U.
!

~ u t e ~
• !

• destroy~ ~

F igure 1: Indicat ing Join Points in Interact ion Diagrams

1 0 7

commonly used to represent commtmications between instances.
In these diagrams, communications are associated with messages.
Communication between two instances can only take place, i f the
communicating instances are cotmected by a link. With other
words, messages can only be send fi-om one object to another, i f
the sending object has a reference to the receiving object. Hence,
considering that messages are associated with comrnurdcations
and require the existence o f links, it is proper to highlight mes-
sages in collaborations to indicate join points.

The notes in Figure 1 demonstrate which kind of messages may
be used to indicate what k ~ d of jo in points. Join points which
come to pass during actions that usually do not result in commu-
nications (such as method and constructor executions, object
initializations, or field accesses) are indicated by special stereo-
types (see 4qexecute~, ~initialize~, ~set~, and ~get~ stereotypes in
Figure I; the other stereotypes ~create~, ~call,~, and ~destroy~ are
pre-defined by the UM.L specification).

2.2 Pointcuts
In the AODM, point~uts are represented as operations of a special
stereotype, named ~q~intcu~ (see Figure 4 for examples). This is
legitimate due to the strong struetm'al resemblance o f pointcuts to
standard UML operations. Just like standard UML operations,
pointcuts arc features o f a particular classifier (i.e.. an aspect),
they may have an arbitrary number of (output-on]y) parameters,
and their declaration comprises a signature and an "implementa-
tion" (see Figure 2).

(output-rely) paneneten

s i ~ u c e tazg~(a) ~ ,-~11 (~o~d ~¢t.~-~.c].ic.k()) ;

pointmt dedara~an-('implefnmta~on')

F igure 2: S t ruc tu ra l S imi la r i ty of Pointcuts to Opera t ions

The ~pointeut) stereotype captures a new semantic and specifies
several additional constraints. One of those constraints declares
that operations of stereotype ,qmintcut,~ must be implemented by
methods of a special stereotype that equips the standard UML
Method meta-class with an additional property named "base" to
hold the "implementation" of the pointcut (i.e., its declaration; see
Figure 4 for an example).

2.3 Advice
Similar to a pointcut, an advice is represented as an operation of a
special stereotype, named , ~ l v i c e , (see Figure 4 for an e~m.nle).
This is legitimate due to the strong structural similarity of an
advice to a standard UML operation. Just like a standard UML
operation, a piece o f advice is a feature of a particular classifier
(i.e., an aspect), it may have an arbitrary number o f parameters,
and its declaration comprises a signature and an implementation
(see Figure 3). In contrast to a pointcut, an advice is also semanti-
cally comparable to a standard UML operation because it defines
some dynamic feature that effects behavior.

However, there is a semantic difference between an advice and an
operation. One important difference is, for example, that an advice
does not have a unique identifier. This circumstance may cause
conflicts with existing well-formedness rules of the UMI., stating
that two operations (i.e., two pieces of advice) in the same classi-
tier (i.e., aspect) must not have the same signature. To avoid such
conflicts, the AODM supplies an advice with a "pseudo" identifier

"pseudo" identifier paramet~s implcmentstion

signature pointeut cieclaration

F i g u r e 3: S t ruc tu ra l S imi la r i ty of an Advice to an O p e r a t i o n

(see Figure 4 for an example). Another difference pertains m
inheritance. Since in Aspect] a piece of advice has no unique
identifier in the super-aspect, it cannot be overridden in the sub-
aspect. The ~dv ice~ stereotype captures this semantic difference
by constraining that an advice in the AODM (although having a
"pseudo" identifier) cannot be ovemdden. Then, advice declara-
tions in Aspect] contain pointeut declarations that specify the set
o f jo in points at which the advice is to be executed. Therefore,
operations of stereotype ~advice~, must be implemented by meth-
ods of a special stereotype that equips the standard UML Method
meta-class with an additional property named "base" to hold the
pointcut declaration. Note how this proceeding coincides with the
way that pointcuts are implemented in the AODM (see section
2.2). In fact, the same method stereotype is used for the imple-
mentation of both pieces of advice and pointcuts.

2.4 In t roduct ions
in AspectJ, inlroductions are used to insert members (such as
constructors, methods, and fields) and relationships (such as
generalization/specialization and realization relationships) to the
base class structure. In the ~ templates are the appropriate
means to do the same (i.e., to introduce new model elements, such
as members and relationships, to an existing design model). Tem-
plates axe parameterized model elements that are used to generate
other model elements by binding its template parameters to actual
a r~men t s . Templates cannot be used directly in a design model.

Since introductions in AspectJ may insert both members and
relationships, the parameterized model element destined to repre-
sent introductions in the UML must be able to describe members
and relationships, too. ARer reviewing the UML specification,
parameterized collaborations can be identified to meet these
requirements best. In the UML, collaborations are used to specify
a set of instances together with their members and relationships
(i.e., a structural context) and a set o f interactions that describes
some communication between these instances (i.e., some behavior
performed within the s~mctural context). So, collaboration tem-
plates prove to be suitable to specify structural and behavioral
characteristics o f introductions. The AODM specifies an extra
stereotype o f collaboration templates, named ~introduction,~, to
capture the particular semantic of introductions (see Figure 5 for
zoomed-in and Figure 4 for zoomed-out exnmples).

Just l ike ordinary templates, collaboration templates of stereotype
,introduction,, need to be bound to actual arguments before they
can be used in UML design models. The standard UML binding
mechanism proves to be not suitable to do so, though, as it does
not comply with Aspect] 's weaving semantic. The UML well-
formedness roles state that "a model element may participate in at
most one binding as a client" (i.e., as an argument) [13]. In As-
pectI, though, a class may be crosscut by multiple introductions.

Therefore, the AODM specifies a special binding mechanism for
collaboration templates of stereotype ,inlroduction,~. Note that
introductions in AspectJ are conceptually always bound to (a
fixed set of) actual base classes, which are specified as type pat-
tern in the introduction declaration. Accordingly, in the AODM,
template parameters of a collaboration template stereotyped with

108

• introduclion~ are required to be of a special stereotype, named
~contalnsWeavinglnst~'uctions~. That stereotype equips the stan-
dard UML TemplateParameter meta-class with a supplementary
meta-attribute, named "base", to hold the type pattern that speci-
fies the set of actual base classes to be crosscut (see Figure 4 and
Figure 5 for examples). A conaboration template of stereotype
~introduction~ is generally considered to be implicitly bound to
the actual arguments specified in that "base" expression. Thus, it
is proper to use introduction templates in design models directly.

2.5 A s p e c t s
In the AODM, aspects are represented as classes of a special
stm~otype, named ~spect~ (see Figure 4 for examples). This is
legitimate due to the strong structural similarity between aspects
and standard UML classes. Just like standard UML classes, as-
peers serve as containers and namespaces for various features,
such as attributes, operations, pointcuts, pieces of advice, and
introductions. And just like them, they may participate in associa-
lions and generalization relationships.

However, there are differences between aspects and classes con-
cerning their instsnliation and inheritance mechanisms. For in-
stance, aspect declarations in AspectJ contain instanlialion clauses
that specify the precise way in which an aspect is to be instanti-
atad (e.g., per object, per control flow, or once for the global
environment). Further, sub-aspects in Aspect / inher i t all features
from their super-aspects, yet only ordinary Java operations and
abstract pointcuts may be overridden. The new ,~aspect,, stereo-
type captures these semnntic d i f f e r e n c e s . B e s i d e s that, t h e s t e r e o -

type equips the standard UML Class meta-class with a couple of
additional meta-atUibutes to hold the instant~atinn clause, the
pointcut declaration contained in that instantiafion clause, and a
boolean expression specifying whether the aspect (not just its
introductions) may access the members of the base classes as a
privileged "friend" (see Figure 4 for an example).

2.6 E x a m p l e
To demonstrate the use of the design notation, Figure 4 presents a
design model of the subject/observer protocol [7] as it is imple-
mented in AspectJ in [I]. The subject/observer protocol specifies
a mechanism in which a subject entity notifies one or more ob-
server entities whenever its state changes.

In Figure 4, the interfaces "Subject" and "Observer" describe the
set of operations required by the subject/observer protocol. Their
implementation is realized by the introductions "Subject" and
"Observer" contained in the abstract aspect "SubjectObserverPro-
tocol" (the exact implementation is not shown; note, though, how
the type patterns specified in the "base" expressions of the intm-
duct.ions' template parameters refer to the interfaces' names).
Apart from the introductions, the aspect "SubjectObserverPmto-
col" contains an after advice (given the "pseudo" identifier "ad-
vicc_id01") and a pointeut "stateChanges". The advice "at/-
vice_.id01" implements the notification of the observers (not
shown) and is executed whenever (i.e., after) a join point dasig-
hated by the pointeut "stateChanges" (specified in the advice's
"base" attribute) has been reached. The pointcut "stateChanges" is
abstract (the pointcut's "base" att3"ibute is not defined) and has to
be overridden by sub-aspects to meet a certain application's needs.
Note how the aspect is provided with additional tagged values
determining how the aspect is to be instanliat_ed ("instanliation"
tag) and how the aspect may access the members of the crosscut
base classes ("privileged" tag).

~spect.
SubjectObser~rProz~ol

[,--'~-d,,fion = perJVM}
[base = undefined}

Amib~, [PivfleFd = false)
, Operations

~pointmt~
l~ntcut stateChanses(Subje~t s)

• advi~,, advice_id01
after(Subject s) llmse = su~- ,~ . s (s) l

~ " ~" ~i-~'sl~-u~.- -:
/ ~___~_T~.~ LU._~...=s.~_bi~_,r"

f ~nu'uductlm* --~
~. Subject .,J

. ~ T y ~ , [b~ = Ob~,~r~,r-'
r ~uuod/,Tm~a~" ~
• , Observer /

._.'Y:T._~__~ q ~ ' f ~ "
Subject

..____~_.~__~ ~ ,
Observer

~aspcct~

SubJedObserverProlm~Impl
, At2ribmu

, Opm'alium

.p~at,m,,.
pointcut stateChmBes(Subjcct s)
[ba~ = target(s) &.& callCve/d Bumm.dicko)]

• ~ - ~ v ' A ~ i - ~ , h ' ~ , " : ____,~__~__~ h t ~ , ,
. "~__ _~_T_~. !. .~. ~_._~_!~- I f ~n~lucticD "~

~,, Buttma . /

. ~__T~_ ~b'---=C~o,L~ll
;" .~ueducu~ '~
' , , ColerLabel /

F igu re 4: An Aspect-Orlented D e i g n M o d d

The concrete aspect "SubjectObserverProtocollmpl" applies the
subject/observer protocol to a concrete application by extending
the "SubjectObsm'verProtecol" aspect and overriding the "state-
Changes" pointcut Coy (re)defining the point.It 'S "base" atlfibutc).
Further, the sub-aspect specifies two additional introductions.
"Button" and "ColorLabel' . These inU'oductions insert two opera-
lions (named "getData" and "update") into the "Button" and "Col-
orLabel" class and specify a realization relationship from the
"Button" class to the "Subject" interface and from the "ColorLa-
bel" class to the "Observer" interface. Figure 5 gives a zoomed-in
view on the introductions "Button" and "ColorLabel" illustrating
how this is accomplhhed.

In the AODM, the crosscutting effects of aspects and its compo-
ncots are indicated by *crosscut~ relationships. This relationship
is introduced at the end of the following section 3.

3. A S P E C T J ' S W E A V I N G M E C H A N I S M
This section presents UML implementations of AspecO's weaving
mechanism. Further, a relationship is introduced denoting the
crosscutting effects of aspects on their base classes. Both the
weaving mechanism and the relationship are derived from weav-
ing instructions specified in the aspects (of. section 2).

109

/ r Z~

X ~ At=t=,-, , - -
\ ~. op=~umu, - -

• [" % . . +Object getDataO

. - - - - - - - - - - . ~ ' ~ W & ~ T ; ~ I , ' ~ (~ ' ~ , ~ ; -]
/'-- II~III~ I . ,r ~BaseType (base = Bumm},

. - " " I I " = = " : - - . i
I " - = ' - " I"

' I /

o ~ B ~

," md]n¢=.~ %,,

~ l i e k stenl-'~t ("-dick steo2"~ f¢.llck steu3"~ :J_x_or..]~ , ,
/ r J 44, "J

~ndude~ N Nxndm:k~ I , ~ , uexd~zdm , .andud~ . /
• I l J l l ~ ' I i " • • • r "1 nO ~ ' ° r ' e i ~ - " /

• I I I 0 • \ ~ w . o mexmub
• I T

• " v " " ' * ~ wovenCliek = a =ae~...) =._

. - - - : - - - - - _ . ,~ , ' ~ r , ~ & ~ i ~ - ~ ' ~ K ; -]
. . . . ~numacum* , F igure 6: Weaving Advice with U M L Use Cases .'n- .~. ~ . ~aseType [baseffiColorI.,abel],

/ ' - J Observer j l . = o . = = ~ -.¢:,
, . / I I %~

[I ~ " " " I I ",, w . v e ~ C n e k

= I B a s e ' r y p e __._ ! B = e T y p e . , ~ = a l i = ~ t*'~
', ~ A = ~ = , - - uPea=~L I mt=cycJeO/

,, " - "----i" -'"

- ' " " " - ' ~ " ' - ' , [, ~ , ~ = - ' ~ ,-.~--'~---~ I ~ - - " ~ - - ~ ~ , X

I " " %

F i g u r e 5: Des ign o f I n t r o d u c t i o n s " - - . _ ~ b a o r e J , ; r,r.ep- . e ~ ~ .

.) i - ~ --.... (,=dye, "~ . . , / 3.1 Weav ing Advice ;..~-~~~.~..::..:..
The AODM implements AspecO's weaving mechanism for advice
with help of collaborations. In the UML, collaborations are corn- ', ~ ~ ~ /-

the AODM, advice is a stereotyped operation and thus is realized "" "
nmnly used to describe the behavior of operations (recall that in

by collaborations, too). For weaving purposes, the conaborafion
describing the behavior of the base classes' operations is split at
first. SplilXing always takes place at a particular join point (recall
that in collaborations, join points are indicated by messages; see
section 2.1). Depending on the kind of advice to be inserted, the
collaboration is split before, after, or (in the case of around ad-
vice) before and after the particular join point Then, the split
fragments are composed with the collaboration describing the
advice to form a new collaboration. In the ~ composition of
collabo~.ious can be accomplished by identifying and matching
instances that participate in each of the collaborations to be com-
posed (cf. [13]) .

To exp l i c i t l y state the order o f weav ing, the A O D M ut i l izes U M L
use cases. In the U M L use cases are used to def ine a p iece o f
behavior of a semantic entity, e.g., the operation of a class or the
advice of an aspect. (Super-ordinate) use cases can be split into a
set of smaller (sub-ordinate) use cases using refinement relation-
ships. Further, use cases may (unconditionally) include the behav-
ior defined in other use cases by means of /nclude relationships.
At last, a use case may augment the behavior of another use case
by means of extend relationships. Extend relationships provide a
condition that must be fulfilled for the extension to take place.

To represent the weaving order in the UML, the AODM refines
the use case describing the base classes' operations (for example,
the "click" use case in Figure 6) into three sub-ordinate use cases;
one describing the behavior at the join point ('click...step2"), the
others describing the behavior before ("click..stepl") and after
that join point Cclick_step3"). Then, the AODM composes a new
use case ("wovenCfick") that includes the behavior (i.e., the use
cases) of both the base classes' operations and the advice. In the
UML, collaborations may be specified to explicitly describe how
the included use cases cooperate to perform the behavior of the

Fiffm'e 7: Specil~litlB W e a v i n | O r d e r

including use case. Figure 7 shows three collaboralions specifying
how the included use cases cooperate in case of a before, after, or
around advice to perform the behavior of the including use case
(i.e., of the crosscut operation of the base classes).

Special regards must be given to pieces of around advice and of
advice that are attached to context-based lmintcuts. In these cases,
the woven use case is generated by means of extend relationships
that precisely specify under which circumstances the behavior of
the extending use case is to be performed. If an advice is attached
to a context-based pointeut, for e~-mple, the extend relafiouship's
condition reflects on the dynamic context in which extension has
to take place. For an around advice, the condition generally states
that extension shall be performed only if 'proceed' is caUed. Figure
6 illustrates how these conditions are expressed in UML use case
diagrams.

The weaving process may lead to multiple collaboral~ons. This is
particularly likely in the case of dynamic crosscurdng based on a
jo in point's current execution context (i.e., when a piece of advice
is attached to a context-based pointcut). Multiple collaborations
may be needed also to describe all possible flows of conlrol
through an around advice. This means no conflict with the UML
specification, though, as it explicitly allows the existence of mul-
tiple collaborations for a single use case (cf. [13]).

3.2 Weaving Introduct ions
Just like weaving of advice, the AODM implements weaving of
introductions with help of collaborations. Recall that introduc~ons
are represented in the AODM as collaboration templates of stereo-
type ~introduction~,. Thus, weaving of introductions is realized by

1 1 0

+

• ; + ~1 /

.~er.hak.';: : .;,'~adnd=, -'--h,a-JY ' ~-"
• t • I I /

Figure 8: Weaving Introduct ions with UML Use Cases

instantiating the coLlaboration template in the base classes' name-
space. Before the instantiatinn, the base classes (specified in the
template parameter's "base" tag) are supplemented with the fen-
tures and relationships specified in the coLlaboration template so
that the design model will not be iLl-formed after the weaving
process.

Just like the weaving mechanism of advice, the weaving mecha-
nism of introductions is represented in the AODM in a more
abslract manner using UML use cases. In Figure 8, for e~mple ,
the use cases describing the aspects are refined into sets of (sub-
ordinate) use cases each specifying the behavior of one individual
introduction contained in the aspects. These sub-ordinate use
cases (together with the use cases describing the base classes) are
then included into new (woven) use cases describing the behavior
of the woven (i.e., crosscut) base classes.

3.3 Weaving Relationship
The AODM introduces a new relationship (named "~crossent~")
to the UML to signify the crosscutting effects of aspects on their
base classes (see Figure 4 for examples). This relationship is
specified in imitation of the extend relationship that is already
specified by the UML specification [13]. It is no special stereo-
type of the extend relationship, though, since extend relationships
may only exist between two use cases. Crosscut relationships,
however, must connect other kinds of classifiers, as well (such as
classes, interfaces, and aspects).

Similar to extend relationships, the crosscut relationship is a
directed relationship from one classifier (i.e., an aspect) to another
classifier (i.e.. a base class) stating that the former classifier af-
fects the latter classifier (in the way that the former classifier is
woven into the latter classifier). At the same time, though, the
latter classifier remains independent from the former classifier (in
the way that its implementation or functioning does not require
the presence of the former classifier). Instead, the opposite is true.
The crosscut relationship signifies that the former classifier (i.e.,
the aspect) requires the presence of the latter (i.e., the base class).
These characteristics make (the extend relationship as well as) the
crosscut relationship distinct from other relationships in the UML,
such as the various kinds of dependency relationships.

The crosscut relationship states further that the former classifier
(i.e., the aspect) is woven into the latter classifier (i.e., the base
class) according to the weaving mechanism described above. Note
that crosscut relationships and weaving instructions (specified in
the various "base" tags; see section 2) are relatPd to each other by
a one-to-one mapping. So (provided with appropriate tool sup-

port), designers may specify the crosscutting effects o£ aspects
either by drawing crosscut relationships or by specifying weaving
instructions.

4. RELATED WORK
The need for a snit~tblc design notation for the design aspect-
orient programs has been recognized soon. Proposals to extend the
UML have been made by Suzuki and Yammnoto [15], by Herrcro
et al. [10], and by Clarke et al. [4] [6]. These approaches do not
always meet the semantic of Aspect.J, though, which are snmmA-
rized in the following.

4.1 Approach of Suzuki and Yamamoto
The first proposal to extend the UML with concepts for the design
of aspect-oriented progr~m~ comes from Suzuki and yamamoto
[15]. In their approach, a new UML recta-class named "aspect" is
introduced, which is related to base classes using a UML realiza-
tion relationship. This proposal implies two capital difficulties.

First, Suzuki and yamnmoto merely present a notation that can be
used to design introductions. It remains unclear, how pointcuts or
pieces of advice are supposed to be designed with the UML and
how their crosscutting effects on the behavior of the base class
structure is to be iLlusWaW.d.

Then, the use o f a realization relationship to model the relation-
ship between an aspect and its base classes does not quite comply
with the semantic of AspectL In the UML, "a realization is a
relationship between a specification model element and a model
element that implements it" [13]. In Aspectl, though, an advice is
no pure declaration of a crosscutting feature. Nor is it the duty of
the base classes to implement this feature. In Aspect.I, an advice
does both, it dcclaros and implements the crosscutting fcanm:.

4.2 Approach of Herrero et al.
Hen'ero et al. [10] seek to separate the design of the object's basic
behavior from its non-functional aspects into distinct design enti-
ties. These entities are related to each other by means of UML
association relationships. These relationships are supplied with a
"mapping expression" designating which elements in the design
entity representing the base classes correspond with which ele-
ments in the design entity representing flu: aspects. This approach
inheres some problems, too.

In the ~ an association is used to express a semantic relation-
ship between two entities (cf. [13]) which, in the case of aspects
and their base classes, could be best interpreted as an "is-part-of'
or "has" relationship. The semantic of UML association relaliun-
ships implies further that the members of the participating classi-
tiers remain properties of their respective classifier. In Aspect.l,
though, inu'oductions are actually injected into base classifiers.
Thus, using association relationships does not appropriately illus-
trate the crosscutting effects of introductions on base classifiers.

In the approach of Herrero et al., Aspecfl's pointcut declarations
are expressed by mapping expressions, which are auached to the
association relationships. In Aspect.T, though, pointcut declara-
tions are properties of aspects. Hence, attaching pointcut declara-
tions to relationships does not meet Aspect/semantic. Doing so
particularly hinders overriding of pointcuts.

4.3 Approach of Clarke
The conceptually most founded approach was introduced by
Clarke et al. [4] [6]. She extended the UML with a new design
concept, named "composition patterns". Composition patterns are

1 1 1

UML templates for UM.L packages which are bound to actual
classes and operations by means of a special binding composition
relationship (cf. [14]). Composition patterns are based on a special
design notation for subject-oriented programming [5] [9], called
the "subject-oriented design model" [4]. Although the approach
originates from the field of subject-oriented programming, Clarke
et al. demonstrate in [6] how composition patterns can be used to
design aspect-oriented prog3"~m~ with AspectJ, as well. However,
the way proposed there does not comply with the semantic of
AspectJ in several ways.

Composition patterns imply the semantic of introductions rather
than the semantic of advice. An advice in Aspect.l, for instance, is
executed in the aspect's scope and not in the base classes' scope.
That is, within an advice, t h i s points to the aspect and not to the
base class. This means also, that an advice can only access those
members of the base classes which are exposed by the pointcut (or
which are ordinary Java members of the aspect owning the ad-
vice). "Aspect" classes (i.e., pattern classes) in composition pat-
terns are merged with their actual base classes, though, meaning
that an advice would be run in the base classes' scope.

With composition patterns, only static crosscutting can be de-
signed. Dynamic crosscutting by means of advice is not consid-
ered. In Aspect], an advice may crosscut a given operation de-
pending on the dynamic context in which that operation was
called. If the c£1ow pointcut designator is used, for ex-mple, the
respective advice crosscuts a given operation only if that opera-
tion was called in the control flow of the designated operation. If
the t h i s pointcut designator is used, the advice crosscuts a given
operation only if it was called from the objects of the designated
class. These dyvamic issues cannot be modeled with composition
patterns.

In Aspect J, an advice does not only crosscut the behavior origi-
nally defined in the base classes but also the behavior inserted into
it by means of introductions. The semantic of a composition pat-
tern does not support such "recursive" crosscutting.

Then, aspects in AspectJ can contain ordinary Java members, like
attributes and operations. Composition patterns, though, being
stereotyped UML packages, cannot. Members of aspects cannot
be declared as members of "aspect" classes (i.e., pattern classes)
either since then they would be merged to the actual base classes.

At last, introductions in AspectJ know of the members of their
base classes and may work on them. This semantic is not sup-
ported by composition patterns, though.

$. CONCLUSION AND FUTURE WORK
In this work, a new approach is presented which reproduces the
semantic of Aspectl in the UML. It provides suitable representa-
tions for all components of an aspect (such as join points, point-
cuts, pieces of advice, and introductions) as well as for the aspect,
itself. These representations are extended fi'om existing UML
concepts using the standard UML extension mechanisms. The
~resentatinns are supplied with supplementary meta-attributes to
hold the weaving instructions. This way, aspects may be fully
specified in concise units in an UML design model, thus carrying
over the advantages of aspect-oriented modularity (such as higher
comprehensibility, adaptability, and reusability) to the design
level.

Furthermore, the approach implements AspectJ's weaving mecha-
nism in the UML and specifies a new relationship sigBifying the
crosscutting effects of aspects on their base classes. This way

(provided with appropriate tooI support), designers may specify
weaving instructions as easy as connecting aspects to base classes.
Relationship and weaving process specified in the AODM assist
developers to assess the crosscutting effects of aspects at design
time.

The design notation presented in this work has been fully speci-
fied in a more extensive writing. Next, tools have to be developed
that implement this specification so that designers may soon
benefit fi'om i t

6. REFERENCES
[1] AspectJ Team. The AspectJ Programming Guide.

http://aspectj.org/doddist/progguide/index.htnd, Sep. 2001

[2] AspectJ, http://www.aspectj.org, Vex. 1.0b, Sep. 2001

[3] Booch, G., Jacobson, I., Rumbaugh, J. The Unified Modeling
Language User Guide. Addison Wesley, Reading, MA, 1999

[4] Clarke, S. Composition of Object-Oriented Software Design
Models. PhD Thesis, Dublin City University, Dublin, Ire-
land, Jan. 2001

[5] Clarke, S., Harrison, W., Ossher, H., Tart, P. Subject-
Oriented Design- Towards Improved Alignment of Require-
ments, Desig~ and Code. in Proc. of OOPSLA '99 (Denver,
CO, Nov. 1999), SIGPLAN Notices 34(10), 325-339

[6] Clarke, S., Walkex, R.J. Composition Patterns: An Approach
to Designing Reusable Aapects. in Proe. of ICSE '01 (To-
runto, Canada~ May 2001), ACM, 5-14

[7] GRmma, E., Helm, R., Johnson, R., Vlissides, J. Design
Patterns, Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1994

[8] Hanenherg, St., Bachmendo, B., UnJand, R. A Meta-Model
for General-Purpose Aspect-Languages. in Proc. of C_d2SE
'01 (Erfurt, Germany, Sep. 2001), LNCS 2186, 80-91

[9] Harrison, W., Ossher, H. Subject-Oriented Programming (A
Critique of Pure Objects). in Pro(:. of OOPSLA '93 ('Wash-
ington DC, Oct. 1993), SIGPLAN Notices 28(10), 411428

[10] Herrem, J.L., Sfmchez, F., Lucio, F., Torro, M. Introducing
Separation of Aspects at Design Time. in Proc. of AOP
Workshop at ECOOP '00 (Cannes, France, lun. 2000)

[11] Kiczales, G., I-lilsdale, E., Hugunin, J., Kersten, K., palm= J.,
Griswold, W.G. An Overview of AxpectY. in Proe.of ECOOP
'01 (Budapest, Hungary, Jim. 2001), LNCS 2072, 327-252

[12] Kiczales, G., Lamping, J., Mendhekar, A., Maada, Ch.,
Lopes, Ch., Loingtier, J.-M., Irwin, J. Aspect-Oriented Pro-
gramming_ in Proc. of ECOOP W7 (lyvaskyla, Finland, Jun.
1997), LNCS 1241, 220-242

[13] Object Management Group (OMG). Unified Modeling Lan-
guage Specification. Version 1.3, Mar. 2000

[14] Ossher, H., Kaplan, M., Katz, A., Harrison, W., Kruskal, V.
Specifying Subject-Oriented Composition. in Theory and
Practice of Object Systems, Vol. 2(3), 1996, 179-202

[15] Suzuld, J., Yamarnom, Y. Extending UML with Aspects:
Aspect Support in the Design Phase. in Prec. of AOP Work-
shop at ECOOP '99 (Lisbon, Portugal, Jun. 1999)

1 1 2

