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“There is one thing in this world which must never be forgotten.

If you were to forget everything else, but did not forget that,

then there would be no cause to worry;

whereas if you performed and remembered and did not forget every single thing,

but forgot that one thing,

then you would have done nothing whatsoever.”

- Rumi, Mesnevi

To the loving, caring and conscious people.…
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Abstract

With the introduction of the first programming languages in the late 1940s and the
early 1950s, software development has undergone several evolutionary changes,
which provided opportunities for building larger and more complex software
systems. This increased potentiality was soon followed by the realization that
software is difficult to deliver on time, within the available budget and with the
required quality factors such as reliability, stability and adaptability. To cope with
this so-called software crisis an engineering approach to software development was
proposed.

Many different attempts, ranging from improved programming languages to CASE
tools, have been carried out during the last three decades to tackle the problems in
software engineering that directly or indirectly lead to the symptoms of the software
crisis. In the last decade, software architecture has gained a wide popularity as a
fundamental concept in software engineering to support software quality factors.
Software architecture embodies the overall structure of the system and likewise has a
substantial impact on the quality aspects of the whole software system.
Notwithstanding these various attempts developing high quality software systems
still remains a difficult task.

To grasp the essence of software engineering and understand its inherent problems,
this thesis provides a thorough and critical analysis of software engineering from a
broad perspective. To this aim, software engineering is considered as a problem
solving process whereby software solutions are produced for given technical
problems. To explicitly reason about the concepts of problem solving, this thesis
provides a model for problem solving that may be used for analyzing various
problem-solving activities. In this thesis, this model is used for analyzing problem
solving in software engineering and comparing it with the more mature problem
solving disciplines of philosophy and traditional engineering, such as electrical
engineering, mechanical engineering, civil engineering and chemical engineering.
This conceptual and comparative analysis has resulted in a set of useful lessons and
concepts that are essential for providing high-quality software but notably are
missing in current software engineering practices.

A basic concept that is derived from our analysis process that may be essential for
software engineering, is the concept of synthesis. Synthesis is a well-known problem
solving process that is broadly and successfully applied in the traditional
engineering disciplines. It includes explicit processes for technical problem analysis,
solution domain analysis and alternative space analysis. In the technical problem
analysis process, technical problems are identified and structured into loosely
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coupled sub-problems that are first independently solved and later integrated in the
overall solution. In the solution domain analysis process, solution abstractions are
extracted from the corresponding solution domains. In the alternative space analysis
process different alternative solutions are searched and evaluated against explicit
quality criteria.

In current software engineering practices the synthesis concept is not known and the
three processes are not fully integrated. Since synthesis is a useful concept in mature
problem solving it is worthwhile to integrate this in software engineering.

This thesis focuses on the software architecture design phase and attempts to
improve the understanding on this subject by classifying and evaluating the current
state-of-the-art software architecture design approaches. It appears that these
approaches derive solution abstractions basically from the requirement
specifications and the management of design alternatives is an implicit process. This
causes a number of problems such as the difficulty in finding stable abstractions,
difficulty in leveraging the architecture boundaries and poor semantics of the
architectural components.

To address the problems of the state-of-the-art, the concept of synthesis is applied to
software architecture design, resulting in a novel approach that we termed synthesis-
based software architecture design. In this approach, the architectural abstractions are
derived from the solution domains and the design alternatives are explicitly
depicted and managed. This approach is illustrated with the design of an atomic
transaction architecture for a distributed car dealer information system.

The architecture design can be realized by applying object-oriented analysis and
design methods in which a set of heuristic rules are provided to guide software
engineers to analyze, design and implement object-oriented software systems. This
thesis introduces a new formalism, called design algebra, which provides techniques
for explicitly depicting the set of architecture implementation alternatives,
prioritizing these alternatives and selecting these based on quality factors. The
techniques represented by design algebra can be integrated with the current object-
oriented analysis and design methods and have been implemented as a set of tools.
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Prologue

“By keenly confronting the enigmas that surround us, and by considering and analyzing
the observations that I have made, I ended up in the domain of mathematics. Although I

am absolutely without training in the exact sciences, I often seem to have more in
common with mathematicians than with my fellow artists.”

- M.C. Escher

The illustration on the cover page and the illustrations at the beginning of each
chapter have been adopted from the works of Maurits Cornelis Escher (1898-1972), a
Dutch graphic artist, who is most recognized for spatial illusions, impossible
buildings and repeating geometric patterns. Escher began his studies at the School
for Architecture and Decorative Arts in Haarlem but later shifted his emphasis to
graphic arts whereby he mastered graphic and woodcutting techniques. Upon
completion of his education, he traveled extensively through Southern France, Spain
and Italy where he collected many inspirations for his work.

Many of his little-known early works tended toward realistic portrayals of the
landscape and architecture observed during his travels. He began to turn away from
realism towards the ideas which would make him famous when he visited for
several times the 14th century Alhambra, a former Muslim palace in Granada, Spain.
There he viewed the tile patterns that filled the entire space on the walls of
Alhambra and spent many days sketching these tilings. Later he claimed that this
“was the richest source of inspiration that I have ever tapped.” This inspiration laid
the foundation for his work after 1937. Replacing the abstract patterns of the tiles in
Alhambra with recognizable figures, in the late 1930s Escher developed unique
tessellations, that are regular arrangements of closed shapes that completely cover
the plane without overlapping and without leaving any gaps. The artist also used
this concept in creating his metamorphosis prints—one shape or object turning into
something completely different. Escher also increasingly explored complex
architectural mazes involving perspectival games and the representation of
impossible constructions and spaces. As his work developed, he drew great
inspiration from mathematical concepts and through his miraculous creations,
Escher was able to put a symbolic bridge between the realms of art and science.

The reason why we have included Escher’s illustrations in this thesis go beyond
their ornamental meanings and form also an interesting and proper analogy for the
presented work in this thesis. The analogy can be made from two perspectives.
Firstly, Escher's works on impossible buildings, which are not realizable in the
physical world, show a nice similarity with the way software architectures are



Prologue

x

developed today. The current software architecture design approaches have
difficulties in identifying the right abstractions of software architectures, which often
results in anomalous software architectures that are actually, similar to Escher’s
impossible buildings, difficult to realize. For each illustration at the beginning of
each chapter, we have described the analogy between the illustration and software
architectures in more detail. A second analogy that we can derive is the person and
attitude of Escher himself. Escher adopted a humble approach and let himself inspire
from other cultures and disciplines that finally resulted in his marvelous work that
made him famous. The work in this thesis is the result of the adopted broad
perspective of software engineering and the consideration of other mature
disciplines that provided useful inspirations and lessons for solving the identified
problems.

Currently, it is generally accepted that software engineering is still in its pre-mature
phase and that it has to overcome many obstacles to become a mature engineering
discipline. Despite of this consideration, up until today, researchers in software
engineering have not put much serious effort in considering and learning useful
lessons from the other mature disciplines. In this thesis we show that this is possible
and describe the integration of the synthesis concept of traditional engineering to
software engineering. I belief, though, that this is only a relatively small part of the
many concepts and lessons that we may derive. To save time and effort we need to
extent our inspiration sources in software engineering and provide a broader and
integral view to solve our problems that have been already solved in some other
disciplines.
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M.C. Escher - Tower of Babel

The illustration on the previous page represents the Tower of Babel. According to the Quran
(28:38) and the Bible (Genesis 11:1-9), a tower was erected by people in Babylonia with the
intention to reach to heaven and God. Their attempts, however, failed because God
interrupted the construction by causing among them a previously unknown confusion of
languages and scattered them over the face of the earth.

Software Architecture Design Analogy

Software projects may attempt to build very large architectures to comprise a very broad set
of alternative systems. This goal may be unrealizable and the software architecture may not
be comprehensible for the many different stakeholders of the software architecture. The
stakeholders may ’speak’ different languages and as such be scattered which may easily lead
to an unfinished software architecture.
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1.1 Introduction

"Begin with the end in Mind."
- Stephen Covey, The 7 habits of highly effective people

 he introduction of the first digital computers in the 1940s may be considered as
the initiation of the history of software development. In these early days, the

first software programs were written in machine language and were basically
developed for numerical calculations in military projects. Later, with the
introduction of the first programming languages in the late 1940s and the early
1950s, software development has undergone several evolutionary changes, which
provided opportunities for building larger and more complex software intensive
systems. This increased potentiality was soon followed by the realization that
software was difficult to deliver on time, within the available budget and with the
required quality factors such as reliability, stability, and adaptability. To cope with
this so-called software crisis an engineering approach to software development was
proposed at the NATO conference on software engineering in 1968. The aspirational
term of engineering implied that software development should be based on the
conceptual foundations on which the other engineering disciplines are relying.

Many different attempts have been carried out during the last three decades to tackle
the problems in software engineering that directly or indirectly lead to the
symptoms of the software crisis. These attempts have focused on many different
fields, such as improved programming languages, improved modeling techniques,
introduction of analysis and design methods, formal specifications, CASE tools etc.
Notwithstanding the various attempts developing high quality software systems still
remains a difficult task [Neumann 95][Gibbs 94].

1.2 Problem Statement

The alarming awareness that the symptoms of the software crisis seem to have
persisted over the last decades may lead to the misleading opinion that engineering is
not the right way for software development and other paradigms needs to be
searched instead. But can software development as practiced today be legitimately
considered as an engineering discipline? What are the basic elements of an
engineering discipline and how are these manifested in current software
development practices? How are the problems solved in traditional engineering
disciplines such as electrical engineering, mechanical engineering, civil engineering
and chemical engineering that have been matured over many centuries? Can

T
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software engineering learn useful lessons from these disciplines and are there
concepts that may be useful for software engineering but are missing today?

Software developers or software engineers as they often call themselves seem not to
take serious effort in learning from the traditional engineering disciplines. It appears
that the same problems are recurring over time and in different projects and the
different attempts are repeating the mistakes. To save time, effort and tremendous
costs it is wise to learn from the experiences of the other disciplines who have
already since long learned how to effectively solve problems.

An important development in the last decade is the introduction of software
architecture as a fundamental concept in software engineering to support the
required quality factors. Software architecture embodies the overall structure of the
system and likewise has a substantial impact on the quality aspects of the whole
software system. Currently, several architecture design approaches have been
introduced and it would be worthwhile to investigate these architecture design
approaches and identify their problems and see how to improve these approaches
based on the necessary engineering concepts derived from the traditional
engineering disciplines.

Various different implementation alternatives may be derived from the same
conceptual architecture. Each alternative may have different adaptability,
performance and reusability characteristics. Software is, however, rarely designed
for optimal quality but rather it is a compromise of multiple considerations. The
architecture design may be realized by applying object-oriented analysis and design
methods in which a set of heuristic rules are provided to guide software engineers to
analyze, design and implement object-oriented software systems. Current object-
oriented analysis and design methods do not provide explicit means for depicting
the set of alternatives, prioritizing these alternatives and balancing them based on
several quality factors such as adaptability, reusability and performance. To solve
this problem we may derive concepts from the traditional engineering disciplines
and observe how they manage the various design alternatives.

1.3 The Approach

To grasp the essence of software engineering and understand its inherent problems,
this thesis analyzes and evaluates software engineering from a problem solving
perspective. For this purpose a model for problem solving is presented that allows to
explicitly reason about software engineering from the problem solving concepts. The
problem solving model is utilized for comparing software engineering with the more
mature problem-solving disciplines of philosophy and traditional engineering
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disciplines. The comparative analysis of these disciplines is performed both to derive
lessons from the past and of today practices.

To improve the understanding on the current state-of-the-art of software
architectures, the current architecture design approaches are classified and evaluated
and the fundamental problems are identified. The identification of the problems is
followed by the integration of the concept of synthesis from the mature engineering
disciplines to the software architecture design approach, resulting in a novel
approach that is termed as synthesis-based software architecture design. Synthesis is a
well-known concept in traditional engineering disciplines and involves the
construction of sub-solutions for distinct loosely coupled sub-problems and the
integration of these sub-solutions into a complete solution. During the synthesis
process, design alternatives are searched and selected based on the existing solution
domain knowledge. The synthesis-based software architecture design approach will
be illustrated by applying it to the design of an atomic transaction system
architecture for a distributed car dealer information system.

To cope with the various architecture implementation alternatives, a new formalism
called design algebra is introduced. Design algebra is used to depict the space of
design alternatives, and define design rules for comparing, evaluating and
composing them. The techniques provided by design algebra can be integrated with
object-oriented design methods. The applicability of Design Algebra is illustrated
using the atomic transaction system example.

1.4 Contributions

This thesis provides a number of contributions that are described in the following.

1. A conceptual model for problem solving to reason about various problem solving
activities

In chapter 2, a problem solving model to reason about problem solving activities is
presented. Problem solving has been extensively studied in cognitive sciences such
as [Smith & Browne 93],[Agre 82],[Rubinstein & Pfeiffer 80] and [Newell & Simon
76]. These studies are basically concerned with problem solving from a psychological
perspective and attempt to understand the human thinking processes. Moreover,
they usually do not explicitly consider the control aspects in problem solving. The
presented problem solving model in chapter 2, provides a conceptual model that
uniquely integrates the concepts of control, problem solving and context in one
model. In addition, this model is not a cognitive model but rather defines the
separate product concepts involved in problem solving and control that are suitable
for expressing and reasoning about the engineering problem solving process.
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2. A broad perspective of software engineering for understanding its concepts

Several publications have been written on the notion of software engineering and the
software crisis and it is often claimed that software engineering is different from
traditional engineering because it has particular and inherent complexities that are
not present in other traditional engineering disciplines. Most of these studies,
however, lack to view software engineering from a broad perspective and do not
attempt to derive lessons from other mature problem solving disciplines. This thesis
provides a broad perspective of software engineering and derives the common
concepts of mature problem solving disciplines. For this, in chapter 2, a historical
analysis of philosophy, traditional engineering and software engineering is
presented.

3. Classification and Evaluation of the state-of-the-art architecture design approaches

In chapter 3, a classification and evaluation of the state-of-the-art architecture design
approaches is presented. The novel classification can be used to characterize existing
architecture design approaches. The evaluation results in the identification of the
corresponding problems of each category of architecture design approach. This may
help in improving the architecture design approaches.

4. Synthesis-Based Software Architecture Design Approach

Chapter 4 introduces the Synthesis-Based Software Architecture Design Approach that
provides appropriate solutions for the identified problems of the state-of-the-art
architecture design approaches. The novelty of this approach is that it integrates the
explicit processes of technical problem analysis, solution domain analysis and
alternative space analysis.

5. Atomic Transaction System Architecture

In chapter 4, the synthesis-based software aarchitecture design approach is
illustrated for the design of the architecture of an atomic transaction system. The
atomic transactions architecture provides abstractions of different transaction
concepts such as transaction management, concurrency control and recovery
management. As such the transaction architecture has a value by its own and can be
used for the design of, for example, distributed systems.

6. Design Algebra, providing techniques for alternative space management

In chapter 5, the formalism design algebra that provides techniques for the
management of design alternatives is introduced. For a given problem using design
algebra the set of alternatives can be depicted, the alternatives prioritized with
respect to quality factors and the appropriate alternatives may be selected. These
techniques can be utilized and integrated in the current object-oriented design
approaches. In section 5.4 we have provided a process for deriving object-oriented
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design alternatives that need to be balanced with respect to the adaptability quality
factor. This process by its own may be of value for the software engineers because
often adaptability is considered as an important quality factor in object-oriented
design, though no explicit means are available for this.

7. Automation of design algebra techniques in a set of tools

In section 5.6 the Rumi environment is presented that implements the design algebra
techniques as a set of tools. This CASE tool can be used to support the software
engineer in depicting design spaces, reducing design spaces, prioritizing and
selecting design alternatives.

1.5 Outline of the Thesis

Figure 1.1 represents the roadmap to the thesis. The rounded rectangles represent
the chapters of the thesis, the arrows represent the relation between the chapters.

Chapter 2

On the Notion of Software
Engineering: A Problem-

Solving Perspective

Chapter 3

Classification and
Evaluation of Software

Architecture Design
Approaches

Chapter  4

Architecture Synthesis
Process

Chapter  5

Balancing Architecture
Implementation

Alternatives

provides problems

motivates
is refined by

Chapter  6

Conclusions

Figure 1.1 Roadmap to the thesis

Chapter 2 presents an analysis of the notion of software engineering based on a
problem solving perspective. It provides an in-depth comparative analysis of
software engineering with the more mature problem-solving disciplines of
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philosophy and the traditional engineering disciplines. The results of this study
represent the motivation for chapter 4 and chapter 5. Chapter 4 addresses the
problems of chapter 3 and provides a solution for these problems with the
introduction of a novel architecture design approach, synthesis-based software
architecture design. Chapter 5 refines the architecture design approach and presents a
formalism, design algebra, for coping with architecture implementation alternatives.
Finally, chapter 6 provides the solutions that are derived from the chapters 2, 3,4 and
5.

This thesis may be of relevance for software engineers and engineers of other
disciplines.

Software engineers may use the presented comprehensive analysis of the notion of
software engineering and improve the understanding on the basic concepts and
identify the fundamental problems of software engineering (chapter 2). The
classification and the evaluation of the current software architecture design
approaches may help the software engineer to position and validate the architecture
design approaches (chapter 3). The synthesis-based software architecture design
approach can be applied in practice to define stable and adaptable software
architectures (chapter 4). The atomic transaction architecture that is thoroughly
described in chapter 4 may be applied in the design of distributed systems. Finally,
the design algebra techniques of chapter 5 can be used in object-oriented analysis
and design methods to depict the space of alternatives, prioritize these and balance
them according to various quality factors.

Engineers of traditional engineering may be interested in the presented problem-
solving model and the related comparative analysis in chapter 2. They may identify
the explicit concepts of engineering and analyze, position and validate their own
corresponding engineering discipline. In addition they may utilize the techniques of
design algebra, that represents a formalism of the alternative space analysis in the
traditional engineering disciplines.
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M.C. Escher - Relativity

In the illustration three forces of gravity are working perpendicularly to one another. Three
earth-planes cut across each other at right angles, and human beings are living on each of
them. It is impossible for the inhabitants of different worlds to walk or sit or stand on the
same floor, because they have different perceptions of what is horizontal and what is vertical.
Yet they may well share the use of the same staircase. On the top staircase illustrated here,
two people are moving side by side and in the same direction, and yet one of them is going
downstairs and the other upstairs. Contact between them is out of the question because they
live in different worlds and therefore can have no knowledge of each other’s existence.

Software Architecture Design Analogy

In building software architectures different ’forces’ may work perpendicularly to one another
in defining the form of the architecture. Different stakeholders may be interested in the same
architecture, though, for a different reason. They may have different perceptions of the
software architecture aspects and likewise may impose different forces on the architecture.
Although, they may need to use the same architecture contact between them is generally out
of question because they live in different ’worlds’ and usually have no knowledge of each
other’s existence.
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2.1 Introduction

"A problem cannot be solved at the same level of consciousness as it was created."
-Albert Einstein

 or the last three decades many attempts have been carried out to address the
software crisis that was identified by the end of the 1960s. We argue that the

software crisis problem is more deeply rooted than it is generally perceived and that
the problem is in the first place conceptual rather than technical. This implies that
software engineering as it is currently perceived and applied may lack some
fundamental concepts that are necessary to produce high-quality software. The
significant problems we may face cannot be solved at the same level as they were
initiated. To grasp the essence of software engineering and identify the missing
concepts a broad view of software engineering may be needed instead.

If we consider the various definitions and attributed meanings of engineering in the
literature, it follows that engineering essentially aims to provide an engineering
solution for a given problem [Ertas & Jones 96][Ghezzi et al. 91][Wilcox et al. 90]
[Shaw 90][Cross 89]. In software engineering, for example, the problem is stated by
the requirement specification and the software engineer needs to provide a software
solution. In this sense, engineering can be considered as a problem solving process,
and to understand engineering it is necessary that we understand problem solving.

From the many studies on problem solving we can derive that problem solving is
not particular to engineering but is generally applied [Hunt 94][Smith & Browne
93][Rubinstein & Pfeiffer 80][Newell & Simon 76]. A fundamental discipline that
seeks to formulate problems accurately and attempts to find solutions for these
problems is philosophy. The primary goal of philosophy is to understand the nature
of things and as such it attempts to identify and describe the essential concepts
[Kolenda 74]. Engineering disciplines are intrinsically related to forming engineering
specific concepts and in addition several concepts may be based on concepts from
philosophy.

The novelty of this chapter is that it presents a broad and general view of software
engineering in order to grasp its essence and to identify the concepts that are
necessary but are not well-defined or even missing in current practices. For this, an
in depth comparative analysis of software engineering with traditional engineering
and philosophy is provided based on problem solving concepts. Because of the
adopted broad view, in addition to the software engineers, the chapter may be of
value for engineers of other disciplines and philosophers as well. Engineers of other
disciplines may identify the explicit concepts of engineering and analyze, position

F
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and validate their own corresponding engineering discipline. Philosophers may
identify the relation between engineering, science and philosophy and further reflect
on this matter. The outline of this chapter is presented in Figure 2.1.

Section 2.2
A Conceptual Model for

Problem Solving

Section 2.4
Project Perspective of

Problem Solving

Section 2.5 / 2.6
Related Work, Conclusions &

Evaluations

Section 2.3
Historical Perspective of

Problem Solving

Figure 2.1 The outline of the chapter

In section 2.2 a conceptual model for problem solving is presented. The model
defines the fundamental concepts of problem solving and as such allows to explicitly
reason about these concepts. The model is very scaleable and it can be applied both
for explaining the historical evolution of a discipline and for describing a particular
project.

In section 2.3 we will use the problem solving model to describe the history of
philosophy, mature engineering and software engineering. Mature engineering
disciplines and philosophy have a relatively longer history than software
engineering so that the various problem solving concepts have evolved and matured
over a much longer time. Studying the history of these mature disciplines will justify
the problem solving model and allow to derive the concepts of value for current
software engineering practices. In addition, a historical overview of software
engineering is necessary to understand the evolution and the state of the art of
software engineering and as such identify and validate the software engineering
concepts with respect to the problem solving concepts.

Section 2.4 will analyze and evaluate problem solving in mature engineering and
software engineering from a project perspective. For this purpose, a conceptual
model for engineering that is derived from the previous problem solving model will
be proposed. This model will be used to identify the basic concepts of contemporary
mature engineering disciplines, which may provide useful lessons for current
software engineering practices. The project perspective of software engineering will
be compared with the project perspective of mature engineering to derive the
missing concepts in the current software engineering paradigm.
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In section 2.5 we will discuss the related work on problem solving and comparative
analysis studies.

Finally, in section 2.6 we will give the evaluations and conclusions that include the
fundamental conceptual problems of software engineering.

2.2 A Conceptual Model for Problem Solving

“Leave appearances. Come to essence and meaning.
Don't dwell in images or you will never mature.”

- Yunus Emre

In this section we propose a conceptual model of problem solving for analyzing
software engineering from a broad perspective. Problem solving has been
extensively studied in cognitive sciences such as [Smith & Browne 93][Agre
82][Rubinstein & Pfeiffer 80][Newell & Simon 76]. These studies consider problem
solving not as a random process based on trial-and-error but rather as a process that
involves a series of recurring mental processes. The work of Newell and Simon has
long dominated the theories on problem solving in cognitive science, which they
have also applied to reflect on engineering design. They describe the engineering
design process as a problem-solving process of searching through a state space in
which the states represent the design solutions. Thereby, the goal of the problem is
analogous to the final state in the maze that represents the solution of the problem.
The search through this state space involves making decisions based on the goals
and constraints that exclude some infeasible solutions. Newell and Simon described
an automated problem solving system called General Problem Solver (GPS) that
develops a computer program for the solution of well-defined problems. Similar
other studies have been carried out on problem solving from a psychological
perspective and attempted to understand the human thinking processes [Smith &
Browne 93]. In this chapter we are basically interested in a problem solving model
that describes the separate identifiable concepts needed for understanding and
expressing the concepts of engineering from a problem solving perspective. To this
aim we will propose a problem solving model in section 2.2.1 and describe its basic
concepts. In section 2.2.2 we will explain the purpose of the model.

2.2.1 The CPC Model

Figure 2.2 represents the model for problem solving that will be adopted in this
chapter. The model consists of a set of concepts and functions, which are represented
by means of, rounded rectangles and directed arrows, respectively. Concepts are the
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necessary fundamental abstractions and the functions are the conceptual processes
that describe the interactions between these concepts.

This is a controlled problem solving process, which takes place in a certain context.
Therefore, we term this model as the Controlled Problem Solving in Context model,
or the CPC model for short. Based on this assumption the model consists of three
parts: Problem Solving, Control and Context. In the following, we will explain these
parts in more detail.

CONTEXT

PROBLEM SOLVING

Problem
Description

Artifact

Need

Conceive

Solution Domain
Knowledge

Solution
Description

Implement

CONTROL

Representation
of Concern

Adapter

Initiate Output

Search

Interpret

Improve

Criteria

Apply Evaluate

Input

Figure 2.2 The Controlled Problem solving in Context Model (CPC Model)

Problem Solving

The problem-solving part consists of five concepts: Need, Problem Description, Solution
Domain Knowledge, Solution Description and Artifact.

The function Input represents the cause of a need.

The concept Need represents an unsatisfied situation existing in the context.

The concept Problem Description represents the description of the problem.

The function Conceive is the process of understanding what the need is and
expressing it in terms of the concept Problem Description.

The concept Solution Domain Knowledge represents the background information that
is used to solve the problem.
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The function Search represents the process of finding the relevant background
information that corresponds to the problem.

The concept Solution Description represents a feasible solution for the given problem.

The function Apply requires two inputs, Problem Description and Solution Domain
Knowledge. It uses the relevant background information to provide a solution
description that conforms to the problem description.

The concept Artifact represents the solution for the given need.

The function Implement maps the solution description to an artifact.

The function Output represents the delivery and impact of the concept Artifact to the
context.

The function Initiate represents the cause of a new need as a result of the produced
artifact.

Control

Problem solving in engineering starts with the need and the goal is to arrive at an
artifact by applying a sequence of actions. Since this may be a complex process it is
sometimes necessary to be controlled and improved. Therefore, we think that the
concepts and functions of the controlling process must be modeled as well. A control
system consists of a controlled system and a controller [Foerster 79]. The controller
observes variables from the controlled system, evaluates this against the criteria and
constraints, produces the difference, and performs some control actions to meet the
criteria1. In our model we suggest that the control part consists of three concepts:
Representation of Concern, Criteria and Adapter.

The function Interpret represents the process of retrieving information from the
concept or function that needs to be controlled.

The concept Representation of Concern represents a description of the concept or
function that is controlled.

The concept Criteria represents the relevant criteria that need to be met for the given
concept or function.

The function Evaluate computes the difference between the actual state of the concept
or function and the desired state of the concept or function. It provides the difference
to the concept Adapter.

                                               

1 This confirms to the view of cybernetics, which emphasizes mechanisms that allow complex systems
to maintain, adapt, and self-organize [Umplebey 90].
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The concept Adapter represents the information for finding the necessary actions to
meet the criteria.

The function Improve performs the required actions to meet the criteria.

The functions Interpret and Improve represent the link between Problem Solving and
Control and can be in principle linked to any concept or function. This is to say that
control may be applied to any concept or function of problem solving.

Context

Both the control and the problem solving activities take place in a particular context,
which is represented by the outer rounded rectangle in Figure 2.2. Context can be
expressed as the environment in which engineering takes place including a broad set
of external constraints that influence the final solution and the approach to the
solution. Constraints are the rules, requirements, relations, conventions, and
principles that define the context of engineering [Newell & Simon 76], that is,
anything, which limits the final solution. Since constraints rule out alternative design
solutions they direct engineers action to what is doable and feasible.

The context also defines the need, which is illustrated in Figure 2.2 by a directed
arrow from the context to the need concept. Apparently, the context may be very
wide and include different aspects like the engineer’s experience and profession,
culture, history, and environment [Smith & Browne 93].

2.2.2 Purpose of the CPC Model

This CPC model serves as a basis for the whole chapter. The purpose of this model is
as follows:

First, we would like to gain a general understanding of problem solving. The CPC
model defines the fundamental concerns of problem solving and abstracts from
problem solving processes in philosophy and engineering. In this way we aim to
better understand and describe each concept individually. For example, we may
describe the concept of Need for different engineering disciplines like mechanical
engineering, electrical engineering and software engineering in a more general way.

Second, we would like to understand the process of problem solving. Each problem
solving process follows a common functional pattern, which has been made explicit
by the CPC model. This allows us to describe the functions individually. For
example, we may describe the function Conceive in the conceptual model from
distinct engineering perspectives.

Third, since each engineering discipline can be considered as an instantiation of the
CPC model we can use it to analyze mature engineering disciplines and compare
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these with the more immature software engineering discipline. This comparative
analysis may help us to identify the missing concepts of software engineering.

Fourth, we intend to evaluate current software practices using this model. Since we
are able to discuss about individual concepts and functions in the model, we may
use the conceptual model for engineering as a reference model to analyze and
describe the different software engineering practices. For example, we will consider
the object-oriented software development paradigm with respect to this model.

Fifth, the comparison and evaluation of software engineering may provide us
opportunities to identify the fundamental problems of software engineering and its
practices. The problems of software engineering may be detected if the model can
not be clearly represented in practices.

The following sections are structured around the above purposes of the model.
Section 2.3 will mainly address the first two issues, that is, understanding the
problem solving concepts and functions. Section 2.4 will discuss the third and the
fourth issues, that is, comparing software engineering practices with the mature
engineering practices and the evaluation of the different software engineering
practices. Finally, section 2.5 will address the last issue, that is, the conclusions and
evaluations.

2.3 Historical Perspective of Problem Solving

Wer nicht von dreitausend Jahren sich weiss Rechenschaft zu geben,
bleibt im Dunkeln unerfahren, mag von Tag zu Tage leben.2

-Goethe

We aim to gain a broad understanding of the concepts adopted in engineering and
improve our consciousness about it. To this aim we will present the historical
perspective of problem solving that will provide a survey of the evolution of the
problem solving concepts in history. The motivation for this is that from history we
can observe the reason and the process in which way the concepts in a field have
been developed and matured. As a matter of fact, a reflection on the experiences and
knowledge in the past will also increase our consciousness about current problem
solving.

Although problem solving is a general process that is applied in a wide range of
disciplines we need to select the relevant disciplines that are somehow related to

                                               

2 From German: “Anybody who does not know about the history of the last three thousand years, will
remain inexperienced in darkness and live from day to day".
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software engineering. In this chapter we have chosen to study the historical
perspective of problem solving in philosophy, mature engineering and software
engineering.

In section 2.3.1 we will present an overview of the history of problem solving in
philosophy. Philosophy is the rational and critical study of concepts for the purpose
of arranging concepts into a unified system and to improve the consciousness about
these concepts. The history of philosophy extends over a period of more than two
thousand years. Studying the history of philosophy may accordingly provide us a
deeper understanding of the concepts of problem solving. In addition we may
identify fundamental concepts in philosophy that may be of value or necessary to be
included in the software engineering field.

In section 2.3.2 we will present an overview of the history of problem solving in
mature engineering including mechanical engineering, electrical engineering,
chemical engineering and civil engineering. As we described before, engineering is
in essence a problem solving process. Problem solving in mature engineering
disciplines has developed and matured over a period that ranges from several
centuries to several thousands years. Like in the case of philosophy, studying the
problem solving approaches of these mature engineering disciplines is therefore
useful to identify how the concepts of the CPC model have developed over time. In
addition since software engineering is a specialization of engineering the history of
mature engineering may contain valuable lessons to software engineering.

Finally, in section 2.3.3 we will describe the history of problem solving in software
engineering. The history of software engineering is relatively short and ranges only
about a few decades. The history of software engineering may show how the
concepts in the CPC model have evolved for it and as such allow to identify its
current maturity level.

2.3.1 Historical Perspective of Problem Solving in
Philosophy

In the following we will explain the CPC model from the history of philosophy
[Melchert 95][Kolenda 74] and likewise attempt to clarify the corresponding
concepts and functions. For this reason, where appropriate we will refer to the
concepts and functions of the CPC model between parentheses.

From Mythology to Rational Problem Solving

It is generally agreed that Western philosophy started in the ancient Greek in the 6th

century BC when early democracy was established and the economy and culture
flourished, leaving room for a critical thought on the nature of things (Context)
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[Melchert 95]. Unsatisfied with the existing mythological explanations3 the first
philosophers sought for more rational answers to their basic questions on the natural
phenomena (Input). Their basic concern was to find the essence, a primary substance,
from which all things are originated (Problem Description). Their professions were
often astronomer, mathematician and physician (Solution Domain Knowledge)4. They
approached this problem by adhering to direct observations of the nature or by
critical thought only (Apply). This system of thought in which the mythical
explanations were abandoned can be considered as a first step towards scientific
thought. The question on the primary substance was answered in various ways
(Solution Description). For some of the philosophers the primary substance was a
directly observable element in the nature. Thales thought that this basic element was
water; Anaximenes, argued that this was air; Heraclitus believed that this was fire;
Empedocles maintained that all things are composed of four elements: air, water,
earth, and fire. Other philosophers attributed this primary substance to more
abstract elements. For example, Anaximander maintained that this irreducable
substance is the indeterminate apeiron. Pythagoras, concluded that the number is the
essence of reality. Democritus believed that nature was constituted of an infinite
number of atoms, invisible elements differing only in form, weight and size. All of
these philosophies5 took for granted that objective truth existed that could be
discovered through a critical exchange of ideas by a community of thinkers.

We can explain the early history of philosophy using the CPC model. Problem
solving was essentially almost a direct mapping from a problem to a solution. The
control concepts can be explained in the following way. In general, the philosophers
reflected (Interpret, Representation of Concern) on the problem solving process of the
philosophical treatments and attempted to improve this. What is reflected on, how it
is reflected on, and in what way the process and/or functions are accordingly
changed depends on the person who is attempting to interpret and improve the
problem solving process. In the above context each philosopher commented on the
writings (Artifact) of contemporary philosophers and tried to improve this with new
theories. Many of these philosophers were also disciples of earlier philosophers.
Each philosopher had its own specific belief and value system (Criteria). Their
evaluation (Evaluate) of the existing philosophical treatments therefore resulted in
different proposals (Adapter) and extended the available knowledge (Improve).
                                               

3 Homer’s book "Iliad and the Odyssey", provides two major epics of ancient Greek on the many Gods
to which the cause of various natural phenomena were attributed.

4 The term “philosopher” was only later introduced by Heraclitus

5 The original writings of the early philosophers no longer exist, but have been articulated in the
works of Aristotle.
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It appears that this process of controlled problem solving within a context is
applicable for the rest of the history of philosophy. In the following we will describe
the control concept only for radical improvements of the philosophical problem
solving process.

From Subjectivity to Conceptualization of Objective Knowledge

The treatments of the first philosophers were rationally based but their explanations
were still speculations since the scientific justification by experimentation was
lacking. In addition, there were many theories describing the natural phenomena
each on their own different way, that is, there was not an objective view. This
divergence of views was also observed in the moral life, when the Greek got contact
with other populations adopting different customs and value of morality and justice
(Context). These observations led (Initiate) the people to an inconvenience (Need) and
determined the basis for a crisis in Greek life at the end of the fifth century BC. A
movement called Sophism realized that this need was to be satisfied (Conceive,
Problem Description). The Sophists6 were teachers of various subjects like rhetoric,
dialectic grammar and logic (Solution Domain Knowledge). The Sophists reasoned that
knowledge is essentially empirical and relative to man (Apply). According to the
Sophists, the principle of morality is just that what satisfies one’s instinct and
passions, there is no better way to live. Derived from the need to explain the right
moral conduct, the writings of the Sophists had their potential application in
practical life (Output).

Socrates could not accept the view of the Sophists that objective truth does not exist
and likewise an objective basis for moral life is missing (Initiate, Need). Socrates
argued (Search) that although the knowledge of man is partial and not certain there
should be ideas that are self-evident, necessary and accepted by all men, that is, he
introduced the notion of concept (Solution Description) that he affirmed basically in
the field of logic and morality. According to Socrates, perfect knowledge consists in
understanding through concepts and these concepts can be attained by critical
thinking and collaborative reasoning. Socrates lived what he thought by openly
discussing with people in the street and as such educating them the critical thinking
process (Output)7.

                                               

6 One of the most famous sophists was Protagoras (485-410 B.C.), the author of the statement "Man is
the measure of all things".

7 Socrates was later arrested of heresy and corrupting the young people. Finally, he was convicted and
sentenced to death.
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Plato continued (Initiate, Input) the treatment on concepts and developed his theory
on Ideas, which describe the nature of the concepts (Solution Description). He
contributed to the introduction of the notion of abstraction and classification, and
discussed the fundamental problems of natural science. Aristotle systematized the
basic concepts of many theoretical sciences such as physics, mathematics, art,
biology, ethics and politics. In addition he provided rules for analyzing basic
concepts and correct reasoning with the available knowledge.

We can consider the contributions of Socrates, Plato and Aristotle as a fundamental
change in the problem solving process in philosophy. Their interpretation (Interpret,
Model Representation) of the writings (Artifact) of earlier philosophers together with
their idealistic attitude (Criteria) led to the change (Improve) of the approach for
knowledge acquisition, knowledge representation and knowledge interpretation.
This conceptualization process formed a significant basis for the scientific
developments in later centuries (Output).

From Solution Description to Implementation

With Aristotle the Greek political and social life broke down; Greek was involved in
wars and first dominated by Persian and later became a province of the Roman
Empire (146 BC) (Context). The loss of freedom and the destruction caused by the
wars resulted (Initiate) in social problems (Input). Philosophy at this time mainly
addressed the need for a proper ethical life (Need). Different philosophical
approaches such as Epicureanism, Skepticism and Stoicism (Solution Description)
advocated specific life attitudes to solve these problems. Eclecticism suggested
combining the good of all systems. Neoplatonism founded by Plotinus was a religious
philosophy based on the works of Plato and had a great influence on medieval
thought (Output).

After the 3rd century Christianity entered the Greek world and had spread over the
Roman Empire (Context). Philosophy had now turned its attention from scientific
investigation to a philosophical understanding of religious questions (Input, Need).
Toward the end of the 4th century, Augustine developed a system of thought that
formed a synthesis of some of the elements of Platonic philosophy with the
essentials of Christianity (Solution Description).

Preserving and Development of Solution Domain Knowledge

At this phase we observe a fundamental change in the context of problem solving in
philosophy. During the Middle-Ages, philosophy and the quest for knowledge and
truth further developed in the Muslim world that spanned Persia, Spain and North
Africa (Context). They had founded universities and preserved both the ancient texts
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and classical learning to a great degree8 (Solution Domain Knowledge). Centers, such
as the House of Wisdom in Baghdad, were founded by the ruling caliphs for
translation and study of Greek and Indian scientific and philosophical works. Most
of the contemporary philosophers tried to unify science, religion and philosophy
(Need). Next to philosophy and Islamic religion many of these philosophers studied
therefore natural sciences such as mathematics, physics, medical science, chemistry
and astronomy (Solution Domain Knowledge). At the beginning of the eighth century,
the neoplatonic philosopher Al-Kindi tried to work out an appropriate synthesis of
philosophy with theology affirming the foundations for a monotheistic religion. Al-
Farabi drew on the work of Plato and Aristotle to create a universal Islamic
philosophy and attempted to systematize human knowledge with his monumental
work, Catalogue of Sciences (Solution Domain Knowledge). Ibn Sina, known as Avicenna
in the West, translated a collection of treatises on Aristotelian logic, metaphysics,
psychology and the natural sciences. He contributed to medical science with his
famous book al-Qanun, an encyclopaedia of medicine, which surveyed the entire
medical knowledge available from ancient and contemporary sources. Ibn Rushd,
known as Averroes in the West, wrote extensive analyzes of Aristotelean works9 and
his philosophical work on meta-physics greatly influenced the philosophy in
medieval Europe.

The developments of problem solving in the muslim world led to a change in
context (Context) of problem solving in philosophy in Europe. This change may be
considered similar to that of the Muslim world who came earlier in contact with the
philosophical and scientific writings of the ancient Greek, China and India.

Philosophical Approaches for Deriving Knowledge

The translated and advanced philosophical and scientific treatments were now
gradually made available to Europe from the 11th century (Output). First, through the
Arabs who had conquered the southern border of the Mediterranean, later by the
Turks who captured Constantinople, now Istanbul, in 1453. It was the contact with
Greek science (Context), which laid the basis (Input) for the Renaissance movement in
the 14th till the 16th century, which saw a renewed interest (Need) in classical thought
and the arts. The introduction of paper from the Muslim world (which had acquired
it from China) and the invention of the movable metal type by Gutenberg
revolutionized the production of European books in the 15th century and, in part as a

                                               

8 In 900 AD in Spain, the University of Cordoba, for example, had 600.000 titles in its library. The
University of Toledo had 400.000 titles.

9 For this reason, in the West he became also known as "The Commentator".
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result of the Protestant Reformation, increased public literacy (Solution Domain
Knowledge).

The contact with classical Greek thought together with the commentaries of Ibn
Rushd and other Islamic scholars gave rise to new philosophical schools. From the
11th to the 15th century, Western thought was dominated by the philosophy of
Scholasticism, which attempted to use philosophical reasoning to understand
Christian revelation. To preserve the integrity and supremacy of Roman Catholic
doctrine (Need) Thomas Aquinas formed a synthesis of Christianity and the
philosophy of Aristotle in the 13th century. This doctrine became later the official
philosophy of the Roman Catholic Church (Output). The renewed interest in classical
thought and the movement of scholasticism (Context) resulted (Initiate) in
philosophical thought systems that addressed topics beyond theology. Among the
basic philosophical movements were Rationalism and Empiricism, which provided
different approaches (Solution Description) for obtaining knowledge. Rationalism
developed by Descartes, Spinoza and Leibniz, emphasized that knowledge and truth
can be deduced by reason from basic definitions and axioms. Spinoza even
organized his work in Euclidian geometrical form including definitions, axioms,
propositions and deductive proofs. In contrast to Rationalism, Empiricism,
developed in Great Britain by Bacon, Hobbes, Locke, Berkeley and Hume,
emphasized the importance of induction from sense experiences to obtain
knowledge. Rationalism and Empiricism provided two opposite views for obtaining
and judging knowledge (Initiate). To solve this problem (Problem Description), Kant
synthesized Rationalism and Empiricism in his philosophy (Solution Description).
According to Kant, all knowledge starts with experience, but it is the human mind
that arranges knowledge by its own nature. Kant argued that although the human
reason can construct science it is not able to construct metaphysics. Kant’s
philosophy plays a fundamental role (Output) in subsequent philosophical
treatments.

In the second half of the 19th century Positivism arose as a system of philosophy
which further emphasized experience and empirical knowledge of natural
phenomena, in which metaphysics and theology are regarded as inadequate and
imperfect systems of knowledge. Positivism was founded by Auguste Comte in
France and later developed in England by John Stuart Mill and Herbert Spencer.
During the early 20th century, the Logical Positivism movement founded by Ludwig
Wittgenstein, Bertrand Russel and George Edward Moore, who were concerned with
developments in modern science, rejected the metaphysical doctrines of the
traditional positivism and emphasized that knowledge should be scientifically
verifiable. The materialistic development of the Positivism movement occurred in
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Germany, where Karl Marx, the author of Das Kapital and the Communist Manifesto
founded a new economic movement called Socialism (Output).

In his work The Logic of Scientific Discovery in 1934 [Popper 34] Popper criticized the
prevailing view that scientific theories were developed through an inductive process
in which the scientists induced theories from a set of observations. According to
Popper scientific methods are fundamentally not inductive in character but rather
hypothetico-deductive. This means that scientific theories are formed through
hypotheses from which statements can be logically deduced. Popper proposed a
criterion for testifiability or falsifiability for scientific validity. In case an
experimental observation falsifies the theory it will be refuted, if the theory can
explain the experimental observation it will continue to be tentatively accepted.

In 1962, Thomas Kuhn published The Structure of Scientific Revolutions, in which he
argued that science is not a steady, cumulative acquisition of knowledge but instead
is characterized as the successive transition from one paradigm to another through a
process of revolution, which he termed as paradigm shifts [Kuhn 1962]. Kuhn defined
the notion of paradigm basically as a collection of beliefs and agreements shared by
the scientists of the community for understanding and solving problems.

Control of Problem Solving and Hermeneutics Philosophy

We will now focus on the function Interpret. In philosophy, interpretation concerns
mainly that of the philosophical writings. During the Renaissance movement
(Context), the need to reconstruct the original texts of classical thought and
interpreting these, put a focus on the principles of interpretation (Initiate). This
problem was also identified in the realm of religion were the authority to interpret
scriptures was a basic concern (Need, Problem Description). Earlier, in the Muslim
world the caliphs possessed no authority to interpret the Quran and recordings of
the tradition of Mohammed but the interpretation was established through a
consensus of Muslim scholars. In Christianity, Luther, who initiated the Reformation
movement, maintained that the interpretation of the Bible was a matter of individual
study, which could be done without regard to the contemporary authoritative
Church doctrine and as such broadened the authority of the interpretation of texts.
The practical effect of this new view on interpretation led to a fragmentation of the
Christianity into various religious groups (Output).

Next to the problem on the authority for interpreting religious scriptures was the
problem of how these texts should be interpreted. Up until then, the main
assumption was that a text could be interpreted from its structural form and external
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referents of the text. During the Reformation and Renaissance periods, hermeneutic10

philosophy was established as an independent discipline. Hereby, it is argued that
any formal syntax will fail to completely determine its own interpretation and
should be rather grounded on the original meanings of the author and their
relevance for the authors (Solution Description). Later, hermeneutics was developed
by Heidegger, Dilthey, Gadamer, Vygotsky and Foucalt among others.

2.3.2 Historical Perspective of Problem Solving in Mature
Engineering

In the following we will explain the CPC model from an engineering perspective and
show how the concepts and functions in the model have evolved in history in the
various engineering disciplines. For this, we studied the history of the traditional
engineering disciplines [Upton 75][Partington 70][Burstall 63][Dunsheath 62][Forbes
58]. We will mainly focus on the mature engineering disciplines as civil engineering,
mechanical engineering, chemical engineering and electrical engineering.

Directly Mapping Needs to Artifacts

Engineering deals with the production of artifacts for practical purposes [Krick 69].
In fact, the words engineering, engine and ingenious are derived from the same Latin
root, ingenerare, which conformably means to create.

To meet the various human needs man has always put effort in the creation of
devices that solve their practical problems and make natural resources more useful.
The basic concerns of man in ancient times were shelter, food gathering, agriculture,
domestication of animals and hunting (Need). To support these needs the principal
engineering activity included making (Implement) houses, tools and weapons
(Artifact).

To increase force and use it more efficiently (Need) artifacts like the lever, the pulley
and the wheel (Artifact) were already produced before 3000 BC. A particular
application of the lever was the balance beam for weighing, which can be considered
as the beginnings of measurement and experimentation in engineering [Burstall 63].

Stone was the basic material for the production of the early artifacts. For example, in
ancient Egypt, to preserve and protect the bodies of the pharaohs for eternity, giant
pyramids including temples and tombs were built out of stone. The engineering

                                               

10 From Greek "hermeneuein" that means, "to interpret". This word itself is derived from the name of
ancient Greek messenger god Hermes, who both delivered and explained the messages of the other
gods.
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method included a great supply of human labor and only the elementary mechanical
principles were applied.

The advent of metal, first of copper and bronze and later of iron, improved the
quality of the tools drastically. At first the native metals such as gold or copper
which sometimes occur in nature in a pure state were used, but later metallurgy
developed when man learned how to melt metallic ores by heating them to obtain
the metals (Solution Domain Knowledge).

The rise of cities led to specialization and the division of labor. In villages and
nomadic societies most of the people were directly involved in food production,
whereas in cities also other professions became important, like smith, trader or
priest. Cities increased the rise of commerce and industry, architecture, art and
learning, and as such they played an essential role in the emergence of all great
civilizations. As cities in the early civilizations increased in size and density of
population (Context), communication with other regions became necessary for food
supply and other commerce (Need). For this reason, roads11 and bridges were built
(Artifact). To sustain plant growth, and thus the food production, irrigation was
needed in places were rainfall does not provide enough moisture. For this reason
canals, basins and dams were produced.

Production in the early societies was basically done by hand and therefore they are
also called craft-based societies [Jones 92]. Thereby, usually craftsmen do not and
often cannot, externalize their works in descriptive representations (Solution
Description) and there is no prior activity of describing the solution like drawing or
modeling before the production of the artifact. Further, these early practitioners had
almost no knowledge of science (Solution Domain Knowledge), since there was no
scientific knowledge established according to today’s understandings.

The production of the artifacts is basically controlled by tradition, which is
characterized by myth, legends, rituals and taboos and therefore no adequate
reasons for many of the engineering decisions can be given [Alexander 64]. The
available knowledge related with the craft process was stored in the artifact itself
and in the minds of the craftsman, which transmitted this to successors during
apprenticeship. There was little innovation and the form of a craft product gradually
evolved only after a process of trial and error, heavily relying on the previous
version of the product. The form of the artifact was only changed to correct errors or
to meet new requirements, that is, if it is really necessary.

                                               

11 During the Roman Empire, for example, 300.000 kilometers of roads were built, among which the
famous  still remaining Via Appia, the primary road from Rome to Greece.
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To sum up, the process of problem solving in engineering was simply based on
practical know-how, common sense, ingenuity and trial and error. In a sense, there
was thus little consciousness about the engineering activities, which is the reason
why Alexander terms such engineering processes as self-unconscious12 [Alexander
64]. Due to this unconsciousness we can conclude that most of the concepts and
functions of the problem solving part in the CPC model were implicit in the
approach, that is, there was almost a direct mapping from the need to the artifact.
Regarding the control part, the trial-and-error approach of the early engineers can be
considered as a simple control action.

Separation of Solution Description from Artifacts

From history we can derive that the engineering process matured gradually and
became necessarily conscious with the changing context. Over time the size and the
complexity of the artifacts exceeded the cognitive capacity13 of a single craftsman
and it became very hard if not impossible to produce an artifact by a single person.
Moreover, when many craftsmen were involved in the production, communication
about the production process and the final artifact became important. A reflection on
this process required a fundamental change in engineering problem solving. This
initiated, especially in architecture, the necessity for drafting or designing (Solution
Description), whereby the artifact is represented through a drawing before the actual
production. Through drafting, engineers could communicate about the production
of the artifact, evaluate the artifact before production and use the drafting or design
as a guide for production. This enlightened the complexity of the engineering
problems substantially. Currently, drafting plays an important role in all engineering
disciplines.

Development of Mathematical Solution Domain Knowledge

In addition to the separation of the product description from the product itself, the
knowledge increased also gradually. It is clear that in early engineering problem
solving the concepts and functions of the CPC model were implicit and as such were
not distinguishable as separate concepts. There is a clear relation with the maturity

                                               

12 According to Alexander the fast reaction to single failures and the resistance to other needless
changes made the self-unconscious process self-adjusting, which is one of the fundamental problems
in modern engineering.

13 Experiments from psychology suggest that the maximum number of meaningful chunks of
information an individual person simultaneously can comprehend is on the order of seven plus or
minus two [Miller 56]. In addition the processing speed of the human mind (short term memory)  is
limited as well: it takes the mind about 5 seconds to accept a new chunk of information [Simon 62].
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of the solution domain knowledge and the maturity of engineering. We will now
therefore look at the concept Solution Knowledge in more detail.

Mathematical knowledge forms a principal basis for engineering disciplines and its
application can be traced back in various civilizations throughout the history. In
ancient Egypt, Sumer and Babylonia empirical geometry was adopted for land
surveying and architecture (Need) [Nijholt & Ende 94]. This was later refined and
systematized by the Greeks. In the 6th century BC Pythagoras laid the basics of
scientific geometry by showing that the various arbitrary and unconnected laws of
empirical geometry could be derived from a basic set of axioms. Later, Euclid
organized the Greek geometry of the time in his famous book, Elements [Cooke 97].

Although, early Greek science was merely a generalization from experiences and
had a speculative character, they provided, inspired from philosophical thought, the
notions of concept and abstraction mechanisms to express relations between
apparently disconnected phenomena [Hull 59]. This provided one of the
fundamental tools for knowledge modeling and subsequent scientific inquiry
(Solution Domain Knowledge).

The Greek arithmetic was mainly theoretical and was not suitable for rapid
calculations in practice (Need), which is generally attributed to an insufficient
numerical notation (Problem Description). After the Greek, mathematics was further
developed in the Islamic world. In the 9th century, Al-Khawarizmi14 helped to
introduce the Arabic numerals, the decimal position system and the concept of zero
to arithmetic leading to a substantial improvement in calculations in contemporary
engineering (Solution Domain Knowledge). In addition he introduced the concept of
algorithm, which provided a universal method for solving a problem by repeatedly
using a simpler computational method. This formed the basis for formalization of
methods in engineering. Arithmetic dealt with only specific instances of
mathematical relations. Al-Khawarizmi, introduced the notion of algebra, which
generalizes mathematical relations such as the Pythagorean theorem and as such
formed the conceptual language for mathematics.

Development of Solution Domain Knowledge through
Experimentation

The improvement in scientific knowledge formed later the basis for the introduction
of new engineering disciplines and the development of existing ones. Chemistry, the
basis of modern chemical engineering, evolved also from the ancient period. The
writings of some of the early Greek philosophers about the fundamental substance

                                               

14 The word "algorithm" is derived from his name.



Chapter 2 - On The Notion of Software Engineering: A Problem Solving Perspective

29

of the universe might be considered to contain the first chemical theories. In ancient
Egypt and China, Aristotle’s theory that all things tend to reach perfection formed
the fundamental concept of alchemy. Because other metals were thought to be less
perfect than gold, it was reasonable to assume that gold was gradually formed out of
other metals within the earth. If this process could be artificially carried out in the
workshop, gold would be gained to increase or to prolong life, as it was believed in
China. Although, based on incorrect theories, alchemy provided useful practical
chemistry knowledge and played an important role in other scientific developments.

Together with the further development of scientific knowledge a focus on empirical
experimentation (Apply) started in the Muslim world, which developed laboratories
and workshops [Garrison 91] for this purpose. Combined with the developed
mathematical knowledge and the other scientific knowledge different artifacts were
produced for various purposes. For example, they developed astrolabe for
measuring the positions of heavenly bodies and the pendulum that is used in several
kinds of mechanical devices. In chemistry, the processes of evaporation, filtration,
sublimation, melting, distillation and crystallization were developed and alcohol15,
sulfuric and nitric acids and gasoline were produced [Al-Hassan & Hill 86]. These
processes are described in Al-Razi’s Book of Secrets, which also gives a full account of
equipment for these chemical-processing techniques. To control the use of water,
which was precious in these countries, the Muslim engineers produced extensive
hydraulic systems, such as water-raising machines.

Development of Scientific Solution Domain Knowledge

Obviously, classical engineers were restricted in their accomplishments when
scientific knowledge was lacking. Only after the scientific knowledge was broadened
new types of artifacts could be produced for solving practical problems.

The contact with the Muslims after the 11th century made the accumulated
technology and knowledge also available to Europe. The Scientific Revolution in
Europe started with Copernicus who proposed in 1543 a heliocentric model of the
universe, in which the sun is at the center of the universe and the planets move in
concentric circles around it. Copernicus’ heliocentric theories could explain and
predict more astronomical facts than the geo-centered model of Ptolemy, which had
been adopted since the 3rd century. However, his calculations of astronomical
positions were not decisively accurate and mostly based on speculation. In this
sense, although revolutionary in content, it was not so in method [Hull 59]. Later,

                                               

15 The word "alcohol" is derived from the Arabic word "Al-Kuhul" which denotes kohl, a fine powder.
In medieval Europe this was applied to essences obtained from distillation, which led to its current
use.
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Galileo introduced a scientific approach based on systematic measurements through
planned experiments, rather than speculation (Apply). New types of artifacts were
produced in this period also, for example, tools like the telescope, microscope and
the thermometer which on their turn all supported the experimental scientific
methods. Galileo, for example, made use of the telescope in observation and the
discovery of sunspots, lunar mountains and valleys, the four largest satellites of
Jupiter, and the phases of Venus. Based on his experimentation he discovered the
laws of falling bodies and the motion of projectiles.

New advancements in physics and mathematics were made in the 17th century
(Solution Domain Knowledge). Newton generalized the concept of force and
formulated the concept of mass forming the basics of mechanical engineering.
Evolved from algebra, arithmetic, and geometry, calculus was invented in the 17th

century by Newton and Leibniz. Calculus concerns the study of such concepts as the
rate of change of one variable quantity with respect to another and the identification
of optimal values, which is fundamental for quality control and optimization in
engineering. In 1642 the philosopher and mathematician Pascal devised the first
calculating adding machine, a precursor of the digital computer. In 1670s Leibniz
devised a machine that could also multiply. Pascal formulated in conjunction with
Fermat the mathematical theory of probability, which has become important as a
fundamental element in the calculations of modern theoretical physics.

The vastly increased use of scientific principles to the solution of practical problems
and the past experimental experiences increasingly resulted in the production of
new types of artifacts. The steam engine, developed in 1769, initiated the beginnings
of the first Industrial Revolution that implied the transition from an agriculture-
based economy to an industrial economy in Britain. In newly developed factories,
products were produced in a faster and more efficient way and the production
process became increasingly routine and specialized.

Specialization of Problem Solving Techniques

Chemical engineering and chemistry advanced in the 19th century. Through the
development of electrochemistry and spectroscope many more chemical elements
could be discovered. Mendelejev and Meyer independently developed the chemical
law that states that the properties of all the elements are periodic functions of their
atomic weights. In 1869 Mendelejev proposed the Periodic Table of Elements that
classifies the chemical elements corresponding to their atomic weights. Based on this
table subsequent discoveries of new elements were made which led to the
completion of the table. In the 19th century chemical engineering witnessed an
enormous advance in polymer technology and in the 20th century the mass
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production of polymers became economically feasible. These advances led to the
introduction of new material, such as, plastics and fibers.

The basis for electrical engineering was founded in the 19th century and extended in
the 20th century. Faraday discovered electromagnetic induction and the laws of
electrolysis and deduced the principle of the generator, induction coil and
transformer [Garrison 91]. James Clerk Maxwell laid out the theory of
electromagnetic waves in a series of papers published in the 1860s. He analyzed
mathematically the theory of electromagnetic fields and predicted that visible light
was an electromagnetic phenomenon.

In the 20th century the knowledge accumulation in various engineering disciplines
has grown. In chemistry, biochemistry was founded, which has unraveled the
genetic code and explained the function of the gene. Quantum theory and relativity
theory formed the basis for subsequent physics. Quantum theory describes the
nature of matter and energy on an atomic scale. The foundation for quantum theory
was laid by Max Planck, who postulated in 1900 that energy can be emitted or
absorbed only in discrete units called quanta. Later, Heisenberg’s uncertainty
principle, formulated in 1927, had a substantial role in the development of quantum
mechanics and also in the trend of modern philosophical thinking (Initiate, Output).
The theory states that it is impossible to specify simultaneously the position and
momentum of a particle with precision. In quantum mechanics, probability
calculations therefore replace the exact calculations of classical mechanics. The
theory of relativity developed by Einstein, describes the nature of matter and energy
at a large scale, that is large velocity and/or mass, and shows the essential unity of
matter and energy, and of space and time.

Development of Control and Automation

To extend the capacity of machines and humans and to control the engineering tasks
more and more, automation became of interest. Automation is first applied in
manufacture which required the division of labor, that is the decomposition of the
manufacturing task into small independent steps, as it has been introduced in the
latter half of the 18th Adam Smith in his book An Inquiry into the Nature and Causes of
the Wealth of Nations (1776) . The next step necessary in the development of
automation was mechanization that includes the application of machines that
duplicated the motions of the worker. The advantage of automation was directly
observable in the increased production efficiency.

Machines were built with automatic-control mechanisms that include a feedback
control system providing the capacity for self-correction. The advent of the computer
has greatly supported the use of feedback control systems in manufacturing
processes. In modern industrial societies computers are used to support various
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engineering disciplines. Its broad application is in the support for drafting and
manufacturing, that is, computer-aided design (CAD) and computer-aided
manufacturing (CAM).

2.3.3 Historical Perspective of Problem Solving in Software
Engineering

We will now describe the historical development of problem solving in software
engineering. The survey is not purely chronological but is described from the
perspective of the CPC model.

Directly Mapping Needs to Programs

Looking back at the history we can assume that software development started with
the introduction of the first generation computers in the 1940s such as the Z3
computer (1941), the Colossus computer (1943) and the Mark I (1945) computer
[Nijholt & Ende 94]. These computers were basically used for numerical calculations
for military purposes during the second world-war (Need) [Palfreman & Swade 93].
These numerical problems were directly ’programmed’ (Implement) on the computers
by setting switches and plugging cables into sockets. Programming was made easier
through the improved architecture for computers defined by a paper of Von
Neumann in which all of the basic elements of a stored-program computer were
presented (Solution Domain Knowledge). The stored program concept meant that
instructions to run a computer for a specific function, known as a program, were held
inside the computer’s memory, and could quickly be replaced by a different set of
instructions for a different function.

The first programs were expressed in machine code and because each computer had
its own specific set of machine language operations, the computer was difficult to
program and limited in versatility and speed and size (Need). This problem was
solved by assembly languages, which replaced the cryptic binary codes for the
computer operations with symbolic notations. Later on, this process was automated
by means of assembler programs. The first assembler was introduced in 1954 by IBM
[Williams 97]. Although there was a fundamental improvement over the previous
situation, programming was still difficult.

The first FORTRAN (Formula Translation) compiler was released by IBM in 1957
[Bergin & Gibson 96]. Similar to the Von Neumann architecture for computers, this
compiler set up the basic architecture of the compiler. The ALGOL (Algorithm
Language) compiler (1958) provided new concepts that remain today in procedural
systems: symbol tables, stack evaluation and garbage collection (Solution Domain
Knowledge). LISP (LISt Processor), implemented by McCarty at MIT in 1958 was a



Chapter 2 - On The Notion of Software Engineering: A Problem Solving Perspective

33

language designed for symbolic processing and formed the basis for the functional
software programming paradigm. Intended for artificial intelligence programming
its earliest applications included programs that performed symbolic differentiation,
integration, and mathematical theorem verification.

It appears that in the early years of computer science the basic needs did not change
in variety and were directly mapped to programs.

Specialization of Needs

With the advent of the transistor (1948) and later on the IC (1958) and semiconductor
technology the huge size, the energy-consumption as well as the price of the
computers relative to computing power shrank tremendously (Context). The
introduction of high-level programming languages made the computer more
interesting for cost effective and productive business use. As a consequence the
computer turned from a machine restricted to the purview of the scientists and
mathematician into the reach of the personal programmer (Context).

As suggested by their names, these first-generation programming languages were
primarily aimed for specific scientific and engineering applications and were
therefore mainly developed to allow the programmer to write mathematical
formulas. When computers became more powerful, the potential needs grew and in
parallel the range of applications got broader [Moreau 86]. This resulted in the shift
of the kind of abstraction mechanism in programming languages to algorithmic
decomposition rather than on mathematical expressions. When the need for data
processing applications in business was initiated (Need), COBOL (Common Business
Oriented Language) was developed in 1960. Technology followed the needs and
made attempts to provide satisfactory solutions. In 1965, a language called PL/1 was
developed which basically combined the concepts of FORTRAN, ALGOL and
COBOL to provide a single general-purpose language suitable for both scientific and
commercial purposes [Bergin & Gibson 96]. It is not clear whether this technological
step arose from an urgent need, but clearly the language did not follow the
expectations in many terms. Nevertheless, it initiated the development of general-
purpose languages (Initiate).

In parallel with the growing range of complex problems the demand for
manipulation of more kinds of data increased (Need). Existing languages had already
evolved with support for structured data types but this was not sufficient to
conveniently express the different kinds of data types required by many
applications. Soon the concept of abstract data types and object-oriented
programming were introduced (Solution Domain Knowledge) and included in
languages such as Simula that was intended as a special-purpose language for
programming simulations. Abstract data types provided programmers the means to
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express custom-defined relations between the various kinds of data. Alan Kay at
Xerox Parc introduced Smalltalk [Goldberg & Robson 83], a successor of Simula,
which was the first language to make full use of object-oriented concepts.

In the early 1990s, Java was developed by Sun as an object-oriented language for
programming-in-the-large on multiple platforms [Arnold & Gosling 97]. It became
widely known mainly because it provides means to run programs on the internet
web browser and because of an immense marketing effort of the Sun company.

Development of Computer Science Knowledge

Simultaneously with the developments of programming languages, a theoretical
basis for these was developed by Noam Chomsky [Chomsky 59][Chomsky 65] and
others in the form of generative grammar models (Solution Domain Knowledge).

Knuth presented a comprehensive overview of a wide variety of algorithms and the
analysis of them [Knuth 67]. Wirth introduced the concept of stepwise refinement
[Wirth 71a] of program construction and developed the teaching procedural
language Pascal [Wirth 71b] for this purpose. Dijkstra introduced the concept of
structured programming [Dijkstra 69]. Parnas addressed the concepts of information
hiding and modules [Parnas 72] and even program families [Parnas 76].

Emergence of Solution Description Techniques

These publications and the available programming languages that adopted
algorithmic abstraction and decomposition have supported the introduction of many
structured design methods [Jackson 75][DeMarco 78][Yourdon & Constantine 79]
during the 1970s to cope with the complexity of the development of large software
systems.

At the start of the 1990s several object-oriented analysis and design methods were
introduced [Booch 91][Rumbaugh et al. 91][Coad & Yourdon 88] to fit the existing
object-oriented language abstractions. CASE tools were introduced in the mid 1980s
to provide automated support for structured software development methods
[Chikofsky 89][Gane 90]. This had been made economically feasible through the
development of graphically oriented computers. Inspired from architecture design
[Alexander et al. 77] more recently design patterns [Gamma et al. 95] have been
introduced as a way to cope with recurring design problems in a systematic way.
Software architectures [Shaw and Garlan 96] have been introduced to approach
software development from the overall system structure.

The need for systematic industrialization (Need) of software development has led to
component-based software development (Solution Description) that aims to produce
software from pre-built components [Szyperski 98][Nierstrasz & Tsichritzis 95]. With



Chapter 2 - On The Notion of Software Engineering: A Problem Solving Perspective

35

the increasing heterogeneity of software applications and the need for
interoperability, standardization became an important topic. This has resulted in
several industrial standards like CORBA, COM/OLE and SOM/OpenDoc. The
Unified Modeling Language (UML) [Rumbaugh et al. 98] has been introduced for
standardization of object-oriented design models.

2.4 Project Perspective of Problem Solving

In the previous section we have used the CPC model to analyze the concepts of
engineering from an historical perspective. In this section we will analyze problem
solving from a project perspective which is the application of the CPC model to
current practices. Section 2.4.1 will focus on mature engineering, section 2.4.2 will
focus on software engineering. This study will enable us to position each
engineering discipline and improve our understanding about the missing concepts
of software engineering. As we described before we consider the mature engineering
disciplines as civil engineering, electrical engineering, mechanical engineering and
chemical engineering. Our comparison identifies and makes explicit the
commonalties and differences between mature engineering and software
engineering.

2.4.1 Project Perspective of Problem Solving in Mature
Engineering

"If I have seen further it is by standing on the shoulders of giants"
- Isaac Newton

Engineering as Problem Solving

In the previous sections we have already noted that mature engineering is problem
solving and as such it conforms to the CPC model. To understand how mature
engineering implements and specializes the CPC model we have performed a
thorough literature study on mature engineering disciplines. We have studied
selected handbooks including chemical engineering handbook [Perry et al. 84],
mechanical engineering handbook [Marks 87], electrical engineering handbook [Dorf
97] and civil engineering handbook [Chen 95]. Further we have studied several
textbooks on the corresponding engineering methodologies of mechanical
engineering and civil engineering [Ertas & Jones][Cross 89][Jones 92][Smith et al. 83],
electrical engineering [Wilcox et al. 90] and chemical engineering [Biegler 97]. From
this study we could detail the CPC model as presented in Figure 2.3.
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We term this model as the CPC-Engineering model. Note that this model conforms
structurally to the CPC model but in addition defines the engineering specific
concepts and functions. The concept Alternative(s) is not explicit in the original CPC
model but specific to the engineering model. In addition the concepts of the control
part have been refined for engineering. We will explain these refinements in more
detail in the following sections.

CONTEXT
PROBLEM SOLVING

CONTROLProblem
Description

Alternative(s)

Solution Domain
Knowledge

Solution
Description

(Mathematical)
Model

Need

Conceive

Artifact

Implement

Analyze

Heuristics/
Optimization Techniques

Quality
Criteria/

Constraints

Generate

Initiate

Evaluate

Search

Select/Optimize

Detail

Refine

Figure 2.3 A conceptual model of engineering based on the CPC model: CPC-Engineering
model

Conceiving Needs and Describing Problems

Every problem solving process starts with recognition of the concept Need. This is
not different for engineering. From our study it follows that a similar set of methods
are applied for conceiving the needs in engineering (Conceive) and aim to specify the
problem as precise as possible. These methods include, for example, interviewing
the clients, questionnaires, and investigating related literature. The result of these
methods is the representation of the needs in the concept Problem Description as it is
illustrated in the CPC-engineering model.
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Although initial client problems are ill-defined [Rittel & Webber 84] and may include
many vague requirements, the mature engineering disciplines focus on a precise
formulation of the objectives and a quantification of the quality criteria and the
constraints, resulting in a more well-defined problem statement. The objectives are
often ordered into higher and lower-level objectives. The criteria and constraints are
often expressed in mathematical formulas and equations. The quality concept is thus
explicit in the problem description and refers to the variables and units defined by
the International Systems of units (SI). For electrical engineering typical
requirements include, for example, current, charge, voltage and power. Mechanical
engineering and civil engineering problem statements include quantitative
requirements like, for example, for force, momentum and velocity. Finally, chemical
engineering problem descriptions include requirements for energy, volume, pressure
and temperature. Some of these variables are used by more than one engineering
discipline; other variables are more specific to a particular engineering discipline.
What matters, though, is that problem descriptions include quantified criteria and
constraints and that quality is made explicit in this way. From the given specification
the engineers can easily calculate the feasibility of the end-product for which
different alternatives are defined and, for example, their economical cost may be
calculated.

Synthesis

In mature engineering the process between the concept Problem Description to the
concept Solution Description is termed Synthesis. In the following we will describe
what kind of knowledge (Solution Domain Knowledge) is used in the synthesis process
and how this is applied (Apply) to generate alternative solutions and evaluated.

Solution Domain Knowledge

It appears from our study that each mature engineering is based on a rich scientific
knowledge that has developed over several centuries. The basic scientific knowledge
domain of mechanical engineering and civil engineering is physics which
fundamentals are initiated by Newton over 300 years ago. The basic scientific
knowledge for chemical engineering is chemistry, which has been formed over the
last millennia almost in parallel with chemical engineering. Electrical engineering is
merely based on electromagnetic theory defined by Maxwell and others over more
than 100 year. These scientific knowledge domains have been improved and
specialized since their initial foundations and a wide range consensus on the
corresponding concepts has been reached among the experts in the field.

The corresponding knowledge has been compiled in several handbooks and
manuals that describe numerous formulas that can be applied to solve engineering
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problems. The handbooks we studied contain more than 2000 pages each and
provide a comprehensive coverage in-depth of the various aspects of the
corresponding engineering field from contributions of dozens of top experts in the
field. Using the handbook, the engineer is guided with hundreds of valuable tables,
charts, illustrations, formulas, equations, definitions, and appendices containing
extensive conversion tables and usually sections covering mathematics. The
handbooks not only describe properties of primitive elements such as material and
energy but in addition describe well-known systems at a more gross level such as
machines and mechanisms in mechanical engineering, control systems in electrical
engineering, bridge design in civil engineering, and process design in chemical
engineering. Together with engineering manuals they cover a wide range of
scientific, mathematical and technological knowledge. Obviously, scientific
knowledge plays an important role in the degree of maturity of the corresponding
engineering.

Alternative Generation

In mature engineering alternatives are usually extracted from the related literature
or composed from existing components for which extensive analyses are given in the
related literature. In case no accurate formal expressions or off-the-shelf solutions
can be found heuristic rules [Coyne et al. 90][Maher 89][Cross 84] [Reitman 64] are
used.

Alternative generation is not a straightforward task and is considered as the most
important and creative part of the synthesis process. Due to the complexity of the
problem the number of steps to derive an alternative may become too large to
explore with reasonable time and computational resources [Archer 65] and likewise
engineering problems may be classified as NP-complete problems [Maimon & Braha
96].

Evaluation of Design Alternatives

In the synthesis process each alternative is analyzed through generally representing
it by means of mathematical modeling. A mathematical model is an abstract description
of the artifact using mathematical expressions of relevant natural laws. One
mathematical model may represent many alternatives. In addition different
mathematical models may be needed to represent various aspects of the same
alternative. To select among the various alternatives and/or to optimize the same
alternative Quality Criteria are used in the evaluation process that can be applied by
means of heuristic rules and/or optimization techniques. Once the ‘best’ alternative
has been chosen it will be further detailed (Detailed Solution Description) and finally
implemented.
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It appears that mathematical models are widely used in mature engineering
disciplines. The handbooks we studied each contain several chapters on
mathematical theories basically on optimization. The selected alternatives are
analyzed and evaluated using mathematical techniques such as differential calculus,
linear programming, non-linear programming and dynamic programming.

To give an intuition of the synthesis process and the selection of an optimum
alternative in mature engineering consider for example a case study in chemical
engineering that has been described in [Biegler et al. 97]. The problem is to define a
process design for producing ethylene to 190 proof16 ethanol. To analyze the
problem better, they refer to two technical encyclopedias for chemical industry to
derive the chemical process reactions to solve the required problem. From literature
they then analyze for the chemical elements crucial properties such as the cooking
point and the waste produced by the chemical processes. For this purpose they
analyze the tables which give accurate values of these properties and derive the
exact values for the properties. At this point they can calculate whether there will be
a feasible solution within the given cost limits. After the thorough analysis the
synthesis phase is started. Thereby they sketch a flow diagram, which they directly
derive also from the literature. After this they analyze the flow diagram and
represent mathematical models of the various alternatives by using again the tables,
formulas and equations from the literature. Together with the given constraints in
the problem description and the expected quality criteria they select the most
feasible alternative using the mathematical optimization techniques that have been
described in, for example, the chemical handbook [Perry et al. 84].

The other mature engineering disciplines show a similar process as it has been
described above.

Solution Description

Engineering disciplines use various kinds of representations to depict the different
aspects of the artifact. The form of the solution description is usually represented
through textual, graphical or mathematical representations. Mathematical
representations are basically used to analyze and evaluate design descriptions. In
addition solution descriptions are used to provide different abstractions of the
artifact, such as the structural view, dynamic view and functional view [Braha &
Maimon 97][Budgen 94][Dym 94].

Each engineering discipline has its own specific artifact descriptions. In electrical
engineering these are for example electrical circuit diagrams; in mechanical

                                               

16 the number 190 represents the quality degree of ethanol
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engineering diagrams are used, for example, to represent a hydraulic system. In civil
engineering, descriptions are used to represent, for example, the physical
architecture of artifacts such as a bridge. In chemical engineering solution
descriptions are used, for example, for representing the chemical flow diagrams.

These solution descriptions are used to realize the artifact, which is represented by
the function Implement. The realization of an artifact is also specific to each
engineering discipline and is referred to by various names among which production,
manufacturing, realization, building etc.

Decomposition of Problem Solving Process into Phases

In this section we will describe the function Initiate of the CPC-Engineering model.

Engineering problems are complex and include many and different kinds of
concerns. A problem may include various needs, require different kinds of solution
domain knowledge, various goals, different abstractions, etc. For large and complex
problems it is just practically impossible to cope with all these concerns at a time and
by the same engineers. This means that the problem cannot be solved in one step. A
traditional technique for coping with complexity is decomposition of the problem
into sub-problems. The engineering disciplines apply this technique and decompose
the overall engineering process into so-called phases. A phase represents a set of
related activities to solve a particular problem. As such each phase can itself be
modeled using the CPC-engineering model. The decomposition into different phases
may be modeled through the function Initiate. Each phase results in an intermediate
artifact description that will be used to produce subsequent artifact descriptions.
This process will be continued until the final artifact, that is, the artifact directly used
by the end-user, is produced. These observations are shown in Figure 2.4.

In the figure instances of the CPC-Engineering model are represented through
rounded rectangles with underlined names.

Although mature engineering disciplines use different names for the different
phases we can observe that in essence they apply a decomposition of the problem
solving process into similar phases. From our study we could distinguish, for
example, the following common phases: The Analysis phase focuses on
understanding the problem and the identification of the quality criteria and
constraints. The Conceptual Design phase focuses on the development of a set of
broad solutions based on the problem description. The phase Detailed Design intends
to develop an artifact description that completely describes the artifact so that it can
be realized. The phase Implementation realizes the detailed artifact description. Its
output is the final end-user artifact. Note that the phases generally correspond to the
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individual concepts and functions in the CPC model. This shows the scalability
potential of the model.

aPhase1:
CPC-Engineering

a1: Artifact

aPhase2:
CPC-Engineering

a2: Artifact

aPhaseN:
CPC-Engineering

an: Artifact

followed by

followed by

iterate

iterate

Figure 2.4 The decomposition of the overall problem solving process into phases

Since each phase is a problem solving process it adopts the concepts and functions as
described by the engineering model in Figure 2.4 The concepts and functions,
however, will have different and particular content. For example, the concept
Solution Domain Knowledge will be used in each phase but the kind of knowledge will
be generally different for each phase.

Obviously, the decomposition of the overall process into several phases with a
particular concern facilitates the problem solving effort. However, executing the
whole process sequentially, that is, phase after phase, is generally complicated and
therefore the mature engineering disciplines propose iteration between different
phases as a necessary step. In Figure 2.4 iteration is represented by feedback arrows
between the different phases. Iteration enables to check whether the subsequent
engineering steps are feasible with the previous engineering decisions and allows
updating and/or recovering earlier decisions. There are various engineering process
models each with its specific iteration flows among the phases. It is out of the scope
of the thesis to describe these in detail. What is interesting, though, is the fact that all
mature engineering disciplines somehow require iteration for cost-effective problem
solving. Note that the iteration in the CPC model may be represented by the function
Initiate. Before, we noticed that the function Initiate may also represent the
decomposition of the problem solving process.



Chapter 2 - On The Notion of Software Engineering: A Problem Solving Perspective

42

Categorizing Engineering Processes

Engineering design processes can be categorized in various ways. A widely used
categorization distinguishes routine design and creative design [Sriram et al. 89][Brown
& Chandrasekaran 85][Coyne et al. 87][Dym 94]. Very often, innovative design is
considered as a category between routine design and creative design. Although
there is agreement on the classification, the criteria for each category is defined in
various ways in different engineering disciplines.

However, by abstracting from these studies we consider the following aspects as
important criteria for distinguishing whether the design process can be categorized
as routine or creative.

•  Nature of engineering problems; (Problem Description)

•  Nature of existing knowledge (Solution Domain Knowledge)

•  Nature of the methods for analyzing and using knowledge (Search)

•  Nature of design process (Apply)

There are different types of problems, which can be solved in different ways.
Problems have been categorized in various ways. A widely adopted categorization
distinguishes well-structured problems from ill-structured problems [Simon
81][Dasgupta 91]. Typical examples of well-structured problems are mathematical
problems, such as solving linear equations. Well-structured problems have well-
defined problem descriptions, sufficient knowledge for providing cost-effective
solutions and criteria to test solutions on their validity. Engineering problems have
been usually characterized as ill-structured. Ill-structured problems have the
opposite features of well-structured problems. There is no definitive formulation of
the problem and the problem statement includes goals and constraints that are
vague and/or unknown. It is likely that the problem statement is internally
inconsistent and includes conflicts. Further, there is lack of complete knowledge
required to solve the problem and/or is not organized for direct use. Suitable criteria
are missing for testing when the solution to a problem is found. In addition, there is
no definitive solution to the design problem and several equally valid solutions to
the same problem may be found.

Note that the concepts Problem Description and Solution Domain Knowledge form the
input for the function Apply. Based on these criteria we propose the following
meanings of creative design, routine design and innovative design.

Creative design is typically characterized by an ill-structured problem description that
includes a vague goal. In addition there is a lack of domain specific knowledge that
is needed to generate the set of design solutions. Finally, the design process itself is
not well-supported through useful representation forms and heuristic rules and the
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process is largely based on trial-and-error. Evidently, this is difficult and therefore
creative design appears seldom and less frequently. Moreover, usually it is less
successful in providing cost-effective solutions. This type of design appears in pre-
mature engineering as well as in the fine arts.

Routine design implies a rational design process in contrast to creative design, which
relies on conceptual creativity. Routine design is characterized as a design process in
which everything that is needed to produce a design is explicit, available and
accessible before completing the design. The designer’s task is essentially to search
for the appropriate alternatives in a well-defined state space of possible designs. The
problem is well-structured, all the needed knowledge is available, sufficient methods
for reusing knowledge exist and the design process is supported by sufficiently
expressive representation forms and useful heuristic rules.

Innovative design lies between creative design and routine design because the
problem is not completely well-structured, the required knowledge is lacking,
knowledge engineering techniques are weak or the design process is insufficiently
supported by useful abstractions and heuristic rules. Hence, still a certain amount of
creativity is needed for this kind of design processes.

From the above it follows that creative design is at the one extreme end and routine
design is at the other extreme end of the design spectrum. At the creative end of the
design spectrum design is best characterized as spontaneous, fuzzy, chaotic and
imaginative [Sriram et al. 89]. At the routine end of the design spectrum, the design
is predetermined, precise, crisp, systematic and mathematical.

Apparently, each design problem will include all of the three design types. It should
be noted that the boundary between creative and routine design is very difficult to
grasp and depends on the designer’s experience. The more knowledge is available,
the more dedicated designs may be produced that would be considered creative
before. In short, the above terms of creative design, innovative design and routine
design are relative terms. Nevertheless, it is still useful to adopt such a classification
as above when we talk about the maturity degree of engineering. In mature
engineering disciplines often problems are more well-structured, knowledge is
mature, powerful methods exist for using this knowledge, and the design process
includes useful abstractions and heuristic rules that have been formed over a long
period of time.
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2.4.2 Project Perspective of Problem Solving in Software
Engineering

“To know others is wisdom, to know oneself is enlightenment.”
- Lao Tsu, Tao Te Ching

We will now compare software engineering with the mature engineering disciplines.
For software engineering we analyzed a selected set of textbooks [Sommerville 95],
[Pressman 94], [Ghezzi et al. 91]. Further, we studied books on popular
methodologies [Jacobson et al. 99], [Jones and Shaw 90], [Rumbaugh et al. 91].

Conceiving Needs

In software engineering, the phase for conceiving the needs is referred to as
requirements analysis which usually is started through an initial requirement
specification of the client.

In mature engineering we have seen that the quality concept is already explicit in the
problem description through the quantified objectives of the client. In software
engineering this is quite different. Very often a distinction is made between
functional requirements and non-functional requirements. As described in [Jacobson et
al. 99] functional requirements express the actions that a system must perform
without considering the constraints. Non-functional requirements impose
constraints on functional requirements and specify the required system properties,
such as environmental, implementation and performance constraints and the
expected quality criteria like maintainability and reliability. In contrast to mature
engineering disciplines, however, constraints and the requirements are not
expressed in quantified terms. Rather the quality concern is implicit in the problem
statement and includes terms such as ‘the system must be adaptable’ or 'system must
perform well' without having any means to specify the required degree of
adaptability and/or the performance.

Solution Domain Knowledge

Let us now consider the organization and the use of knowledge for software
engineering. The field of software engineering is only about 40 years old and
obviously has not yet experienced the full maturation of the scientific and
technological knowledge as in the traditional engineering disciplines. The basic
scientific knowledge, on which software engineering relies, is mainly computer
science that has developed over the last decades but in many aspects is not mature
yet. Progress and maturation have been made only in isolated parts, such as
algorithms and abstract data types [Shaw & Garlan 96]. Knowledge on algorithms,
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such as sorting and searching, has been compiled in the book of Knuth [Knuth 67]
and is widely applied. Similarly several theories and principles, such as modularity
and information hiding, have been published on the notion of abstract data types.
Compiler construction is one of the basic applications of software engineering that
has reached practically a stable state and much of its knowledge is reused.

If we relate the quantity of knowledge to the supporting knowledge of mature
engineering disciplines, the available knowledge in software engineering which is
currently organized and actually used is quite meager. In that sense, the available
handbooks of software engineering [Sommerville 95],[Pressman 94] are not
comparable to the standard handbooks of mature engineering disciplines. Moreover,
on many fundamental concepts in software engineering consensus among experts
has still not been reached yet and research is ongoing.

In other engineering disciplines at phases when knowledge was lacking we observe
that the basic attitude towards solving a problem was based on common sense,
ingenuity and trial-and-error. Let us now consider how problems are actually solved
in software engineering.

It turns out that a common implicit assumption of the current approaches in
software development is that the concept Problem Description, or requirement
specifications, forms the basic input for the development of software solutions and
scientific knowledge has only a minor role. The general idea is that requirements
have to be specified using some representation [Webster 88] and this should be
refined along the software development process until the final software is delivered.
Software development is thus seen as an evolutionary transformation process of the
initial requirements until the final software. After the NATO conference in 1968 this
remained more or less the general attitude in software development and this trend
continues until recently.

"Software design translates the requirements for the software into a set of
representations that describe data structure, architecture, algorithmic procedure, and
interface characteristics"  [Pressman 92]

"A software development process is the set of activities needed to transform a user’s
requirements into a software system" [Jacobson et al. 99]

"… through a series of reification (refinement) steps, the specification is transformed into
an implementation which satisfies the specification." [Jones & Shaw 90]

Consider for example the wide range of software development practices that adopt
objects. Objects are abstract data types and have been introduced together with the
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corresponding software methods to express the requirement specification to the
solutions in an organized way. The approach for deriving a solution remained the
same, however. That is, by expressing requirements in some specification and then
after a number of iteration steps transform these to a set of objects.

This approach whereby the concept of Solution Domain Knowledge is not directly
explicit, is certainly different than the approach from mature engineering disciplines
whereby scientific knowledge plays a fundamental role. This approach resembles the
early pre-mature phases of traditional engineering disciplines when scientific
knowledge was not mature yet or not applied in practice.

Although, this view of software development may have been suitable for well-
defined numerical calculation problems of the early days, we need to question
whether it is still valid for the current and future applications. Since then software
development problems have got larger and more complex.

From practice it follows that some engineers differ in the background and experience
they have and as such provide artifacts with different qualities. Experimental and
empirical studies [Curtis et al. 88][Adelson & Soloway 85] have shown that one of
the fundamental aspects of exceptional engineers is that they are familiar with the
application domain, which enables them to map between problem structures and
solution structures easily. Obviously, knowledge in software engineering has the
same important role as in other engineering disciplines but unfortunately this does
not reflect to current practices. There is, however, an increasing consciousness in the
software engineering community about the role of knowledge, as it is apparent in
the following:

 “In current software practice, knowledge about techniques that work is not shared
effectively with workers on late projects, nor is there a large body of software
development knowledge organized for ready reference. Computer science has contributed
some relevant theory, but practice proceeds largely independently of this organized
knowledge” [Shaw & Garlan 96]

“Before the program can be written, humans have to describe and organize the
knowledge it represents according to specific knowledge sources [Robillard 99]

Recently, domain analysis is introduced as the process of identifying, capturing and
organizing domain knowledge about the problem domain with the purpose of
making it reusable when creating new systems [Prieto-Diaz 91][Arrango 94].
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Alternative Generation

In designing software applications many alternatives have to be considered. The
identification, selection, and balancing of these alternatives may be very difficult and
classified in the category of NP-complete problems [Garey & Johnson 79]. The
concept of Alternative(s), however, is not explicit in software engineering. In the
previous section we have seen that in contrast to mature engineering disciplines,
software engineering is not supported by an extensive amount of knowledge and
usually the process for deriving solutions is basically based on the problem
description. To support this process heuristic rules and design patterns are applied.
A number of methods with a large set of heuristic rules exist, though, there is no
common agreement on the kind of heuristic rules which show enough potential to be
standardized in a common software engineering method. The goal of design
patterns is to create a body of literature, similar to the mature engineering
disciplines, to help software developers resolve common difficult problems
encountered throughout all of software engineering and development.

The selection and evaluation of design alternatives in mature engineering disciplines
is based on quantitative analysis through optimization theory of mathematics.
Apparently, this is not common practice in software engineering. No single method
we have studied applies mathematical optimization techniques to generate and
evaluate alternative solutions. Currently, the notion of quality in software
engineering has basically an informal basis. As in other engineering disciplines, in
software engineering the quality concept is closely related to measurement, which is
concerned with capturing information about attributes of entities [Fenton & Phleeger
97]. There is however a broad agreement that quality should be taken into account
when deriving solutions. In software engineering quality factors are often divided
into external and internal qualities corresponding the distinction between internal
and external attributes of entities. The external qualities are visible to the end-users
of the system. The internal qualities concern the developers of the software system.
Internal qualities deal largely with the structure of the system and help to achieve
the external qualities. Quality factors may be attributed to the process, the product
and the available resources [Fenton & Phleeger 97]. Several quality factors are
described in the software engineering literature. Some important software quality
factors such as correctness, robustness, reliability, adaptability, reusability and
extensibility are defined [Humphrey 89][Ghezzi et al. 91]. However, the bottom line
is that these quality factors are not quantified and as such cannot be explicitly used
to generate, evaluate and optimize design alternatives, which is a common practice
in mature engineering disciplines.
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2.5 Related Work

Several publications have been written on software engineering and the software
crisis. Very often software engineering is considered fundamentally different from
traditional engineering and it is claimed that it has particular and inherent
complexities that are not present in other traditional engineering disciplines. The
common cited causes of the software crisis are the complexity of the problem
domain, the changeability of software, the invisibility of software and the fact that
software does not wear out like physical artifacts [Walker 96][Pressman
94][Brooks87][Booch 91]. Most of these studies, however, lack to view software
engineering from a broader perspective and do not attempt to derive lessons from
other mature engineering disciplines.

We have applied the CPC model for describing problem solving from a historical
perspective. Several publications consider the history of computer science [Nijholt &
Ende 94][Moreau 86][IEEE AnnalsHC] providing a useful factual overview of the
main events in the history of computer science and software engineering. The paper
from Shapiro [Shapiro 97] provides a very nice historical overview of the different
approaches in software engineering that have been adopted to solve the software
crisis. Shapiro maintains that due to the inherently complex problem solving process
and the multifaceted nature of software problems from history it follows that a
single approach could not fully satisfy the fundamental needs and a more pluralistic
approach is rather required17.

A cross-disciplinary seminar on the history of software engineering has been
organized in 1996 in Dagstuhl, Germany, [Brennecke & Keil-Slawik 96] where about
a dozen of historians met with about dozen computer scientists to discuss the history
of software engineering. The report of the seminar, though, does not provide any
concise historical analysis or results that lead to a deeper understanding of the
essence of software engineering and the software crisis.

Some publications claim in accordance with the fundamental thesis of this chapter
that lessons of value can be derived from other mature engineering disciplines.
Petroski claims that lessons learned from failures can substantially advance
engineering [Petroski 92]. In alignment with this, the paper [Holloway 99] derives
practical hints for software development from two well-known failures in traditional
engineering disciplines - the collapse of The Tacoma Narrows Bridge in 1940 and the
destruction of the space shuttle Challenger in 1986. In [Baber 90] Baber compares the

                                               

17 This kind of motivation is similar to the philosophical thought of eclecticism that argued to adopt
multiple thoughts rather than a single thought to be successful.
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history of electrical engineering with the history of software engineering and thereby
focuses on the failures in both engineering disciplines. According to Baber software
development today is in a pre-mature phase analogous in many respects to the pre-
mature phases of the now traditional engineering discipline that had also to cope
with numerous failures18. Baber states that the fundamental causes of the failures in
software development today are the same as the causes of the failures in electrical
engineering 100 years ago, that is, lack of scientific mathematical knowledge or the
failure to apply whatever such basis may exist. Shaw provides similar conclusions.
She presents a model for the evolution of an engineering discipline, which she
describes as follows:

“Historically, engineering has emerged from ad hoc practice in two stages: First,
management and production techniques enable routine production. Later, the problems
of routine production stimulate the development of a supporting science; the mature
science eventually merges with established practice to yield professional engineering
practice.” [Shaw 90]

Using her model she compares civil engineering and chemical engineering and
concludes that these engineering disciplines have matured basically because of the
supporting science that has evolved. Shaw basically distinguishes between craft,
commercial and professional engineering processes. These distinct engineering states
can be each expressed as a different instantiation of the CPC model. The immature
craft engineering process will lack some of the concepts as described by the CPC
model. The mature professional engineering process will include all the concepts of
the CPC model.

Several authors criticize the lack of well-designed experiments for measurement-
based assessment in software engineering [Fenton et al. 94][Rombach et al. 93]. They
state that currently the evaluation of software engineering practices basically depend
on opinions and speculations rather than on rigorous software-engineering
experiments. To compare and improve software practices they argue that there is an
urgent need for quantified measurement techniques as it is common in the
traditional scientific methods. In the CPC model measurement and evaluation is
represented by the control part. As we have described before, mature engineering
disciplines have explicit control concepts. The lack of these concepts in software
engineering indicates its immature level.

                                               

18 Analyzing failures is a serious problem in all the engineering disciplines. Failures are hardly
published or are hidden by the success stories because companies widely try to prevent circulating
failure stories.
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The CPC model has been used as a reference model for our comparative analysis of
philosophy and engineering. There have been incidental comparative studies as
from the ones described above that compare mature engineering disciplines with
software engineering disciplines. To the best of our knowledge there do not exist
studies that discuss and compare philosophy with engineering.

2.6 Conclusion

The thesis of this chapter is that the fundamental problems the current software
engineering discipline has to cope with are rather conceptual than technical. To
provide a thorough understanding of the missing concepts we maintained that it is
necessary to have a broader perspective beyond the software engineering discipline.
Software engineering is in essence a problem solving process and to understand
software engineering it is necessary to understand problem solving. To grasp the
essence of problem solving we have provided an in-depth analysis of the history of
problem solving in philosophy, mature engineering and software engineering. In
addition we have presented an analysis of the mature engineering disciplines from a
contemporary project perspective. This has enabled us to position the software
engineering discipline and validate its maturity level. These thorough conceptual
and comparative analyses have resulted in the following 14 conclusions:

1. Mature problem solving conforms to the CPC model

Engineering and philosophy both conform to the CPC model. In the sections on the
historical perspectives of problem solving in history and mature engineering it
appears that the fundamental concepts and functions of problem solving were
initially not explicit but have emerged over time. We observed that in the early
historical phases problem solving was primitive and can be explained by almost a
direct match from the concept Need to the concept Artifact. In the early history of
philosophy, we have seen that people mainly adopted mythological explanations for
the different phenomena’s in life. Philosophy as such started with a break with these
mythological explanations and the consciousness that problems had to be solved
through rational thinking instead. In engineering, we observed a similar pattern. The
initial phases of engineering can be characterized as craft work in which producing
artifacts had no any systematic or scientific basis but was mainly based on
speculative thinking, practical know-how, intuition and trial-and-error. Hence, we
can state that problem solving was an unconscious process at this stage as well.
When the consciousness about the problem solving process increased we can see
that the concepts of the CPC model started to emerge as an explicit concern and
matured over time in both philosophy and engineering.
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2. Artificial solutions cannot be enforced but must be derived from the basic needs

Obviously, Need is the basic concept of the CPC model that plays a major role and as
such it is the motivator in philosophy and engineering. From our studies it appears
that the need concept is generally an unsatisfactory and abstract state. For
eliminating the undesirable situation and satisfying needs, it is first required that the
problem is externalized in some description. Thereby, problems need to be stated by
defining the need in terms of the state description, so that the current state of
unsatisfactory affairs is changed to a satisfactory state. This is to say that the concept
Problem Description needs to be an explicit concern. An important issue thereby is
that the problem description should reflect the real needs. Problem descriptions that
are based on artificial or non-urgent needs, will lead to solutions that are
dispensable. In philosophy we observe that the writings of the philosophers directly
match the need in their contemporary context and attempted to find answers for the
life questions initiated by this context. The early Greek, for example, who were
basically interested in astronomy and nature attempted to find the basic element of
the universe. Later when social problems arose, philosophers turned their attention
to morality and ethic issues. In the same way, the subsequent periods of philosophy
show the direct alignment of philosophical writings on the needs that were initiated
by the context. In engineering, we can observe a similar pattern in which useful
problem solving relies on addressing the right needs. In an agricultural society, for
example, the basic needs like housing and food supply were necessary and as such
engineering had to address these needs by producing shelter, tools and weapons.
Later with the rise of the cities communication and trade became a necessary need
and accordingly engineers produced roads, canals and bridges. History teaches that
artificial needs, that is, needs that are not linked to actual existing needs, will mostly
fail [Norman 98]. An example of a less urgent need in software engineering is, for
example, the development of the programming language PL/1 that combined the
concepts of existing languages but lacked the expected popularity due to the less
urgent needs that it addressed.

3. The specialization of needs has led to the specialization of the disciplines

We have seen that the context continuously changes and impacted the evolution of
philosophy, mature engineering and software engineering. Following the changes in
the context, for example due to scientific or social developments, the need has
changed over the period and resulted in specializations of the disciplines. In
philosophy, the specialization of needs has resulted in the emergence of different
philosophical branches and thought systems, such as the early Greek sophism,
epicureanism, skepticism and stoicism and the medieval rationalism, empiricism
and positivism. In engineering, the specialization of needs has basically resulted in
the specialization of engineering disciplines such as mechanical engineering, civil
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engineering, chemical engineering and electrical engineering. Specializations of
needs occur also within one engineering discipline. The engineering disciplines we
considered decompose the problem solving process into several phases that each
addresses a different goal or needs.

4. Solution description is necessary to cope with complexity

With the increasing complexity of the problems, individuals fail to be effective in
problem solving due to the psychological limitations of the storage and processing
speed of the human mind. For this reason, it became necessary to make the concept
Solution Description explicit. In engineering, this concept refers to descriptions of the
artifact. This concept enabled to communicate about the artifact before production,
evaluate it and use it as guidance for production. In philosophy the distinction
between the solution description and the artifact is not clear. We may consider the
writings of the philosophers as the solution description and the application to it on
practical life as its implementation.

5. Preserving and communication of solution domain knowledge is essential for mature
problem solving

In the history of philosophy and engineering we have observed that when the focus
on knowledge is lost, problem solving is based on more primitive techniques and
fails to be successful. The preservation, codification and communication of
knowledge are fundamental to effective problem solving. Once Solution Domain
Knowledge concept becomes explicit it can have huge positive effects. In philosophy,
for instance, the Renaissance movement was a result of a renewed interest in the
classical thought and science which had been codified, further developed and
communicated to the West by the scientists and philosopher from the East. In the
history of engineering knowledge has played a decisive role. Although several
inventions, such as the steam engine, were invented through a series of trial-and-
error experiments, it was the accumulation and communication that improved the
systematic approach to producing cost-effective artifacts. For example, the basis for
contemporary civil engineering and mechanical engineering are derived from the
physical laws of Newton and others.

6. Maturity of the control concepts indicates the maturity of the overall problem solving
process

A similar development of the maturation of the problem solving concepts we may
observe in the control concepts. Control is directly related to an explicit
understanding and interpretation of the problem solving process. After the people
got conscious about the problem solving concepts and explicitly reasoned about
these, the next level of consciousness started to develop with the control concepts.
Philosophy initially started with the break with mythology and focused on rational



Chapter 2 - On The Notion of Software Engineering: A Problem Solving Perspective

53

explanations on the nature of things that formed the problem solving process in
philosophical thought. Philosophical studies on interpretation further developed
over time and after a while philosophers also focused on the understanding of
interpretation, that is control of problem solving. This philosophical thought is
expressed in the hermeneutic philosophy, which promotes that any formal syntax
will fail to completely determine its own interpretation and it should be rather
grounded on the context that consists of the original meanings of the author and
their relevance for the authors. This is to say that hermeneutics actually conforms to
the CPC model, which is based on the assumption that a controlled problem solving
is valid within a context. Engineering has showed the same maturation process.
After the separate problem solving concepts were made explicit, the subsequent
focus was on the control concepts. This increased consciousness on control is
manifested with the emergence of the computer-aided design (CAD) and computer-
aided manufacturing techniques (CAM).

7. History is a continuous problem solving process

From our study on philosophy and engineering, it appears that history is a
controlled problem solving process operating in a specific context. Although the
context is difficult to express, our historical analysis shows that both of philosophy
and engineering are continuously attempting to solve the important problems that
arise out of the contemporary context. Extrapolating these results we can assume
that the future will show the same pattern. The CPC model distinguishes and makes
explicit the problem solving concepts and likewise enables to describe, interpret or
even predict the state of the affairs of a given discipline. In this chapter we focused
on software engineering and could represent a clear view of its maturity level.

8. Interplay between engineering and philosophy has matured problem solving;
useful concepts may be derived from philosophy to improve engineering.

Problem solving matured through a continuous interpretation and improvement
within the disciplines philosophy and engineering. In addition, a certain interplay
across the disciplines has influenced and enriched the common problem solving
approach. In philosophy, many philosophers have contributed to the
systematization and accumulation of knowledge, that is, the concept Solution Domain
Knowledge became explicit in problem solving. In addition, the techniques for
knowledge accumulation and logical justifications (Search) have been improved and
the notions of concept, paradigm, abstraction, generalization, and specialization have been
formed. This has significantly contributed to the maturation of the engineering
disciplines. History has proven that it might thus be worthwhile to consider
concepts in philosophy to identify the deficiencies of current engineering and
likewise improve it. On the other hand, developments in engineering have had a
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great impact on philosophical movements. Some philosophies even became obsolete,
after improvements in engineering. For example, the classic Greek natural
philosophy became obsolete since the 17th century when a new mathematically and
empirically underpinned concept of motion was defined. More recently, in this age,
computer science and software engineering is dramatically changing the world by
providing automatic support for research and education activities. Advances in
computing are having also a significant impact upon foundational concepts in
philosophy, such as the mind, consciousness, reasoning, logic, knowledge, truth and
creativity [Bynum & Moor 99].

9. Mature engineering is supported by extensive scientific knowledge and is therefore more
routine than software engineering which has a meager amount of scientific knowledge
base

Knowledge is the formalization of past experiences. The more knowledge is
available the better the engineer can be directed in producing cost-effective artifacts
and the more routine the engineering process. Without knowledge the artifact
production process is generally based on intuition and practical know-how. Mature
engineering disciplines have collected and formalized a broad range of engineering
knowledge in the corresponding handbooks, manuals and encyclopedia. In software
engineering the accumulation and formalization of reusable knowledge has only
occurred for isolated domains such as algorithms, data structures and compiler
techniques. It can be said that current software engineering practices depend more
on creativity than it is the case in mature engineering disciplines.

10. Mature engineering derives abstractions from solution domain knowledge -
Software engineering derives abstractions basically from client requirements

To cope with the complexity different engineering disciplines propose various
approaches. We have seen that scientific knowledge and mathematical knowledge
are widely applied in mature engineering disciplines whereby the engineers are
guided through well-defined handbooks and manuals. Current software engineering
practices adopt a different view and state that software solutions must be found
through transforming the requirement specification in several steps. The solution
domain knowledge plays only a marginal role in software engineering. The reason
for this has been explained from the fact that software engineering is a premature
engineering discipline with lack of consensus on several fundamental concepts. The
scientific knowledge on which software engineering is based has only a short history
and as such is not mature yet.

11. Synthesis in engineering disciplines is NP-complete, heuristics are inherently necessary

It appears that the synthesis in engineering processes is an NP-complete problem
[Maimon & Braha 96][Kalay 87] and this is less a matter of the kind of engineering
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but rather an inherent aspect of most engineering problems. This means that
engineering problems are not solvable within the given time and resources. For this
reason, the use of heuristic rules is necessary to minimize the extremely large
solution space. In software engineering, the same situation can be observed. Today,
software is written for a wide range of applications, other than numerical
calculations and indeed software has grown in size and complexity.

12. Mathematical modeling is used to reduce the solution boundaries in mature engineering -
Solution boundaries in software engineering are not explicit.

Despite of the NP-completeness of the engineering problems, in mature engineering
mathematical modeling techniques, such as calculus, linear programming and
dynamic programming are used to reduce the boundaries within which the possible
solutions should be considered. Although, not the complete set of alternatives is
described at once, it is possible to derive all the possible alternatives. In addition,
alternatives that remain outside the solution boundary can be easily omitted. The
knowledge on what is possible and what is not possible in advance eases the search
for a solution. In software engineering the solution boundaries for a given problem
are harder to define. Basically heuristic rules are used to reduce the solution
boundaries but mathematical techniques for this purpose are missing. Consequently,
the boundaries remain implicit and the search for an adequate solution is therefore
more cumbersome than in mature engineering.

13. Mature engineering evaluates alternatives using rigid mathematical approaches -
Evaluation of alternatives in software engineering is informal and often implicit.

In addition to techniques for defining solution boundaries, mature engineering
disciplines are supported with a set of mathematical optimization techniques to
evaluate individual alternatives. In software engineering, the evaluation is largely
based on heuristics or implicit criteria and suitable optimization techniques are
missing.

14. Quality concept in mature engineering is explicit and mathematically defined -
Quality concept in software engineering is generally implicit and lacks measurements

Quality is an explicit concept in mature engineering disciplines and is represented
within the different engineering phases. For example, requirement specification in
mature engineering includes explicit variables indicating the requiring quality. In
software engineering requirement specifications quality is indicated basically
through informal statements.
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M.C.Escher’s Belvedere © 2000 Cordon Art-Baarn-Holland. All rights reserved.
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M.C. Escher - Belvedere

In a three- dimensional world simultaneous front and back is an impossibility and so cannot
be illustrated. Yet it is quite possible to draw an object which displays a differing reality when
looked at from above and from below. The illustration on the previous page shows the
illustration of a building that is physically difficult to realize. The lad sitting on the bench has
got such a cube-like absurdity in his hands. He gazes thoughtfully at this incomprehensible
object and seems unaware to the fact that the Belvedere behind him has been built in the same
impossible style. On the floor of the lower platform, that is to say indoors, stands a ladder
which two people are busy climbing. But as soon as they arrive at a floor higher, they are back
in the open air and have to re-enter the building.

Software Architecture Design Analogy

It is useful to provide different perspectives of the same software architecture. Thereby, it is
important that still the same ’reality’ is represented. Unfortunately, due to inappropriate
approaches and practices, the various perspectives of the same architecture may render
different realities of the same architecture and lead to an impossible view of the overall
software architecture. In addition, software engineers who criticize absurdities of
architectures of other projects may not be aware of the impossible realities of their own
developed software architecture.
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3.1 Introduction

"Since in order to speak, one must first listen, learn to speak by listening."
- Rumi

 oftware architectures have gained a wide popularity in the last decade
 and is generally considered to play a fundamental role in coping with the

inherent difficulties of the development of large-scale and complex software systems
[Clements & Northrop 96]. A common assumption is that architecture design should
support the required software system qualities such as robustness, adaptability,
reusability and maintainability [Aksit et al. 00][Bass et al. 98]. Software architectures
include the early design decisions and embody the overall structure that impacts the
quality of the whole system. In the literature, hardly a consensus is reached yet for
software architecture terminology, representations and architecture design
approaches [Clements & Northrop 96] and several open problems have still to be
solved. In this chapter we will focus on software architecture design approaches. For
ensuring the quality factors it is generally agreed that, identifying the fundamental
abstractions for architecture design is necessary. We maintain that the existing
architecture design approaches have several difficulties in deriving the right
architectural abstractions. To analyze, evaluate and identify the basic problems we
will present a survey of the state-of-the-art architecture design approaches and
motivate the obstacles in each approach.

The chapter is organized as follows. Section 3.2 provides a short background on
software architectures in which existing definitions including our own definition of
software architecture will be given. In section 3.3 a meta-model for software
architecture design approaches will be given. This meta-model will serve as a basis
for identifying the problems in our evaluation of architecture design approaches. In
section 3.4 a classification, analysis and evaluation of the contemporary architectural
approaches is presented. Finally, section 3.5 presents the conclusions and
evaluations.

3.2 Notion of Software Architecture

In this section we focus on the meaning of software architecture by analyzing the
prevailing definitions in section 3.2.1. In section 3.2.2 we provide our own definition
that we consider as general and which covers the existing definitions.

S
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3.2.1 Definitions
Software architectures are high-level design representations and facilitate the
communication between different stakeholders, enable the effective partitioning and
parallel development of the software system, provide a means for directing and
evaluation, and finally provide opportunities for reuse [Bass et al. 98].

The term architecture is not new and has been used for centuries to denote the
physical structure of an artifact [Webster 00]. The software engineering community
has adopted the term to denote the gross-level structure of software-intensive
systems. The importance of structure was already acknowledged early in the history
of software engineering. The first software programs were written for numerical
calculations using programming languages that supported mathematical expressions
and later algorithms and abstract data types. Programs written at that time served
mainly one purpose and were relatively simple compared to the current large-scale
diverse software systems. Over time due to the increasing complexity and size of the
applications, the global structure of the software system became an important issue
[Shaw & Garlan 96]. Already in 1968, Dijkstra proposed the correct arrangement of
the structure of software systems before simply programming [Dijkstra 68]. He
introduced the notion of layered structure in operating systems, in which related
programs were grouped into separate layers, communicating with groups of
programs in adjacent layers. Later, Parnas maintained that the selected criteria for
the decomposition of a system impact the structure of the programs and several
design principles must be followed to provide a good structure [Parnas 72][Parnas
76]. Within the software engineering community, there is now an increasing
consensus that the structure of software systems is important and several design
principles must be followed to provide a good structure [Clements et al. 85].

In tandem with the increasing popularity of software architecture design many
definitions of architecture have been introduced over the last decade, though, a
consensus on a standard definition is still not established. We think that the reason
why so many and various definitions on software architectures exist is because every
author approaches a different perspective of the same concept of software
architecture and likewise provides a definition from that perspective.
Notwithstanding the numerous definitions it appears that the prevailing definitions
do not generally conflict with each other and commonly agree that software
architecture represents the gross-level structure of the software system consisting of
components and relations among them [Bass et al. 98]19.

                                               

19 Compare this to the parable of "the elephant in the dark", in which four persons are in a dark room
feeling different parts of an elephant, and all believing that what they feel is the whole beast.
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Looking back at the historical developments of architecture design we can conclude
that similar to the many concepts in software engineering the concept of software
architecture has also evolved over the years. We observe that this evolution took
place at two fronts. First, existing stable concepts are specialized with new concepts
providing a broader interpretation of the concept of software architecture. Second,
existing interpretations on software architectures are abstracted and synthesized into
new and improved interpretations. Let us explain this considering the development
of the definitions in the last decade. The set of existing definitions is large and many
other definitions have been collected in various publications such as [Soni et al. 95],
[Perry & Wolf 92] and [SEI 00]. We provide only the definitions that we consider as
representative.

"The logical and physical structure of a system, forged by all the strategic and tactical
design decisions applied during development" [Booch 91]

Hereby, software architecture represents a high-level structure of a software system.
It is in alignment with the earlier concepts of software architecture as described by
Dijkstra [Dijkstra 68] and Parnas [Parnas76]. The first variations of structure of
architectures start to appear.

"We distinguish three different classes of architectural elements: processing elements;
data elements; and connection elements. The processing elements are those components
that supply the transformation on the data elements; the data elements are those that
contain the information that is used and transformed; the connecting elements (which at
times may be either processing or data elements, or both) are the glue that holds the
different pieces of the architecture together. " [Perry & Wolf 92]

This definition explicitly considers the interpretation on the elements of software
architecture. It is a specialization of the previous architecture definitions and
represents the functional aspects of the architecture focusing basically on the data-
flow in the system.

" ...beyond the algorithms and data structures of the computation; designing and
specifying the overall system structure emerges as a new kind of problem. Structural
issues include gross organization and global control structure; protocols for
communication, synchronization, and data access; assignment of functionality to design
elements; physical distribution; composition of design elements; scaling and
performance; and selection among design alternatives. This is the software architecture
level of design. " [Garlan & Shaw 93]

This definition provides additional specializations of the structural issues.
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"The structure of the components of a program/system, their interrelationships, and
principles and guidelines governing their design and evolution over time."
[Garlan et al. 95]

This definition extends the previous definitions by including design information in
the architectural specification.

"The software architecture of a program or computing system is the structure or
structures of the system, which comprise software components, the externally visible
properties of those components, and the relationships among them." [Bass et al. 98]

This definition abstracts from the previous definitions and implies that software
architectures have more than one structure and includes the behavior of the
components as part of the architecture. The term component here is used as an
abstraction of varying components [Bass et al. 98]. This definition may be considered
as a sufficiently good representative of the latest abstraction of the concept of
software architecture.

3.2.2 Architecture as a concept

The understanding on the concept of software architecture is increasing though there
are still several shortcomings. Architectures consist of components and relations, but
the term components may refer to subsystems, processes, software modules,
hardware components or something else. Relations may refer to data flows, control
flows, call-relations, part-of relations etc. To provide a consistent and overall
definition on architectures, we need to provide an abstract yet a sufficiently precise
meaning of the components and relations. For this we provide the following
definition of architecture:

Architecture is a concept representing a set of abstractions and relations and constraints
among these abstractions.

In essence this definition considers architecture as a concept that is general yet well-
defined. We think that this definition is general enough to cover the various
perspectives on architectures. To clarify this definition and discuss its implications
we will provide a closer view on the notion of concept.

A concept is usually defined as a (mental) representation of a category of instances
[Howard 87] and is formed by abstracting knowledge about instances. The process
of assigning new instances to a concept is called categorization or classification. In this
context, concepts are also called categories or classes. There are several theories on
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concepts and classification addressing the notions of concepts, classes, instances and
categories [Lakoff 87][Smith & Medin 81][Parsons & Wand 97].

In the context of software architectures the architectural concepts are also
abstractions of domain knowledge sources. The content of the domain sources,
however, may vary per architecture design approach. We will elaborate on this topic
in the following sections.

In general, three different views on the notion of concept are distinguished: the
classical view, the prototype view and the exemplar view. The classical view20 holds that
all instances of the concept must share all the defining properties that are considered
necessary and sufficient to define the concept. In other words, an instance must have
all of the defining properties to be an instance of the concept and additionally, if an
instance has at least the defining properties it is sufficient to denote it as an instance
of the concept. In the prototype view21 the concept is not described by defining
properties but rather by characterizing properties, features that instances tend to have
but need not to have. Basically the view proposes that a concept should be
represented by some measure of central tendency of some instances, which is
described by a prototype. A prototype is defined as an instance that has all the
properties of the central tendency and as such is a highly typical instance or
idealization. The exemplar view of concepts is quite different from the classical and
the prototype view since hereby a concept does not represent an abstracted set of
defining features or as a measure of a central tendency. The theory does not require
abstraction of instances at all. Instead concepts are represented through exemplars.
An exemplar is a specific instance of a certain category, which is used to represent
the category.

Given the different views on concepts the question here is then which of the view of
concepts is suitable for architectures. Basically, each view has its advantages and
disadvantages and can be applied for solving a particular category of problems
[Stillings et al. 95]. The classical view can be best applied for representing well-
defined concepts. The prototype view and exemplar view on the contrary can be best
applied in the early phases of concept formation in which specific instances are

                                               

20 The classical view dates back to the philosophical works of Plato and Aristotle. Plato defined the
notion of forms, which were defined as stable, immutable and ideal descriptions of things. Aristotle
continued the research on classification and his work led to the classical view on categorization and
concepts [Lakoff 87].

21 The prototypical view has emerged from the philosophical treatments of Wittgenstein who
maintained that for most concepts meaning is determined not by definition but by family
resemblance [Wittgenstein 53].
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discovered first and are later generalized. Accordingly, we may apply the
prototypical and exemplar view in the early phases of architecture design and the
classical view may be applied to define the stable architectural abstractions at later
stages of the architecture design in which the knowledge on instances and concepts
has got mature.

The definition has also implications for the structuring of concepts in software
architectures. Two widely known structures are taxonomies and partonomies [Howard
87]. Taxonomies are usually represented by tree-like structures whereby the top-
level concepts include the lower level concepts. Each taxonomy has both a horizontal
and a vertical dimension. The vertical dimension represents the level of abstraction
and the horizontal dimension represents mutually exclusive categories at the same
abstraction level. A particular abstraction level that is called the basic-level defines the
useful abstractions [Rosch et al. 76]. Partonomies define structures in which concepts
are related to each other through part-whole relations rather than class inclusion.
Taxonomies and partonomies are the basic well-known structures, however, other
structuring mechanisms that include various relations between concepts, such as
associations, may also be applied.

Since an architecture is a structure of concepts and each concept may represent
structures themselves, the definition implies that an architecture may have different
structures. In the simple case the architecture consist of a set of concepts that can be
considered as ’atomic’ and do not have an internal structure. For large software
systems, however, it is necessary to define the architecture from various perspectives
such as, for example, from a logical view, the process view, the development view
and the physical view [Kruchten 95]. Therefore, at the highest abstraction level the
software architecture may consist of concepts that each represents different
architectural views.

Concepts are not just arbitrary abstractions or groupings of a set of instances but are
defined by a consensus of experts in the corresponding domain. As such concepts
are stable and well-defined abstractions with rich semantics. The definition thus
enforces that each architecture consists of components that do not only represent
arbitrary groupings or categories but are semantically well-defined.

3.3 Meta-Model for Architecture Design Approaches

In this section we provide a meta-model that is an abstraction of various architecture
design approaches. We will use this model to analyze and compare current
architecture design approaches, which we will describe in the subsequent section.
The meta-model is given in Figure 3.1.



Chapter 3 - Classification and Evaluation of Software Architecture Design Approaches

65

Requirement
Specification

Solution
Abstraction

Domain
Knowledge

Client

Artifact

Architecture
Description

Domain
Knowledge

Requirements
Capturing

Extracting
Solution

Structures

Domain
Knowledge

Architecture
Specification

Figure 3.1 Meta-model for architecture design approaches

The rounded rectangles represent the concepts and the lines represent the
association between these concepts. The diamond symbol represents an association
relation between three or four concepts. Let us now describe the concepts
individually.

The concept Client represents the stakeholder(s) who is/are interested in the
development of a software architecture design. A stakeholder may be a customer,
end-user, system developer, system maintainer, sales manager etc.

The concept Domain Knowledge represents the area of knowledge that is applied in
solving a certain problem. We will elaborate on this concept in the next sub-section.

The concept Requirement Specification represents the specification that describes the
requirements for the architecture to be developed.

The concept Artifact represents the artifact descriptions of a certain method. This is
for example, the description of the artifact Class, Operation, Attribute, etc. In general
each artifact has a related set of heuristics for identifying the corresponding artifact
instances.

The concept Solution Abstraction defines the conceptual representation of a (sub)-
structure of the architecture.

The concept Architecture Description defines a specification of the software
architecture.
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In Figure 3.1 there are two quaternary association relations and one ternary
association relation.

The quaternary association relation called Requirements Capturing defines the
association relations between the concepts Client, Domain Knowledge, Requirement
Specification and Architecture Description. This association means that for defining a
requirement specification the client, the domain knowledge and the (existing)
architecture description can be utilized. The order of processing is not defined by
this association and may differ per architecture design approach.

The quaternary association relation called Extracting Solution Structures is defined
between the concepts Requirement Specification, Domain Knowledge, Artifact and
Solution Abstraction. This describes the structural relations between these concepts to
derive a suitable solution abstraction.

The ternary association relation Architecture Specification is defined between the
concepts Solution Abstraction, Architecture Description and Domain Knowledge and
represents the specification of the architecture utilizing these three concepts.

Various architecture design approaches can be described as instantiations of the
meta-model in Figure 3.1. Each approach will differ in the ordering of the processes
and the particular content of the concepts.

3.3.1 Domain Knowledge
In the meta-model the concept Domain Knowledge is used three times. Since this
concept plays a fundamental role in various architectural design approaches we will
now elaborate on this concept.

The term domain has different meanings in different approaches. We distinguish
between the following specializations of this concept: Problem Domain Knowledge,
Business Domain Knowledge, Solution Domain Knowledge and General Knowledge. This
classification of domain knowledge concepts is shown in Figure 3.2.

Domain
Knowledge
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Domain

Knowledge

Business
Domain

Knowledge

Solution
Domain

Knowledge

General
Knowledge

System/
Product

Knowledge

is-a

Figure 3.2 Different specializations of the concept Domain Knowledge
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The concept Problem Domain Knowledge refers to the knowledge on the problem from
a client’s perspective. It includes requirement specification documents, interviews
with clients, prototypes delivered by clients etc.

The concept Business Domain Knowledge refers to the knowledge on the problem from
a business process perspective. It includes knowledge on the business processes and
also customer surveys and market analysis reports.

The concept Solution Domain Knowledge refers to the knowledge that provides the
domain concepts for solving the problem and which is separate from specific
requirements and the knowledge on how to produce software systems from this
solution domain. This kind of domain knowledge is included in for example
textbooks, scientific journals, and manuals.

The concept General Knowledge refers to the general background and experiences of
the software engineer and also may include general rules of thumb.

The concept System/Product Knowledge refers to the knowledge about a system, a
family of systems or a product.

3.4 Analysis and Evaluation of Architecture Design
Approaches

A number of approaches have been introduced to identify the architectural design
abstractions. We classify these approaches as artifact-driven, use-case-driven, domain-
driven and pattern-driven architecture design approaches. The criterion for this
classification is based on the adopted basis for the identification of the key
abstractions of architectures. Each approach will be explained as a realization of the
meta-model described in Figure 3.1.

3.4.1 Artifact-driven Architecture Design

We term artifact-driven architecture design approaches as those approaches that
extract the architecture description from the artifact descriptions of the method.
Examples of artifact-driven architectural design approaches are the popular object-
oriented analysis and design methods such as OMT [Rumbaugh et al. 91] and OAD
[Booch 91]. A conceptual model for artifact-driven architectural design is presented
in Figure 3.3. Hereby the labeled arrows represent the process order of the
architectural design steps. The concepts Analysis & Design Models and Subsystems in
Figure 3.3 together represent the concept Solution Abstraction of Figure 3.1. The
concept General Knowledge represents a specialization of the concept Knowledge
Domain in Figure 3.1.
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Figure 3.3 Conceptual model of artifact-driven architectural design

We will explain this model using OMT [Rumbaugh et al. 91], which can be
considered as a suitable representative for this category. In OMT, architecture design
is not an explicit phase in the software development process but rather an implicit
part of the design phase. The OMT method [Rumbaugh et al. 91] consists basically of
the phases Analysis, System Design, and Object Design. The arrow 1:Describe
represents the description of the requirement specification. The arrow 2:Search
represents the search for the artifacts such as classes in the requirement specification
in the analysis phase. An example of a heuristic rule for identifying tentative class
artifacts is the following:

IF an entity in the requirement specification is relevant
THEN select it as a Tentative Class.

The search process is supported by the general knowledge of the software engineer
and the heuristic rules of the artifacts that form an important part of the method. The
result of the 2:Search function is a set of artifact instances that is represented by the
concept Analysis &Design Models in Figure 3.3.

The method follows with the System Design phase that defines the overall
architecture for the development of the global structure of a single software system
by grouping the artifacts into subsystems [Rumbaugh et al. 91]. In Figure 3.3 this
grouping function is represented by the function 3:Group. The software architecture
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consists of a composition of subsystems, which is defined by the function 4:Compose
in Figure 3.3. This function is also supported by the concept General Knowledge.

Problems

In OMT the architectural abstractions are represented by grouping classes that are
elicited from the requirement specification. We maintain that hereby it is difficult to
extract the architectural abstractions. We will explain the problems using the
example described in OMT on an Automated Teller Machine (ATM) which concerns
the design of a banking network [Rumbaugh et al. 91]. Hereby, bank computers are
connected with ATMs from which clients can withdraw money. In addition, banks
can create accounts and money can be transferred and/or withdrawn from one
account to another. It is further required that the system should have an appropriate
recordkeeping and secure provisions. Concurrent accesses to the same account must
be handled correctly.

The problems that we identified with respect to architecture development are as
follows:

•  Textual requirements are imprecise, ambiguous or incomplete and are less useful as a
source for deriving architectural abstractions

In OMT artifacts are searched within the textual requirement specification and
grouped into subsystems, which form the architectural components. Textual
requirements, however, may be imprecise, ambiguous or incomplete and as such are
not suitable as a source for identification of well-defined architectural abstractions.
In the example, three subsystems are identified: ATM Stations, Consortium Computer
and Bank Computers. These subsystems group the artifacts that were identified from
the requirement specification. The example only includes one class artifact called
Transaction since this was the only artifact that could be discovered in the textual
requirement specification. Publications on transaction systems show that many
concerns such as scheduling, recovery, deadlock management etc. are included in
designing transaction systems [Elmagarmid 91][Date 90][Bernstein & Newcomer 97].
Therefore, we would expect additional classes that could not be identified from the
requirement specification.

•  Subsystems have poor semantics to serve as architectural components

In the given example, the component ATM stations represents a subsystem, that is,
an architectural component. The subsystem concept serves basically as a grouping
concept and as such has very poor semantics22. For the subsystem ATM stations it is

                                               

22 In [Aksit & Bergmans 92] this problem has been termed as subsystem-object distinction.



Chapter 3 - Classification and Evaluation of Software Architecture Design Approaches

70

for example not possible to define the architectural properties, architectural
constraints with the other subsystems, and the dynamic behavior. This poor
semantics of subsystems makes the architecture description less useful as a basis for
the subsequent phases of the software development process.

•  Composition of subsystems is not well-supported

Architectural components interact, coordinate, cooperate and are composed with
other architectural components. OMT provides, however, no sufficient support for
this process. In the given example, the subsystem ATM Stations, Consortium Computer
and Bank Computers are composed together, though, the rationale for the presented
structuring process is performed implicitly. One could provide several possibilities
for composing the subsystems, though, the method lacks rigid guidelines for
composing and specifying the interactions between the subsystems.

3.4.2 Use-Case driven Architecture Design
In the use-case driven architecture design approach use cases are used as the primary
artifacts for deriving the architectural abstractions. A use case is defined as a
sequence of actions that the system provides for actors [Jacobson et al. 99]. Actors
represent external roles with which the system must interact. The actors and the use
cases together form the use case model. The use case model is meant as a model of
the system’s intended functions and its environment, and serves as a contract
between the customer and the developers. The Unified Process [Jacobson et al. 99]
applies a use-case driven architecture design approach. The conceptual model for
the use-case driven architecture design approach in the Unified Process is given in
Figure 3.4. Hereby, the dashed rounded rectangles represent the concepts of Figure
3.1. For example the concepts Informal Specification and the Use-Case Model together
form the concept Requirement Specification in Figure 3.1.

The Unified Process consists of core workflows that define the static content of the
process and describe the process in terms of activities, workers and artifacts. The
organization of the process over time is defined by phases. The Unified Process is
composed of six core workflows: Business Modeling, Requirements, Analysis, Design,
Implementation and Test. These core workflows result respectively in the following
separate models: business & domain model, use-case model, analysis model, design model,
implementation model and test model.
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Figure 3.4 Conceptual model of use-case driven architectural design

In the requirements workflow, the client’s requirements are captured as use cases
which results in the use-case model. This process is defined by the function
1:Describe in Figure 3.4. Together with the informal requirement specification, the use
case model forms the requirement specification. The development of the use case
model is supported by the concepts Informal Specification, Domain Model and Business
Model that are required to set the system’s context. The Informal Specification
represents the textual requirement specification. The Business Model describes the
business processes of an organization. The Domain Model describes the most
important classes within the context of the domain. From the use case model the
architecturally significant use cases are selected and use-case realizations are created
as it is described by the function 2:Realize. Use case realizations determine how the
system internally performs the tasks in terms of collaborating objects and as such
help to identify the artifacts such as classes. The use-case realizations are supported
by the knowledge on the corresponding artifacts and the general knowledge. This is
represented by the arrows directed from the concepts Artifact and General Knowledge
respectively, to the function 2:Realize. The output of this function is the concept
Analysis & Design Models, which represents the identified artifacts after use-case
realizations.
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The analysis and design models are then grouped into packages which is represented
by the function 3:Group. The function 4:Compose represents the definition of
interfaces between these packages resulting in the concept Architecture Description.
Both functions are supported by the concept General Knowledge.

Problems

In the Unified Process, first the business model and the domain model are developed
for understanding the context. Use case models are then basically derived from the
informal specification, the business model and the domain model. The architectural
abstractions are derived from realizations of selected use cases from the use case
models.

We think that this approach has to cope with several problems in identifying the
architectural abstractions. We will motivate our statements using the example
described in [Jacobson et al. 99, pp. 113] that concerns the design of an electronic
banking system in which the internet will be used for trading of goods and services
and likewise include sending orders, invoices, and payments between sellers and
buyers. The problems that we encountered are listed as follows:

•  Leveraging detail of domain model and business model is difficult

The business model and domain models are defined before the use case model. The
question raises then how to leverage the detail of these models. Before use cases are
known it is very difficult to answer this question since use cases actually define what
is to be developed. In [Jacobson et al. 99 pp. 120] a domain model is given for an
electronic banking system example. Domain models are derived from domain
experts and informal requirement specifications. The resulting domain model
includes four classes: Order, Invoice, Item and Account. The question here is whether
these are the only important classes in electronic banking systems. Should we
consider also the classes such as Buyer and Seller? The approach does not provide
sufficient means for defining the right detail of the domain and business models23.

•  Selecting architecturally relevant use-cases is not systematically supported

For the architecture description, ‘architecturally relevant’ use cases are selected. The
decision on which use cases are relevant lacks objective criteria and is merely
dependent on some heuristics and the evaluation of the software engineer. For
example, in the given banking system example, the use case Withdraw Money has

                                               

23 Use cases focus on the functionality for each user of the system rather than just a set of functions
that might be good to have. In that sense, use cases form a practical aid for leveraging the
requirements.
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been implicitly selected as architecturally relevant and other use cases such as
Deposit Money and Transfer between Accounts have been left out.

•  Use-cases do not provide a solid basis for architectural abstractions

After the relevant use cases have been selected they are realized which means that
analysis and design classes are identified from the use cases. Use-case realizations
are supported by the heuristic rules of the artifacts, such as classes, and the general
knowledge of the software engineer. This is similar to the artifact-driven approach in
which artifacts are discovered in the textual requirements. Although use cases are
practical for understanding and representing the requirements, we maintain that
they do not provide a solid basis for deriving architectural design abstractions. Use
cases focus on the problem domain and the external behavior of the system. During
use case realization transparent or hidden abstractions that are present in the
solution domain and the internal system may be difficult to identify. Thus even if all
the relevant use cases have been identified it may still be difficult to identify the
architectural abstractions from the use case model. In the given banking system
example, the use case-realization of Withdraw Money results in the identification of
the four analysis classes Dispenser, Cashier Interface, Withdrawal and Account
[Jacobson et al. 99, pp. 44]. The question here is whether these are all the classes that
are concerned with withdrawal. For example, should we also consider classes such
as Card and Card Check? The transparent classes cannot be identified easily if they
have not been described in the use case descriptions.

•  Package construct has poor semantics to serve as an architectural component

The analysis and design models are grouped into package constructs. Packages are,
similar to subsystems in the artifact-driven approach, basically grouping
mechanisms and as such have poor semantics. The grouping of analysis and design
classes into packages and the composition of the packages into the final architecture
are also not well supported and are basically dependent on the general knowledge of
the software engineer. This may again lead to ill-defined boundaries of the
architectural abstractions and their interactions.

3.4.3 Domain-driven Architecture Design

Domain-driven architecture design approaches derive the architectural design
abstractions from domain models. The conceptual model for this domain-driven
approach is presented in Figure 3.5.

Domain models are developed through a domain analysis phase represented by the
function 2:Domain Analysis. Domain analysis can be defined as the process of
identifying, capturing and organizing domain knowledge about the problem domain
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with the purpose of making it reusable when creating new systems [Prieto-Diaz &
Arrango 91]. The function 2:Domain Analysis takes as input the concepts Requirement
Specification and Domain Knowledge and results in the concept Domain Model. Note
that both the concepts Solution Domain Knowledge and Domain Model in Figure 3.5
represent the concept Domain Knowledge in the meta-model of Figure 3.1.

Requirement
Specification

Client

1:Describe

Solution
Domain

Knowledge

Domain
Model

Architecture
Description

2:Domain Analysis

3:Domain Design

Figure 3.5 Conceptual model for Domain-Driven Architecture Design

The domain model may be represented using different representation forms such as
classes, entity-relation diagrams, frames, semantics networks, and rules. Several
domain analysis methods have been published, e.g. [Gomaa 92], [Kang et al. 90],
[Prieto-Diaz & Arrango 91], [Simos et al. 96] and [Czarnecki 99]. Two surveys of
various domain analysis methods can be found in [Arrango 94] and [Wartik &
Prieto-Diaz 92]. In [Czarnecki 99] a more recent and extensive up-to-date overview
of domain engineering methods is provided.

In this chapter we are mainly interested in the approaches that use the domain
model to derive architectural abstractions. In Figure 3.5, this is represented by the
function 3:Domain Design. In the following we will consider two domain-driven
approaches that derive the architectural design abstractions from domain models.

Product-line Architecture Design

In the product-line architecture design approach, an architecture is developed for a
software product-line that is defined as a group of software-intensive products sharing
a common, managed set of features that satisfy the needs of a selected market or
mission area [Clements & Northrop 96]. A software product line architecture is an
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abstraction of the architecture of a related set of products. The product-line
architecture design approach focuses primarily on the reuse within an organization
and consists basically of the core asset development and the product development. The
core asset base often includes the architecture, reusable software components,
requirements, documentation and specification, performance models, schedules,
budgets, and test plans and cases [Bass et al. 97a], [Bass et al. 97b], [Clements &
Northrop 96]. The core asset base is used to generate or integrate products from a
product line.

The conceptual model for product-line architecture design is given in Figure 3.6. The
function 1:Domain Engineering represents the core asset base development. The
function 2:Application Engineering represents the product development from the core
asset base.

Core Asset
Base

1:Domain Engineering

Product

2:Application Engineering

Domain
Knowledge

Figure 3.6 A conceptual model for a Product-Line Architecture Design

Note that various software architecture design approaches can be applied to provide
a product-line architecture design. In the following section we will describe the
DSSA approach that follows the conceptual model for product-line architecture
design in Figure 3.6.

Domain Specific Software Architecture Design

The domain-specific software architecture (DSSA) [Hayes-Roth 94][Tracz & Coglianese
92] may be considered as a multi-system scope architecture, that is, it derives an
architectural description for a family of systems rather than a single-system. The
conceptual model of this approach is presented in Figure 3.7. The basic artifacts of a
DSSA approach are the domain model, reference requirements and the reference
architecture. The DSSA approach starts with a domain analysis phase on a set of
applications with common problems or functions. The analysis is based on scenarios
from which functional requirements, data flow and control flow information is
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derived. The domain model includes scenarios, domain dictionary, context (block)
diagrams, ER diagrams, data flow models, state transition diagrams and object
models.

In addition to the domain model, reference requirements are defined that include
functional requirements, non-functional requirements, design requirements and
implementation requirements and focus on the solution space. The domain model
and the reference requirements are used to derive the reference architecture. The DSSA
process makes an explicit distinction between a reference architecture and an
application architecture. A reference architecture is defined as the architecture for a
family of application systems, whereas an application architecture is defined as the
architecture for a single system. The application architecture is instantiated or
refined from the reference architecture. The process of instantiating/refining and/or
extending a reference architecture is called application engineering.
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Figure 3.7 Conceptual model for Domain Specific Software Architecture (DSSA) approach
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Problems

Since the term domain is interpreted differently there are various domain-driven
architecture design approaches. We list the problems for problem domain analysis
and solution domain analysis.

•  Problem domain analysis is less effective in deriving architectural abstractions

Several domain-driven architecture approaches interpret the domain as a problem
domain. The DSSA approach, for example, starts from an informal problem
statement and derives the architectural abstractions from the domain model that is
based on scenarios. Like use cases, scenarios focus on the problem domain and the
external behavior of the system. We think that approaches that derive abstraction
from the problem domain, such as the DSSA approach, are less effective in deriving
the right architectural abstractions. Let us explain this using the example in [Tracz
95] in which an architecture for a theater ticket sales application is constructed using
the DSSA approach. In this example a number of scenarios such as Ticket Purchase,
Ticket Return, Ticket Exchange, Ticket Sales Analysis, and Theater Configuration are
described and accordingly a domain model is defined based on these scenarios. The
question hereby is whether the given scenarios fully describe the system and as such
result in the right leverage of the domain model. Are all the important abstractions
identified? Do there exist redundant abstractions? How can this be evaluated?
Within this approach and generally approaches that derive the abstractions from the
problem domain these questions remain rather unanswered.

•  Solution Domain Analysis is not sufficient

There exist solution domain analysis approaches that are independent of software
architecture design which provide systematic processes for identifying potentially
reusable assets. As we have described before this activity is called domain engineering
in the systematic reuse community. Unlike system engineering and problem domain
engineering, solution domain analysis looks beyond a single system, a family of
systems or the problem domain to identify the reusable assets within the solution
domain itself. Although solution domain analysis provides the potential for
modeling the whole domain that is necessary to derive the architecture, it is not
sufficient to drive the architecture design process. This is due to two reasons. First,
solution domain analysis is not defined for software architecture design per se, but
rather for systematic reuse of assets for activities in for example software
development. Since the area on which solution domain analysis is performed may be
very wide, it may easily result in a domain model that is too large and includes
abstractions that are not necessary for the corresponding software architecture
construction. The large size of the domain model may hinder the search for the
architectural abstractions. The second problem is that the solution domain may not
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be sufficiently cohesive and stable to provide a solid basis for architectural design.
Concepts in the corresponding may not have reached a consensus yet and the area
may still be under development. Obviously, one cannot expect to provide an
architecture design solution that is better than the solution provided by the solution
domain itself. A thorough solution domain analysis may in this case also not be
sufficient to provide stable abstractions since the concepts in the solution domain
themselves are fluctuating.

3.4.4 Pattern-driven Architecture Design

Christopher Alexander’s idea on pattern languages for systematically designing
buildings and communities in architecture [Alexander 79] has been adopted by the
software community and led to the so-called software design patterns [Gamma et al.
95]. Similar to the patterns of Alexander, software design patterns aim to codify and
make reusable a set of principles for designing quality software. The software design
patterns are applied for the design phase, though, the software community has
started to define and apply patterns for the other phases of the software
development process. At the implementation phase patterns or idioms [Coplien 92]
have been defined to map object-oriented design to object-oriented language
constructs. Others have defined patterns for the analysis phase in which patterns are
applied to derive analysis models [Fowler 96]. Patterns have also been applied at the
architectural analysis phase of the software development process
[PLOP][Buschmann et al. 96]. Architectural patterns are similar to the design
patterns but focus on the gross-level structure of the system and its interactions.
Sometimes architectural patterns are also called architectural styles [Shaw 95][Shaw &
Garlan 96]. An architectural pattern is not the architecture itself, as it is often
mistaken, but rather it is just an abstract representation at the architectural level
[Abowd et al. 94] [Bass et al. 98].

Pattern-driven architecture design approaches derive the architectural abstractions
from patterns. Figure 3.8 depicts the conceptual model for this approach.

The concept Requirement Specification represents a specification of a problem that may
be solved using a pattern. The function Search represents the process for searching a
suitable pattern for the given problem description and is supported by the concept
General Knowledge.
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Figure 3.8 Conceptual Model for a Pattern-Driven Architecture Design

The concept Architectural Pattern Description represents a description of an
architectural pattern. It consists mainly of four sub-concepts24: Intent, Context,
Problem, and Solution. The concept Intent represents the rationale for applying the
pattern. The concept Context represents the situation that gives rise to the problem.
The concept Problem represents the recurring problem arising in the context. The
concept Solution represents a solution to the problem in the form of an abstract
description of the elements and their relations. For the identification of the pattern
the intent of the available patterns is scanned. If the intent of a pattern is found
relevant for the given problem then the context description (Context) is analyzed. If
this also matches the context of the given problem, then the process follows with the
function 3:Apply. Thereby the sub-concept Solution is utilized to provide a solution to
the problem. The concept Architectural Pattern represents the result of the function
3:Apply. Finally, the function 4:Compose represents the incorporation of the
architecture pattern to the architecture description.

Problems

The pattern-driven architecture design approach is included as a sub-process in
several architectural design approaches. Although architectural patterns are useful
for building software architectures, the current approaches do not provide sufficient

                                               

24 There are other sub-concepts but we consider these four sub-concepts as important for the
identification of the architectural abstractions.
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support for the selection of patterns, the application of these patterns and their
composition to the architecture. We will describe these problems in the following:

•  Pattern base may not be sufficient for dealing with the wide range of architectural
abstractions

For a pattern-driven architecture design approach it is required that a sufficient base
of patterns is available to support the design of software architectures. Currently,
patterns have been catalogued in different publications such as [PLOP], [Buschmann
et al. 96], [Shaw & Clements 97], [Gamma et al. 95], [Pree 95] and [Shaw 95].
Although, these catalogs provide practical vehicles for software architecture design,
they do not and cannot cover all the problem areas for which architectures need to
be developed. The reason for this is that architectures are composed of concepts
representing abstractions from a particular domain and patterns define certain
arrangements of these concepts and relations that are useful in solving recurring
problems. Since there are numerous concepts and relations in the domain area, there
are in principle also numerous architectural abstractions and accordingly numerous
patterns. Consequently when utilizing a particular pattern catalogue, suitable
patterns may be missing for a particular architecture design problem. In such cases it
would be useful to provide means for generating new patterns for coping with novel
but recurring problems.

•  Selecting patterns is merely based on the general knowledge and experience of the
software engineer

To ease the selection and manage and improve the understanding of patterns,
patterns with common characteristics are usually classified into same groups. The
classification criteria may differ per approach. For example, in [Shaw & Clements 97]
and [Shaw 98] architectural patterns are classified according to the control and data
interactions among architectural components. In [Buschmann et al. 96] patterns are
classified into problem categories, grouping patterns addressing common problems.
Sometimes, together with the categorization of the patterns a set of rules of thumb
for choosing an architectural pattern is given as well. In [Shaw & Clements 97], for
example, heuristic rules are given having the general form “If your problem has
characteristic X then consider architectures with characteristic Y”. An example of
such a heuristic rule is, “If your problem can be decomposed into sequential stages,
consider batch sequential or pipeline architectures”. Despite of these classifications
and heuristic rules it may happen that different alternative patterns are possible.
Current approaches do not provide explicit support for prioritizing and balancing
these alternative patterns. This is usually based on the experience and general
knowledge of the software engineers. Therefore, this impedes the pattern-lookup
process and as such the identification of the architectural abstractions.
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•  Applying patterns is not straightforward and requires thorough analysis of the problem

Once a pattern is selected the application of it is also not straightforward. A pattern
is considered as a kind of template consisting of components and relations that must
be matched with the concepts and concept relations identified in the problem
domain. Examples of architectural patterns are Pipes and Filters, Layering, Repositories,
Interpreter, and Control [Shaw & Garlan 96]. Assume for example, that for a given
problem the architectural pattern Pipes and Filters is selected. In the Pipes and Filters
architectural pattern the components are the pipes and the filters represent the
connecting relations between the components. Filters are components that receive
input streams, do some processing and provide some output. Pipes transmit the
output stream of one filter to the input stream of another filter. Important questions
in applying this pattern to the problem are: Which concepts should be represented as
Pipes; which concepts should be represented as Filters; how should be the structuring
of Pipes and Filters etc. Currently, there is no serious support for this matching
process and pattern application is also based on the experiences and general
knowledge of the software engineer.

•  Composing patterns is not well-supported

For developing software architectures usually several individual patterns need to be
composed. Patterns are generally not independent and reveal several relationships
with each other. Specifying the patterns independently will not reflect these
interdependencies. In [Buschmann et al. 96] patterns are collected and organized into
problem categories providing a problem-oriented view in selecting and applying
patterns. Systematic approaches with explicit guidelines for composing patterns,
however, is missing25. Assume that after the problem analysis it appears that the
patterns Layering, Repositories, and Pipes and Filters need to be composed in the
architecture. In the Layering pattern the architecture components are represented
through layers and the connectors are the protocols that determine the interactions
between the layers. The Repository pattern consists of a shared data structure and a
set of independent components that access the shared data structure. How should
we compose these three patterns? Which should be the basic pattern? Why? What
are the dependencies? Current pattern-driven approaches lack to provide
satisfactory answers for these questions because patterns are specified
independently.

                                               

25 In architecture design, Alexander introduced the concept of pattern language that defines the
structure and the mutual arrangement of the patterns as an integrated whole [Alexander 79].
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3.5 Conclusion

In this chapter we have defined architecture as a set of abstractions and relations that
form together a concept. Further, a meta-model that is an abstraction of software
architecture design approaches is provided. We have used this model to analyze,
compare and evaluate architecture design approaches. These approaches have been
classified as artifact-driven, use-case-driven, domain-driven and pattern-driven
architecture design approaches. The criterion for this classification is based on the
adopted basis for the identification of the key abstractions of architectures. In the
artifact-driven approaches the architectural abstractions are represented by groupings
of artifacts that are elicited from the requirement specification. Use-case driven
approaches derive the architectural abstractions from use case models that
represents the system’s intended functions. Domain-driven architecture design
approaches derive the architectural abstractions from the domain models. Pattern-
driven architecture design approaches attempt to develop the architecture by
selecting architectural patterns from a pre-defined pattern catalogue. For each
approach, we have described the corresponding problems and motivated why these
sources are not optimal in identifying the architectural abstractions. We can abstract
the problems basically as follows:

1. Difficulties in Planning the Architectural Design Phase

Planning the architecture design phase in the software development process is a
dilemma26. In general architectures are identified before or after the analysis and
design phases. Defining the architecture can be done more accurately after the
analysis and design models have been determined because these impact the
boundaries of the architecture. This may lead, however, to an unmanageable project
because the architectural perspective in the software development process will be
largely missing. On the other hand, planning the architecture design phase before
the analysis and design phases may also be problematic since the architecture may
not have optimal boundaries due to insufficient knowledge on the analysis and
design models27.

In artifact-driven architecture design approaches the architecture phase follows after
the analysis and design phases and as such the project may become unmanageable.

                                               

26 In [Aksit & Bergmans 92] this problem has been denoted as the early decomposition problem

27 An analogy of this problem is writing an introduction to a book. To organize and manage the work
on the different chapters it is required to provide a structure of the chapters in advance.  However,
the final structure of the introduction can be usually only defined after the chapters have been written
and the complete information on the structure is available.
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In the domain-driven architecture design approaches the architecture design phase
follows a domain engineering phase in which first a domain model is defined from
which consequently architectural abstractions are extracted. Hereby the architecture
definition may be unmanageable if the domain model is too large. In the use-case
driven architecture design approach the architecture definition phase is part of the
analysis and design phase and the architecture is developed in an iterative way. This
does not completely solve the dilemma since the iterating process is mainly
controlled by the intuition of the software engineer.

2. Client requirements are not a solid basis for architectural abstractions

The client requirements on the software-intensive system that needs to be developed
is different from the architectural perspective. The client requirements provide a
problem perspective of the system whereas the architecture is aimed to provide a
solution perspective that can be used to realize the system. Due to the large gap
between the two perspectives the architectural abstractions may not be directly
obvious from the client requirements. Moreover, the requirements themselves may
be described inaccurately and may be either under-specified or over-specified.
Therefore, sometimes it is also not preferable to adopt the client requirements.

This problem is apparent in all the approaches that we analyzed. In the artifact-
driven and pattern-driven approaches the client requirements are directly used as a
source for identifying the architectural abstractions. The use-case driven approach
attempts to model the requirements also from a client perspective by utilizing use
case models. In the domain-driven approaches, such as the domain specific software
architecture design approach (DSSA), informal specifications are used to support the
development of scenarios that are utilized to develop domain models.

3. Leveraging the domain model is difficult

The domain-driven and the use case approaches apply domain models for the
construction of software architecture. Uncontrolled domain engineering may result
in domain models that lack the right detail of abstraction to be of practical use. The
one extreme of the problem is that the domain model is too large and includes
redundant abstractions, the other extreme is that it is too small and misses the
fundamental abstractions. Domain models may also include both redundant
abstractions and still miss some other fundamental abstractions. It may be very
difficult to leverage the detail of the domain model.

This problem is apparent in domain-driven and the use-case driven approaches. In
the domain-driven approaches that derive domain models from problem domains,
such as the DSSA approach, leveraging the domain model is difficult because it is
based on scenarios that focus on the system from a problem perspective rather than
a solution perspective. In the use-case driven architecture design approach, for
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example, leveraging the domain model and business model is difficult since it is
performed before use-case modeling and it is actually not exactly known what is
desired.

4. Architectural abstractions have poor semantics

A software architecture is composed of architectural components and architectural
relations among them. Often architectural components are similar to groupings of
artifacts, which are named as subsystems, packages etc. These constructs do not have
sufficiently rich semantics to serve as architectural components. Architectural
abstractions should be more than grouping mechanisms and the nature of the
components and their relations, and the architectural properties, the behavior of the
system should be described [Clements 96]. Because of the lack of semantics of
architectural components it is very hard to understand the architectural perspective
and make the transition to the subsequent analysis and design models.

5. Composing architectural abstractions is weakly supported

Architectural components interact, coordinate, cooperate and are composed with
other architectural components. The architecture design approaches that we
evaluated do not provide, however, explicit support for composing architectural
abstractions.
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M.C. Escher - Waterfall

The illustration on the previous page shows one of Escher’s famous impossible buildings. The
basis of the illusion is the inclusion of the impossible triangle or tri-bar, developed by Roger
Penrose and his father. The triangle is placed into the picture three times. As you look at each
part of the construction in the print you cannot find any mistakes, but when the print is
viewed as a whole you see the problem of water traveling up a flat plane, yet the water is
falling and spinning a miller’s wheel.

Software Architecture Design Analogy

Software architectures are usually developed from various individual architectural
components, or sub-systems. Each individual architectural component may be perfectly
designed and as such have a correct structure. However, the synthesis of the overall
architecture may include serious flaws that may make the software architecture impossible to
realize.
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4.1 Introduction

"There are forces in nature called Love and Hate. The force of Love causes elements to be
attracted to each other and to be built up into some particular form or person, and the

force of Hate causes the decomposition of things."
- Empedocles

 esearch on software architecture design approaches is still in its progressing
  phase and several architecture design approaches have been introduced in the

last years [Bass et al. 98], [Buschmann et al. 99], [Tracz & Coglianese 92], [Shaw 98].
However, a consensus on the appropriate software architecture design process is not
established yet and current software architecture design approaches may have to
cope with several problems.

First of all, planning the architecture design phase is intrinsically difficult due to its
conflicting goals of providing a gross level structure of the system and at the same
time directing the subsequent phases in the project. The first goal requires planning
the architecture in later phases of the software development process when more
information is available. The latter goal requires planning it as early as possible so
that the project can be more easily managed.

Second, most software architecture design approaches derive the architectural
abstractions in different ways and from different sources such as artifacts, use-cases,
patterns and problem domains. These sources are basically focused on the client’s-
perspective28 rather than on the architectural solution perspective of the system. The
gap between the client perspective and the architectural design perspective is
generally too large and the client may lack to specify the right detail of the problem,
thereby either under-specifying or over-specifying the problem. This on its turn
hinders the identification of the right architectural abstractions since the
fundamental transparent abstractions may be missed or redundant abstractions may
be elicited.

Third, generally the adopted sources are also not very useful to provide sufficiently
rich semantics of the architectural components and fall short in providing guidelines
for composing the architectural abstractions. In this case, architectural components
are often equivalent to semantically poor groupings of artifacts and are composed
using simple associations.

                                               

28 We use the term client to denote any stakeholder who has interest in the application of a software
architecture.

R
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Finally, although solution domain analysis may be used and be effective in deriving
the architectural abstractions and provide the necessary semantics, it may not suffice
if it is not managed well. The problem is that the domain model may lack the right
detail of abstraction to be of practical use for deriving architectural abstractions.

Current architecture design approaches have to cope with one or more of the above
problems. In this chapter, a novel approach is proposed, which is termed synthesis-
based software architecture design that aims to provide effective solutions to these
problems. Synthesis is a well-known concept in traditional engineering disciplines
and involves the construction of sub-solutions for distinct loosely coupled sub-
problems and the integration of these sub-solutions into a complete solution. During
the synthesis process design alternatives are searched and selected based on the
existing solution domain knowledge.

In the synthesis-based software architecture design approach, the synthesis concept
of traditional engineering disciplines is applied to the software architecture design
process. Hereby, the requirements are first mapped to technical problems. For each
problem the corresponding solution domain is identified and architectural
abstractions are derived from the solution domain knowledge. The solution domain
knowledge provides well-established concepts with rich semantics and as such form
a stable basis for architecture development. The individual sub-solutions are
combined in the overall software architecture.

In this chapter we will demonstrate the approach using a project on the design of an
atomic transaction system architecture for a distributed car dealer information
system29.

The remainder of the chapter is organized as follows. In section 4.2, the synthesis
concept is described and a model for software architecture synthesis is derived. In
section 4.3, an example project on the design of a software architecture for atomic
transactions for a distributed car dealer information system will be described. This
example project will be used throughout the whole chapter. In section 4.4, the
synthesis-based architecture design approach will be presented that will be
illustrated for the example project. Finally, in section 4.5, we will present our
discussion and conclusions.

                                               

29 This work has been carried out as part of the INEDIS project that was a cooperative project between
Siemens-Nixdorf and the TRESE group, Software Engineering, Dept. of Computer Science, University
of Twente.
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4.2 Synthesis

This section describes the concept of synthesis. Synthesis is a well-known concept in
traditional engineering disciplines and is widely applied to solve design problems
[Maher 90]. Software architecture design can be considered as a problem solving
process in which the problem represents the requirement specification and the
solution represents the software architecture design. In this section we apply the
synthesis process to the software architecture design process. In section 4.2.1 we will
explain the concept synthesis as it is described in traditional engineering disciplines.
In section 4.2.2 we will apply the concept synthesis to software architecture design
and gradually derive the steps for defining the software architecture synthesis
model.

4.2.1 Synthesis in Traditional Engineering

Synthesis in engineering often means a process in which a problem specification is
transformed to a solution by first decomposing the problem into loosely coupled
sub-problems that are independently solved and integrated into an overall solution.
In particular, the synthesis process includes an explicit phase for searching design
alternatives in the corresponding solution domain and selecting these alternatives
based on explicit quality criteria.

Synthesis consists generally of multiple steps or cycles. A synthesis cycle
corresponds to a transition (transformation) from one synthesis state to another and
can be formally defined as a tuple consisting of a problem specification state and a
design state [Maimon & Braha 96]. The problem specification state defines the set of
problems that still needs to be solved. The design state represents the tentative
design solution that has been lastly synthesized. Initially, the design state is empty
and the problem specification state includes the initial requirements. After each
synthesis state transformation, a sub-problem is solved. In addition a new sub-
problem may be added to the problem specification state.

Each transformation process involves an evaluation step whereby it is evaluated
whether the design solutions so far (design state) are consistent with the initial
requirements and any additional requirements identified during the synthesis.

A synthesis-based design process is defined as a finite sequence of synthesis states,
resulting in a terminal state. A synthesis state is terminal in either of two cases: the
specification part is satisfiable by the design part (there is a solution) or neither the
design nor the specification can be modified. The first is a successful design the latter
is an unsuccessful one.



Chapter 4 - Architecture Synthesis Process

90

The sub-solutions and overall solution has to meet a set of objective metrics, while
satisfying a set of constraints. Constraints may be imposed within and among the
sub-solutions. For a suitable synthesis it is required that the problem is understood
well. This means that the problem is well-described and the quality criteria and
constraints are known on beforehand. In practice, however, this is very difficult to
meet and complete analysis is impossible in any but the simplest problems [Coyne et
al. 90]. Therefore, synthesis can usually start before the problem is totally
understood.

During the synthesis process a designer needs to consider the design space that
contains the knowledge that is used to develop the design solution. For this,
synthesis requires the ability to produce a set of alternative solutions and select an
optimal or near optimal solution. The space of possible solutions, however, may be
very large and it is not feasible to examine all possible solutions [Coyne et al. 90].

In [Maimon & Braha 96] it has been shown that the design synthesis is inherently an
NP-Complete problem. To manage this inherent complexity, synthesis can be
performed at different, higher abstraction levels in the design process. In the design
of digital signal processing systems, for example, the following synthesis approaches
with increasing abstraction levels are distinguished: circuit synthesis, logic synthesis,
register-transfer synthesis, and system synthesis [Gajski et al. 92]. For large
problems, the lower-level design synthesis approaches become intractable and time
consuming due to the large number of entities and their relations that need to be
considered. In the example of digital signal processing, circuit synthesis adopting the
transistor as the basic abstraction, is unsuitable for current industrial problems that
integrate millions of components. A higher level of abstraction reduces the number
of entities that a designer has to consider which in turn reduces the complexity of the
design of larger systems. In addition, higher level abstractions are closer to a
designer’s way of thinking and as such increases the understandability, which on its
turn facilitates to consider various alternatives more easily. The counterpart is that
higher level abstractions consists of the fixed configuration of lower level
abstractions thereby reducing the alternative configuration possibilities, that is, the
set of alternatives is implicitly reduced. This is acceptable, though, since usually the
total space of a synthesis from higher level abstractions is large enough to be of
practical use.

4.2.2 Defining the Software Architecture Synthesis Model

Mapping Client Requirements to Technical Problems

Client requirements may lack to specify the right detail of the problem and either
under-specify or over-specify the problem domain. Therefore, the gap between the
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requirements and the architectural design solution is generally too large. To solve
this problem we propose to introduce a technical problem analysis phase that functions
as an intermediary process between the requirements analysis and architectural
design. Within this technical problem analysis phase, the delivered client
requirements are thoroughly analyzed and mapped to technical problems that
describe the problems more accurately. In this way, the gap between the
requirements and the architectural design is largely reduced and, once the problems
are clearly understood and specified independently of the initial requirements, a
solid basis is provided to drive the architecture development.

Figure 4.1 illustrates the separation of the concept Technical Problem from the concept
Requirements. The rounded rectangles represent the concepts; the directed arrows
represent the functions between the concepts. The left side of the figure before the
hollow arrow represents the approach that is adopted in several architecture design
approaches. Hereby, the requirements are basically directly mapped to the
(architectural) solution abstractions. The right side of the figure represents the
introduction of the concept Technical Problem that has been separated from the
concept Requirements. Hereby the concept Requirements is not directly mapped to the
concept Solution but first it is analyzed and mapped to the concept Technical Problem.
The concept Technical Problem describes the fundamental aspects that may not have
been present in the original requirements. A clear understanding of the problem is
part of the solution and as such this reduces the distance to the final solution.

Requirement
Specification

Solution Solution

Requirement
Specification

Technical
Problem

Figure 4.1 The separation of the concept Technical Problem from the concept Requirements

Deriving Architectural Abstractions from Solution Domain Models

We maintain that architectural abstractions should be best derived from the solution
domain knowledge. The reason for this is threefold:

First, the solution domain knowledge includes well-established concepts that will
not change abruptly. This is because solution domain knowledge is defined by a
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thorough analysis and research and is sufficiently stabilized through a consensus of
experts in the corresponding community. A basic requirement for architectural
components is that they should be stable and solution domain concepts provide this
stability.

Second, the solution domain concepts are semantically rich, and define the
properties, the relations with other concepts and their behavior. The required
semantics for the architectural components may be derived from the solution
domain concepts.

Third, solution domain concepts are related to each other and structured into
taxonomies and part-whole relations. Further, the compatibility and composition
relations between the various concepts are also well-defined. Existing architectural
design approaches provide weak support for composing the architectural
components as we have described in chapter 3. Solution domain knowledge
provides the necessary information to support the composition of architectural
components.

There exist domain analysis approaches that aim to provide solution domain models
[Prieto-Diaz & Arrango 91] [Arrango 94] [Wartik & Prieto-Diaz 92]. We argue that
these approaches should be integrated within the architecture design approaches to
derive stable architectures.

Leveraging Solution Domain Models to the Identified Technical
Problems

The solution domain analysis should be appropriately managed so that the domain
model is optimally tuned to the architectural design phase. The right level of detail
of the solution domain model can only be defined if both the client’s requirements
and the corresponding solution domain are considered. On the one hand, the initial
client requirements will likely fail to accurately define the overall-scope and the
relevant abstractions because it does not provide a solution perspective of the
problem. On the other hand, the solution domain itself may be very large and
include abstractions that are not relevant for solving the corresponding problem. We
maintain that the separated problem specifications from the client requirements
provide a useful basis for leveraging the solution domain knowledge. This is because
it is supposed to describe all the necessary fundamental aspects for solving the
problem.

This requirement is illustrated in Figure 4.2, which is a refinement of Figure 4.1. The
refinement here consists of the introduction of the concept Solution Domain
Knowledge.
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Solution

Requirements

Technical
Problem

Solution
Domain

Knowledge

Figure 4.2 Leveraging solution domain knowledge to the problems

The arrow from the concept Solution Domain Knowledge to the concept Solution
represents the previous requirement of deriving solution abstractions from solution
domain knowledge. The arrow from the concept Technical Problem to the concept
Solution Domain Knowledge represents the search and leveraging of the solution
domain knowledge by the identified problems.

Defining Architecture Iteratively and Recursively

Planning the architectural design phase is intrinsically difficult due to the conflicting
goals of its intended use. On the one hand it needs to represent the gross-level
structure of the system and for this it is necessary to have a complete overview of the
system including the analysis and design models in the later phases of the software
development process. In addition, it is intended to be used to manage the project
adequately and this requires defining the architecture as early as possible.

We require that architectures should be derived from solution domain knowledge
that we proposed to leverage according to the identified problems as it has been
illustrated in Figure 4.2.

To solve this dilemma we argue to adopt both an iterative and a recursive
architecture design approach. Iteration means that the same steps of a process are
repeated to correct what has already been done. Recursion means that the same
steps of a process are repeated for a lower abstraction level. For architecture design
approach iteration means that the process is repeated to correct the architectural
abstractions because of newly acquired information. Recursion means that the same
process is repeated to define the sub-architectural concepts. The process of iteration
and recursion is visualized in Figure 4.3.
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Figure 4.3 Recursion and Iteration in providing Architectural Design Solution

This figure is a refinement of Figure 4.2 and introduces the new concept Sub-Problem.
The recursion process is basically defined by the decomposition of the problem into
sub-problems whereby the suitable concepts are searched from the solution domain
for each sub-problem individually. The iteration is represented by the arrow directed
from the concept Solution to the concept Problem.

A Conceptual Model for Software Architecture Synthesis

Figure 4.4 represents a conceptual model for software architecture synthesis30. The
model consists of two parts: Solution Definition and Solution Control. Each part
consists of concepts and functions among concepts. The concepts are represented by
rounded rectangles, the functions are represented by arrows. The part Solution
Definition represents the identification and definition of solution abstractions. The
part Solution Control represents the quantification, measurement, optimization and
refinement of the selected solution abstractions. Note that this model represents a
conceptual view of the software architecture synthesis process and does not enforce
specific control flows between that implement various processes. In the following we
will explain the concepts and functions of both parts of the model.

                                               

30 Note that this model conforms to the CPC model described in chapter 2.
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Figure 4.4 Conceptual model for Architecture Synthesis

Solution Definition

The concept Requirement Specification represents the requirements of the stakeholders
who are interested in the development of a software architecture.

The concept Technical Problem represents the problem specification that is actually to
be solved. The model thus separates the concepts Requirement Specification and
Technical Problem.

The function Formulate defines the process for searching and representing the
problems that need to be solved for the architecture development.

The concept Sub-Problem represents a sub-problem of the identified problem.

The function Select represents the process for selecting the corresponding sub-
problem from the problem.

The concept Solution Domain Knowledge represents the solution domain knowledge
that is needed for solving the sub-problem.
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The function Search represents the process for searching the solution domain
knowledge for a given problem.

The concept Solution Abstraction represents the extracted solution from the solution
domain knowledge.

The function Extract represents the process for extracting the solution abstractions
from the solution domain knowledge.

The concept Solution Structure Specification represents the specification of the
extracted solution abstraction.

The function Specify represents the process for specifying the solution abstraction.

The concept Architecture Description represents the architecture description so far.

The function Compose represents the refinement of the overall-architecture
description with the concept Solution Structure Specification.

The function Discover represents the process of discovering new sub-problems when
new solution abstractions are extracted from the solution domain knowledge.

The function Impact represents the process of refining the requirement specification
from the results of the architecture specification.

Solution Control

The part Solution Control has conceptual relations with the part Solution Definition
through the functions Provide, Express and Refine.

The function Provide represents the process for providing the quality criteria and
constraints that are imposed on the solution. The concept Quality Criteria/Constraints
represents these criteria and constraints of the (sub-) problem. These are derived
from the technical problems and/or the solution domain knowledge.

The function Express represents a formalization of the solution abstraction for
evaluation purposes. Typical formalizations may be the quantification into
mathematical models.

The function Apply represents the process for measurement of the expressed solution
abstraction using the provided quality criteria/constraints.

The concept Heuristic Rules / Optimization Techniques represents the optimization of
the formalizations of the solution abstractions. It can be based on mathematical
optimization techniques or heuristic rules.

The function Refine represents the process of refining the solution abstraction
according to the results of the optimization techniques.
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4.3 Example Project:
Transaction Software Architecture Design

The Integrated New European Dealer Information System project (INEDIS) has been
carried out as a collaborative project between the TRESE group of the University of
Twente and Siemens-Nixdorf, The Netherlands. The project dealt with the
development of a distributed car dealer information system in which different car
dealers are connected through a network. The system needs to provide automated
support for processes such as workshop processing, order processing, stock
management, new and used car management, and financial accounting. The car
dealer system should execute the provided tasks consistently and effectively. The
meaning of consistency depends on any a priori constraints, which must be
guaranteed that they will never be violated. For example, two clients may not
reserve the same car at the same time.

There are two main factors that threaten the consistency of data in a distributed
system: concurrency and failures. In case of concurrency the executions of programs
that access the same objects can interfere. When a failure occurs, one or more
application programs may be interrupted in midstream. Since a program is written
under the assumption that its effects are only correct if it would be executed in its
entirety, an interrupted program may lead to inconsistencies as well. To achieve data
consistency distributed systems should include provision for both concurrency and
recovery from failures. The implementation of these concurrency and recovery
mechanisms, however, should be transparent to the application program developers,
since they will need only the primitives and don’t want to be bothered with
implementation details. Atomic transactions, or simply transactions, are a well-known
and fundamental abstraction which provide the necessary concurrency control and
recovery mechanisms for the application programs in a transparent way.
Transactions relieve application programmers of the burden of considering the
effects of concurrent access to objects or various kinds of failures during execution.
Atomic transactions have proven to be useful for preserving the consistency in many
applications like airline reservation systems, banking systems, office automation
systems, database systems and operating systems.

The car dealer information system also required the use of atomic transactions. The
system would be used in different countries and by different dealers each requiring
dedicated transaction protocols. Therefore, a basic requirement of the system was to
identify common patterns of transaction systems and likewise provide a stable
architecture of atomic transactions that could be customized to the corresponding
needs.
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Next to the need for adaptability at initialization time the system required also
adaptation at run-time. The system may be constituted of a large number of
applications with various characteristics, operates in heterogeneous environments,
and may incorporate different data formats. To achieve optimal behavior, this
requires transactions with dynamic adaptation of transaction behavior, optimized
with respect to the application and environmental conditions, and data formats. The
adaptation policy, therefore, must be determined by the programmers, the operating
system or the data objects. Further, reusability of the software is considered as an
important requirement to reduce development and maintenance costs.

4.4 Synthesis-based Software Architecture Design

In this section the synthesis-based software architecture design process that
implements the process of the Architecture Synthesis Model of Figure 4.4 will be
described. This approach is illustrated in Figure 4.5.

The figure uses the graphical notation from Hierarchical Task Analysis (HTA)
[Diaper 89b] in which activities are represented in hierarchical order. Each
numbered box represents an activity that can be refined using a plan. Each plan
represents a flow diagram describing the causal sequencing of the activities. The
double-headed arrows represent interaction between two activities. The diamond
with a question mark represents the validation of a step.

The following sections are organized around the basic process of the approach.
Section 4.4.1 describes the Requirements Analysis process, section 4.4.2 the Problem
Analysis process, section 4.4.3 the Solution Domain Analysis process, section 4.4.4
Alternative Space Analysis process and finally section 4.4.5 the Architecture Specification
process.
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Figure 4.5 Synthesis-based Software Architecture Design Approach

4.4.1 Requirements Analysis

The architecture design is initiated with the requirements analysis phase in which
the basic goal is to understand the stakeholder requirements. Stakeholders may be
managers, software developers, maintainers, end-users, customers etc. [Prieto-Diaz
& Arrango 91]. In the synthesis-based approach the well-known requirement
analysis techniques such as textual requirement specifications, use-cases [Jacobson et
al. 99] and scenarios [Kruchten 95], constructing prototypes and defining finite state



Chapter 4 - Architecture Synthesis Process

100

machine modeling are used. Informal requirement specifications serve as a first basis
for the requirements analysis process and is generally defined by interacting with
the clients. Use cases provide a more precise and broader perspective of the
requirements by specifying the external behavior of the system from different user
perspectives. Scenarios are instances of use cases and define the dynamic view and
the possible evolution of the system. Prototypes are used to define the possible user
interfaces and may further help to clarify the desired behavior of the system. Finally,
for safety-critical systems rigorous approaches such as state transition diagrams or
formal specification languages may be used.

These techniques have been applied in different approaches and have shown to be
useful in supporting the analysis and understanding of the client requirements. We
will not elaborate on them in this thesis and refer for detailed information to the
corresponding publications [Thayer et al. 97] [Sommerville & Sawyer 97]
[Loucopoulos & Karakostas 95].

Example
At the start of the project the initial requirement specification was given by
the client [Ahsmann & Bergmans 95]. We interviewed developers and
managers of the project to extract the basic requirements for the INEDIS
system [Tekinerdogan 95a]. We further analyzed the project literature, which
included user’s guide, manuals, design and implementation documentation
and case studies. In addition we experimented with the existing NEDIS
system in a real environment and identified the basic requirements for the
further releases. Thereby, we were supported by the developer and
maintainers of the system. Next to the overall requirements of the INEDIS
system we focused on the requirements that were specific for atomic
transactions [Tekinerdogan 95b][Tekinerdogan 96]. From this study we were
able to set up the basic requirements that we expressed in use cases.

Figure 4.6 represents the use case model for transaction processing. It has one
actor, Dealer, and four use cases, namely initiate transaction, start transaction,
abort transaction, and commit transaction. The use case initiate transaction will be
performed for describing and preparing a program to be used as a
transaction. The use case start transaction will invoke the operations to access
the transaction objects. Finally, the use cases abort transaction and commit
transaction will describe the abort respectively the commit actions.
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initiate transaction

start transaction

commit transaction

abort transaction

Dealer

Figure 4.6 A use case model for the transaction processing in the INEDIS system

For a more detailed requirements analysis we refer to the project’s
requirements analysis documents [Tekinerdogan 95a][Tekinerdogan
95b][Tekinerdogan 96].

4.4.2 Technical Problem Analysis

The requirements analysis process provides an understanding of the client
perspective of the software system. As it is described in Figure 4.5, the next step
involves the technical problem analysis process in which client requirements are
mapped to technical problems. This is to say that the architecture design process is to
be considered as a problem solving process in which the solution represents an
architecture design. The problem analysis process consists of the following steps:

1. Generalize the Requirements: whereby the requirements are abstracted and
generalized.

2. Identify the Sub-Problems: whereby technical problems are identified from the
generalized requirements.

3. Specify the Sub-Problems: whereby the overall technical problem is decomposed
into sub-problems.

4. Prioritize the Sub-Problems: whereby the identified technical problems are
prioritized before they are processed.

Let us explain these processes in more detail now.
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Generalize the requirements

Discovering the problems from a requirement specification is not a straightforward
task. The reason for this is that the clients may not be able to accurately describe the
initial state and the desired goals of the system. The client requirements may be
specific and provide only specific wordings of a more general problem. Therefore, to
provide the broader view and identify the right problems we abstract and generalize
from the requirement specification and try to solve the problem at that level31. Often,
this abstraction and generalization process allows to define the client’s wishes in
entirely different terms and therefore may suggest and help to discover problems
that were not thought of in the initial requirements.

Identify sub-problems

Once the requirement specification has been put into a more general and broader
form, we derive the technical problem that consists usually of several sub-problems.
At this phase, architecture design is considered as a problem solving process.
Problem solving is defined as the operation of a process by which the transformation
from the initial state to the goal is achieved [Newell & Simon 76]. We need thus first
to discover and describe the problem. For this, in the generalized requirement
specification we look for the important aspects that needs to be considered in the
software architecture design [Tekinerdogan & Aksit 99]. These aspects are identified
by considering the terms in the generalized requirements specification, the general
knowledge of the software architect and the interaction with the clients. This process
is supported by the results of the requirements analysis phase and utilizes the
provided use-case models, scenarios, prototypes and formal requirements models.

Specify sub-problems

The identification of a sub-problem goes in parallel with its specification. The major
distinction between the identification and the specification of a problem is that the
first activity focuses on the process for finding the relevant problems, whereas the
second activity is concerned with its accurate formalization. A problem is defined as
the distance between the initial state and the goal. Thereby, the specification of the
technical problems consists of describing its name, its initial state and its goal.

                                               

31 In mathematics, solving a concrete problem by first solving a more general problem is termed as the
Inventor’s Paradox [Polya 57] [Lieberherr 96]. The paradox refers to the fact that a general problem has
paradoxically a simpler solution than the concrete problem.
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Prioritize sub-problems

After the decomposition of the problem into several sub-problems the process for
solving each of the sub-problems can be started. The selection and ordering in which
the sub-problems are solved, though, may have an impact on the final solution.
Therefore, it is necessary to prioritize and order the sub-problems and process the
sub-problems according to the priority degrees. The prioritization of the sub-
problems may be defined by the client or the solution domain itself. The latter may
be the case if a sub-problem can only be solved after a solution for another sub-
problem has been defined.

Example
We generalized the INEDIS requirement specification [Ahsmann & Bergmans
95] and mapped these to the technical problems. For example, we generalized
the requirements for the various scheduling techniques. In the original
requirement specification and the interview with the stakeholders we
identified that only two concurrency control approaches were used, namely
optimistic and aggressive locking. Attempts were made to adapt between
these two concurrency control mechanisms. After our discussion with the
stakeholders [Tekinerdogan 95b] it followed that the system needed also other
types of concurrency control protocols and the run-time adaptation had to be
defined for these as well.

•  P0
Name: Provide adaptable architecture of atomic transactions
Initial State: This is the overall problem. Initially no transaction architecture
design was available.
Goal: Identify the fundamental abstractions of transactions and design the
atomic transaction software architecture that can be reused for different
dealers and includes dynamic adaptation mechanisms for the different
transaction protocols.

In parallel with our generalization of the requirements we were able to define
the different sub-problems, which are listed in the following:

•  P1
Name: Provide transparent concurrency control.
Initial State: Limited concurrency control techniques.
Goal: Determine the set of concurrency control techniques that are required

and provide this in a reusable form.
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•  P2
Name: Provide transparent recovery techniques.
Initial State: Limited recovery techniques based on simple data types.
Goal: Determine the set of recovery techniques that can be used for various

kinds of data types and provide this in a reusable form.

•  P3
Name: Provide transparent transaction management techniques.
Initial State: Transaction management is primitive and is based on flat

transactions only. The Start, Commit and Abort protocols are fixed.
Goal: Provide various transaction management techniques that can be applied

for advanced transactions such as long transactions and nested
transactions. Provide the various start, commit and abort protocols in a
reusable format.

•  P4
Name: Provide adaptable transaction protocols based on transaction, system

and data criteria.
Initial State: Selection of transaction protocols such as transaction

management, concurrency control and recovery protocol is fixed.
Goal: Provide the means to adapt the transaction protocols both on compile-

time and run-time. Adaptation mechanism should be determined by
programmers, operating system or the data object characteristics.

After interactive discussions with the stakeholders the above sub-problems
have been prioritized in the given order, thus, P1, P2, P3 and P4. Figure 4.7
represents the problem structure diagram. In the problem structure diagram the
nodes represent the technical problems and the lines the nesting relations. The
nodes are numbered according to their nesting level. The problem structure
diagram helps to sharpen and improve the understanding of the problem and
can be used to reach a consensus with the client on the addressed problems.
Note that the problem structure diagram in Figure 4.7 includes also the sub-
problems of the problems that we described above. These sub-problems have
been only identified during the refinement process after the solution domain
analysis process. We will explain these in later sections. From this it follows
that the problem structure diagram is not static but probably changes during
the architecture design process because the problem may not be analyzed
from a complete isolation from the solution domain [Cross 89].
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Figure 4.7 Problem structure diagram for the example project

4.4.3 Solution Domain Analysis

The Solution Domain Analysis process aims to provide a solution domain model
that will be utilized to extract the architecture design solution. It consists of the
following activities:

1. Identify and prioritize the solution domains for each sub-problem

2. Identify and prioritize knowledge sources for each solution domain.

3. Extract solution domain concepts from solution domain knowledge.

4. Structure the solution domain concepts.

5. Refine the solution domain concepts.

In the following we will explain these sub-processes. In Figure 4.5, the first four
activities are represented from plan 3.1 to plan 3.4. The refinement of the solution
domain concepts is represented by a directed arrow from plan 0.3 to plan 0.1.
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To understand the relations between these activities Figure 4.8 represents a
conceptual model for illustrating the relations between the concepts Technical
Problem, Sub-Problem, Solution Domain, and Solution Domain Concept.

Solution
Domain

Knowledge
Source

Technical
Problem

includes

Solution
Domain
Concept

Sub-
Problem

includes

solution
provided by derive

solution
provided by

solves

solves*

1..*

1..*1..*

1..*

Figure 4.8 The relations from Problem to Solution Domain Concept

Hereby, the rounded rectangles represent the concepts and the directed arrows
represent the associations between these concepts. From the figure it follows that for
each Technical Problem a solution is provided by one or more Solution Domains. The
concept Problem includes zero or more Sub-Problems. Each Solution Domain includes 1
or more Knowledge Sources from which 1 or more Solution Domain Concepts may be
derived that solves the concepts Problem and Sub-Problem.

Identify and Prioritize the Solution Domains

For the overall problem and each sub-problem we search for the solution domains
that provide the solution abstractions to solve the technical problem. The solution
domains for the overall problem are more general than the solution domains for the
sub-problems. In addition, each sub-problem may be recursively structured into sub-
problems requiring more concrete solution domains on their turn.

An obstacle in the search for solution domains may be the possibly large space of
solution domains leading to a time-consuming search process. To support this
process, we look for categorizations of the solution domain knowledge into smaller
sub-domains. There are different categorization possibilities [Glass & Vessey 95]. In
library science, for example, the categories are represented by facets that are
groupings of related terms that have been derived from a sample of selected titles
[Rubin 98]. In [Aksit 00], the solution domain knowledge is categorized into
application, mathematical and computer science domain knowledge. The application
domain knowledge refers to the solution domain knowledge that defines the nature
of the application, such as reservation applications, banking applications, control
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systems etc. Mathematical solution domain knowledge refers to mathematical
knowledge such as logic, quantification and calculation techniques, optimization
techniques, etc. Computer science domain refers to knowledge on the computer
science solution abstractions, such as programming languages, operating systems,
databases, analysis and design methods etc. This type of knowledge has been
recently compiled in the so-called Software Engineering Body of Knowledge
(SWEBOK) [Bourque et al. 99]. Notice that our approach does not favor a particular
categorization of the solution domain knowledge and likewise other classifications
besides of the above two approaches may be equally used.

If the solution domains have been adequately organized one may still encounter
several problems and the solution domain analysis may not always warrant a
feasible solution domain model. This is especially the case if the solution domains
are not existing or the concepts in the solution domain are not fully explored yet
and/or compiled in a reusable format. Figure 4.9 shows the flow diagram for the
feasibility study on solution domain analysis. Hereby, the diamonds represent
decisions, the rectangles the processes and the rounded rectangle the termination of
the flow process.

Solution Domain
Existing?

Solution Domain
(Sufficiently)
Specified?

Reuse Solution
Domain Model

Specify Solution
Domain Model

Initiate Research

Terminate
Feasibility
Analysis

No

No

Yes

Yes

Figure 4.9 Flow diagram for feasibility study on solution domain analysis

If the solution domain knowledge is not existing, one can either terminate the
feasibility analysis process or initiate a scientific research to explore and formalize
the concepts of the required solution domain. The first case leads to the conclusion
that the problem is actually not (completely) solvable due to lack of knowledge. The
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latter case is the more long-term and difficult option and falls outside the project
scope.

If a suitable solution domain is existing and sufficiently specified, it can be (re)used
to extract the necessary knowledge and apply this for the architecture development.
It may also happen that the solution domain concepts are well-known but not
formalized [Shaw & Garlan 96]. In that case it is necessary to specify the solution
domain.

Identify and Prioritize Knowledge Sources

Each identified solution domain may cover a wide range of solution domain
knowledge sources. These knowledge sources may not all be suitable and vary in
quality. For distinguishing and validating the solution domain knowledge sources
we basically consider the quality factors of objectivity and relevancy. The objectivity
quality factor refers to the solution domain knowledge sources itself, and defines the
general acceptance of the knowledge source. Solution domain knowledge that is
based on a consensus on a community of experts has a higher objectivity degree than
solution domain knowledge that is just under development. The relevancy factor
refers to the relevancy of the solution domain knowledge for solving the identified
technical problem.

The relevancy of the solution domain knowledge is different from the objectivity
quality. A solution domain knowledge entity may have a high degree of objective
quality because it is very precisely defined and supported by a community of
experts, though, it may not be relevant for solving the identified problem because it
addresses different concerns. To be suitable for solving a problem it is required that
the solution domain knowledge is both objective and relevant. Therefore, the
identified solution domain knowledge is prioritized according to their objectivity
and relevancy factors. This can be expressed in the empirical formula [Aksit 00]:

priority(s) = (objectivity(s), (relevance(s))

Hereby priority, objectivity and relevance represent functions that define the
corresponding quality factors of the argument s, that stands for solution domain
knowledge source. For solving the problem, first the solution domain knowledge
with the higher priorities is utilized. The measure of the objectivity degree can be
determined from general knowledge and experiences. The measure for the relevancy
factor can be determined by considering whether the identified solution domain
source matches the goal of the problem. Note, however, that this formula should not
be interpreted too strictly and rather be considered as an intuitive and practical aid
for prioritizing the identified solution domain knowledge sources rather.
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Example
Let us now consider the identification and the prioritization of the solution
domains for the given project example. For the overall problem, a solution is
provided by the solution domain Atomic Transactions. Table 4.1 provides the
solution domains for every sub-problem.

SUB-PROBLEM SOLUTION DOMAIN

P1 Transaction Management

P2 Concurrency Control

P3 Recovery

P4 Adaptability

Table 4.1 The solution domains for the sub-problems

The prioritization of these solution domains was defined as in the above order
from the top to the bottom.

ID KNOWLEDGE SOURCE FORM

KS1
Concurrency Control & Recovery in Database
Systems [Bernstein et al. 87] Textbook

KS2 Atomic Transactions [Lynch et al. 94] Textbook

KS3 An Introduction to Database Systems [Date 90] Textbook

KS4
Database Transaction Models for Advanced
Applications [Elmagarmid 92] Textbook

KS5 The design and implementation of a distributed
transaction system based on atomic data types
[Wu et al. 95]

Journal paper

KS6 Transaction processing: concepts and techniques
[Gray & Reuter 93] Textbook

KS7 Principles of Transaction Processing
[Bernstein & Newcomer 97] Textbook

KS8 Transactions and Consistency in Distributed Database
Systems [Traiger et al. 82] Journal paper

Table 4.2 A selected set of the identified knowledge sources for the overall solution domain

For the overall problem and the corresponding solution domain of Atomic
Transactions, we could find sufficient knowledge sources. Our identified
solution domain knowledge sources consisted of managers, system
developers, maintainers, documentation, literature on transactions and the
existing NEDIS system. However, among these different knowledge sources
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we assigned higher priority values to the literature on atomic transaction
systems. Table 4.2 provides the selected set of knowledge sources for the
overall solution domain.

The table consists of three columns that are labeled as ID, Knowledge Source
and Form that respectively represent the unique identifications of the
knowledge sources, the title of the knowledge source and the representation
format of the knowledge source. The table includes the knowledge sources
that describe atomic transactions in a general way. Knowledge sources that
deal with a specific aspect of transaction systems, for example such as
deadlock detection mechanisms, have been temporarily omitted and are
identified when the corresponding sub-problems are considered.

In the same manner we looked for knowledge sources for the individual sub-
problems and we were able to identify many knowledge sources for the
solution domains Transaction Management, Concurrency Control and Recovery.
The solution domain Adaptability was more difficult to grasp than the other
ones. For this we did a thorough analysis on the notion of adaptability and
studied various possibly related publications such as control theory [Roxin
97][Foerster 79][Umplebey 90]. In addition we organized a workshop on
Adaptability in Object-Oriented Software Development [Tekinerdogan &
Aksit 97] [Aksit et al. 96].

As an example, Table 4.3 shows a selected set of the identified knowledge
sources for the solution domain Concurrency Control.

ID KNOWLEDGE SOURCE FORM

KS1 Concurrency Control in Advanced Database
Applications [Barghouti & Kaiser 91] Journal paper

KS2 Concurrency Control in Distributed Database Systems
[Cellary et al. 89] Textbook

KS3
The theory of Database Concurrency Control
[Papadimitriou 86]. Textbook

KS4
Concurrency Control & Recovery in Database Systems
[Bernstein et al. 87] Textbook

KS5
Concurrency Control and Reliability in Distributed
Systems [Bhargava 87] Journal paper

KS6
Concurrency Control in Distributed Database Systems
[Bernstein & Goodman 83] Textbook

Table 4.3 A selected set of the identified knowledge sources for
the solution domain CONCURRENCY CONTROl
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Note that the knowledge source KS4 has also been utilized for the overall
solution domain. The reason for this is that this knowledge source is both
sufficiently abstract to be suitable for the overall solution domain and
provides detailed information on the solution domain Concurrency Control.

Extract Solution Domain Concepts from Solution Domain Knowledge

Once the solution domains have been identified and prioritized, the knowledge
acquisition from the solution domain sources can be initiated. The solution domain
knowledge may include a lot of knowledge that is covered by books, research
papers, case studies, reference manuals, existing prototypes/systems etc. Due to the
large size of the solution domain knowledge, the knowledge acquisition process can
be a labor-intensive activity and as such a systematic approach for knowledge
acquisition is required [Partridge & Hussain 95], [Gonzales & Dankel 93], [Wielinga
et al. 92].

In our approach we basically distinguish between the knowledge elicitation and concept
formation process. Knowledge elicitation focuses on extracting the knowledge and
verifying the correctness and consistency of the extracted data. Hereby, the
irrelevant data is disregarded and the relevant data is provided as input for the
concept formation process. Knowledge elicitation techniques have been described in
several publications and its role in the knowledge acquisition process is reasonably
well-understood [Wielinga et al. 92], [Meyer & Booker 91], [Diaper 89a], [Firlej &
Hellens 91].

The concept formation process utilizes and abstracts from the knowledge to form
concepts32. In the literature, several concept formation techniques have been
identified33 [Parsons & Wand 97][Reich & Fenves 91][Lakoff 87]. One of the basic
abstraction techniques in forming concepts is by identifying the variations and
commonalities of extracted information from the knowledge sources [Stillings et al.
95][Howard 87]. Usually a concept is defined as a representation that describes the
common properties of a set of instances and is identified through its name.

                                               

32 Recall from chapter 3 that there are basically three views of concepts, including the classical view,
the prototype view and the exemplar view. Concept forming through abstraction from instances is
basically applied in the classical view and the prototype view [Lakoff 87].

33 This process of concept abstraction is usually considered as a psychological activity that is often
associated with the term ’experience’ [Stillings et al. 95]. Experts, i.e. persons with lots of experience,
own a larger set of concepts and are better in forming concepts than persons who lack this experience.
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Example
We analyzed and studied the identified solution domain knowledge
according to the defined priorities and extracted the fundamental concepts.
After considering the commonalities and variabilities of the extracted
information from the solution domains we could extract the following
solution domain concepts:

ATOMIC TRANSACTION SYSTEMS

An atomic transaction system is a well-known and fundamental abstraction
which provide the necessary concurrency control and recovery mechanisms
for the application programs. Transactions relieve application programmers
of the burden of considering the effects of concurrent access to objects or
various kinds of failures during execution. Transactions simplify the
treatment of failures and concurrency and may thereby provide the
application programmer location transparency, replication transparency,
concurrency transparency and failure transparency. Informally atomic
transactions are characterized by two properties: serializability and
recoverability [Bernstein et al. 87]. Serializability means that the concurrent
execution of a group of transactions is equivalent to some serial execution of
the same set of transactions. Recoverability means that each execution
appears to be all or nothing; either it executes successfully to completion or it
has no effect on data shared with other transactions.

TRANSACTION

The concept Transaction represents a transaction block as defined by the
programmer.

TRANSACTIONMANAGER

The concept TransactionManager provides mechanisms for initiating, starting
and terminating the transaction. It keeps a list of the objects that are affected
by the transaction. If a transaction reaches its final state successfully, then
TransactionManager sends a commit message to the corresponding objects to
terminate the transaction. Otherwise an abort message is sent to all the
participating objects to undo the effects of the transaction. The
TransactionManager concept includes knowledge about a variety of commit
and abort protocols.

POLICYMANAGER

The concept PolicyManager determines the mechanisms for adapting
transaction protocols. In most publications, the PolicyManager is included in
the TransactionManager. We considered defining transaction policies as a
different concern and therefore defined it as a separate concept.
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SCHEDULER

The concept Scheduler is responsible for the concurrency control mechanism. It
provides the concurrency control by restricting the order in which the
operations are processed. Incoming operations may be accepted, rejected or
put in a delay queue. Concurrency control may be based on syntactic ordering
of the operations (e.g. read, write) or it may use semantic information of the
transaction, such as information on the accessed data types. Traditional
concurrency control techniques are locking, timestamp ordering and
optimistic scheduling.

RECOVERYMANAGER

The concept Recovery Manager is responsible for the recovery in case of
transaction aborts, system failures and/or media failures. Failures may have
an effect on data objects and on transactions that read the data objects.
Recovery of the data objects needs caching and undo/redo mechanisms.
Recovery of the effected transactions requires scheduling for recovery so that
failures are prevented.

DATAMANAGER

The concept DataManager controls the access to its object and keeps it
consistent by applying concurrency control and recovery mechanisms.
Further it may be responsible for the version management and the replication
management of the data objects.

DATA OBJECT

The concept Data Object represents a data object that needs to be accessed in a
consistent way. This means that the object must fulfill the consistency
constraints set by the application.

Structure the Solution Domain Concepts

The identified solution domain concepts are structured using generalization-
specialization relations and part-whole relations, respectively. In addition, also other
structural association relations are used. Like the concepts themselves the structural
relations between the concepts are also derived from the solution domains.

For the structuring and representation of concepts, so-called concept graphs are used.
A concept graph is a graph which nodes represent concepts and the edges between the
nodes represent conceptual relations. The notation of concept graphs is given in the
following figure:
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operation1()
operation2()
...

attribute1()
attribute2()
...

<concept>
ConceptName

Association

Aggregation

Specialization

Figure 4.10 Notation for concept graphs

The notation for a concept is a stereotype of the class notation in the Unified
Modeling Language [Booch et al. 99]. A stereotype represents a subclass of a
modeling element with the same form but with a different intent. The stereotype for
a concept Figure 4.10 is identified by the keyword <concept>34.

Example
Figure 4.11 shows the structuring of the solution domain concepts in the top-
level concept graph of transaction systems. The concept Transaction Manager
has an association relation manages with the concept Transaction. This means
that Transaction Manager is responsible for the atomic execution of Transaction.
The association relation manages between concept DataManager and Data
Object defines the maintenance of the consistency.

For keeping the Data Object consistent the Datamanager utilizes and
coordinates the concepts Scheduler and RecoveryManager by means of the
association relation coordinates. The concept PolicyManager coordinates the
activities of the concepts TransactionManager and DataManager and defines the
adaptation policy. Finally, the association relation accesses between Transaction
and Data Object defines a read/update relation between these two.

                                               

34 Note that a class may not be similar to a concept. Although both classes and concepts are generally
formed through an abstraction process this does not imply that every abstraction is a concept. A
concept is a well-defined and stable abstraction in a given domain. Although the notation that we use
for representing concepts is similar to the notation of classes, one should be aware that concepts are at
a different level than classes and should be treated as such.
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Figure 4.11 The top-level concept graph of an atomic transaction system

Refinement of Solution Domain Concepts

After identifying the top-level conceptual architecture we focus on each sub-problem
and follow the same process. Recall that in Figure 4.5, this refinement process is
represented by the arrow directed from plan 0.3 to plan 0.1. The refinement may be
necessary if the architectural concepts have a complex structure themselves and this
structure is of importance for the eventual system.

The ordering of the refinement process is determined by the ordering of the
problems with respect to their previously determined priorities. Architectural
concepts that represent problems with higher priorities are handled first. In the
following we will refine the architectural concepts according to this ordering. The
refinement requires executing the plans 0.1 to 0.3 for each selected concept.
However, due to space limitations we will only describe these plans globally.

Example
In the following we will shortly describe the refinement for each concept of
the atomic transaction architecture.

Refining the TransactionManager concept

To refine the concept TransactionManager we looked for the knowledge
sources that specifically dealt with transaction management or included
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detailed information about this. We identified several publications for this
purpose [Elmagarmid 92][Bernstein & Newcomer 97],[Moss 85][Jajodia &
Kerschberg 97].

In parallel with the solution domain analysis process we tried to refine
problem P3 for transparent transaction management, as it has been described
in the problem structure diagram in Figure 4.7. This resulted in the definition
of the sub-problems P3.1 Start Protocol, describing the need for defining a
transaction start protocol, P3.2 Commit/Abort Protocol, describing the need for
a commit/abort protocol and P3.3 Nested Transactions, describing the need for
nested transactions. The specifications of these sub-problems were again
defined in close interaction with the client. After comparison of the concepts
in these knowledge sources we could extract the commonalities and derive
the architecture for the concept TransactionManager as it is given in Figure
4.12.

<concept>
Transaction Parent

Authority

<concept>
Nested Transaction

Manager

<concept>
Transaction Manager

<concept>
Flat Transaction

Manager

<concept>
Initiation Protocol

<concept>
Commit Protocol

<concept>
Child Management

applies <concept>
Abort Protocol

Figure 4.12 Conceptual architecture of TransactionManager

The concept Transaction Manager applies the concepts Initiation Protocol, Abort
Protocol and Commit Protocol for starting and terminating a transaction. The
Initiation Protocol represents the starting of the transaction and prepares the
program to be executed. The Abort Protocol and Commit Protocol concepts refer
to the protocols that terminate the transaction. The Abort Protocol will be
executed if the transaction has failed and its effects on the data objects and the
other transactions need to be restored. The Commit Protocol will be executed if
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the transaction protocol has succeeded and the results need to be made
persistent.

Transactions may consist of other transactions as well. The composition of
sub-transactions into one transaction is called a nested transaction [Moss 85].
Hereby the transactions are hierarchically ordered whereby a parent
transaction includes several other sub-transactions. The advantages of nested
transactions over flat transactions is that they provide internal parallelism of
the sub-transactions and finer control over failures by limiting the effects of
the failure to a sub-transaction. This is especially important for long and
complex transactions that have, for example, higher failure risks. In Figure
4.12, the concept Transaction Parent Authority refers to the authority of the
parent on the sub-transactions with respect to the commit protocols. In the
literature, basically a distinction is made between closed nested transactions and
open nested transactions [Elmagarmid 92]. In closed nested transactions the sub-
transactions are not allowed to commit before the parent transaction commits,
whereas in open nested transactions the sub-transactions can commit before the
parent commits. The concept Child Management refers to the composition
strategy of the sub-transactions into one complete transaction. Usually this is
done at compile time, but several approaches have illustrated the practical use
of dynamic composition and decomposition of sub-transactions [Pu et al. 88]

Refining the DataManager concept

Figure 4.13 shows the architecture for the concept DataManager. The basic
knowledge sources that we adopted to identify the common abstractions of
data management techniques are derived from several publications [Weihl
90][Wu et al. 95][Guerraoui 94].
The concept Datamanager coordinates the concepts Scheduler and
RecoveryManager, which are respectively responsible for the scheduling of the
incoming concurrent operations and the recovery in case of failures. In
addition the concept DataManager uses the concepts VersionManager and
ReplicationManager for respectively managing multiple versions of the data
item and the replication of it at different locations. The version management
and the replication management were not addressed as separate problems in
the problem analysis phase. After interaction with the client it was decided to
omit these two issues and only consider the concurrency control and recovery
in the data management. If these were addressed as important problems then
we would update the problem structure diagram and attempt to provide
solutions for these problems in the later phases of the approach.
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<concept>
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Figure 4.13 Conceptual Architecture of DataManager

Refining the Scheduler concept

Figure 4.14 represents the architecture of the concept Scheduler. The selected
knowledge sources that we identified to extract this structure have been listed
in Table 4.3 in the sub-section on identifying and prioritizing knowledge
sources. In parallel with the solution domain analysis we refined the problem
structure diagram for the concept Scheduler and added the sub-problems P1.1
Syntactic Synchronization and P1.2 Performance Failure Detection. These
problems correspond to the solution domain concepts in the conceptual
architecture of Scheduler that consists of three sub-concepts: Synchronization
Scheme, Synchronization Strategy and Performance Failure Detector.

<concept>
Synchronization Scheme

<concept>
Scheduler

<concept>
Synchronization Strategy

<concept>
Performance Failure

Detector

adopts

adopts

Figure 4.14 Conceptual Architecture of Scheduler
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The concept Synchronization Scheme defines the synchronization approach by
accepting, rejecting or delaying the incoming operations. It addresses the
problem P1.1 Syntactic Synchronization in the problem structure diagram of
Figure 4.7. The syntactic synchronization may be basically through locking,
timestamp-ordering and optimistic concurrency control schemes. The concept
Synchronization Strategy also addresses the problem P1.1 Syntactic
Synchronization and refers to the adopted strategy in the applied concurrency
control algorithm. Basically a distinction is made between conservative and
aggressive schedulers. A conservative scheduler tends to delay operations
whereas an aggressive scheduler avoids these delays and aborts the operation
sooner. The concept Performance Failure Detector addresses the problem P1.2
Performance Failure Detection and concerns the detection of performance
failures such as deadlocks that are side effects of the used concurrency control
algorithms.

Refining the Recovery Manager Concept

The concept RecoveyManager is related to the problem P2. Transparent Recovery
that is depicted in the problem structure diagram in Figure 4.7. It has been
derived from the publications on recovery in transaction systems [Bernstein et
al. 87][Bhargava et al. 86][Hadzilacos 88][Haerder & Reuter 83]. In parallel
with refining the concept RecoveyManager we refined problem P2 and defined
the sub-problems P2.1 Recovery from Transaction Failures and P2.2 Recovery
from System Failures. The architecture for the concept RecoveryManager is given
in Figure 4.15.

<concept>
RecoveryManager

<concept>
LogManager

<concept>
Restarting

<concept>
Checkpointing

optimized
by

<concept>
Failure Atomicity

Synchronizer

inspects

Figure 4.15 Conceptual Architecture of RecoveryManager

The concept RecoveryManager consists of four sub-concepts Failure Atomicity
Synchronizer, Restarting, LogManager and Checkpointing. The effects of a
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transaction can be both on the accessed data objects and on other transactions
that access the same data object. To undo the effects of failures on data objects
the sub-concept LogManager is used for logging the data object. The sub-
concept Failure Atomicity Synchronizer order transaction operations to provide
the all-or-nothing property. The sub-concept Restarting is responsible for
recovering from system failures and initializes the transaction to its last
recoverable state by inspecting the logs of the LogManager. Thereby it uses
algorithms for undoing the actions of aborted and active transactions and
redoing the effects of transactions that have been committed before but not
made persistent yet. The sub-concept Checkpointing represents the
optimization of the restart process by making a snapshot or checkpoint of the
basic events in the system that may be used by the protocols of the concept
Restarting.

Refining the Policy Manager Concept

The concept PolicyManager is related to the technical problem P4. Provide
Adaptable Transaction Protocols. The identified knowledge sources for the
concept PolicyManager have been derived from several publications on control
systems [Dorf & Bishop 98][Shinners 98] and performance modeling [Kumar
96][Atkins & Coady 92][Highleyman 89][Agrawal 87][Carey 84]. The
PolicyManager evaluates a number of performance metrics and selects the
preferred transaction protocols with respect to these parameters. Examples of
performance metrics are the following:

1. Transaction throughput rate, which is the number of transactions completed
per second.

2. Response time, which is the measure of the time difference between a
transaction initiation and a successful termination of the transaction.

3. Blocking ratio, which is the average number that a transaction has to block
per commit.

4. Restart ratio, which is the average number that a transaction has to restart
per commit.

The conceptual architecture of PolicyManager is given in Figure 4.16. It
consists of the sub-concepts Sensor, Comparator, Decider and Actuator.
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Figure 4.16 Conceptual Architecture of PolicyManager

The concept Sensor keeps track of the changes in the system state and the
values of the performance parameters and provides this information to the
sub-concept Comparator that compares this information according to the
initialized criteria and goals that need to be met. For example, Comparator may
have defined different threshold values for the throughput parameter and
compares this with the perceived values of the throughput parameter and
inform the sub-concept Decider about the difference. Decider will then select an
adequate transaction protocol and inform the sub-concept Actuator about this
decision. Actuator will actually adapt the system with the required transaction
protocols. Note that this architecture may be implemented in various ways
such as a very simple adaptation algorithm or an expert-system based
selection. The flow of control between the different concepts can be
implemented in different ways as well.

4.4.4 Alternative Design Space Analysis

We define the alternative space as the set of possible design solutions that can be
derived from a given conceptual software architecture. The Alternative Design Space
analysis aims to depict this space and consists of the sub-processes Define the
Alternatives for each Concept and Describe the Constraints. Let us now explain these
sub-processes in more detail.

Define the Alternatives for each Concept

In the synthesis-based design approach the various architecture design alternatives
are largely dealt with by deriving architectural abstractions from well-established
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concepts in the solution domain that have been leveraged to the identified technical
problems. Each architectural concept is an abstraction from a set of instantiations
and during the analysis and design phases the architecture is realized by selecting
particular instances of the architectural concepts. An instance of a concept is
considered as an alternative of that concept. The total set of alternatives per concept
may be too large and/or not relevant for solving the identified problems. Therefore,
to define the boundaries of the architecture it is necessary to identify the relevant
alternatives and omit the irrelevant ones.

Let us now consider the process of alternative selection. The alternatives of a given
concept may be explicitly identified and published [Tekinerdogan 94]. In that case,
selecting alternatives for a concept is rather straightforward and depends only on the
solution domain analysis process. If the concepts have complex structures consisting
of sub-concepts then an alternative is defined as a composition of instances of
separate sub-concepts. The set of alternatives may be too large to provide a name for
each of them individually. Nevertheless, we need to depict the total set of
alternatives so that every one of them can be derived if necessary. We do this by
identifying the alternatives of each sub-concept first and then considering the
various compositions of these alternatives to provide the higher-level alternatives.

Example
Let us now consider the alternatives for the concepts in the top-level
architecture. We depict the alternative space by providing a table in which the
column headers represent the sub-concepts and each table entry represents an
instance of the sub-concept in the column header. For example, Table 4.4
represents the alternative space for the concept Scheduler. It has 4 columns, the
first one represents the numbering of alternatives and the second to the fourth
columns represents the sub-concepts of the concept Scheduler.

A.
SYNCHRONIZATION

SCHEME

B.
SYNCHRONIZATION

STRATEGY

C.
PERFORMANCE FAILURE

DETECTOR

1. Two Phase Locking Aggressive Deadlock Detector
2. Timestamp Ordering Conservative Infinite Blocking Detector
3. Optimistic Infinite Restart Detector
4. Serial Cyclic Restart Detector

Table 4.4. Alternatives of the sub-concepts of Scheduler

The sub-concept Synchronization Decision has four alternatives, namely, Two-
phase locking, Timestamp Ordering, Optimistic and Serial. The sub-concept
Synchronization Strategy has the alternatives Aggressive or Conservative. The
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alternatives of the sub-concept Performance Failure Detector detect performance
failures that may consist of deadlock, permanent blocking, cyclic restarting and
infinite restarting. Deadlock is defined as a state where two transactions are
mutually waiting for each other to release data objects necessary for their
completion. Permanent blocking occurs when a transaction waits indefinitely
for a data object granting because of a steady stream of other transactions
whose data access requests are always granted before. Cyclic restarting occurs
when two or more transactions continually cause mutual abortion of each
other. Infinite restarting occurs when a transaction is infinitely aborted because
of a steady stream of other transactions whose operations are always granted
before.

An alternative of the concept Scheduler is a composition of selections of the
alternatives of the sub-concepts. For instance, an alternative that may be
derived from Table 4.4 is the tuple (Two Phase Locking, Conservative, Deadlock
Detector) which represents a scheduler that uses aggressive two phase locking
protocol whereby a deadlock detection mechanism is used to remove the
deadlocks that may occur.

Table 4.5 represents the alternative space for the concept RecoveryManager.

A.
LOGMANAGER

B.
FAILURE

ATOMICITY
SYNCHRONIZER

C.
RESTARTING

D.
CHECKPOINTING

1. Operation Logging Recoverable Undo / Redo  Commit-Consistent
2. Deferred-Update Cascadeless No-Undo / Redo Cache-Consistent
3. Update-In-Place Strict Undo / No-Redo Fuzzy

No-undo / No-redo

Table 4.5 Alternatives of the sub-concepts of RecoveryManager

The sub-concept LogManager consists of three alternatives of logging
techniques. In the technique Operation Logging, the transaction’s operations
that access a data object are logged. In case of aborts other operations are
executed to undo the effects of the operations that were logged. Another
logging technique is to make a copy of the state of the object, which is called
image logging. Hereby, either the copy may be accessed or the original. The
former is called Deferred-Update Logging because updates to the original data
objects are deferred until commit time. The latter is called Update-In-Place
logging whereby the copy of the data object is installed on abort and originals
are left on commit. The sub-concept Failure Atomicity Synchronizer orders
operation in three possible ways and provides either recoverable, cascadeless
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aborts or strict executions. Restarting can be performed as a combination of
undo and redo protocols and as such there are four alternatives here. Finally,
the sub-concept Checkpointing consists of the three alternatives Commit-
Consistent, Cache-Consistent and Fuzzy checkpointing mechanisms.

An alternative of the concept RecoveryManager is the tuple (Operation Logging,
Strict, Undo-Redo, Commit-consistent), that represents a RecoveryManager which
applies Operation Logging, Strict executions, adopts Undo-Redo algorithm in
case of restarts and a Commit-Consistent checkpointing mechanism for
optimizing the restart procedure.

Describe Constraints between Alternatives

An architecture consists of a set of concepts that are combined in a structure. An
instantiation of an architecture is a composition of instantiations of concepts [Aksit et
al. 99][Aksit et al. 98]. The instantiations of these various concepts may be combined
in many different ways and likewise this may lead to a combinatorial explosion of
possible solutions. Hereby, it is generally impossible to find an optimal solution
under arbitrary constraints for an arbitrary set of concepts.

To manage the architecture design process and define the boundaries of the
architecture it is important to adequately leverage the alternative space. Leveraging
the alternative space means the reduction of the total alternative space to the
relevant alternative space. A reduction in the space is defined by the solution domain
itself that defines the constraints and as such the possible combination of alternatives.
The possible alternative space can be further reduced by considering only the
combinations of the instantiations that are relevant from the client’s perspective and
the problem perspective.

Constraints may be defined for the sub-concepts within a concept as well as among
higher-level concepts. We describe first the constraints among the sub-concepts
within a concept and later among the concepts. Binary constraints are the constraints
among two concepts. Constraints may be also defined for more than two concepts
together. We use the Object Constraint Language (OCL) [Warmer & Kleppe 99] that is
part of the UML to express the constraints over the various concepts.

Constraint identification is not only useful for reducing the alternative space but it
may also help in defining the right architectural decomposition. The existence of
many constraints between the architectural components provides a strong coupling
and as such it may refer to a wrong decomposition. This may result in a
reconsideration of the identified architectural structure of each concept.
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Example
From the solution domain we could identify several constraints that restrict
the alternative space of the architecture. In the following we will describe
examples of the constraints for the sub-concepts of the concepts Scheduler and
RecoveryManager [Weihl 90][Weihl 89][Guerraoui 94] using the Object
Constraint Language (OCL). In addition we will provide the constraints
among the concepts Scheduler and RecoveryManager. Figure 4.17 illustrates
three constraints for the sub-concepts of Scheduler.

1. Conservative Two Phase Locking schedulers need only either a Deadlock Detector or an

Infinite Blocking Detector.

if  self.SynchronizationScheme.oclIsTypeOf(TwoPhaseLocking)

and (self.SynchronizationStrategy.oclIsTypeOf(Conservative)

then self.PerformanceFailureDetector.oclIsTypeOf(Deadlock Detector) or

 self.PerformanceFailureDetector. oclIsTypeOf(Infinite Blocking Detector)

endif

2. Optimistic and timestamp ordering schedulers need only detectors for either an infinite

restart or a cyclic restart.

if  self.SynchronizationScheme.oclIsTypeOf(Optimistic)  or

(self.SynchronizationScheme.oclIsTypeOf(Timestamp Ordering)

then (self.PerformanceDailureDetector.oclIsTypeOf(Infinite Restart Detector) or

 (self.PerformanceFailureDetector.oclIsTypeOf(Cyclic Restart Detector)

endif

3. A serial scheduler does not need to detect failures.

if  self.SynchronizationScheme.oclIsTypeOf(Serial)

then self.PerformanceFailureDetector.oclIsTypeOf(nil)

endif

Figure 4.17 Constraints for the sub-concepts of Scheduler

The first constraint defines that for a scheduler with a two-phase locking
synchronization scheme and a synchronization strategy that is conservative
either a deadlock detector or an infinite blocking detector is needed. The reason for
this is that the other two performance failures, infinite restart and cyclic restart,
can never occur for this alternative of a scheduler [Cellary et al. 89]. The
second constraint indicates that optimistic and timestamp ordering schedulers
either need an infinite restart or cyclic restart detector. Finally, the third
constraint defines that a serial scheduler does not lead to performance failures
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because it orders operations of transactions serially and never delays or aborts
transactions.

Figure 4.18 illustrates the constraints for RecoveryManager. The first constraint
defines that a deferred-update recovery technique does not require an undo
process in case of restarts. This is because original data objects are not
accessed during the execution of transactions and only the copies are affected.
The second constraint defines that an update-in-place does not require a redo
process. The reason for this is that the original data objects are already
accessed during execution of transactions and on commit it is not necessary
anymore to install the effects of the transactions.

Figure 4.19 illustrates a constraint among the concept Scheduler and
RecoveryManager. It defines that a serial scheduler will not use a
synchronization protocol to provide atomicity, simply because no
concurrency is allowed for this scheduler.

1. Deferred-Update does not require undo process

if  self.LogManager.oclIsTypeOf(Deferred-Update)

then self.Restarting.oclIsTypeOf(No-Undo/Redo) or

         self.Restarting.oclIsTypeOf(No-Undo/No-Redo)

endif

2. Update-In-Place does not require redo process

if  self.LogManager.oclIsTypeOf(Update-In-Place Logging)

then self.Restarting.oclIsTypeOf(No-Redo/Undo) or

         self.Restarting.oclIsTypeOf(No-Redo/No-Undo)

endif

Figure 4.18 Constraints for the sub-concepts of RecoveryManager

1. A serial scheduler does not synchronize operations for recovery.

if  scheduler.SynchronizationScheme.oclIsTypeOf(Serial)

then recoveryManager.FailureAtomicitySynchronizer.oclIsTypeOf(nil)

endif

Figure 4.19 A constraint between Scheduler and RecoveryManager

Other constraints are identified for example for the commit and abort
protocols of the TransactionManager, which must be understood by the
different data managers in the system. If the protocols of the
TransactionManager are changed, then the protocols of the data managers
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must change accordingly. Due to space limitations we will not further
elaborate on the other constraints in this thesis.

4.4.5 Architecture Specification

It consists of the two sub-processes extracting semantics of the architecture and defining
dynamic behavior of the architecture.

Extract Semantics of the Architecture

We consider each concept separately to derive its semantics from the solution
domains to provide a more formal, but corresponding, specification.  As a format for
writing a formal specification we use:

<operation><pre-condition><post-condition>

Hereby, <operation> represents the name of the operation of a concept. The name
and the type of each concept variable are described in the part <declarations>. The
part <pre-conditions> describe the conditions and assumptions made about the
values of the concept variables at the beginning of <operation>. The part <post-
conditions> describe what should be true about the values of the variables upon
termination of <operation>. Note that this is just one particular way of specifying
architectures. For the specification of transaction architectures this type of
specification was appropriate, however, other applications may require different
specification mechanisms.

Example

Creating and Terminating Transactions

The architecture component Transaction represents the application program
that is executed as an atomic transaction. We can derive the semantics for this
component from the solution domain. For example, the following represents
the semantics of Transaction, as it has been adapted from [Lynch et al. 94].
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Transaction::Start
postcondition:

self.status=”running”

Transaction::Commit
postcondition:

self.status=”success”

Transaction::Abort
postcondition:

self.status=”fail”

….
// Additional operations

Figure 4.20 Specification of the interface of Transaction

A transaction can be started using the operation Start, which initializes the
transaction parameters and may include application specific operations before
the starting the transaction. The variable status represents the state of the
transaction and can have the values running, success or fail. The operations
Commit and Abort respectively commit and abort the transaction and may
include specific operations after the termination of the transaction. These
three operations are generic for most transaction applications. Other
operations may be added for specific transaction applications. For example, in
a car dealer system, operations such as Reserve_Car, Order_Car and
Request_CarInfo would be defined.

Every transaction will be managed by a TransactionManager that is basically
responsible for the creation, initialization and termination of the transactions.
The semantics of TransactionManager for managing flat transactions as
adapted from [Bernstein et al. 87] is presented in Figure 4.21.

TransactionManager includes the operations Start, RequestCommit, Commit and
Abort. Further it includes 5 boolean variables transaction_started,
transaction_committed, transaction_aborted, commit_requested and one variable
transaction that keeps the Transaction object. The operation Start initiates the
transaction and sets the boolean variable transaction_started to true. The
initiation of a transaction may include the assignment of, for example, unique
transaction id and/or timestamp. A commit of a transaction must always be
requested before, which is done by executing the operation Request_Commit.
This operation is only allowed if the transaction has been started but not
completed yet. The operations Commit and Abort terminate the transaction, set
the boolean variables accordingly and initialize the variable transaction to nil,
so that a new transaction can be started.
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TransactionManager::Start(T:Transaction)
postcondition:

self.transaction_started=true;
self.transaction = T;

TransactionManager::Request_Commit(T:Transaction)
precondition:

self.transaction_started= true;
self.transaction_committed = false;
self.transaction_aborted=false;

postcondition:
                               self.transaction_commitrequested= true;

TransactionManager::Commit(T:Transaction)
precondition:

self.transaction_commitrequested= true;
postcondition:

self.transaction_committed= true;
self.transacttion = nil.

TransactionManager::Abort(T:Transaction)
precondition:

self.transaction_started = true;
self.transaction_committed = false;
self.transaction_aborted=false;

postcondition:
self.transaction_aborted=true;
self.transaction = nil;

Figure 4.21 Specification of the interface for TransactionManager dealing with flat
transactions

TransactionManager component may also express nested transactions. The
specification of additional operations for a transaction manager for nested
transactions that we have adapted from the solution domain on nested
transaction [Moss 85] is given in Figure 4.22.

The operation Create_Subtransaction creates a subtransaction for the
corresponding transaction and sets the parent of the sub-transaction. A parent
transaction is not allowed to complete its own activity until its
subtransactions have terminated. This means that the commit and abort
operations need to be implemented accordingly. If a subtransaction aborts,
the parent can choose different actions, such as ignoring, triggering another
transaction or aborting itself. In flat transactions, after the confirmation of a
commit from the datamanagers the transaction was able to commit or to
abort. In nested transactions, the transaction needs first to report the result of
the termination to its parent transaction. In Figure 4.22, the operations
Report_Commit and Report_Abort inform the parent transactions on
respectively the commit and the abort of the sub-transaction. Depending on
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whether open nested transactions or closed nested transactions are
implemented the implementation of the commit and abort operations may
change accordingly.

TransactionManager::Create_SubTransaction(T:Transaction)
postcondition:

self.subtransactions = self.subtransactions ∪ {T};
T.parent = self.

TransactionManager::getParent()
postcondition:

(not(top_transaction and self.parent) or self

TransactionManager::Report_Commit(T:Transaction)
postcondition:
parent.committed_subtransactions = parent.committed_subtransactions ∪ {T};

TransactionManager::Report_Abort(T:Transaction)
postcondition:

parent.aborted_subtransactions = parent.aborted_subtransactions ∪ {T};

Figure 4.22 Specification for additional operations of TransactionManager for nested
transactions

Scheduler

The component Scheduler deals with the concurrency control of transaction
operations in order to keep the data object consistent. Figure 4.23 represents
an example of the semantics of the Scheduler that is based on two phase
locking. There are five operations, HandleOperation for read, HandleOperation
for write, CommitRequest, Commit and Abort. The operation HandleOperation
checks whether the operation can be abstracted to a read or write operation.
This means that the original operation does not need to be a read or write at
all. Subsequently, a check is done on whether the corresponding operation
conflicts with previously submitted operations of other transactions. The
conflict operation is hereby encapsulated and may depend on different
conflict rules for different operations. Before a Commit operation can occur
first a CommitRequest operation must be invoked. A CommitRequest operation
may also conflict with other operations and therefore this is also explicitly
checked. The Commit and Abort operations result in the release of the locks
that have been hold in the sets readlock_holders and writelock_holders of the
corresponding transaction are released.
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Scheduler::HandleOperation(T:Transaction, m: Operation)
for kind(m) = "read"
precondition:

there do not exist (T’,n) such that (T,m) conflicts with (T,m);
postcondition:

self.readlock_holders = self.readlock_holders ∪  (T,m);

Scheduler::HandleOperation(T:Transaction, m: Operation)
for kind(m) = "write"
precondition:

there do not exist (T’,n) such that (T,m) conflicts with (T,m);
postcondition:

self.writelock_holders = self.writelock_holders ∪  (T,m);

Scheduler::CommitRequest(T:Transaction)
precondition:

there do not exist (T’,n) such that (T,m) conflicts with (T,m);
postcondition:

self.commit_requested = self.commit_requested ∪  T;

Scheduler::Commit(T:Transaction)
precondition:

T ∈  self.commit_requested;
postcondition:

self.committed= self.committed ∪ {T};
self.readlock_holders = self.readlock_holders - T;
self.writelock_holders = self.writelock_holders - T.

Scheduler::Abort(T:Transaction)
precondition:
postcondition:

self.aborted= self.aborted ∪ {T};
self.readlock_holders = self.readlock_holders - T;
self.writelock_holders = self.writelock_holders - T.

Figure 4.23 Specification of the interface of Scheduler based on Locking

For the same architectural component Scheduler we may derive other
semantics from the solution domain on concurrency control. Figure 4.24
defines, for instance, the specification of the operations of a timestamp
ordering scheduler [Bernstein et al. 87]. The timestamp ordering scheduler
orders conflicting operations according to their timestamps that have been
assigned by TransactionManager. If two operation p and q are conflicting then
the timestamp ordering scheduler processes p before q if timestamp(p) <
timestamp(q).



Chapter 4 - Architecture Synthesis Process

132

Scheduler::HandleOperation(T:Transaction, m: Operation)
for kind(m) = "read"
precondition:

there do not exist (T',n) such that if (T’,n) conflicts with (T,m)
and timestamp(T’) > timestamp(T)

postcondition:
self.max_readtimestamp = timestamp(T);

Scheduler::HandleOperation(T:Transaction, m: Operation)
for kind(m) = "write"
precondition:

there do not exist (T',n) such that (T,m) conflicts with (T,m)
and timestamp(T’) > timestamp(T)

postcondition:
self.max_writetimestamp = timestamp(T)

Scheduler::CommitRequest(T:Transaction)
precondition:

there do not exist (T',n) such that (T,m) conflicts with (T,m);
postcondition:

self.commit_requested = self.commit_requested ∪  T;

Scheduler::Commit(T:Transaction)
precondition:

T ∈  self.commit_requested;
postcondition:

self.committed= self.committed ∪ {T};

Scheduler::Abort(T:Transaction)
precondition:
postcondition:

self.aborted= self.aborted ∪ {T};

Figure 4.24 Specification of the interface of Scheduler based on timestamp ordering

RecoveryManager

Figure 4.25 represents a specification of the interface of RecoveryManager that
has been adapted from the solution domain on recovery [Bhargava 87]. In this
example, the RecoveryManager has 5 operations. The operation
HandleOperation will either log the operation or the state of the data object that
is being accessed. The operation Commit makes the effect of the transaction
persistent by storing this in stable storage. The operation Abort rollbacks the
effects of the transaction by using the logged information. The operation
Restart will be invoked in case of system failures. This operation uses the
logged information to undo the effects of the aborted or active transactions
and redo the effects of the committed transactions that have not been made
persistent yet. Finally, the operation Checkpoint is regularly invoked to make a
snapshot of the system so that the Restart operation is optimized. In Figure



Chapter 4 - Architecture Synthesis Process

133

4.25 only a generic interface for recovery is presented. However, the
semantics for each of the different variations on these recovery protocols can
be easily derived from the solution domains.

RecoveryManager::HandleOperation(T:Transaction, m: Operation)
postcondition:

operation (T,m) or the accessed object state is logged;

RecoveryManager::Commit(T:Transaction)
postcondition:

make effects of transaction T persistent;

RecoveryManager::Abort(T:Transaction)
postcondition:

undo effects of transaction T;

RecoveryManager::Restart()
postcondition:

undo effects of active aborted transactions
redo effects of committed transactions;

RecoveryManager::Checkpoint()
postcondition:

store the state of the system in stable storage.

Figure 4.25 Specification of the operations of RecoveryManager

PolicyManager

An example specification for (a part of) the interface of the PolicyManager
component is given in Figure 4.26. PolicyManager is responsible for dynamic
adaptation of the transaction protocols based on selected performance
parameters such as transaction throughput, transaction response time,
transaction blocking ratio and transaction restart ratio [Agrawal 87]. The
operations AddParameter and RemoveParameter respectively add and remove a
performance parameter from the set performanceParameters. The operation
ReadSystemParameters senses the system and derives the values for the
parameters in the set performanceParameters. These values are used by the
operation ChooseTransactionProtocols to determine appropriate transaction
protocols such as scheduling and recovery algorithms. Finally, the operation
DeterminePolicy defines the policy for the dynamic adaptation mechanism.
The choice of transaction protocols may not always be defined by the system
characteristics but the transaction or data characteristics may also impose
some constraints on the selection of the transaction protocols. For example, for
long transaction a locking scheduler may be preferred over an optimistic
scheduler [Agrawal 87]. Large binary data objects may prefer to adopt



Chapter 4 - Architecture Synthesis Process

134

operation logging techniques instead of image logging to optimize the
memory space [Elmagarmid 92]. PolicyManager must therefore balance
between these different wishes of the transaction programmer, the system
performance parameters and the data object characteristics.

PolicyManager::AddParameter(P: PerformanceParameter)
postcondition:

self.performanceParameters = self.performanceParameters ∪  P;

PolicyManager::RemoveParameter(P: PerformanceParameter)
postcondition:

self.performanceParameters = self.performanceParameters - P;

PolicyManager::ReadParameterValues()
postcondition:

self.performanceParameters determined;

PolicyManager::ChooseTransactionProtocols(T:Transaction)
postcondition:

T.transactionProtocols determined;

PolicyManager::DeterminePolicy()
postcondition:

self.policy = priority(user, system, data).

Figure 4.26 Specification of the interface of PolicyManager

Correctness of Transaction Semantics

We have shown that the semantics for the components of the atomic software
architecture can be derived from the solution domains and gave some
examples of the semantics of the architectural components of the atomic
transaction architecture. Besides of the rich semantics that we could derive
from the solution domain an important issue is whether the provided
semantics is correct. In this thesis we will not provide the correctness proofs
but refer to the related literature on atomic transactions. For example, in
[Lynch et al. 94] the I/O automaton model is described, which is a formal
model for modeling concurrent, and distributed systems. Hereby, each
system component, concept or technique is analyzed and expressed as an
automaton, a mathematical object with states and named transitions between
them35. The actions of the automaton can be classified as input, output or

                                               

35 This is almost similar to a non-deterministic finite-state automaton. One difference is that in the I/O
automaton model an automaton need not be finite-state, but can have an infinite state set.
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internal. The input actions represent events from the environment, the output
actions represent events that components performs itself and finally the
internal actions represent the events internal in a component that are not
externally observable (such as changing a local variable). For each automaton
the actions are described with an action signature. An automaton can put
restrictions on when it will perform an output or internal action, but is unable
to restrict input actions.

The correctness criteria for a concurrent system that is modeled as automata
are expressed as restrictions on the sequences of actions that are part of the
interface of the data items and its users. The basic assumption is that a
sequence of actions is correct if it can be generated by a serial system.

An automaton is defined as a tuple consisting of four components [Lynch et
al. 94]:

•  an action signature sig(A)

•  a set states(A) of states

•  a nonempty set start(A) ⊆  states(A) of start states, and

•  a transition relation steps(A) ⊆  states(A) x acts(sig(A)) x states(A), with the
property that for every state s’ and input action π there is a transition (s’, π,
s) in steps(A).

In [Lynch et al. 94] states are generally determined by giving values to a
collection of variables. Further, the transition relations of an automaton are
not described by listing all its elements as triples but rather a simple
specification language is used where an effect is described for each action and
a precondition for each local action.

Using this model the authors formalize and analyze transaction processing
theories, serializability, logging, locking, nesting, timestamping etc. For a
more detailed description of this automaton model we refer to [Lynch et al.
94]. We use this model to proof the semantics of the architectural concepts
that we derived. It follows that since we derive the abstract semantics from
the solution domain, the link to the formal models is easily identified and we
can utilize these to validate the software architecture. For this, we map each
architectural concept to an automaton and define the operations in the
specification of the concept as internal and input actions of the newly
identified automaton. To define the output actions we look for the
architectural concepts that the corresponding concept communicates with and
define the operations of other concepts that are invoked as the output
operations of the automaton. These operations together will provide the
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complete action signature of the automaton. Consider for example the
specification of the concept TransactionManager as presented in Figure 4.21.
We could define an automaton called TransactionManager that includes the
operations as defined in Figure 4.21. Since all of these operations are invoked
by other components we map these to input operations of the automaton.
There are no internal operations. The output operations can be identified in
the specification of the concept Transaction in Figure 4.20 and this completes
the action signature of the automaton TransactionManager. Subsequently the
start states of the automaton and the transition relations can be relatively
easily defined. Once the automaton is described we use it to continue with the
correctness proofs of the adopted transaction semantics. Since many
publications exist on correctness proofs of the semantics of transaction
protocols [Papadimitriou 86][Cellary et al. 89][Bernstein et al. 87] and it is not
our goal to extend the transaction theory we will not elaborate on this issue in
this thesis.

Define Dynamic Behavior of the Architecture

The specifications of the architectural components are used to model the dynamic
behavior of the architecture. For this purpose we use the so-called collaboration
diagrams which are interaction diagrams to illustrate the dynamic view of a system
[Booch et al. 99]. Collaboration diagrams show the structural organization of the
components and the interaction among these components. We derive the
collaboration diagrams from the pre-defined specifications of the architectural
concepts.

Example
Figure 4.27 represents an example of a collaboration diagram for the atomic
transaction architecture. The components in the collaboration diagram
represent instances of the architectural components, which is represented by a
double colon preceding the name of the architectural component. The flow of
control is represented by means of directed arrows that are labeled with
messages. To indicate the temporal sequencing the messages are numbered.
The collaboration diagram shows the interactions for starting, handling
operations, committing and aborting transactions.

The messages with the sequence number 1 are part of the scenario for starting
a transaction. A transaction is started by the object t:TransactionApplication
that sends a start operation to the object tm:TransactionManager. The tm
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object informs the starting of the new transaction to the object
pm:PolicyManager that reads the values of the performance parameters and
chooses the appropriate transaction protocols for the transaction.

The messages with sequence numbers 2 define a scenario for handling
transaction operations. After the transaction has started, the operations that
are send by the object t:aTransactionApplication will be captured and
handled by the object tm:TransactionManager. The operation will be
forwarded to the policy manager and the data manager object. The object
dm:DataManager will request the scheduler and the recovery manager object
to provide a decision on the acceptance or reject of the operation. If the
operation is allowed to execute then it will be dispatched to the atomic object.

Finally, the messages with the sequence numbers 3 and 4 define respectively
the scenarios for committing and aborting transactions. The control flow for
these scenarios can be easily derived from Figure 4.27.

t:TransactionApplication tm:TransactionManager

pm:PolicyManager

dm:DataManager

rm:RecoveryManagersched:Scheduler

a:DataObject

1.1:start(t)

1.2b:chooseTransactionProtocols(t)

2.1:handleOperation(t, o)

2.2:handleOperation(t, o)

2.4:dispatch( o)

3.1:commit(t)

3.2 commit(t)

1.2a:readParameterValues()

4.1:abort(t)

4.2:abort(t)

2.3b:handleOperation(t, o)
3.3a commit(t)
4.3b:abort(t)

2.3a:handleOperation(t, o)
3.3a commit
4.3a:abort(t)

2:handleOperation(t, o)
1:start(t)

3:commit(t)
4:abort(t)

Figure 4.27 Collaboration diagram for the atomic transaction software architecture
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4.5 Discussion and Conclusions

In this chapter we presented the synthesis-based software architecture design approach.
This approach is derived from the concept synthesis of mature engineering
disciplines whereby the initial problem is decomposed into sub-problems that are
solved separately and later integrated in the overall solution. During the synthesis
process design alternatives are searched and selected based on the existing solution
domain knowledge.

An important issue in software architecture design is to find the right abstractions
and the adequate leveraging of the architecture. The novelty of the synthesis-based
software architecture design approach with respect to the existing architecture design
approaches is that it makes the processes of problem analysis, solution domain analysis
and alternative space analysis explicit. During the problem analysis, the client
requirements are mapped onto the technical problems providing a more objective
and reliable description of the problem. During the solution domain analysis, stable
architectural components with rich semantics are derived from the solution domain
concepts that are well-defined and stable themselves. The solution domain analysis
itself is leveraged by the pre-identified technical problems so that the right detail of
the solution domain model is ensured. The alternative space analysis explicitly depicts
the possible set of design alternatives that can be derived from the architectural
components.

We have illustrated the approach by applying it to the design of an atomic
transaction architecture for a distributed car dealer system in a project of Siemens-
Nixdorf. Apart from this, experimental studies have been carried out with earlier
versions of this approach in pilot studies that were carried out by MSc students. For
example, in [Vuijst 94], a software architecture for image algebra was derived for the
laboratory for clinical and experimental image processing. The basic solution
domain for this architecture was image algebra and several related publications
could be identified from which sufficient stable abstractions were derived for the
design of the software architecture. The atomic transaction and the image algebra
domain appeared to be examples of well-defined and sufficiently formalized
domains. The experimental studies have been, however, also applied on domains
that are less formalized. In [Arend 99], for example, a software architecture has been
derived for a Quality Management Systems for efficient information retrieval and in
[Willems 98], a software architecture has been derived for insurance systems. In both
cases, several publications could be identified on the corresponding domains, but in
addition it was also necessary to refer to the factual knowledge and experiences for
the design of the software architecture. The solution domain may thus consist of a
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combination of various forms of solution techniques such as theories, solution
domain experts, and experiences in the corresponding domain.

In the following we will list the conclusions that we could obtain from our
experience in applying the synthesis approach to the project on atomic transactions.

1. Explicit mapping of requirements to technical problems facilitates the identification and
leveraging of the necessary solution domains.

After our requirements analysis and technical problem analysis processes as defined
in sections 4.4.1 and 4.4.2 respectively, it appeared that the given client requirements
did not fully describe the right detail of the desired problem. The basic requirement
was to provide adaptable transactions protocols that were derived from the various
expected needs of different dealers in different countries. From the initial
requirement specification, however, it followed that with adaptability of transaction
protocols it was only referred to a restricted number of concurrency control
protocols. During the problem analysis phase we generalized this requirement to the
adaptation of various transaction protocols including transaction management,
concurrency control, recovery and data management techniques. After interactions
with the client and a study of the car dealer distribution system it appeared that
many transaction protocols were relevant although they had not been explicitly
mentioned in the requirement specification. We observed that the technical problem
identification is an iterative process between the technical problem analysis and
solution domain analysis processes.

On the one hand, we directed and leveraged our solution domain analysis using the
identified technical problems. Since every (sub-)problem corresponds only to a
restricted set of solution domain we did not need to consider the whole solution
domain space at once. For example, for the concept DataManager we did not need to
consider version management and replication management because this was
deliberately put out of the scope of the project. For the concept Scheduler we ruled
out the solution domain that dealt with semantic concurrency control techniques.
The identified technical problems provided us the means where to search or not to
search for the solution domain.

On the other hand, the technical problems could be better defined after the solution
domains were better understood. For example, only after a solution domain analysis
on concurrency control, as described in section 4.4.3, we were better able to
accurately define the sub-problems related with the concept Scheduler. This
observation may imply that for the problem analysis phase one may require a
domain engineer who is an expert on the corresponding domain and knows the
different technical problems that are related to the domain. In our example project
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typically a transaction domain expert at the early phase of problem analysis would
be of much help.

2. Solution domain provides stable architectural abstractions

The synthesis-based approach provides an explicit solution domain analysis process
for identifying the right abstractions. After analyzing and comparing the solution
domain on transaction theory it appears that it is rather stable and does not change
abruptly but only shows a gradual specialization of the transaction concepts.
Because the solution domain is stable it provides a reliable source for providing
stable architectural abstractions. In the solution domain analysis process as
described in section 4.4.3 we illustrated how we could derive stable concepts for the
design of the atomic transaction architecture. We were able to derive both the overall
architecture and refine the architectural concepts to the required detail level.

The requirement of stable solution domains in the synthesis-based approach implies
that a given problem can only be solved to the extent that it has been explored in the
solution domain. If it appears that the solution domain is not well-established the
software engineer may decide to terminate the synthesis process, reformulate the
technical problem or initiate a research on the solution domain. The latter decision
shows that the synthesis process may provide important input for the scientific
research because it may indicate the issues that need to be resolved in the
corresponding solution domains36.

3. Solution domains provide rich semantics for realization and verification of the
architecture.

Solution domains not only provide stable abstractions but in addition these
abstractions have rich semantics which is important for the realization and
verification of the software architecture. As described in section 4.4.5 on architecture
specification, we could derive rich semantics for the architectural abstractions
directly from the solution domain knowledge of atomic transactions. We have
illustrated this process for various components in the atomic transaction
architecture.

The solution domain is not only useful for deriving architectural abstractions, but in
addition it is also a reliable source for validating the correctness of the developed
architecture. We were able to identify many publications that explicitly deal with
correctness proofs of various transaction protocols. We validated the architectural
components and their semantics by utilizing these knowledge sources.

                                               

36 Note that this represents an example of the interaction between engineering and scientific research
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4. Adaptability of an architecture can be determined by an explicit alternative space analysis
of the solution domain.

In the synthesis-based software architecture design approach, alternative space
analysis is an explicit process. Thereby, for each concept the set of alternatives are
described and constraints are defined among these alternatives. This together results
in a depiction of the set of possible alternative designs or alternative space, that may
be derived from the given software architecture. As described in section 4.4.4 we
have, for instance, defined the alternatives for the concepts Scheduler and
RecoveryManager. From the solution domain analysis we extracted the constraints
within each of these concepts and constraints that apply among alternatives of these
concepts. We had two problems in the alternative space analysis process for the
example project. First, although we have derived the conceptual architectures from
the solution domain itself, during the alternative definition process it followed that
not all the alternatives were explicitly described in the literature. For example, for
the concept Scheduler we could identify only around 10-15 scheduler types that were
described in the literature. The other alternatives are primarily seen as variations of
these basic scheduler types. In our approach we could depict every single alternative
explicitly. The second problem that we encountered was that the constraints within
and among the alternatives of the concepts are generally not explicitly stated in the
literature and finding these is very time-consuming. Defining constraints of solution
domain concepts requires the full understanding of these concepts. The existence of
an explicit description of these constraints may indicate the maturity level of the
corresponding solution domain. It appears that the transaction literature has many
well-established concepts and we could also identify some publications that
explicitly dealt with the constraints among the concepts, however, this is not the case
for all the concepts.
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M.C. Escher - Concave and Convex

What we see and what we understand depends on our perspective. In "Concave and
Convex," Escher has created a paradoxical world where concave and convex are constantly
shifting, throwing the mind into complete ambiguity and confusion. Three little houses stand
near one another, each under a crossvaulted roof. We have an exterior view of the left-hand
house, an interior view of the right-hand one and an either exterior or interior view of the one
in the middle, according to choice. The cluster of cubes on the flag announces the basic visual
motif of the composition. Escher plays with the ambiguity of volumes on the flat picture
plane; they switch from solid to hollow, from inward to outward, from roof to ceiling, like the
cubes in the flag.

Software Architecture Design Analogy

What we see and what we understand from a given software architecture depends on our
perspective. If the software architecture is not well-defined it may be ambiguous and even
self-contradictory. This will confuse the stakeholders of software architecture and its
realization will be a complicated task.
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5.1 Introduction

“Indeed, this subtle and complex freedom from inner contradictions is just the very
quality which makes things live”.

- Christopher Alexander, The Timeless Way of Building

 he architecture design phase may be followed by an object-oriented analysis
and design phase in which a set of heuristic rules are provided to guide software

engineers to analyze, design and implement object-oriented software systems. Since
architecture specifications are generally abstract, one may derive various different
implementation alternatives for the same architecture specification. Each alternative
may have different adaptability, performance and reusability characteristics. Object-
oriented analysis and design methods help software engineers to express their
solutions in terms of object-oriented abstractions. However, a number of problems
may be encountered in deriving the alternatives from the architecture specification:

Firstly, it is generally difficult for software engineers to explicitly identify the
different alternatives of a design. Secondly, in current methods the relation between
object-oriented designs and quality factors seems to be more implicit than explicit.
This is because object-oriented methods rely on the intrinsic quality factors of the
object-oriented abstractions rather than considering quality factors as explicit design
concerns. Finally, current methods do not provide adequate techniques to balance
various quality factors, such as adaptability and performance. Alternative designs
are rarely selected for ultimate adaptability or performance but rather it is a
compromise of multiple considerations. At almost every stage of the software
development lifecycle, software engineers have to cope with various design
alternatives. Of course while defining object models, software engineers apply their
knowledge and experience. They generally compare the alternatives based on their
intuition. This is, however, an implicit process.

This chapter introduces a new formalism called Design Algebra, which is used to
depict the space of design alternatives, and define design rules for comparing,
evaluating and composing them. The techniques provided by design algebra can be
integrated within the object-oriented methods. The applicability of Design Algebra is
illustrated using the transaction system example.

This chapter is organized as follows. The next section introduces an example and
explains the problems addressed in this paper. Section 3 presents the principles of
design algebra, and illustrates its applicability first formally and then intuitively
using the example problem. Section 4 shows how various quality factors such as
adaptability and time performance can be balanced. Evaluation of the approach is

T
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given in Section 5. Section 6 refers to the related work. Finally, section 7 gives
conclusions.

5.2 The Problem Statement

In this section we will describe the problem statement using the atomic transaction
architecture that we developed in chapter 4. Section 5.2.1 presents an example
problem for deriving design alternatives from the architecture concepts DataManager
and Scheduler. Section 5.2.2 explains the problems addressed in this paper.

5.2.1 Example: Designing Alternative Schedulers
Figure 5.1 shows a part of the atomic transaction architecture.

<concept>
Synchronization

Scheme

<concept>
Scheduler

<concept>
Performance

Failure Detector

<concept>
Synchronization

Strategy

<concept>
DataManager

<concept>
RecoveryManager

coordinates adopts

adopts

Figure 5.1 Conceptual architecture for part of the Atomic Transaction Architecture

The DataManager uses the functionality of the Scheduler and the RecoveryManager to
preserve the consistency of the data objects that it manages. During the alternative
space analysis of the synthesis-based software architecture design process, the set of
alternatives in the solution domain of the Scheduler and RecoveryManager has been
explored and described.

After the architecture definition we may focus on deriving analysis and design
models from this architecture. For this purpose, we may utilize object-oriented
modeling that provides abstractions such as inheritance or aggregations, classes or
operations, etc. Realizing the architecture means that the solution domain concepts
need to be represented using these object-oriented abstractions.
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5.2.2 Problem Description
The problems that we address in this chapter can be grouped under three related
categories: utilization of design space, designing alternatives based on quality factors
and balancing the quality factors. These are explained in the following three
subsections.

Utilization of the Design Space

Considering the examples in the previous section, we observe that realizing an
architecture in a design involves the consideration of many design alternatives. A
design space is informally defined as a set of all the possible design alternatives for a
given design problem. Object-oriented analysis and design methods provide several
abstractions to define various kinds of alternative models suitable for different
stages of software development. The various alternative abstractions enable the
software engineer to derive various alternative designs from the same architecture.

Let us explain this in more detail by considering some design alternatives that can be
derived from the architecture of Figure 5.1. We consider the top-level concepts
DataManager and Scheduler. In the design alternative of Figure 5.2, the concept
DataManager has been mapped to a class DataManager and the concept Scheduler has
been mapped to an operation schedule(Message) of the class DataManager. The sub-
concepts Synchronization Scheme, Synchronization Strategy and Performance Failure
Detector are all hidden in the implementation of the operation schedule.

schedule(Message)
....

DataManager

Figure 5.2 Mapping the concept Scheduler to a single operation.

In Figure 5.3, the concept DataManager and the concept Scheduler are both mapped to
the object-oriented class concept and the Scheduler is defined as a part of the
DataManager. For the Scheduler an inheritance-based design is chosen where an
abstract class UniversalScheduler37 has been introduced, which declares the necessary
interface for its subclasses TwoPhaseLocking, OptimisticScheduler, and
TimestampOrderingScheduler. Alternatives of Scheduler’s sub-concept Synchronization
Scheme have been mapped to the various sub-classes of UniversalScheduler. The sub-

                                               

37 The Unified Scheduler abstraction was inspired from [Campbell et al. 93]
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concepts Synchronization Strategy and Performance Failure Detector are hidden in the
implementation of the operations of the Scheduler classes.

These two design models are not the only alternatives and actually a considerable
number of design alternatives may be derived from the same architecture.
Depending on our design choices and our consideration for, e.g. the granularity of
the required changes, different designs of the architecture may be derived. We may
use a separate class for each sub-concept, define these as abstract methods, map
these to single methods etc. Current object-oriented analysis and design methods,
however, do not provide adequate means to identify and describe the possible
design alternatives, i.e. the design space. As a matter of fact, while designing object
models, software engineers apply their knowledge, experience and intuition to
compare the design alternatives. This process, however, is rather implicit and lacks
explicit support. Without knowledge of the design space it is difficult to specify,
compare and prioritize the design alternatives. We maintain that object-oriented
methods should provide explicit means to determine and reason about the design
space and the individual alternatives.

handleMessage(Message)
acceptMessage(Message)
rejectMessage(Message)
delayMessage(Message)

UniversalScheduler

handleMessage(Message)
acceptMessage(Message)
rejectMessage(Message)
delayMessage(Message)

Optimistic
Scheduler

handleMessage(Message)
acceptMessage(Message)
rejectMessage(Message)
delayMessage(Message)

TimestampOrdering
Scheduler

handleMessage(Message)
acceptMessage(Message)
rejectMessage(Message)
delayMessage(Message)

TwoPhaseLocking
Scheduler

handleMessage(Message)
schedule(Message)
....

DataManager
scheduler

Figure 5.3 An alternative object-oriented design of the part of the
architecture using inheritance.

Designing alternatives based on quality factors

Design alternatives can be compared with each other based on certain quality factors
such as adaptability, performance and reusability. For example, the alternative in
Figure 5.2 provides a straightforward implementation of an operation schedule in the
class DataManager and results in a higher time performance compared to the
alternative designs of Figure 5.3, that map the Scheduler to classes using inheritance.
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On the contrary, the inheritance-based alternative in Figure 5.3 provides a higher
reusability than the alternative of Figure 5.2 because every concept is separately
represented in each sub-class. If it is required to increase the dynamic adaptability
then an alternative model as presented in Figure 5.4 may be designed. Here, every
sub-concept is an aggregation and separately represented as a class. Obviously, we
can extend this reasoning and derive different alternatives that will perform
differently for the various quality factors.

In the analysis and design processes it is important to consider the quality factors
such as adaptability, performance and reusability explicitly rather than evaluating
these factors after the delivery of programs. In current object-oriented analysis and
design methods, however, the relation between object-oriented designs and quality
factors seems to be more implicit than explicit. This is because object-oriented
methods rely on the intrinsic quality factors of the object-oriented abstractions rather
than considering quality factors as explicit design concerns.

handleMessage(Message)
...

Scheduler

handleMessage(Message)
schedule(Message)
....

DataManager scheduler

handleMessage(Message)
...

SynchronizationStrategy

handleMessage(Message)
...

PerformanceFailureDetector

handleMessage(Message)
...

SynchronizationScheme

Figure 5.4 An alternative object-oriented design of the part of the
architecture using aggregation

Balancing quality factors

While designing software systems, software engineers have to carefully balance
various quality factors. Software is rarely designed for ultimate adaptability,
performance or reusability but rather it is a compromise of multiple considerations.
In general there are many correct solutions for the same problem. In the example
problem, one may identify many alternative designs, which will differ with respect
to adaptability, performance and reusability factors. Providing ultimate adaptability
may create too much overhead. Aiming at fastest implementation may result in
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unnecessarily rigid software. Aiming at most reusable software may introduce
redundant abstractions for a given problem. Software engineers, therefore, must be
able to compare, evaluate and decide between various alternatives based on the
relative importance of the quality factors.

5.3 Design Algebra

In this section we define a formalization technique called design algebra. An algebra is
a formal structure consisting of sets and operations on those sets. Relational algebra is
an algebra for manipulating relations. Design Algebra is an application of relational
algebra for modeling design spaces and balancing design alternatives.

5.3.1 Notion of Design Space

In the previous section we have provided an intuitive definition of design space38 as
a set of all the possible alternatives for a given design problem. In this section we
will elaborate on the notion of design space and describe it in more detail.

We define a design space as a multi-dimensional space from which the set of
alternatives for a given design problem can be derived. We may define a design
space for every concept in a solution domain. The design space is spanned by an
independent set of dimensions39. The dimensions are represented by the sub-
concepts of the concept in the solution domain. Consider, for example, the concept
Scheduler that can formally be described as follows:

MScheduler = (Sch, Str, PFD)

Here, Sch, Str and PFD represent the sub-concepts Synchronization Scheme,
Synchronization Strategy and the Performance Failure Detector, respectively. A design
space for Scheduler consists therefore of three dimensions, which are represented by
these sub-concepts.

As described in the previous chapter the concepts are defined by a solution domain
analysis process, which involves collecting the related information from various
sources, and detecting the commonalties among them through comparison. These

                                               

38 The concept space is a well-known term in mathematics and is often used to define a metric space,
topological space or vector space.

39 Compare this to the notion of canonical basis of a vector space in linear algebra. Any m-
dimensional vector in vector space V can be constructed as a linear combination of the vectors
x1,x2,…,xm if those vectors are independent. A set of m vectors which span a space V of dimension m
are said to form a basis for that space.
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common abstractions generally correspond to the fundamental concepts in that
domain. Concepts form well-defined and stable abstractions and as such are very
suitable to represent the independent dimensions of a design space.

Every dimension has a set of coordinates that are elements of a coordinate set. In
design algebra, the coordinate set represents a property set that represent various
properties that may be assigned to the sub-concepts. An example of a property set
may be the concepts of the object-oriented model. In the object-oriented model, a
concept can be represented either as a class, an operation or an attribute. Therefore
we may define the property set Object as follows:

PObject = (CL, OP, AT)

The degree of a dimension represents the total numbers of the properties. A design
alternative represents a point in the design space.

Figure 5.5 shows the graphical representation of an example of a design space that
utilizes the sub-concepts of Scheduler as dimensions and the coordinates of these
dimensions are the properties of the set PObject. The design space is named
SObjectScheduler.

Sch

CL

OP

AT

AT AT

OP

OP

PFD

Str

Figure 5.5 Design Space of Scheduler with Object as property set

Since this design space has 27 points this implies that there are in total 27
theoretically possible design alternatives within this space. An alternative in this
design space is for example ((Sch,CL) (Str,CL) (PFD,CL)) which represents the selection of
the sub-concepts of Scheduler as classes40.

                                               

40 Note that not all the 27 alternatives in this design space may be possible or desired. In later sections
we will describe the techniques for reducing the design space according to these constraints.
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If adaptable models are required then Adaptability needs to be considered as a
property set. Adaptability can be defined as the ease of changing an existing model
to new requirements. To this aim, we have to deal with two contradictory goals: On
one hand we have to fix the concepts for robustness and time performance. On the
other hand, we need to make concepts adaptable for flexibility [Tekinerdogan 97].
Adaptability can be defined either at compile-time or at run-time. The property
dimension Adaptability may then be defined as follows:

PAdapt= (FX, ADc, ADr)

Hereby, the three dimension values FX, ADc and ADr qualify concepts as fixed,
compile-time adaptability and run-time adaptability respectively.

Figure 5.6 represents the graphical representation of the design space SAdaptScheduler

that is also a three-dimensional space consisting of the dimensions Sch, Str and PFD.
The coordinate set is now defined by the properties of PAdapt.

Sch

FX

ADc

ADr

ADr ADr

ADc

ADc

PFD

Str

Figure 5.6 Design Space of Scheduler with Adaptability as property set

5.3.2 Formalizing Design Space Composition

In design algebra, design spaces are defined as function spaces that map concepts to
properties. The design space SObjectScheduler, may be defined in the following formula:

SObjectScheduler  :: MScheduler → PObject

This function defines the alternative design space that includes the following 27
theoretically possible alternatives:
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SObjectScheduler =
   { ((Sch,CL) (Str,CL) (PFD,CL)),   ((Sch,CL) (Str,CL) (PFD,OP)),    ((Sch,CL) (Str,CL) (PFD,AT)),

((Sch,CL) (Str,OP) (PFD,CL)),    ((Sch,CL) (Str,OP) (PFD,OP)),    ((Sch,CL) (Str,OP) (PFD,AT)),

((Sch,CL) (Str,AT) (PFD,CL)),    ((Sch,CL) (Str,AT) (PFD,OP)),    ((Sch,CL) (Str,AT) (PFD,AT)),

((Sch,OP) (Str,CL) (PFD,CL)),    ((Sch,OP) (Str,CL) (PFD,OP)),    ((Sch,OP) (Str,CL) (PFD,AT)),

((Sch,OP) (Str,OP) (PFD,CL)),    ((Sch,OP) (Str,OP) (PFD,OP)),    ((Sch,OP) (Str,OP) (PFD,AT)),

((Sch,OP) (Str,AT) (PFD,CL)),    ((Sch,OP) (Str,AT) (PFD,OP)),    ((Sch,OP) (Str,AT) (PFD,AT)),

((Sch,AT) (Str,AT) (PFD,CL)),    ((Sch,AT) (Str,AT) (PFD,OP)),    ((Sch,AT) (Str,AT) (PFD,AT))

((Sch,AT) (Str,OP) (PFD,CL)),    ((Sch,AT) (Str,OP) (PFD,OP)),    ((Sch,AT) (Str,AT) (PFD,AT))

    ((Sch,AT) (Str,AT) (PFD,CL)),    ((Sch,AT) (Str,AT) (PFD,OP)),     ((Sch,AT) (Str,AT) (PFD,AT))  }

In the graphical representation of Figure 5.5 each of these alternatives appeared as a
point in the space.

The total number of alternatives that can be extracted from SObjectScheduler can be
computed as follows:

numberOfAlternatives(SObjectScheduler) = size(PObject) size(MScheduler )  = 33 = 27

The function size returns the size of the tuples of the dimension. The function
numberOfAlternatives computes the number of alternatives of the design space.

The above formulas can be easily generalized. Assume that we have a solution
domain concept MDomain consisting of the sub-concepts c1, c2 ,..., cn and a property set
PProperty consisting of the properties p1, p2, …, pm. The design space SPropertyDomain can be
defined as follows:

SPropertyDomain :: MDomain → PProperty

Alternatives of this space consist of a set of n tuples with 2 elements, one from
MDomain and one from PProperty. The size of the design space SObjectDomain and the number
of alternatives that can be derived from this design space can be computed using the
following formulas:

numberOfAlternatives(SpropertyDomain) = size(Pproperty) size(MDomain ) = mn

In the same manner we can define the design space SAdaptScheduler that is defined as a
function space mapping the set MDomain to the set MAdapt and includes the set of
domain alternatives with the adaptability properties:

SAdaptScheduler :: MScheduler → PAdapt

This design space determines the possible adaptability properties for every sub-
concept of Scheduler. An alternative that can be selected from this space is, for
instance, ((Sch, ADc), (Str,ADc), (PFD,ADr)). Within this alternative the
synchronization scheme (Sch) and the synchronization strategy (Str) has been
selected as compile-time adaptable and the performance failure detector (PFD) as
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run-time adaptable. The total number of alternatives that can be selected from this
space equals 33 = 27 alternatives.

We may also define more complex design spaces by defining function spaces that
map a concept to more than one property set. For example the following represents a
design space for adaptable object models for schedulers:

SAdaptObjectScheduler :: MScheduler → (PAdapt × PObject)

Note that this function is equivalent to the pair of functions (MScheduler → PAdapt)
×(MScheduler → PObject). The design space SAdaptObjectScheduler consists again of the three
dimensions Sch, Str and PFD. Hereby, however, each of these sub-concepts is
mapped to a property in PAdapt and a property in PObject. An alternative is then defined
as a set of 3 tuples each of them consisting of three elements. An example of such an
alternative from this design space is ((Sch, ADc, CL), (Str,ADc, OP), (PFD,ADr, CL)).
The number of the theoretically possible design alternatives that can be selected
from this design space is the (33) 3 = 19683 alternatives. Obviously, it is not feasible
anymore to depict all the alternatives explicitly.

5.3.3 Reducing Design Spaces

In principle, it is possible to list all the alternatives and analyze and select them
separately. However, for large design spaces the number of alternatives soon may
lead to a combinatorial explosion and likewise the identification and reasoning
about individual alternatives may become very difficult. Moreover, not all the
alternatives may be feasible or possible at all and it would be worthwhile to
eliminate these alternatives from the design space so that the software engineer does
not need to take them into account.

The following techniques can be used to reduce the design space:

1. Selection of a sub-space, whereby the software engineer chooses a set of alternatives
from the design space.

2. Elimination of a sub-space, whereby non-feasible alternatives are ruled out based
on the constraints as derived from the solution domain or the client
requirements.

3. Heuristics-Based Selection and/or Elimination, whereby the selection and/or
elimination of the alternatives are supported by heuristic rules of methods.

The decision for reducing the design space may depend on the number of
alternatives that can be selected from the given design space. Figure 5.7 illustrates
the flow diagram that represents the strategy for design space reduction.
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Generate Alternatives

Restrict Design Space

Heuristics-Based Selection
and Elimination

Selection of
Sub-Spaces

#alternatives
in design space
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Elimination of Sub-
Spaces
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Figure 5.7 Strategy for design space reduction

For a given design space the software engineer may compute the number of
alternatives. In case it is less than a pre-defined maximum the software engineer
may decide to list the alternatives and analyze them one by one; otherwise the
design space may be reduced using the previous techniques. If the number of
alternatives is still larger than the pre-defined maximum then another reduction step
may be performed. This process will continue until the number of alternatives is less
than or equal to the maximum. In the following sub-sections we will focus on each
reduction technique in more detail.

Selection of a Sub-Space

We distinguish three possible techniques for the selection of a sub-space of a design
space:

1. Direct selection from the design space.

2. Selection based on conditional specifications

3. Matrix-based selection

We will explain these techniques in the following.

Direct Selection

This is a simple technique in which the software engineer directly selects the
required alternatives from the design space. For this the total list of the alternatives
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may be shown and scanned by the software engineer, or the software engineer may
just directly indicate his/her wishes without giving any notice to the list of the
alternatives. Consider for example the design space SObjectScheduler. The first option can
then be visualized as follows:

SObjectScheduler =
            {   ((Sch,CL) (Str,CL) (PFD,CL))  ,   ((Sch,CL) (Str,CL) (PFD,OP))  ,    ((Sch,CL) (Str,CL) (PFD,AT)),

((Sch,CL) (Str,OP) (PFD,CL)),    ((Sch,CL) (Str,OP) (PFD,OP)),    ((Sch,CL) (Str,OP) (PFD,AT)),

((Sch,CL) (Str,AT) (PFD,CL)),      ((Sch,CL) (Str,AT) (PFD,OP))   ,    ((Sch,CL) (Str,AT) (PFD,AT)),

((Sch,OP) (Str,CL) (PFD,CL)),    ((Sch,OP) (Str,CL) (PFD,OP)),    ((Sch,OP) (Str,CL) (PFD,AT)),

((Sch,OP) (Str,OP) (PFD,CL)),    ((Sch,OP) (Str,OP) (PFD,OP)),    ((Sch,OP) (Str,OP) (PFD,AT)),

((Sch,OP) (Str,AT) (PFD,CL)),    ((Sch,OP) (Str,AT) (PFD,OP)),     ((Sch,OP) (Str,AT) (PFD,AT))  ,

((Sch,AT) (Str,AT) (PFD,CL)),    ((Sch,AT) (Str,AT) (PFD,OP)),    ((Sch,AT) (Str,AT) (PFD,AT))

((Sch,AT) (Str,OP) (PFD,CL)),    ((Sch,AT) (Str,OP) (PFD,OP)),    ((Sch,AT) (Str,AT) (PFD,AT))

       ((Sch,AT) (Str,AT) (PFD,CL))   ,    ((Sch,AT) (Str,AT) (PFD,OP)),     ((Sch,AT) (Str,AT) (PFD,AT))  }

Hereby the bordered alternatives represent the alternatives that the software
engineer has selected. In the above list the software engineer has selected 5
alternatives.

Selection based on conditional specifications

For large design spaces, listing all the alternatives and scanning these alternatives
may be a time-consuming process and as such be ruled out as a viable option. A
better option in that case may be to provide a condition that specifies the set of
alternatives the software engineer is interested in. Formally, the selection of
alternatives from design spaces can be considered as a function space that is
restricted through conditions. We can specify this in the following general form:

)}condition(|tpropertySeconcept{::eDesignSpac →

Where condition can be made up of several functions and have one of the following
forms:

•  propertysubconcepta , where subconcept ∈  concept and property∈  propertySet.

•  2condition1condition ∧ , that evaluates to true if both condition1 and condition2

evaluate to true

•  2condition1condition ∨ , that evaluates to true if either condition1 or condition2 or
both of them evaluate to true.

•  condition¬ , that is true if condition is false; it is false if condition is true.
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•  )condition(x∀ , that evaluates to true if the condition evaluates to true for every x∈
(concept × propertySet).

•  )condition(x∃  that evaluates to true if the condition evaluates to true for at least
one x ∈  (concept × propertySet).

The function results in a reduced design space that includes a reduced set of
alternatives that meets the specified condition.

Let us now consider some examples to clarify the above ideas. Consider, for
instance, the design space SObjectScheduler that has been described before. To select all the
alternatives from this design space in which the synchronization scheme is a class we
can define a new space SRobjectScheduler that is a reduced sub-space of SObjectScheduler:

} OP)(SchCL)  (Sch| P  M{ :: S ObjectScheduleredulerRObjectSch aa ∨→

This space selects the alternatives in which the synchronization scheme (SCH) has
been selected as a class (CL) or an operation (OP). This results in the following 18
alternatives:

{ ((Sch,CL) (Str,CL) (PFD,CL)),   ((Sch,CL) (Str,CL) (PFD,OP)),    ((Sch,CL) (Str,CL) (PFD,AT)),

((Sch,CL) (Str,OP) (PFD,CL)),    ((Sch,CL) (Str,OP) (PFD,OP)),    ((Sch,CL) (Str,OP) (PFD,AT)),

((Sch,CL) (Str,AT) (PFD,CL)),    ((Sch,CL) (Str,AT) (PFD,OP)),    ((Sch,CL) (Str,AT) (PFD,AT)),

((Sch,OP) (Str,CL) (PFD,CL)),    ((Sch,OP) (Str,CL) (PFD,OP)),    ((Sch,OP) (Str,CL) (PFD,AT)),

((Sch,OP) (Str,OP) (PFD,CL)),    ((Sch,OP) (Str,OP) (PFD,OP)),    ((Sch,OP) (Str,OP) (PFD,AT)),

((Sch,OP) (Str,AT) (PFD,CL)),    ((Sch,OP) (Str,AT) (PFD,OP)),    ((Sch,OP) (Str,AT) (PFD,AT)) }

Figure 5.8 represents the design space after this reduction step. In this figure the
shaded area represent the reduced design space and consists of 18 points that
represent the above alternatives.
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AT AT
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OP

PFD
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Figure 5.8 Reduction of the design space SObjectScheduler



Chapter 5 - Balancing Architecture Implementation Alternatives

158

The number of alternatives may be computed in advance so that in case this number
is too large, the design space may be further reduced by providing more selection
criteria. Assume that the software engineer is further interested in selecting only the
alternatives in which the synchronization strategy is represented as either a class or
an operation. For this the following expression needs to be specified:

OP))}(StrCL)  ((Str  OP))  (SchCL)  ((Sch| P  M{ :: S ObjectSchedulerdulerObjectSche aaaa ∨∧∨→

Note that this now results in the following 12 alternatives:

{ ((Sch,CL) (Str,CL) (PFD,CL)),   ((Sch,CL) (Str,CL) (PFD,OP)),    ((Sch,CL) (Str,CL) (PFD,AT)),

((Sch,CL) (Str,OP) (PFD,CL)),    ((Sch,CL) (Str,OP) (PFD,OP)),    ((Sch,CL) (Str,OP) (PFD,AT)),

((Sch,OP) (Str,CL) (PFD,CL)),   ((Sch,OP) (Str,CL) (PFD,OP)),    ((Sch,OP) (Str,CL) (PFD,AT)),

((Sch,OP) (Str,OP) (PFD,CL)),    ((Sch,OP) (Str,OP) (PFD,OP)),    ((Sch,OP) (Str,OP) (PFD,AT)) }

We can graphically represent this reduced design space as illustrated by the shaded
area in Figure 5.9.
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Figure 5.9 Further reduction of the design space SObjectScheduler

This selection mechanism may be very effective in reducing very large design
spaces. Consider, for example, the design space SAdaptObjectScheduler that includes 19683
theoretically possible design alternatives. We may reduce this design space by
providing, for example, the following function.

OP))}(StrCL)  ((Str  CL)  (Sch:objectify 

ADr); (StrADr) (Str ADr) (Sch : adapt

| P M::objectify;P M::{adapt :: S ObjectSchedulerAdaptSchedulertSchedulerAdaptObjec

aaa

aaa

∨∧
∧∧

→→

This function consists of two functions adapt and objectify. Function adapt defines the
condition for the adaptability properties of the sub-concepts of Scheduler and states
that the synchronization scheme (Sch), synchronization strategy (Str) and the
performance failure detector (PFD) all need to be run-time adaptable. Function
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objectify defines the condition for the mapping to object properties and states that the
synchronization scheme must be represented as a class and the synchronization
strategy as either a class or an operation. The total expression reduces the design
space tremendously and results only in the following 6 alternatives.

{ ((Sch,ADr,CL) (Str,ADr,CL) (PFD,ADr,CL)),   ((Sch,ADr,CL) (Str,ADr,OP) (PFD,ADr,CL)),

 ((Sch,ADr,CL) (Str,ADr,CL) (PFD,ADr,OP)), ((Sch,ADr,CL) (Str,ADr,OP) (PFD,ADr,OP)),

((Sch,ADr,CL) (Str,ADr,CL) (PFD,ADr,AT)),   ((Sch,ADr,CL) (Str,ADr,OP) (PFD,ADr,AT)) }

Matrix-based Selection

The third option in selecting sub-spaces from a design space is the matrix-based
selection. Hereby, we do not list all the alternatives of the design space but rather list
all the elements from which the alternatives in the design space are constituted. This
list is provided by the Cartesian product of the dimensions of the design space. For
example, for SObjectScheduler the Cartesian product is defined as follows:
















=

×=

×=

)AT,PFD()OP,Str()CL,Sch(

)AT,PFD()OP,Str()CL,Sch(

)AT,PFD()OP,Str((Sch,CL)

)AT,OP,CL()PFD,Str,Sch(

PMC ObjectSchedulerdulerObjectSche

The size of the elements in the Cartesian product of the sets propertySet and Concept
can be defined in the following general form:

size(SpropertyDomain) = size(PpropertySet) ×  size(Concept ) = m × n

The matrix defined by CObjectScheduler has 9 tuples that form the basic ingredients for the
27 alternatives in SObjectScheduler. An alternative can be composed of this matrix by
selecting one tuple from each of the three columns. The software engineer can
specify the selections using logical connectives. For example, the software engineer
may select the tuples (Sch,CL) and (Str,OP) which means that all the alternatives
including these two tuples need to be generated. In this case this will result in three
alternatives, namely:

{ ((Sch,CL), (Str,OP),(PFD,CL)), ((Sch,CL), (Str,OP),(PFD,OP)), ((Sch,CL), (Str,OP),(PFD,AT)) }

The generation of the alternatives for a given design space with the dimensions
propertySet and concept is carried out by a generic and recursive operation generate
that may be specified as follows:
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1. procedure generate(alternativeList: array; alternative: array; depth: int)

var i: int;

2. begin

3.  if (depth>size(propertySet) and accept(alternative)

4.  then add(alternativeList,alternative)

5.  else for i:=1 to size(concept) do

6. if correct(alternative,depth,propertySet[i])

7. then alternative[depth]:=propertySet[i];  generate(depth+1)

8. end

9.  end

10. end

Figure 5.10 The generate operation for producing alternatives from a design space

The procedure generate produces the alternatives by generating a tree from
propertySet and concept. Thereby, leafs of the tree represent the generated
alternatives. The variable alternativeList is used for storing the alternatives that are
generated during the execution of the procedure. The variable alternative includes the
elements that have been selected so far. The first part of the condition in line 3 checks
whether alternative has the necessary size of elements. The function accept checks
whether the alternative fulfills the condition of the software engineer. The function
correct in line 6 checks whether the alternative is valid and does not include, for
example, two same sub-concepts.

Elimination of a Sub-Space

The elimination of alternatives from a design space can be performed by using the
techniques described in the previous selection. In this section we focus on the
conditional elimination technique. Alternatives can be eliminated from a design
space by specifying a selection function whereby the selection condition is negated.

For example, for the design space SObjectScheduler it may be decided to eliminate all the
alternatives in which a synchronization scheme (Sch) and synchronization strategy
(Str) are defined as attributes.

} AT))(Str)AT ((Sch| P  M{ :: S ObjectSchedulerdulerObjectSche aa ∧¬→

This elimination operation results in the following 12 alternatives:

( ((Sch,CL) (Str,CL) (PFD,CL)),   ((Sch,CL) (Str,CL) (PFD,OP)),    ((Sch,CL) (Str,CL) (PFD,AT)),

((Sch,CL) (Str,OP) (PFD,CL)),    ((Sch,CL) (Str,OP) (PFD,OP)),    ((Sch,CL) (Str,OP) (PFD,AT)),

((Sch,OP) (Str,CL) (PFD,CL)),    ((Sch,OP) (Str,CL) (PFD,OP)),    ((Sch,OP) (Str,CL) (PFD,AT)),

((Sch,OP) (Str,OP) (PFD,CL)),    ((Sch,OP) (Str,OP) (PFD,OP)),    ((Sch,OP) (Str,OP) (PFD,AT)) )

The selection and elimination operations may be utilized together to reduce the
design space. For example, we may extend the previous expression by a selection
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operation that selects the alternatives from the design space SObjectScheduler in which the
performance failure detector (PFD) is represented as an operation.

} ))OPPFD(

AT))(Str)AT ((Sch (| P  M{ :: S ObjectSchedulerdulerObjectSche

a

aa ∧∧¬→

This results in the following list of 4 alternatives:

( ((Sch,CL) (Str,CL) (PFD,OP)),   ((Sch,CL) (Str,OP) (PFD,OP)),

((Sch,OP) (Str,CL) (PFD,OP))     ((Sch,OP) (Str,OP) (PFD,OP)) )

The result of the above function is illustrated in Figure 5.11. Here, the dotted
rectangle represents the space of alternatives that has been selected as a result of the
function )OPPFD( a . The light shaded area represents the space of alternatives that
has been eliminated as a result of the condition AT))(Str)AT ((Sch aa ∧¬ . The dark
shaded and small rectangle represents the alternative space that is the total result of
this expression and this consists of four points representing the above four
alternatives.
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Figure 5.11 Reduction of the design space SObjectScheduler through
selection and elimination of alternatives.

Heuristics-Supported Selection and Elimination

The reduction of the design space may be supported by the utilization of heuristic
rules [Riel 96]. It is not the scope of this chapter to introduce heuristic rules, rather
we apply the heuristic rules as they are published in the corresponding solution
domain that the dimension represents. For example, design spaces including the
dimension MObject we may utilize the heuristic rules from the object-oriented analysis
and design methods [Jacobson et al. 99][Rumbaugh et al. 91][Wirfs-Brock et al. 90]
for deciding whether an entity has to be selected as a class, operation or as an
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attribute. The software engineers may adopt the heuristic rules of methods that they
find most appropriate, and use it to reduce the design spaces. Most methods define
rules in an informal manner. Nevertheless, method rules can be expressed using
conditional statements in the form IF <condition> THEN <consequent>
[Tekinerdogan & Aksit 99a]. The consequent part may be an identification or
elimination action and as such heuristic rules may be applied both to support the
selection and the elimination operations of the reduction of the design spaces.

Consider, for instance, the design space SObjectDomain from EQ5. To select alternatives
from this space, we may utilize the following heuristic rules that we adapted from
the method OMT [Rumbaugh et al. 91]:

IF an entity is relevant
THEN select the entity as a class (CL)

IF an entity describes a structural action or behavior of an object
THEN select entity as an operation (OP)

IF an entity describes another entity
THEN select entity as an attribute (AT)

Heuristic rules may also be used to eliminate alternatives from a design space
[Rumbaugh et al. 91].

IF an entity represents a role
THEN eliminate it as a class (CL)

IF an entity is a transient event
THEN eliminate it as an operation (OP)

IF an entity is independent
THEN eliminate it as an attribute (AT)

Note that these are only examples of heuristic rules and many more rules may be
extracted from the corresponding methods [Tekinerdogan & Aksit 99a]. The
software engineer can apply these heuristics, provide a decision and describe these
into queries. For example, using these heuristic rules it may be decided whether the
synchronization scheme (Sch) should be a class, an operation or an attribute. If it is
decided that it needs to be mapped to a class then the condition of the query will
include the function )CLSCH( a . The heuristic rule application needs thus to be
performed before the actual selection or elimination operations.

5.3.4 Simultaneous and Gradual Design Space Composition

Composing design spaces from existing dimensions may be carried out
simultaneously or gradually [Tekinerdogan & Aksit 99b]. In simultaneous design
space composition, a Cartesian product of all the dimensions is simultaneously
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defined and followed by a reduction and selection process. An example of this
process is the construction of SObjectAdaptScheduler, which has been defined in section 5.3.3
in the subsection on selecting sub-spaces. The problem with the simultaneous
composition approach is that dealing with too many dimensions may increase the
complexity of design space reduction and alternative selection process. Moreover,
not all the alternatives in this large design space may be possible or useful.

Therefore, for the software engineer it may be more practical and easier to compose
design spaces gradually. Thereby not one large design space is composed but rather
a sequence of design space composition and reduction processes is applied whereby
each time the software engineer focuses on selected concerns. This means that the
design process will include much more smaller design spaces than simultaneous
composition. To combine these design spaces we use join functions. A general
specification for joining two spaces is represented as follows:

}2S)p,c(,1S)p,c( where

)),p,p(,c()p,c(),p,c(

|Set)2S,1S{(::eDesignSpac

21

2121

∈∈

→
a

Here, S1 and S2 represent design spaces that contain tuples with shared concepts
with different properties. Consider for example the joining of the reduced spaces of
SAdaptScheduler and SObjectScheduler that are defined as follows:

SAdaptScheduler = { ((Sch,ADr) (Str,ADr) (PFD,ADr)),   ((Sch,ADc) (Str,ADr) (PFD,FX)) }

SObjectScheduler = { ((Sch,CL) (Str,CL) (PFD,CL)),  ((Sch,CL) (Str,OP) (PFD,OP)),  ((Sch,CL) (Str,CL) (PFD,AT)) }

The joined design space SObjectAdaptScheduler may then be defined as follows:

SAdaptObjectScheduler=
{ ((Sch,CL,ADr) (Str,CL,ADr) (PFD,CL,ADr)), ((Sch,CL,ADc) (Str,CL,ADc) (PFD,CL,ADc))

((Sch,CL,ADr) (Str,OP,ADr) (PFD,OP,ADr)), ((Sch,CL,ADc) (Str,OP,ADr) (PFD,OP,FX)),

 ((Sch,CL,ADr) (Str,CL,ADr) (PFD,AT,ADr)), ((Sch,CL,ADc) (Str,CL,ADc) (PFD,AT,FX)) }

5.3.5 Quantifying Design Alternatives

In design algebra, it is possible to assign priority values to the tuples of the
alternatives in the design space to analyze and compare the various design
alternatives. The quantification of alternatives may be relevant because of two
reasons. Firstly, after the reduction of the design space there may still be many
alternatives left and the software engineer may need to balance between the various
alternatives. Assigning quantification values may provide an ordering between the
various alternatives. Secondly, the quantification of the alternatives may be used in
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the expressions for reducing the design spaces using selection or elimination
operations.

The form of a quantification function is as follows:

Ν→× )tpropertySeconcept{::eDesignSpac

The quantification function maps a tuple (ci, pi) whereby ci ∈  concept and pj ∈
propertySet, to a natural number. The function can also include various arithmetic
operations such as assignment (denoted by :=), inc(x), dec(x), times, divide, or a
more complex arithmetic function function(x).

Consider for instance the design space SAdaptScheduler that includes the dimensions
Adapt and Scheduler and consists of 9 tuples from which 27 alternatives may be
derived. For the example problem it may be the case that for Scheduler the run-time
adaptability of the synchronization scheme (Sch) is considered as absolutely
important. The concepts synchronization strategy (Str) and performance failure
detector (PFD) are considered less vital and they may also be compile-time adaptable
but not fixed. These requirements can be expressed by assigning priority values to
the individual tuples in the space SAdaptScheduler. The following formula represents a
specification that provides an example of the assignment of various priority values
to the sub-concepts of SAdaptScheduler:

))}5)ADc,PFD()10)ADr,PFD((

));5)ADc,Str()10)ADr,Str((

);10)ADr,Sch((

;0)p,c(:Pp,Mc),p,c(

|)N)PM{(::S

AdaptScheduler

AdaptSchedulerulerAdaptSched

aa

aa

a

a

∧
∧

∈∈∀

→×

Hereby the first function initializes the priorities of all the tuples to 0. The function
10)ADr,Sch( a  assigns to all the tuples (Sch,ADr) in every alternative in the design

space SAdaptScheduler the priority value 10. Similarly, the tuples (Str,ADr) and (Str, ADc)
are assigned respectively the priority values 10 and 5 to denote that for the concept
synchronization strategy the run-time adaptability has a higher preference over
compile-time adaptability. The same priorities of the sub-concept Str are assigned to
the sub-concept PFD. The result of this quantification function is that all the 27
alternatives of the design space SAdaptScheduler will have been assigned a priority value.
For illustration purposes, Table 5.6 lists 5 of these 27 alternatives.
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Alternative no. Design Alternative
Priority
degree

1. ( ((Sch,ADr), 10)  ((Str,ADr),10)  ((PFD,ADr),10) ) 30
2. ( ((Sch,ADr), 10)  ((Str,ADc), 5)  ((PFD,FX),0) ) 15
3. ( ((Sch,ADc), 0)  ((Str,ADc), 5)  ((PFD,FX),0) ) 5
4. ( ((Sch,ADc), 0)  ((Str,ADc),5)  ((PFD,ADc),5) ) 10
5. ( ((Sch,FX), 0)  ((Str,FX), 0)  ((PFD,FX),0) 0

Table 5.6 Set of quantified design alternatives from the design space SAdaptScheduler.

The column Priority Degree in this table represents the value of the sum of the
individual tuple elements. For example, in the first alternative all the sub-concepts of
Scheduler are defined as run-time adaptable (ADr) and therefore they have been
assigned the priority degree 10. The sum of these three tuple elements is 30 as it can
be seen in the table. The fifth alternative has a priority degree of 0 because all the
sub-concepts of Scheduler have been selected as fixed (FX).

5.3.6 Formalizing Couplings between Concepts

Usually, the sub-concepts of a concept are not all distinct but somehow they are
connected to each other. To reason about these couplings it is required that we
formalize these in an appropriate manner. In design algebra, the Cartesian product is
used to represent the couplings between sub-concepts.

We define a coupling space of concept1 and concept2 as the set of the possible couplings
between all the sub-concepts of concept1 and concept2. The coupling space may be
defined among two independent concepts but in addition it may also be defined to
define the coupling space of the sub-concepts within a concept. For example, all the
theoretically possible couplings of the sub-concepts of MScheduler may be specified as
follows:
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On the right of the matrix, its equivalent graph notation has been given whereby the
nodes represent the sub-concepts of MScheduler. In the matrix, for example, the tuple
(Sch,Str) represents the coupling between the synchronization scheme concept and
the synchronization strategy concept. In practice, naturally not all of the couplings
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may be possible and the coupling space may generally be simplified. Usually, the
solution domain and the client requirements provide the constraints for the valid
couplings. For example, if we consider the conceptual model for Scheduler as it has
been presented in Figure 5.1, we can directly derive the structural connections
between the three sub-concepts and reduce the coupling space SSchedulerCoupling

resulting in the following matrix:
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The symbol ’-’ in the matrix denotes that the corresponding relation is not valid. The
above matrix defines two couplings namely (Sch,Str) and (Sch,PFD). On the right of
the matrix the graphical representation of the couplings between the concepts has
been given.

The couplings of the sub-concepts of solution domain concept are more or less
defined by the solution domain. The realization of the couplings between the sub-
concepts in the object-oriented domain can be done in many different ways. Let us
explain this a little more. To represent all the possible couplings between the
elements CL, OP and AT of PObject, the following coupling space SObjectCoupling is
defined:
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For example the tuple (CL, CL) represents the coupling between two classes. On the
right of the matrix the graph notation has been given. To validate whether all these
couplings exist we need to analyze the existing object-oriented relations. This
process is again similar to a solution domain analysis process, whereby the solution
domain is now the object-oriented model. The object-oriented model provides
several relations among its concepts among which the basic three relations are the
inheritance, the aggregation and the association relation. Based on this we define the
following property set for the object-oriented relations:

PObjectRelation = (IN, AG, AS)
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Hereby, IN, AG and AS correspond to the relations of inheritance, aggregation and
association respectively. The set of all the possible relations using two concepts and a
relation of the object-oriented model can now be specified by the following function.

lationReObjectObjectObjectlationRelingObjectCoup P)PP(::S →×

This function maps a couple (c1,c2) to a relation r, whereby c1 and c2 ∈  PObject and
r∈ PObjectRelation. The possible bindings of the function PObjectRelation is equal to the
product of the size of SObjectCoupling and the size of PObjectRelation, namely (3x3) x 3 = 27.
Table 5.7 presents all these relations whereby the relations are classified into 9
categories that each represent the three relations IN, AS and AG for a given
combination of the elements CL, OP and AT of PObject. In the figure UML-like
notations are used to represent the object-oriented abstractions. A class is
represented as a rectangle whereby the top part represents the name of the class. In
the table we use the symbol op to describe an operation and at to describe an
attribute. The inheritance relation is represented by a line with a hollow arrowhead
pointing to the parent. The association relation is represented through directed
arrows. The aggregation relation is represented by a line with a diamond head.

We can use this table to define the relations between the solution domain concepts.
Assume that, for example, the following alternative is selected from SObjectScheduler to
realize as an object model:

Alternative = ((Sch,CL) (Str,CL) (PFD,OP))

Based on the couplings in SSchedulerCoupling we can define the following model:

{ ((Sch,CL),(Str,CL)), ((Sch,CL),(PFD,OP)) }

The first tuple in this model means that the sub-concept Sch is represented as a class
and connects to Str that is also a class. The second tuple connects the class Sch with
the operation PFD. From Table 5.7 we can derive that there are 3 possible ways of
connecting two classes and 3 possible ways of connecting a class with an operation.

The software engineer needs thus to select from 3x3 + 3x3 = 18 different
combinations of relations, for instance { (((Sch,CL),(Str,CL)), AG),     (((Sch,CL),(PFD,OP)), AG) }

would be an alternative.
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Table 5.7 Possible relations between the concepts within the object model
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The selection process may be supported by the heuristic rules on object-oriented
relations, which can be identified from various publications on object-oriented
methods. Consider for instance the following heuristics for the identification of an
inheritance, aggregation and association relation [Rumbaugh et al. 91]:

IF a concept1 is a specialization of a concept2
THEN select an inheritance relation (IN)

IF a concept1 is a part of concept2
THEN select an aggregation relation (AG)

IF a concept1 is a structural acquaintance of concept2
THEN select an association relation (AS)

Utilizing these heuristic rules the software engineer may decide that Str is a part of
Sch and Sch has an association relation with PFD, resulting in the following model:

{ (((Sch,CL),(Str,CL)), AG),     (((Sch,CL),(PFD,OP)), AS)  }

If we inspect the possible object relations of Table 5.7 then the only possible pattern
for the first tuple is the pattern with the number 1. For the second tuple we can only
select the pattern with number 5. As a result of this, the object model for the above
alternative can be represented as given in Figure 5.12.

detectPerformanceFailures

Synchronization Scheme
Synchronization

Strategy

Figure 5.12 Object model derived from the tuple { (((Sch,CL),(Str,CL)), AG),  (((Sch,CL),(PFD,OP)), AS) }

5.4 Process for Deriving Adaptable Object-Oriented
Schedulers

In this section, we will introduce a process for deriving adaptable object-oriented
design alternatives for the concept Scheduler in the transaction system architecture
The objective of this process is to gradually introduce domain, design and
implementation knowledge and selecting the alternatives based on the adaptability
factors. This example process consists of the following phases:

1. Identification of the adaptable concepts: In this phase the software engineer
decides the adaptability properties of the selected concepts. The purpose of this
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phase is to make the software engineer conscious about the design decisions with
respect to the adaptability characteristics of the models that (s)he develops.

2. Identification of the object-oriented abstractions: In this phase the software
engineer decides the mapping of the selected alternatives to the object-oriented
concepts. The result of this phase is a consciously selected set of object-oriented
design alternatives.

3. Identification of the adaptable object-oriented abstractions: The concepts with the
required adaptability properties delivered from the previous phase are classified
according to the object-oriented abstraction techniques. The result of this phase is
a consciously selected set of object-oriented abstractions with well-defined
adaptability characteristics.

4. Identification of the object-oriented relations: This phase aims to identify the
relations among the identified concepts. The result of this phase is a set of object-
oriented relations that satisfy the adaptability requirements.

The total result of this process is a set of alternative object-oriented models, which
are ordered according to their adaptability degrees. Using this ordering, the software
engineer may consciously select one among them. In the following sections we will
concentrate on each phase.

5.4.1 Identifying the Adaptable Concepts
To identify the adaptable concepts of Scheduler we will use the function SAdaptScheduler

that maps MScheduler to PAdapt. This function defines the alternative design space that
includes the following 27 theoretically possible alternatives:

SAdaptScheduler = MScheduler → PAdapt =

{ ((Sch,ADr) (Str,ADr) (PFD,ADr)),   ((Sch,ADr) (Str,ADr) (PFD,ADc)),    ((Sch,ADr) (Str,ADr) (PFD,FX)),

((Sch,ADr) (Str,ADc) (PFD,ADr)),    ((Sch,ADr) (Str,ADc) (PFD,ADc)),    ((Sch,ADr) (Str,ADc) (PFD,FX)),

((Sch,ADr) (Str,FX) (PFD,ADr)),    ((Sch,ADr) (Str,FX) (PFD,ADc)),    ((Sch,ADr) (Str,FX) (PFD,FX)),

((Sch,ADc) (Str,ADr) (PFD,ADr)),    ((Sch,ADc) (Str,ADr) (PFD,ADc)),    ((Sch,ADc) (Str,ADr) (PFD,FX)),

((Sch,ADc) (Str,ADc) (PFD,ADr)),    ((Sch,ADc) (Str,ADc) (PFD,ADc)),    ((Sch,ADc) (Str,ADc) (PFD,FX)),

((Sch,ADc) (Str,FX) (PFD,ADr)),    ((Sch,ADc) (Str,FX) (PFD,ADc)),    ((Sch,ADc) (Str,FX) (PFD,FX)),

((Sch,FX) (Str,FX) (PFD,ADr)),    ((Sch,FX) (Str,FX) (PFD,ADc)),    ((Sch,FX) (Str,FX) (PFD,FX))

((Sch,FX) (Str,ADc) (PFD,ADr)),    ((Sch,FX) (Str,ADc) (PFD,ADc)),    ((Sch,FX) (Str,FX) (PFD,FX))

    ((Sch,FX) (Str,FX) (PFD,ADr)),    ((Sch,FX) (Str,FX) (PFD,ADc)),     ((Sch,FX) (Str,FX) (PFD,FX))  }

The software engineer may now use the techniques of direct selection, condition-
based selection or matrix-based selection to select the required alternatives. Assume
that as a result of this selection process the space is reduced to the following 4
alternatives:
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SRAdaptScheduler ={ ((Sch,ADr) (Str,ADr) (PFD,ADr)),   ((Sch,FX) (Str,FX) (PFD,FX)),

((Sch,ADr) (Str,ADr) (PFD,ADc)),   ((Sch,ADr) (Str,FX) (PFD,FX)) }

5.4.2 Identifying the Object-Oriented Abstractions

The total alternatives of SObjectScheduler have been given in section 5.3.2. Assume that the
following three alternatives have been selected:

SRObjectScheduler = { ((Sch,CL) (Str,CL) (PFD,CL)),   ((Sch,CL) (Str,OP) (PFD,OP)),    ((Sch,CL) (Str,AT) (PFD,OP))  }

In this reduced space the software engineer has selected the synchronization scheme
as a class.

5.4.3 Identifying the Adaptable Object-Oriented Concepts

For identifying the adaptable object-oriented concepts we need to join the spaces
SRadaptScheduler and SRobjectScheduler. This results in the space SJoinedRAdaptRObjectScheduler that
consists of 12 alternatives:

SJoinedRAdaptRObjectScheduler=
{ ((Sch,ADr,CL) (Str,ADr,CL) (PFD,ADr,CL)),    ((Sch,ADr,CL) (Str,ADr,OP) (PFD,ADr,OP)),

((Sch,ADr,CL) (Str,ADr,AT) (PFD,ADr,OP)),   ((Sch,FX,CL) (Str,FX,CL) (PFD,FX,CL)),

((Sch,FX,CL) (Str,FX,OP) (PFD,FX,OP)),    ((Sch,FX,CL) (Str,FX,AT) (PFD,FX,OP)),

((Sch,ADr,CL) (Str,ADr,CL) (PFD,ADc,CL)),    ((Sch,ADr,CL) (Str,ADr,OP) (PFD,ADc,OP)),

((Sch,ADr,CL) (Str,ADr,AT) (PFD,ADc,OP)),     ((Sch,ADr,CL) (Str,FX,CL) (PFD,FX,CL)),

((Sch,ADr,CL) (Str,ADr,OP) (PFD,FX,OP)),      ((Sch,ADr,CL) (Str,FX,AT) (PFD,FX,OP)) }

We may further reduce this space by considering the constraints on the relations
between the object and the adaptability properties. Assume that the software
engineer applies the constraint that operations in the object-model cannot be run-
time adaptable, then the SJoinedRAdaptRObjectScheduler will result in a reduced space:

SR_JoinedRAdaptRObjectScheduler=
{ ((Sch,ADr,CL) (Str,ADr,CL) (PFD,ADr,CL)),    ((Sch,FX,CL) (Str,FX,CL) (PFD,FX,CL)),

((Sch,FX,CL) (Str,FX,OP) (PFD,FX,OP)),    ((Sch,FX,CL) (Str,FX,AT) (PFD,FX,OP)),

((Sch,ADr,CL) (Str,ADr,CL) (PFD,ADc,CL)),     ((Sch,ADr,CL) (Str,ADr,AT) (PFD,ADc,OP)),

((Sch,ADr,CL) (Str,FX,CL) (PFD,FX,CL)),      ((Sch,ADr,CL) (Str,FX,AT) (PFD,FX,OP)) }

5.4.4 Identification of the Object-Oriented Relations
The identification of the object-oriented relations is carried out by first considering
the couplings for each alternative and then by mapping these to the object-oriented
relations. We explain these two sub-steps separately.
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1. Define the coupling between the concepts for each alternative
As described in section, 5.3.6, only the couplings (Sch,Str) and (Sch,PFD) are
possible. For example, the first alternative ((Sch,ADr,CL) (Str,ADr,CL) (PFD,ADr,CL)) of
SR_JoinedRAdaptRObjectScheduler will be mapped to { ((Sch,ADr,CL),(Str,ADr,CL)),

((Sch,ADr,CL),(PFD,ADr,CL)) }. Graphically this is represented as follows:

SchADr, CL

StrADr, CLPFDADr, CL

Figure 5.13 Graphical notation for the tuple ((Sch,ADr,CL),(Str,ADr,CL)),  ((Sch,ADr,CL),(PFD,ADr,CL))

The 8 alternative models that can be derived from SR_JoinedRAdaptRObjectScheduler are
represented by the following space.

SCoupled_R_JoinedRAdaptRObjectScheduler =

{ ((Sch,ADr,CL),(Str,ADr,CL)) - ((Sch,ADr,CL),(PFD,ADr,CL))

((Sch,FX,CL),(Str,FX,CL))  - ((Sch,FX,CL), (PFD,FX,CL)),

((Sch,FX,CL),(Str,FX,OP)) -  ((Sch,FX,CL),(PFD,FX,OP)),

 ((Sch,FX,CL),(Str,FX,AT)) -  ((Sch,FX,CL),(PFD,FX,OP)),

((Sch,ADr,CL),(Str,ADr,CL)) -  ((Sch,ADr,CL),(PFD,ADc,CL)),

((Sch,ADr,CL),(Str,ADr,AT)) - ((Sch,ADr,CL),(PFD,ADc,OP)),

((Sch,ADr,CL),(Str,FX,CL)) - ((Sch,ADr,CL),(PFD,FX,CL)),

 ((Sch,ADr,CL),(Str,FX,AT)) - ((Sch,ADr,CL)(PFD,FX,OP)) }

2. Map the identified couplings to object-oriented couplings as defined by PObjectRelation

This step results in alternatives that have concepts and relations and as such can
be can be easily mapped to an object-oriented notation. Mapping every
alternative in SCoupled_R_JoinedRAdaptRObjectScheduler to PObjectRelation results in 32 =9 models
because every model has two relations that can be mapped to IN, AS, or AG. If
we consider all the alternatives in SCoupled_R_JoinedRAdaptRObjectScheduler then we can thus
derive 8 x 9 = 72 theoretically possible models. We may reduce this set by
applying object-oriented heuristics for identifying inheritance, association and
aggregation, which have been given in section 5.3.6. Assume that the software
engineer decides that the synchronization strategy (Str) and the performance
failure detector (PFD) are a part of the synchronization scheme (Sch). The
consequence of this is that we only select the models that apply aggregation (AG)
relation and this reduces the set of 72 models to only 8 models, which are listed
in Table 5.8:
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Model
no.

Model Priority

1. ((Sch,ADr,CL),(Str,ADr,CL),AG) - ((Sch,ADr,CL),(PFD,ADr,CL),AG) 30
2. ((Sch,FX,CL),(Str,FX,CL),AG) -  ((Sch,FX,CL), (PFD,FX,CL)),AG) 0
3. ((Sch,FX,CL),(Str,FX,OP),AG) - ((Sch,FX,CL),(PFD,FX,OP),AG) 0
4. ((Sch,FX,CL),(Str,FX,AT),AG) -   ((Sch,FX,CL),(PFD,FX,OP),AG) 0
5. ((Sch,ADr,CL),(Str,ADr,CL),AG) -  ((Sch,ADr,CL),(PFD,ADc,CL),AG) 25
6. ((Sch,ADr,CL),(Str,ADr,AT),AG) -  ((Sch,ADr,CL),(PFD,ADc,OP),AG) 25
7. ((Sch,ADr,CL),(Str,FX,CL),AG) -  ((Sch,ADr,CL),(PFD,FX,CL),AG) 10
8. ((Sch,ADr,CL),(Str,FX,AT),AG) -   ((Sch,ADr,CL)(PFD,FX,OP),AG) 10

Table 5.8 The total set of object-oriented adaptable alternative models

5.5 Designing for Time Performance

In this section we will focus on evaluating the design alternatives based on the time
performance quality factor.

Assume that the software engineer selects the alternatives with model number 2 and
7 in Table 5.8.

(((Sch,ADr,CL),(Str,FX,CL)),AG) - (((Sch,ADr,CL),(PFD,FX,CL)),AG))

(((Sch,FX,CL),(Str,FX,CL)),AG) -  (((Sch,FX,CL), (PFD,FX,CL)),AG))

The sub-concepts Sch, Str and PFD each correspond to a set of instantiations that
represent the different implementation alternatives. To analyze the time-
performance of both design alternatives we need to describe the various
implementation alternatives to which the system can be adapted.

From the solution domain analysis in the previous chapter we derived the
alternative space of the instances for each of these sub-concepts. We describe these
alternative instances as properties over the sub-concepts, in a similar way as we
defined the adaptability and the object properties.

For the synchronization scheme sub-concept we derive the following property set
from the solution domain:

PScheme = (LK, TO, OPT)

Hereby the properties LK, TO and OPT represent the two-phase locking, timestamp
ordering and the optimistic concurrency control schemes, respectively.

The property set for the synchronization strategy we define as follows:

PStrategy = (AGG, CONS)
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The properties AGG and CONS represent the aggressive and the conservative
synchronization strategy, respectively.

Finally the performance failure detector is defined as follows:

PPFD = (DL, IB, CR, IR)

Hereby, DL, IB, CR and IR represent the deadlock detector, infinite blocking
detector, cyclic restarting detector and the infinite restarting performance failure
detectors, respectively. We can depict this space graphically as it is shown in Figure
5.14.

Sch

LK

TO

OPT
CONS

DL

IB

IR

CR

AGG

PFD

Str

Figure 5.14 Design space of Scheduler with instances of sub-concepts as property sets

The product of the size of these property sets defines the theoretically possible set of
alternative instantiations of Scheduler, that is, 3 x 3 x 4 = 36. Each of these alternatives
may probably have different time-performance values. Adaptability of Scheduler is
defined as the ability to switch between these various implementation alternatives.
Let us now analyze the two alternatives, which have been selected from Table 5.8,
from this perspective.

In the first alternative, the scheduler scheme is selected as run-time adaptable while
the scheduling strategy and the performance failure detector are fixed. The run-time
adaptability of the scheduler scheme means that the system may switch between the
synchronization scheme instances, which are listed as two-phase locking (LK),
timestamp-ordering (TO) and optimistic (OPT). This adaptation may help to tune to
the scheduler implementation alternatives with the highest time performance for a
given context.

In the selected second alternative all the tuples are fixed, which means that for each
of the sub-concepts a fixed implementation alternative is chosen. Note that this can
be theoretically done in 36 ways, that is, the number of alternatives. To provide a
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high time performance for this alternative, one may first analyze the context and
then select the appropriate scheduler instances.

To analyze and measure the performance of different scheduler implementations a
pilot project has been carried out [Schopbarteld 99] for which a simulation
framework and a simulation environment has been developed. Hereby, the time-
performance was analyzed and measured for the following situations:

1. Fixed scheduler with a two-phase locking scheme concurrency control scheme.

2. Fixed scheduler with a timestamp ordering concurrency control scheme

3. Fixed scheduler with an optimistic concurrency control scheme.

4. Run-time adaptable scheduler

Note that the first situation corresponds to the first selected alternative and the third
to the fourth situations correspond to the second alternative that has been selected
from Table 5.8.

For each of these four situations the time-performance was measured through a
number of experiments in which the number of transactions completed per second,
that is the throughput, has been adopted as the dependent variable41. The
independent variable that was manipulated to provide the result of the throughput
variable was the multi-programming level, which represents the number of
transactions that may be active at a given time.

For the fixed scheduler situations an environment was set up in which the atomic
transaction system only applied one scheduler implementation and the throughput
was measured for the multi-programming levels between 0 and 100.

For the situation in which the run-time adaptability of the scheduler was required
dynamic adaptation mechanisms have been developed. Hereby, a dynamic
switching algorithm applies heuristic rules to select different alternative scheduler
implementations for different contexts. The switching of the schedulers aimed to
optimize the time performance, in this case the throughput, for the multi-
programming levels between 0 and 100. The applied heuristic rules have been
extracted from the solution domain that define the switching criteria [Kumar
96][Atkins & Coady 92][Agrawal et al. 87][Carey & Stonebraker 84] to optimize the
throughput for the changing multi-programming levels. The following three rules
have been basically applied:

                                               

41 In experimental analysis and design a set of independent variables represents aspects that are
manipulated to measure the outcome of their result on another aspect, the dependent variable, of the
subject of domain [Fenton & Pfleeger 97].
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IF MPL.value < lowerThreshold
THEN select optimistic scheduler

IF MPL.value ≥ lowerThreshold and MPL.value ≤ upperThreshold
THEN select two-phase locking scheduler

IF MPL.value > upperThreshold
THEN select timestamp-ordering scheduler

The variables lowerThreshold and upperThreshold represent the threshold values at
which the selection mechanisms needs to switch to a different scheduler to increase
the throughput of the system. These heuristic rules may only be effective in
optimizing the time-performance if the right threshold values have been selected.
These threshold values are correct if the throughput value with the selection
mechanism is higher than the throughput value for a fixed implementation. To
determine the initial threshold values a number of simulations have been carried out
on beforehand. Figure 5.15 represents the result of these simulations [Schopbarteld
99].
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Figure 5.15 Results of the determination of the threshold values for the MPL

From this figure it follows that after a number of simulations the lower and upper
threshold values increase to certain value and get as good as stabilized. These values
have been initiated in the heuristic rules of the switching mechanism. During the
actual simulations the threshold values were also dynamically adapted.
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Figure 5.16 Time-performance values for the fixed scheduler implementations and the run-
time adaptable scheduler implementations.

Figure 5.16 shows the throughput values for each scheduler implementation and the
run-time adaptable selection mechanism as it has been derived from the simulations
for varying multi-programming levels. From this figure we can derive that for lower
multi-programming levels the optimistic scheduler implementation performs better
than the timestamp ordering and the two-phase locking scheduler implementations.
For higher multi-programming levels the throughput for the optimistic scheduler
implementation decreases significantly and the timestamp-ordering scheduler
implementation then provides a better throughput. The run-time adaptable
scheduler implementation nearly follows the optimal values of the different
schedulers and proofed to be effective in optimizing the time-performance.

For a further analysis of the experimental results and the details of the simulation
framework and the simulation environment we refer to [Schopbarteld 99].

5.6 Automated Support for Design Algebra: Rumi

An additional value of design algebra can be achieved if the provided techniques are
supported by a number of tools. In this section we will describe the CASE tool
environment Rumi42 that we have developed for supporting the design algebra
techniques.

                                               

42 Derived from the name of the famous mystic poet, Mevlana Celaleddin Rumi (1207-1273).  Rumi
has written extended volumes on spiritual teachings for increasing the level of human consciousness
and universal human qualities such as love, generosity, patience, courage, humility and wisdom.
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5.6.1 Method Engineering
The architecture of the tool environment has been developed through method
engineering techniques. Method engineering, is defined as an engineering discipline for
designing, constructing and adapting methods, techniques and tools for the
development of information systems [Brinkkemper 96][Saeki 98][Tolvannen et. al
96]. The usually adopted method engineering process is shown in Figure 5.17.
Method engineers model methods and for this they will typically analyze the method
domain, that is, the area in which the method is described. This may include method
experts, books, existing CASE tools supporting the method etc. Method engineers
formally represent methods or parts of methods and store these in a so-called
method-base for later reuse. The engineering of methods using automatic tool support
is called Computer Aided Method Engineering (CAME). If needed, suitable method
fragments can be retrieved from the method-base, if necessary adapted, and finally
integrated into a new method. The software engineer will use CASE tools, which
provide programmed method, and guides the software engineer in developing
software.

Software Engineer

Method Engineer

Method Base

CAME tools

Method CASE
(Programmed Methods)

Software

storesretrieves

uses Method Domainanalyzes

develops, refines
and tests

used by

develops

Figure 5.17 Method Engineering Process, adapted from [Saeki 98]

5.6.2 Meta-Model

Method engineers usually apply meta-modeling techniques to store the formally
represented method in the method-base. The meta-models are supported by CAME
tools, with which methods may be tailored.
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We applied the process of Figure 5.17 for the development of the environment Rumi
for which we applied the Parcplace Visualworks Smalltalk environment for
constructing object-oriented applications. This environment can be considered as
part of our CAME environment. The meta-model that has been developed in this
environment and on which all the tools of Rumi rely is represented in Figure 5.18.

generateAlternatives()
selectAlternatives(cond:Condition)
eliminateAlternatives(cond:Condition)
quantifyAlternatives(cond:Condition)
generateTupleSpace(oper:Operation)
getTotalNoAlternatives()

name
alternativeSpace
totalNoAlternatives
tupleSpace
alternatives

DesignSpace name
concepts
constraints
priority

DomainModel

name
properties
priority

PropertySetcoordinate set

dimension set

1..*

1..*

Figure 5.18 The meta-model for the tools of Rumi

The class DesignSpace represents the concept of design spaces and consists of the
following attributes:

•  name, defines a unique name for the design space.

•  dimension set, represent the set of dimensions from which the design space will
be composed. Dimensions are represented by concepts of canonical model that
have been derived from the solution domain analysis.

•  coordinate set, represents the set of properties that are used as coordinates for the
dimensions of the design space. Coordinates are derived from the properties of a
property set.

•  alternativeSpace, defines the reduced set of alternative space that has resulted
after reduction operations. Initially this represents the total design space.

•  totalNoAlternatives, represent the total number of alternatives that can be
generated from the attribute alternativeSpace.

•  tupleSpace, defines the set of tuples that consists of elements of the dimensions.

•  alternatives, represents the total alternatives that are derived from the
alternativeSubSpaces.
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The class DesignSpace consists of the following basic operations:

•  generateAlternatives(), represents the algorithm for generating alternatives from
the design space as it is stored in the attribute alternativeSpace. This algorithm has
been explained in Figure 5.10.

•  selectAlternatives(cond: Condition), reduces the design space by selecting the set of
design alternatives that meet the condition cond. The result is stored in the
attribute alternativeSpace.

•  eliminateAlternatives(cond: Condition), reduces the design space by eliminating the
set of design alternatives that meet the condition cond. The result is stored in the
attribute alternativeSpace.

•  quantifyAlternatives(cond:Condition), assigns an integer value to the alternatives in
the design space, based on the condition cond.

•  generateTupleSpace(), generates the tuple space that consists of a set of tuples
whereby each tuple consist of elements from the dimensions. The tuple space
may be derived using the set operations of Cartesian product, union, difference,
intersection and join. The application of the Cartesian product operation, for
example, has been illustrated in section 5.3.3 on matrix-based selection, the join
operation has been illustrated in section 5.4.3.

•  getTotalNoAlternatives(), computes the number of alternatives that can be derived
from the design space and stores this in the attribute totalNoAlternatives and
returns this value.

Using this meta-model, method engineers may define different design spaces such as
SAdaptScheduler and SObjectScheduler.   

5.6.3 Tools Overview

In the design of the Rumi environment we have classified tools into method
engineering tools and software engineering tools. The method engineering tools can be
accessed by the Launcher tool that is represented in Figure 5.19.
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Figure 5.19 Launcher tool of the Rumi environment

The basic tools are Model Definer, Design Space Composer, Alternatives Quantifier,
Process Definer and Alternatives Generator. These tools access a common repository in
which models, property sets and design spaces are stored. We will explain these
tools in the following sections.

5.6.4 Model Definer Tool

A snapshot of the tool Model Definer is represented in Figure 5.20. This tool is used to
introduce new models such as MScheduler as described in section 5.3.1. In Figure 5.20,
the top-left widget Models is used to enter a new model into the repository. The
concepts of the selected model are entered in the left-middle widget Concept Set. The
bottom-left widget Related Concepts is used to define the relations between the sub-
concepts of the model. The bottom widget Model Description is used to give general
comments about the model. The right widget Model Graph shows a graph
representation of the model, where the concepts and relations correspond to the
nodes and relations, respectively. For example, the tool Model Definer in Figure 5.20
shows that the model MScheduler is stored in the repository. Since MScheduler is selected in
the top-left widget, its concepts can be entered in the left-middle widget. The
relations of MScheduler have also been defined and the sub-concept Sch is related to the
sub-concepts Str and PFD. The software engineer can store the model in the method
base by pressing the Okay button.
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Figure 5.20 Model Definer Tool

5.6.5 Design Space Composer Tool

Figure 5.21 represents a snapshot of the tool Design Space Composer, which supports
the design algebra techniques for composing design spaces as described in section
5.3.2. In Figure 5.21, the widget Design Spaces on the left provides a list of the design
spaces in the repository. The names of the design spaces can be added, removed or
updated through the widget’s menu. The listbox widgets Models and Property Sets list
the models and the available properties in the repository. The method engineer can
select a model and a property set from these listboxes, which then appear in the
listbox widgets Sel. Models and Sel. Property, respectively. In the example shown by
Figure 5.21, the design space AdaptScheduler is selected. The tuples of the design
space can be produced by pressing the button Compose that will then be displayed in
the listbox Tuple Space. The radio boxes on the left enable to choose one of the
operations of Cartesian product, union, difference, intersection or join for
constructing the tuple space. For the design space AdaptScheduler the Cartesian
operation has been selected.
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Figure 5.21 Design Space Composer Tool

5.6.6 Alternatives Quantifier Tool

Figure 5.22 shows the snapshot of the tool Alternatives Quantifier that can be used for
quantifying design alternatives as it has been described in section 5.3.5. Dependent
on the concept type, different priority numbers can be assigned to individual tuples
of a design space by directly entering these in the fields of the column Priority. In the
figure, the priorities for the tuples of the design space AdaptScheduler are shown. As
described in the example of section 5.3.5, all the concepts with fixed property have
been assigned the value 0 and all the concepts with run-time adaptability property
have been assigned the value 10. The compile-time adaptability property of the
concepts STR and PFD have been assigned the value 5 and the compile-time
adaptability property of the concept SCH has been assigned the value 0.

The widget Update Degree provides operations for automatically computing the
priorities of the tuples of the selected design space. For this, it is required that the
priorities of the basic property sets such as Object and Adapt need to be defined in
advance. For example, assume that the following priority values are assigned to the
properties of Adapt: FX=0, ADc=5, ADr. Further, assume that the properties of Object
are all assigned the value 1, indicating that these should not be considered in the
prioritization of the alternatives. The software engineering can now select one of the
arithmetic operations +, -, x, or / and press the Compute button for computing the
priorities of the tuples of AdaptScheduler. The radio button function can be selected to
define complex priority calculations for which an expression can be entered in the
input field below. If the arithmetic operation ’x’ has been selected then the tuples of



Chapter 5 - Balancing Architecture Implementation Alternatives

184

AdaptScheduler will have the values as shown in Figure 5.22, except the tuple
(STR,ADc) for which the priority 5 will be computed. The automatic computation of
priorities may be very useful for design spaces that include a large set of tuples.

Figure 5.22 Alternatives Quantifier Tool

5.6.7 Alternatives Generator Tool

To generate alternatives from the predefined design spaces the tool Alternative
Generator is used from which a snapshot is shown in Figure 5.23. Initially, the set of
alternatives for the design spaces listed in the list box Design Spaces is not generated.
The widget no. alternatives defines the number of alternatives that can be derived
from the selected design space. The software engineer can generate the set of
alternatives by pressing the Generate button. Since this number of alternatives can be
quite large, the tool gives an error message when the number of alternatives exceeds
a predefined maximum value. If the number of alternatives is smaller than the
maximum default value the alternatives will be generated and listed and ordered
according to their priority values. This ordering of the alternatives is also shown in
the graphic below the list of alternatives. In the graphic each point represents an
alternative. The graphic shows only 30 alternatives at once. To browse the other
alternatives the left and right arrows at the right corner of the window can be used.
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Figure 5.23 Alternative Generator Tool

The software engineer can directly select some of these alternatives through the
menu of the alternatives list and store this in the repository. The design space can
also be reduced by either pressing the button Matrix Selection or the button Rule-
Based Selection that represent selection of the alternatives through matrix-based
selection and heuristic rule supported selection, respectively. We will describe the
related tools in the following two sections.

Matrix-Based Alternatives Selection Tool

Figure 5.24 shows a snapshot of the Matrix-Based Alternatives Selection tool. The
techniques for this tool have been described in section 5.3.3. In the figure an example
is shown in which the design space AdaptScheduler is reduced. The reduced design
space is called R_AdaptScheduler that consists of two sub-spaces R_AdaptScheduler1
and R_AdaptScheduler2. The sub-space R_AdaptScheduler1 is defined by the two
conditions C_AdaptScheduler1 and C_AdaptScheduler2. Conditions can be defined by
selecting the cells of the matrix that is shown at the bottom of the window. The gray
cells indicate the tuples that have been selected. In Figure 5.24, the condition
C_AdaptScheduler1 has been selected, which defines that the concept SCH should be
run-time adaptable and the concept STR and PFD should be either compile-time or
run-time adaptable. This condition results in 4 alternatives as it is shown in the
figure. If the Okay button is pressed then this reduced space will be stored in the
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repository and with the tool Alternatives Generator the corresponding alternatives can
be generated.

Figure 5.24 Matrix-Based Alternatives Selection Tool

Rule-Based Alternatives Selection Tool

Figure 5.25 shows a snapshot of Rule-Based Alternatives Selection tool. Rumi provides
different tools for every property set. Pressing the button Rule-Based Selection in the
Alternatives Generation tool in Figure 5.23, will open a tool that corresponds to the
property set of the selected design space. For the design space AdaptScheduler a tool
will be selected from the environment that is related to the property set Adapt. A
snapshot of this tool is shown in Figure 5.25.

Figure 5.25 Rule-Based Alternatives Selection Tool
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This tool supports the software engineering with heuristic rules on adaptability
properties of a concept set. For this, first a subspace is added in the listbox Derived
Sub-Spaces through its menu. Pressing the Start button will then start the reduction of
the design space through the heuristic rules support. Every rule-based selection tool
typically presents a question and a set of answers that can be selected. Pressing the
buttons labeled i will provide additional heuristic information on the presented
question and answers. For example, pressing the button right to the check box
Compile-Time Adaptable will open the following dialog box.

Figure 5.26 Typical information dialog box for explaining heuristic rules in the Rule-Based
Alternatives Selection Tool

In the figure the reduced design space R_AdaptScheduler consists of a subspace Rule-
R_AdaptScheduler for which the properties for the concepts SCH and STR have been
selected. As it can be seen in the listbox Selected Tuples the concept SCH has been
selected as run-time adaptable and the concept STR has been selected as either
compile-time or run-time adaptable. At this point the number of alternatives that is
still possible is 6, because PFD can still be selected in 3 ways. The current question
relates to the concept PFD and the software engineer has selected it as both compile-
time and run-time adaptable. The buttons Previous and Next allows the software
engineer to go toe the previou step or follow with the subsequent concept.

5.7 Related Work

The notion of design space as we described in section 5.3.1 has been defined with the
same name or similar names in several publications.

In [Lane 96] a design space is constructed from dimensions that reflect requirements
and dimensions that reflect structure. Thereby, the basic objective is to identify
correlations between the different dimensions of the design space so that heuristic
rules may be derived and formalized that describe the appropriate and
inappropriate combinations of design choices. Lane illustrates his ideas by
constructing a design space for a user-interface architecture from which he extracts a
set of heuristic rules that can be used to guide the software engineer in building
architectures for user-interfaces.

In the domain of computer-aided design, the morphological chart method is described
for depicting the set of possible product alternatives based on the required features
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[Cross 89]. The morphological chart consists of a features dimension and a sub-
solution dimension. The feature dimension includes the functions that are required
for the product. The sub-solution dimension includes the means for achieving the
functions. The morphological chart represents the total solution space for the
product, made up of the combinations of sub-solutions. The evaluation of the
alternatives is done by the weighted objectives method. Thereby numerical values are
assigned to predefined design objectives and numerical scores for alternatives are
determined with respect to these weighted objectives [Cross 89].

In [Ossher & Tarr 99] the notion of hyperspace is introduced for modeling software
artifacts along multiple dimensions of concerns. Hyperspaces consist of multiple
dimensions that group multiple disjoint concerns. A hyperspace also contains a set
of hypermodules, which specify a set of hyperslices that are collections of units
specified in terms of the concerns in the hyperspace.

Adaptability is generally considered as an important and desired characteristic of
software systems and a number of research groups have been active in this area. For
example, to improve the adaptability characteristics of software systems, the
Demeter method [Lieberherr 96], Composition-Filters [Aksit 96], Aspect-Oriented
Programming [Kiczales et al. 97], and Reuse Contracts [Steyaert et al. 96] are
proposed as extensions to the object-oriented model. We consider these
contributions important and complementary to our work. Our emphasis, however, is
different. We do not propose an extension to the object-oriented model, but
introduce a technique to compare the design alternatives from adaptability and
performance viewpoints. In [Kiczales et al. 97], aspects are defined as properties that
affect the performance or semantics of the components in systemic ways. Systemic
characteristic of aspects implies that they can be considered as concepts. From this
point of view, aspects are concepts, which affect the quality and/or semantics of
software components. An aspect language is a language whose abstractions can
directly represent one or more aspects. Aspect weaving is used to compose two or
more aspects with software components. The design algebra presented in this paper
can be seen as part of the aspect-oriented design. Aspects are the concepts and the
weaving process is defined by the selection and elimination functions which defines
different model spaces, like adaptability space and object space.

In [Jacobson et al. 97], the concept of variation point is introduced to specify
locations at which variation will occur. The variation points are generally expressed
using variants, which are type-like constructs. Although our adaptability modeling
approach is intuitively similar, we propose an adaptability model, which can be
applied along the software development process for comparing the design
alternatives.
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Several publications have been made on object-oriented software metrics
[Chidamber & Kemerer 94]. Software metrics is quantitative measurements about
any aspect of a software project. This may include project, process and product metrics.
Product metrics aim to determine the properties of the software product, such as the
amount of coupling, cohesion, code complexity, etc. Most product metrics as
published in the literature are generally determined after the software system is built
and there is no clear relation between the quality demands of requirements,
compromises being made, and the quality of systems being built.

During the last decade, the so-called Software Performance Engineering (SPE)
discipline has emerged for combining the performance analysis techniques with
software engineering methods [Smith 90]. This discipline aim to construct
performance models of software systems by using data about envisioned software
processing. These models are used to compare software and hardware alternatives
for solving performance problems. The techniques used within the context of SPE
research are relevant to our work, and can be applied together with the techniques
presented in this paper. Our emphasis is to compare the design alternatives both
from performance and adaptability viewpoints, whereas the SPE research mainly
emphasized the performance factors of the design alternatives.

Object-oriented frameworks offer well-defined infrastructures for a family of
applications [Johnson & Foote 88]. Although a considerable number of successful
frameworks have been developed during the last several years, it is generally agreed
that designing a high-quality framework is still a difficult task [Fayad et al.
99][Taligent 96][Roberts 96]. One of the basic issues in developing object-oriented
frameworks is finding the variable elements of the system which are called hot-spots
[Pree 94]. The adaptability space, which we defined in this paper, can be useful for
finding these hot-spots. All the elements with a tag AD in the adaptability space can
be considered as being a hot-spot in the final system.

Various researchers carry out research on component oriented software
development to address open systems requirements [Nierstrasz & Tsichritzis 95]. A
component is defined as a static software abstraction that can be composed with
other components to make an application. We think that our approach can be used
to reason about and control the composition of components during software design.

5.8 Evaluation and Conclusions

There are, in general, many correct implementations of a software architecture, and
each implementation may differ from the other with respect to its quality factors.
Software is rarely designed for ultimate quality, but it is a compromise of multiple
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considerations. For example, generally the adaptability and performance factors of a
software system have to be balanced. To achieve these objectives, in this chapter the
following four requirements were considered important: First, to be able to compare
the design alternatives, the space of the alternatives must be determined. Secondly,
the alternatives must be ordered with respect to their quality factors. Thirdly, the
software engineers must be able to select among the alternatives based on the
requirements. Finally, the quality factors must be balanced with respect to each
other.

In section 5.3 we have introduced the concept of Design Algebra that provides
techniques to explicitly depict the design spaces of architecture specifications and
defines various operations for reducing the design space and quantifying the design
alternatives. A design space has been defined as a multi-dimensional space that
includes the various design alternatives. The dimensions of the design space are
defined by well-defined and stable concepts that have been derived from a solution
domain analysis process. The reduction of the design space is applied through either
the selection or the elimination of sub-spaces, optionally supported by the
corresponding heuristic rules. To explicitly reason about the adaptability factors of
the design alternatives formulas were introduced to depict the space of design
alternatives from the adaptability point of view. Similarly, at the object-oriented
modeling level formulas were defined to depict the design alternatives.

In section 5.4 we described a process for deriving adaptable object-oriented
scheduler design alternatives from the architecture specification.

In section 5.5, we evaluated the time-performance quality factor for selected
alternatives. To this aim, a pilot project has been carried out in which a simulation
framework and a dynamic switching mechanism have been developed. The practical
simulations showed that the performance computations of the alternative scheduler
implementations differed and that run-time adaptable scheduler implementation
alternative was effective optimizing the time performance value.

In section 5.6 we have described Rumi, an object-oriented tool environment that
provides a set of tools for the design algebra techniques.

The techniques presented in this chapter are general and applicable to determine
and balance different quality factors of design alternatives. We consider the
presented techniques as initial attempts to solve the problems related to balance
multiple quality factors and expect that these techniques can serve as a basis for
further research in turning the software development process into an engineering
activity.
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M.C. Escher - Ascending and Descending

The illustration on the previous page shows an impossible building with a never-ending
staircase. The inhabitants of these living-quarters would appear to be monks, adherents of
some unknown sect. Perhaps it is their ritual duty to climb those stairs for a few hours each
day. It would seem that when they get tired they are allowed to turn about and go downstairs
instead of up. Yet both directions, though not without meaning, are totally useless. Although
the staircase is conceptually impossible, it does not interfere with your perception of it. In
fact, the paradox may not be even apparent to many people.

Software Architecture Design Analogy

Software architectures may be derived from different sources. Very often the architectural
abstractions are derived from the client’s requirement specifications. The derived abstractions
may not interfere with the perception of the clients, though, they may be less useful for
defining the stable abstractions and the architecture boundaries.
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6.1 Introduction

“Focus on where you want to go, instead of where you have been.”
- John M. Templeton, Worldwide Laws of Life

or each of the previous chapters, we have described the related conclusions. In
this chapter we will describe the overall conclusions of the thesis that correspond

to the global objectives. We describe these conclusions under the categories of
conceptual foundations for mature engineering, the application of synthesis to
software architecture design and the formalization of the alternative space analysis
phase, which will be presented in the sections 6.2, 6.3 and 6.4, respectively. In section
6.5, we will elaborate on the future work that can extend the subjects of this thesis.

6.2 Conceptual Foundations of Mature Engineering

The initial claim of this thesis is that to solve the chronic problems of the software
crisis it is necessary to view software engineering from a broad perspective. To this
aim, this thesis has provided a thorough and broad analysis of software engineering
from a problem-solving perspective.

To explicitly reason about the various problem-solving concepts, in chapter 2 we
have presented the controlled problem-solving in context model (CPC-model), that
uniquely integrates the concepts of problem-solving, control and context. The CPC-
model can be utilized to analyze and evaluate different problem-solving activities. In
this thesis we have utilized this model to analyze and evaluate philosophy, mature
engineering and software engineering. We have described a conceptual and
comparative analysis of these disciplines and provided several conclusions.

It appeared that philosophy and mature engineering both conform to the CPC model
and this maturation process has been justified by a conceptual analysis from a
historical perspective. In addition we have presented the mature state of these
disciplines as they are applied today. It seems that the maturity of the problem
solving concepts can be validated against the maturity of the control concepts in the
CPC model for the corresponding discipline because the control part is directly
related to an explicit understanding and interpretation of the problem solving
process. In philosophy, we have seen that hermeneutic philosophy focuses on
understanding of interpretation, that is control of problem solving. Hermeneutic
philosophy maintains that for a correct understanding it is necessary to grasp the
context of the artifacts and this observation confirms our assumption that a
controlled problem solving process is valid within a given context. In traditional

F
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engineering the maturation of the problem solving process is represented by the
emergence of the computer-aided design and computer-aided manufacturing
techniques.

From our conceptual analysis of a historical and a project perspective of software
engineering, we have concluded that software engineering is still in a pre-mature
state. This is justified by the fact that it lacks several concepts that are necessary for
effective problem-solving. We can basically distinguish the following important
three concerns that are included in mature problem solving but to a large extent are
missing in software engineering.

First, the need concept in the CPC model plays a basic role and as such has directed
the activities of philosophy and engineering. This is to say that artificial solutions
that do not directly relate to the existing needs cannot be enforced and eventually
will fail to be effective. In mature engineering an explicit technical problem analysis
phase is defined whereby the basic needs are mapped to the technical problems and
organized. The technical problems are defined through an iterative process whereby
both the client’s perspective and the solution domain perspective is considered. The
client’s perspective serves to define the solution domain boundaries and the solution
domain on its turn helps to identify the valid technical problems. In mature
engineering, the technical problems are usually quantified to derive, for example, the
overall cost of the artifact before it is actually produced.

Second, mature problem solving also includes a rich base of extensive scientific
knowledge that is utilized by a solution domain analysis phase to derive the
fundamental solution abstractions. For this we have seen that preserving and
communication of this knowledge is essential, which has been shown by, for
example, the different comprehensive handbooks and manuals of the mature
engineering disciplines. In philosophy codification and preserving of scientific
knowledge has been indicated as the basic cause for the rise of the different
movements such as the Renaissance in the West.

Third, in mature problem solving different alternatives are explicitly searched from
the solution domain and often organized with respect to pre-determined quality
criteria. In mature engineering, for example, the quality concept plays an explicit role
and the alternatives are selected in an explicit alternative space analysis process
whereby mathematical optimization techniques such as calculus, linear
programming and dynamic programming are adopted.

In mature engineering the three processes of technical problem analysis, solution domain
analysis and alternative space analysis are integrated within the synthesis process. In the
synthesis process the explicit problem analysis phase is followed by the search for
alternatives in a solution domain that are selected based on explicit quality criteria.
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In software engineering, the synthesis process is not known and the three processes
are not fully integrated. We can derive the following conclusions with respect to this
issue.

First, in software engineering the basic needs are derived through a requirements
analysis phase that views the software system basically from the client’s perspective.
The client may fail to identify all the relevant problems and as such the solution may
not optimally correspond to the original technical problems. Very often a distinction
is made between the functional requirements and the non-functional requirements.
In contrast to the mature engineering disciplines, however, there are no explicit
means to quantify the requirements and constraints during the requirements
analysis phase. As such the essential technical problems may not be appropriately
prioritized and selected.

Second, it turns out that in software engineering solution abstractions are not
derived from the solution domains. Rather, the common implicit assumption of
current software engineering practices is that solution abstractions should be
basically derived from the requirement specification. The general idea is that the
requirement specification is specified in some form and this should be refined along
the software development process until the final software is delivered. Although this
view may have been sufficient and appropriate for the early well-defined numerical
calculation problems in the 1940s, it does not suffice to derive the fundamental
solution abstractions for the currently required large and complex software systems.

One may argue that the reason for the lack of integration of a solution domain
analysis in software engineering is mainly due to the fact that the corresponding
solution domain knowledge is not as rich as that in mature engineering where the
basic theories have been matured over several centuries. This should not be
regarded, however, as the fundamental cause for not applying a solution domain
analysis process in the software development process. As a matter of fact computer
science, a basic solution domain knowledge of software engineering, has contributed
to the codification and organization of some relevant theories but current software
engineering practices proceed almost independently of this organized knowledge.
Moreover, it should be noted that solution domain analysis has also already been
introduced in the last decade, though, these are not sufficiently integrated in the
current software development methods and remain as a separate field.

Our third observation that we derived from our conceptual and comparative
analysis is related to the management of alternatives in software engineering. In
contrast to mature engineering, software engineering does not seem to have an
explicit concept of alternative or alternative space analysis process. The alternatives
for a given design problem are usually selected based on experience, trial-and-error
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and intuition. Moreover, quantification of the design alternatives for evaluation is
definitely not common in software engineering.

6.3 Application of Synthesis to Software Architecture
Design

Obviously, the concept of synthesis plays a fundamental role in mature problem
solving and for improving the maturity of software engineering it is necessary to
integrate this concept synthesis within the current software engineering practices.

This thesis focused on the software architecture design phase of the software
engineering process and attempted to integrate the synthesis concept herein. The
software architecture design phase represents the most crucial part of the software
development process because it defines the overall structure of the software system
and the subsequent phases are strongly dependent on the result of this phase. It is
thus of utmost importance to define the right software architecture that provides
solutions with the appropriate quality factors for the relevant technical problems.
Applying the synthesis process to software architecture design may provide
substantial support for this.

In chapter 3, we have provided a conceptual analysis on the state-of-the-art
architecture design approaches and classified these according to their source of their
basic solution abstractions. As such we distinguished between artifact-driven, use-
case driven, domain-driven and pattern-driven software architecture design
approaches. We have provided explicit models for these classes of approaches,
evaluated these approaches and identified their basic problems in providing stable
architectures. The fundamental problems that we derived were the difficulties in
planning the architectural design phase, difficulties in finding the stable architectural
abstractions, difficulties in leveraging the problem, the poor semantics of the
identified architectural abstractions and finally the weak support for composing
architectural abstractions.

It turned out that an important concern in software architecture design is the
identification of the fundamental architectural abstractions. This relates to
understanding of the relevant technical problems and deriving the stable solution
abstractions. Thereby the software engineer may need to consider different solution
alternatives. Software architecture design thus inherently needs to provide the
concepts of the synthesis process.

In chapter 4, we have applied the synthesis concept to the software architecture
design process for solving the identified problems of the architecture design
approaches. This resulted in a novel approach that we termed synthesis-based software
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architecture design approach43. This approach includes the explicit processes of
technical problem analysis, solution domain analysis and alternative space analysis
that are important for finding the stable architectural abstractions. During the
technical problems analysis the initial requirement specifications are mapped to
relevant technical problems. In the solution domain analysis, for each technical
problem the necessary solution domains are identified and solution domain concepts
are extracted by identifying commonalties and variabilities of the extracted
knowledge from the solution domain. The solution domain concepts are mapped to
the components of the conceptual architecture. In the alternative space analysis
process, for each solution domain concept the set of possible alternative instances are
depicted and the constraints among these are defined. This determined the
adaptability of the architecture.

We have illustrated the approach for the design of an atomic transaction system
architecture for a distributed car dealer information system. Hereby the software
architecture had to represent various transaction protocols, such as concurrency
control and recovery, that could be easily customized to the various needs of the
different dealers in different countries. In addition, to provide optimal performance,
the architecture had to include mechanisms for run-time adaptability of the
transaction protocols. During the technical problem analysis phase we could derive
and organize the relevant technical problems for the project. From the solution
domain analysis on transaction theory the concepts for the atomic transaction
architecture were derived. In the alternative space analysis process we could derive
the constraints among the transaction concepts and as such determined the
adaptability of the architecture. We validated the transaction architecture using the
theories on atomic transactions.

6.4 Formalizing Alternative Space Analysis Phase:
Design Algebra

The architecture synthesis process as described in chapter 4 provides an explicit
process for reasoning about the various alternatives that an architectural component
should represent. Chapter 5 focused on the realization of the architecture using
object-oriented analysis and design methods that help software engineers to express
their solutions in terms of object-oriented abstractions. Architectures can be realized

                                               

43 Various experimental synthesis techniques have been applied in the TRESE group in different
projects over the last seven years and these experiences provided a useful basis for the synthesis-
based software architecture design approach that has been described in this thesis.
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in many different ways and each alternative may differ with respect to the various
quality factors such as adaptability, performance and reusability. Current object-
oriented analysis and design methods do not provide explicit means for depicting
the set of alternative designs that can be derived from a given conceptual
architecture. The design alternatives are usually selected based on the experience
and intuition of the software engineer. In chapter 5, we have introduced a formalism,
called design algebra, that provides techniques to explicitly depict the set of design
alternatives and prioritize and select alternatives based on quality criteria. A design
space has been defined as a multi-dimensional space that includes all the possible
design alternatives. The dimensions of the design space are defined by well-defined
and stable concepts that have been derived from a solution domain analysis process.
Since design spaces can be very large to depict all the alternatives, design algebra
provides techniques for reducing the design space that can be applied through either
the selection or the elimination of sub-spaces, optionally supported by the
corresponding heuristic rules. To explicitly reason about the adaptability factors of
the design alternatives, formulas were introduced to depict the space of design
alternatives from the adaptability point of view. Similarly, at the object-oriented
modeling level formulas were defined to depict the design alternatives.

We have illustrated the design algebra techniques for deriving adaptable object-
oriented designs of the concept scheduler in the atomic transaction architecture and
gradually derived the set of alternatives based on the adaptability and performance
factors. The techniques of design algebra are general and can be integrated in the
current object-oriented analysis and design methods.

6.5 Further Work

This work can be elaborated in many different ways. In the following we provide
some interesting and relevant directions.

The CPC model has been utilized to analyze software engineering, traditional
engineering and philosophy, but it may likewise be used to analyze other problem
solving activities. It may for example be utilized to analyze sociology from a
problem-solving perspective. This may be important for software engineering,
because software engineering directly effects the society and society on its turn
impacts software engineering. It would be worthwhile to highlight the interplay
between these two disciplines.

We have applied the synthesis concept at the software architecture design phase. It
would be worthwhile to consider applying this concept on the other phases of
software development process, because every phase basically has to deal with the
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identification of the right abstractions and the management of different alternatives.
Synthesis at the architecture design phase can then be considered as high-level
synthesis because it has to deal with high-level abstractions, synthesis at the design
and implementation phases can be considered as low-level synthesis.

Design algebra provides useful techniques to depict the space of design alternatives
and for selecting appropriate alternatives based on quality factors. We have
illustrated the use of design algebra techniques for the atomic transaction
architecture. It is interesting to apply it for other applications and analyze the results.
We have considered adaptability and time-performance as the basic quality factors
for selecting design alternatives. Obviously, analyzing other quality factors such as
reusability may be useful and it would be worthwhile to express these in design
algebra as well. Design algebra provides techniques for quantifying alternatives. For
effective optimization of the various alternatives based on the quality factors it is
beneficial to apply optimization techniques such as linear and dynamic
programming and calculus.

We have derived several lessons and concepts from the analysis in chapter 2. In this
thesis we have focused on the concept of synthesis and successfully applied this to
software architecture design. The analysis, however, has also resulted in several
other concepts and lessons that may be worthwhile to integrate in software
engineering as well. In hermeneutic philosophy, for example, it is argued that any
formal syntax will fail to completely determine its own interpretation and should be
rather grounded on the original meanings of the author and their relevance for the
author. The software development process is decomposed in various phases and
usually the user of an artifact in one phase may be different from its producers in the
previous phase. For example, a software architect will typically provide the software
architecture to the software engineers in the analysis and design phases, that on their
turn will provide analysis and design models to the implementers of the artifact. In
all these transformation processes interpretation plays a fundamental role.
Therefore, integration of the concepts of hermeneutics in software engineering may
provide useful techniques for the traceability and maintainability of software
systems.
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Samenvatting

Sinds de introductie van de eerste programmeertalen in de jaren 1940 en 1950 heeft
software engineering een aantal evolutionaire fases ondergaan die het mogelijk
maakten om grootschalige en meer complexe software systemen te bouwen. Dit
toegenomen potentieel werd spoedig gevolgd door het bewustzijn dat software zeer
moeilijk af te leveren is binnen de beschikbare tijd, en budget en met de vereiste
kwaliteitsfactoren zoals betrouwbaarheid, stabiliteit en aanpasbaarheid. Om een
oplossing te kunnen bieden voor deze zogenoemde software crisis heeft men eind
jaren 1960 het idee geopperd om een engineering aanpak binnen software
ontwikkeling toe te passen.

Sindsdien zijn er binnen de software engineering discipline vele verscheidene
pogingen ondernomen om de problemen die direct of indirect leiden tot de
symptomen van de software crisis het hoofd te kunnen bieden. Een recente
ontwikkeling is de toepassing van het software architectuur concept dat als
fundamenteel middel wordt gezien voor het bouwen van kwalitatieve software
systemen. Software architecturen representeren de gehele structuur van software
systemen en hebben als zodanig een cruciale en directe invloed op de
kwaliteitsaspecten van het systeem. Ondanks deze verschillende ontwikkelingen is
het bouwen van kwalitatieve software systemen echter nog steeds een moeilijke taak
en duren de symptomen van de software crisis voort.

Teneinde de essentie van software engineering en zijn problemen beter te begrijpen
beschrijft dit proefschrift een grondig en kritische analyse van de software
engineering discipline vanuit een breed perspectief. Daartoe wordt software
engineering bekeken vanuit een probleem-oplossing perspectief waarbij software als
oplossing wordt gezien voor de technische problemen. Software engineering wordt
vervolgens vanuit een probleem-oplossingsmodel geanalyseerd en vergeleken met
de meer gevorderde probleem-oplossingsgebieden zoals filosofie en de traditionele
engineering disciplines zoals electrotechniek, civiele techniek, werktuigbouwkunde
en chemische technologie. Uit deze analyse worden de lessen en concepten afgeleid
die van belang kunnen zijn voor software engineering.

Een fundamenteel concept binnen gevorderde probleemoplossingstechnieken is het
concept van synthese dat expliciete processen voor technische probleemanalyse,
oplossingsdomein analyse en de analyse van alternatieven bevat en deze integreert.
Binnen de software engineering is dit concept nagenoeg niet bekend en zijn deze
drie processen niet goed geïntegreerd.
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Dit proefschrift richt zich op de software-architectuur ontwikkelmethoden van
software engineering. Teneinde deze beter te begrijpen wordt er een klassifikatie en
evaluatie van de state-of-the-art methoden beschreven. Voor het oplossen van de
problemen in deze methoden wordt er een nieuwe methode ingevoerd die
gebaseerd is op het synthese-concept.  Deze methode wordt geïllustreerd aan de
hand van een voorbeeldproject uit de software-industrie waarbij een software-
architectuur voor transactiesystemen wordt ontwikkeld.

Elke software architectuur kan gerealiseerd worden door middel van verschillende
analyse- en ontwerpalternatieven. Het is belangrijk om de verschillende
alternatieven expliciet weer te geven en deze af te wegen door middel van
kwaliteitsfactoren, zodat geschikte alternatieven gevonden kunnen worden.
Hiervoor introduceert het proefschrift een nieuw formalisme, genaamd design
algebra. De technieken van design algebra kunnen geïntegreerd worden binnen de
huidige object-georiënteerde software ontwikkelmethoden. Deze technieken worden
automatisch ondersteund door een CASE tool, Rumi, dat speciaal hiervoor is
ontwikkeld en in het proefschrift wordt beschreven.


