
An E�cient Query Optimization Strategy for Spatio-Temporal

Queries in Video Databases �

G�ulay �Unel, Mehmet Emin D�onderler, �Ozg�ur Ulusoy and U�gur G�ud�ukbay

Department of Computer Engineering, Bilkent University

Bilkent, 06533 Ankara, Turkey

e-mail: fgunel, mdonder, oulusoy, gudukbayg@cs.bilkent.edu.tr

Abstract

The interest for multimedia database management systems has grown rapidly due to

the need for the storage of huge volumes of multimedia data in computer systems. An

important building block of a multimedia database system is the query processor, and a query

optimizer embedded to the query processor is needed to answer user queries e�ciently. Query

optimization problem has been widely studied for conventional database systems, however

it is a new research area for multimedia database systems. Due to the di�erences in query

processing strategies, query optimization techniques used in multimedia database systems

are di�erent from those used in traditional databases. In this paper, a query optimization

strategy is proposed for processing spatio-temporal queries in video database systems. The

proposed strategy includes reordering algorithms to be applied on query execution tree. The

performance results obtained by testing the reordering algorithms on di�erent query sets are

also presented.

Keywords: video databases, query optimization, query tree, querying of video data

1 Introduction

The interest for Multimedia Database Management Systems (MDBMSs) has grown rapidly with

the advances in computer technology. The research on content-based image retrieval by low-level

features (color, shape and texture) and keywords (Chang and Fu, 1980; Flickner et al., 1995)

has progressed in time towards video databases dealing with spatio-temporal and semantic

features of video data. Some video database systems such as VideoQ (Chang et al., 1997),

�This work is supported by the Scienti�c and Research Council of Turkey (T�UB_ITAK) under Project Code

199E025.

1

KMED (Chu et al., 1995), QBIC (Flickner et al., 1995) and OVID (Oomoto and Tanaka, 1993)

were implemented. Querying video objects by motion properties has also been stud-

ied (Nabil et al., 2001; Guting et al., 2000; Li et al., 1997; Sistla et al., 1997).

Building blocks for MDBMSs are multimedia data model, multimedia storage management,

query interface, and query processing and retrieval. Data models used in MDBMSs are di�erent

from those used in conventional DBMSs; therefore, new modeling techniques are required to

represent the semantics of multimedia data. Besides, a multimedia storage manager is needed

and storage devices capable of storing large volumes of data must be supported to achieve better

performance. Query interface in a multimedia database system must enable the user to construct

well-de�ned queries easily. Query processing and retrieval is also important since providing

powerful querying facilities on multimedia data is a very crucial issue. The conventional query

paradigm of traditional database systems only deals with exact queries on conventional types of

data but querying multimedia databases requires additional techniques to support multimedia

data types, such as image, audio and video. Extensions to the conventional query languages

are required to deal with speci�c requirements of multimedia data. In addition, di�erent query

optimization techniques are also needed.

This paper is concerned with the spatio-temporal queries in video databases. We can consider

video data as a set of frames, containing a set of objects in each frame. Objects of each frame

have some spatial relationships and they change their locations and their relative positions with

respect to each other in time. Because of this, spatial and temporal relationships in a video

should not be considered separately; instead, spatio-temporal relationships need to be taken

care of together. Spatio-temporal relationships constitute the content of video data and they

are used to support content-based retrieval of data in multimedia databases. Content-based

retrieval using spatio-temporal relationships is one of the most important di�erences between

multimedia and traditional databases.

In our work, we focus on optimization of queries that involve spatio-temporal relationships

in video databases. The query optimization module of a database system is one of the most

important parts in determining the performance of the system. The input to this module is

some internal representation of a query given by the user. This representation is the query tree

in our case. The aim of query optimization is to select the most e�cient strategy to access the

relevant data and answer the query. Let S be the set of all possible strategies (query trees)

2

that can be used to answer a given query. Each member s of S has a cost c(s). The goal of an

optimization algorithm is to �nd a member of S that has the minimum cost. In this paper, we

propose an e�cient query optimization strategy for spatio-temporal queries in video databases.

Our work concentrates on reordering query trees of spatio-temporal queries in a video database

system to achieve the minimum cost. We propose algorithms used for reordering query trees.

The basic idea with the optimization algorithms is to change the processing order of subqueries

contained in the query tree in order to execute the parts that are more selective (i.e., result in

fewer frames and/or objects) �rst. Two types of reorderings are applied on query trees to achieve

more e�cient processing of queries: 1)internal node reordering, which reconstructs the query

tree by reordering the children of internal nodes, and 2)leaf node reordering, which restructures

the query contents of the leaf nodes of the query tree. The query optimization algorithms have

been implemented as a part of the query processor of a video database management system,

BilVideo (D�onderler et al., 2000, 2002a, 2002b) and tested using sample videos.

The remainder of the paper is organized as follows. In Section 2, related work on multimedia

query optimization is discussed. The video database system, into which query optimization

module is integrated, is described in Section 3. In Section 4, our query optimization algorithms

are presented. Performance results are discussed in Section 5. Conclusions and future research

directions are given in Section 6.

2 Related Work

Basic principles of query optimization in database systems are explained in (Jarke and Koch, 1984).

In their paper, a wide variety of approaches are proposed that include logic-based and semantic

transformations, fast implementation of basic operations, and combinatorial or heuristic algo-

rithms for generating alternative access plans and choosing among them. Nonstandard query

optimization issues are also discussed in the paper. According to Jarke and Koch, the goals

of query transformation are standardization, simpli�cation, and amelioration. The transforma-

tion rules for the general query expressions referenced in the paper are also valid for our query

expressions.

Chaudhuri (1998) focuses primarily on the optimization of SQL queries in relational database

systems. The paper discusses the System-R optimization framework, search space that is con-

3

sidered by optimizers, cost estimation and enumeration of the search space. The basic cost

estimation framework in System-R uses statistical summaries of data that have been stored.

The idea of collecting statistical summaries for cost estimation is also used in our query opti-

mization strategy.

Garofalakis (1998) studied query scheduling and optimization in parallel and multimedia

databases. He developed a multi-dimensional framework and provably near-optimal algorithms

for scheduling both time-shared and space-shared resources in hierarchical and shared-nothing

architectures. Garofalakis elaborates on the areas of resource scheduling for composite multi-

media objects, on-line admission control for multimedia databases, and scheduling support for

periodic models of user service. Our optimization method, on the other hand, is based on �nding

an optimal query plan rather than using resource scheduling on the architecture that stores the

database.

Atnafu et al. (2001) presented similarity-based operators and query optimization for multi-

media database systems. They focused on the management of content-based image databases.

Currently available content-based image retrieval systems commonly search for the most similar

images from a set of images for a given single query image or a feature vector representation of

an image. Atnafu et al. introduced the most needed similarity-based operations, studied their

properties, formalized the use of them, and used these as a basis for a similarity-based query

optimization for image database systems. Their paper de�nes the similarity-based selection and

similarity-based join operations. Similarity-based query optimization is based on the algebraic

rules on these similarity-based operations. Our method also uses the algebraic rules on relational

operators to reorder the query tree and �nd an optimal query execution plan. However, we work

on video databases rather than image databases. Our query language queries videos, segments

of videos or values of variables for given spatio-temporal relations on objects, using fact-bases

created for each video in the database, which is signi�cantly di�erent from the query language

of a content-based image retrieval system. Hence, we do not use similarity-based operations.

The most relevant work to ours on query optimization in multimedia databases is by So�er and

Samet (1999), which presents optimization methods for processing of pictorial queries speci�ed

by pictorial query trees. The optimization strategy proposed in their work for computing the

result of the pictorial query tree uses the method of changing the order of processing individual

query images in order to execute the parts that are more selective. The selectivity of a pictorial

4

query is based onmatching selectivity, contextual selectivity, and spatial selectivity. Matching and

contextual selectivity are computed using the statistics stored as histograms in the database that

indicate the distribution of classi�cations and certainty levels in the images. These histograms

are constructed when populating the database. Selectivity of an individual pictorial query (leaf)

is computed by combining these three selectivity factors. The query language used in their

system has di�erent characteristics from the query language we use. Their query language

includes only spatial relations in the pictorial query tree and they reorder the tree according to

the statistics stored for these spatial relations. Our query language has more complex features,

enabling the user to query spatio-temporal relations that will be described in the next section.

In the query optimization module of our system, fact base statistics are used to reorder spatial

relations. In addition to this, reordering of internal nodes that contain operators, is also provided.

Mahalingam and Candan (2001) propose techniques for performing query optimization in

di�erent types of databases, such as multimedia and Web databases, which rely on top-k predi-

cates. Top-k predicates are the k predicates that return the most relevant portion of all possible

results. They propose an optimization model that takes into account di�erent binding patterns

associated with query predicates and considers the variations in the query result size, depending

on the execution order. Their optimization model assigns a value (to be minimized) to all partial

or complete plans in the search space. It also determines the output size of the data stream for

every operator and predicate in the plan. Hence, the proposed optimization algorithm tries to

�nd the best plan considering the output size of the data stream for operators and predicates,

which is also used in our optimization algorithm. The major di�erence of their optimization

algorithm from ours is that the number of query results can also change depending on the query

execution order in their work, whereas it is independent of the query execution order in our

work.

3 BilVideo: A Video DBMS

In this section, a video database management system, BilVideo (D�onderler et al., 2000, 2002a, 2002b)

to which the work in this paper has been integrated, is described. BilVideo is a video database

management system that supports spatio-temporal, semantic and low-level (color, shape and

texture) queries on video data. A spatio-temporal query may contain any combination of spa-

5

tial, temporal, object-appearance, external-predicate, trajectory-projection and similarity-based

object trajectory conditions. The system handles spatio-temporal queries using a knowledge-

base, which consists of a fact base and comprehensive set of rules implemented in Prolog, while

utilizing an object-relational database to respond to semantic (keyword, event/activity, and

category-based), color, shape and texture video queries.

3.1 BilVideo System Architecture

Figure 1 illustrates the overall architecture of BilVideo. The system is built on a client-server

architecture and the users access the video database on the Internet through its visual query

interface developed as a Java client Applet.

Video Clips
Fact−Extractor

Visual Query Interface
 Users

WEB Client

Query Processor

Knowledge−Base
Extracted Facts

Video Annotator

Feature DatabaseRaw Video Database

Object−Relational DBMS

Results

Query

(File System)

Figure 1: BilVideo database system architecture.

Query processor lies in the heart of the system. It is responsible for answering user queries in

a multi-user environment. Query processor communicates with the object-relational database

Oracle2 and the knowledge base. Semantic data is stored in the Oracle database and fact-based

meta data is stored in the knowledge base. Video data and raw video data are stored separately.

Semantic properties of videos used for keyword, activity/event and category-based queries on

video data are stored in the feature database. These features are generated and maintained by

a video annotator tool. The knowledge-base is used to answer spatio-temporal queries. The

facts-base is generated by the fact-extractor tool.

2Oracle is a registered trademark of Oracle Corporation.

6

3.2 BilVideo Query Language

The query language of BilVideo has four basic statements for retrieving information:

select {\it video} from {\it all} [where {\it condition}];

select {\it video} from {\it videolist} where {\it condition};

select {\it segment} from {\it range} where {\it condition};

select {\it variable} from {\it range} where {\it condition};

The target of a query is speci�ed in select clause. A query may return videos (video),

segments of videos (segment), or values of variables (variable) with/without segments of videos

where the values are obtained. Variables might be used for object identi�ers and trajectories. If

the target of a query is video (video), the users may also specify the maximum number of videos

to be returned as a result. The range of a query is speci�ed in the from clause. The range may

be either the entire video collection or a list of speci�c videos. Query conditions are given in

the where clause. In our query language, condition is de�ned recursively and it may contain

any combination of spatio-temporal conditions. As a consequence of this, the where clause can

contain spatial conditions, trajectory conditions and the supported operators.

Supported Operators: Our query language supports a set of logical and temporal operators

to be used in query conditions. Logical operators are and, not, and or while temporal operators

are before, during, meets, overlaps, starts, �nishes, and their inverse operators, ibefore, iduring,

imeets, ioverlaps, istarts, i�nishes. In addition to these, the operators `=' and `!=' are used

for assignment and comparison. The query language also has a trajectory-projection operator,

project, which is used to extract subtrajectories of video objects on a given spatial condition.

Our query language supports spatio-temporal, semantic and low-level queries. Di�erent query

types that can be speci�ed by the query language are object queries, spatial queries, similarity-

based object-trajectory queries, temporal queries, aggregate queries, low-level queries and se-

mantic queries.

3.2.1 Examples

Query 1:

select X, Y

7

from video

where west(X,Y) and disjoint(X,Y)

This query searches for objects, X and Y in the video where X is to the west of Y and X is

disjoint from Y.

Query 2:

select segment, X, Y

from video

where (samelevel(X,Y) before disjoint(X,Y)) and

(infrontof(X,Y) and tr(X, [[west], [1]]))

This query searches for objects, X and Y in the video where X is on the same level as Y before

X is disjoint from Y, and X is in front of Y, and X has a trajectory to the direction west with

displacement 1. The query returns objects X, Y and the identi�ed segments from the video.

3.3 Query Processing

Figure 2 illustrates how the query processor communicates with Web clients and the underlying

system components to answer user queries. Web clients make a connection request to the query

request handler, which creates a process for each request passing a new socket for communication

between the process and the Web client. Then, user queries are sent to the processes created by

the query request handler. The queries are transformed into SQL-like textual query language

expressions before being sent to the server if they are speci�ed visually. After receiving the

query from the client, each process calls the query processor with a query string and waits for

the query answer. When the query processor returns, the process communicates the answer to

the Web client issuing the query and exits. The query processor �rst groups spatio-temporal,

semantic, color, shape and texture query conditions into proper types of sub-queries. Spatio-

temporal subqueries are reconstructed as Prolog-type knowledge-base queries. Semantic, color,

shape and texture sub-queries are sent as SQL queries to an object relational database. Query

processor integrates the intermediate results and returns them to the query request handler,

which communicates the �nal results to Web clients. The details of our query processing system

can be found in (D�onderler et al., 2002b).

8

Web Client
(Java Applet)

User Query

Query Result
Set

Query Request
Handler

User Query

Query Result
Set

Query
Processor

(C++)(C++)

Figure 2: Web client - query processor interaction.

InternalNodeReorder(querytree);

ReadStatistics();

LeafNodeReorder(querytree);

Figure 3: Query optimization process

4 Query Optimization

The aim of the query optimization algorithms designed and implemented for BilVideo is to

process more selective subqueries earlier than the others. The algorithms restructure the initial

query tree and construct an optimal query tree for that purpose.

The query optimization process implemented during query execution has two basic parts,

which are internal node reordering and leaf node reordering. In addition to these parts, the

statistics collected for the video is read from a �le before executing the leaf node reordering

algorithm (see Figure 3). These statistics are used to determine the selectivities of relations in

the condition part of the query. Selectivity of a relation is inversely proportional to the number

of facts stored for that relation. Internal node reordering algorithm reorders the children of

internal nodes by placing the right child of `AND' nodes, which are more selective than the left

child, to the left of their parents. Leaf node reordering algorithm deals only with the leaf nodes.

Every leaf node in the query tree has a content that stores the subquery to be executed. Leaf

node reordering algorithm restructures these contents. It uses the subquery trees constructed

for each of these contents in the construction of the initial query tree. This algorithm sorts

the relations in the contents of the leaf nodes that are connected by `AND' operators according

to their selectivity. More selective operations are executed earlier than the others through the

reorderings of the query tree.

9

4.1 Structure of the Query Tree

In our video database model, a query is represented by a query tree. The condition in the

where clause of the query is kept in this query tree. The condition part can contain spatial

relationships. Other functions that can take place in the condition part are object trajectory and

project type query functions. Trajectory queries �nd out the object(s) and/or frame interval(s)

of the object(s) having a similar trajectory in a video to a given trajectory. Project queries

are used to extract sub-trajectories of video objects on a given spatial condition. The boolean

(logical) operators of the query language are and, or, and not. The operators that can be

included in a query are categorized into three types:

1. AND: and

2. NOT-OR: not, or

3. TEMPORAL: before, during, meets, overlaps, starts, finishes, and their inverse

operators, ibefore, iduring, imeets, ioverlaps, istarts, ifinishes.

The logical operators are categorized into two types as `AND' and `NOT-OR' because not

and or operators do not reduce the output size of the operation but and operator reduces the

output size given any two sets as operands.

There are two types of nodes in the query tree: internal nodes that contain the operators

de�ned above and leaf nodes that contain spatio-temporal subqueries. These subqueries have

three types:

1. Plain Prolog Queries (PPQ): These are spatial subqueries processed by Prolog. They

consider the relative positioning of the salient objects with respect to each other. This

relative positioning consists of directional, topological and 3-D relations.

2. Trajectory Queries (TRQ): These are object-trajectory subqueries. Trajectory of a salient

object is described as a path of vertices corresponding to the locations of the object in

di�erent video keyframes. An object-trajectory subquery includes an object name which

can be a constant or a variable, a direction list for the trajectory path and the list of

displacement values corresponding to each direction given in the direction list. Object-

trajectory queries are similarity based; therefore, a similarity value can also be speci�ed.

10

3. Project Queries (PRQ): The subqueries which contain the trajectory-projection operator,

project are categorized as a di�erent type.

4.1.1 Examples

The query trees for the example queries Query 1 and Query 2 given in Section 3.2.1 are shown

in Figure 4.

AND

west (X,Y) disjoint(X,Y)

samelevel (X,Y) disjoint(X,Y) tr(X, [[west],[1]])

BEFORE

AND

AND

infrontof (X,Y)

(a) (b)

Figure 4: (a) Query tree for Query 1 and (b) Query tree for Query 2 given in Section 3.2.1

4.2 Internal Node Reordering Algorithm

In the query tree, the internal nodes are reordered �rst. Internal node reordering algorithm

places the more selective nodes as the left child of their parents, since the left child of a parent

is processed �rst. The proposed algorithm iterates on the query tree and restructures the tree

to get the optimal internal-node-structured query tree. The internal node reordering algorithm

is given in Figure 5.

The internal node reordering algorithm iterates on the query tree and reorders the children

of `AND' typed nodes such that:

� `AND', `TEMPORAL', `PPQ', `PRQ', `TRQ' type child nodes must be on left if the other

child is `NOT-OR' type. Since `NOT-OR' type nodes combine results from two di�erent

result sets or take the di�erence of a de�ned universal set and a given set, they are found

to be the least selective compared to the other nodes. They are less selective than `PPQ',

`PRQ', `TRQ' type child nodes, because `NOT-OR' type child nodes combine the results

of their two subtrees having `PPQ', `PRQ', `TRQ' type nodes as their leaf nodes. They

11

InternalNodeReorder(QueryNode qnode)

// Process the nodes that have children both on left and right

if (qnode->Left != NULL and qnode->Right != NULL)

begin

type=qnode->Type

ltype=qnode->Left->Type

rtype=qnode->Right->Type

// Reorder the children of `AND' nodes

if (type==AND)

begin

// `AND', `TEMPORAL', `PPQ', `PRQ', `TRQ' type child

// nodes must be on left if the other child is

// `NOT-OR' type

if (ltype==NOT-OR and

(rtype==AND or rtype==TEMPORAL or rtype==PPQ

or rtype==PRQ or rtype==TRQ))

exchange(qnode->Left, qnode->Right)

// `AND' type child nodes must be on left

// if the other child is `TEMPORAL' type

else if (ltype==TEMPORAL and rtype==AND)

exchange(qnode->Left, qnode->Right)

// `PPQ' type child nodes with zero global variables

// must be on left if the other child is

// `PRQ' or `TRQ' type

else if ((ltype==PRQ or ltype==TRQ) and

((rtype==PPQ) and (gvcount(qnode->Right)==0)))

exchange(qnode->Left, qnode->Right)

// `PRQ', `TRQ' type child nodes must be on left if

// other child is 'PPQ' type with global variables

else if (((ltype==PPQ) and (gvcount(qnode->Left)>0))

and (rtype==PRQ or rtype==TRQ))

exchange(qnode->Left, qnode->Right)

// `PRQ' type child nodes must be on left

// if the other child is `TRQ' type

else if (ltype==TRQ and rtype==PRQ)

exchange(qnode->Left, qnode->Right)

// `TRQ' type child nodes with zero global

// variables must be on left if the other

// child is `TRQ' type with global variables

else if ((ltype==TRQ) and (gvcount(qnode->Right)>0)

and (rtype==TRQ) and (gvcount(qnode->Right)==0))

exchange(qnode->Left, qnode->Right)

end

end

// call the function recursively for left and right subtrees

InternalNodeReorder(qnode->Left)

InternalNodeReorder(qnode->Right)

Figure 5: Internal node reordering algorithm

12

are also less selective than `AND' and `TEMPORAL' nodes. This is due to the fact that

given the same operands, `AND' and `TEMPORAL' type operators produce smaller result

sets than that of `NOT-OR' type operators.

� `AND' type child nodes must be on left if the other child is `TEMPORAL' type. We

argued that AND' and `TEMPORAL' type operators produce a smaller result set given

two operands. We process an `AND' type node before a `TEMPORAL' type node because

of the fact that `AND' type nodes are processed faster than the `TEMPORAL' type nodes

since they contain logical operators and our query engine processes logical operators faster

than the temporal operators.

� `PPQ' type child nodes with zero global variables must be on left if the other child is

`PRQ' or `TRQ' type. This is because of the fact that `PPQ' type nodes with zero global

variables are processed faster and they are more selective than `PRQ' and `TRQ' type

nodes. `PPQ' type nodes with zero global variables require a simple search operation on

the fact base, however `PRQ' and `TRQ' type nodes can require the processing of a project

operator or similarity calculation in addition to the same type of seach operation in the

fact base. They can also have global variables which can slow down their processing.

� `PRQ', `TRQ' type child nodes must be on left if the other child is `PPQ' type with global

variables. This is because of the fact that `PRQ' and `TRQ' type nodes are found out to

be more selective than `PPQ' type nodes with global variables. They are found out to be

more selective because our sample fact base contains more spatial facts than the trajectory

facts. However, this is also the case in most fact bases in real life because spatial facts

capture the spatial relations of an object with other objects in all di�erent frames of a

video. Therefore, we will usually have more than one spatial relation for an object in the

video, while we can have at most one trajectory for an object in the video.

� `PRQ' type child nodes must be on left if the other child is `TRQ' type. This is because

of the fact that the subquery in the `PRQ' node can have a variable to be used by the

subquery contained in the `TRQ' node and in this case it is essential to place `PRQ' type

child nodes on left for the correctness of the output of our query processor. We do not

check if this is the case or not and put every `PRQ' type child node on left if the other

child is `TRQ' type, because it does not matter which of the nodes is processed �rst for

13

the performance, and such a check will induce an execution overhead.

� `TRQ' type child nodes with zero global variables must be on left if the other child is

`TRQ' type with global variables. This is due to the fact that `TRQ' type nodes with zero

global variables are more selective than `TRQ' type nodes with global variables. This is

because of the fact that we have to search for a single trajectory fact in our fact base in

the case of zero global variables, but we have to search for a set of trajectory facts in the

case of non-zero global variables.

The query tree is restructured using the rules described above. The function gvcount in the

algorithm (Figure 5) �nds out the global variable count of a particular node.

4.2.1 Examples

Some query tree examples are given in this part. In each example, the initial query tree and the

query tree after internal node reordering are shown.

Query 1:

select segment, X, Y

from video

where ((west(X,Y) and disjoint(X,Y) and X != Y)

or Z=project(X, [west(X,a)])) and

(west(X,Y) and X=car1 and appear(Y) and south(Y,X))

west(X,Y) and
disjoint (X,Y) and
X != Y

Z = project (X,
[west(X,a)]

west(X,Y) and X=car1
and appear(Y) and
south(Y,X)OR

AND

 west(X,Y) and X=car1
and appear(Y) and
south(Y,X)

west(X,Y) and
disjoint (X,Y) and
X != Y

Z = project (X,
[west(X,a)]

AND

OR

(a) (b)

Figure 6: (a) Initial query tree for Query 1 and (b) Query tree for Query 1 after internal node

reordering

14

In the query tree of Query 1, the children of the root `AND' node are exchanged since the

type of the left child is `NOT-OR' and the type of the right child is `PPQ' in the initial query

tree (see Figure 6). Our query processor traverses the query tree in postorder, executing each

subquery separately and performing interval processing so as to obtain the �nal set of results.

Hence, the left child is processed �rst in both query trees. The variables X and Y are instantiated

by the subquery of the left child of the query tree shown in Figure 6(b) and then they are used

by the subquery of the right child.

Query 2:

select segment, X, Y

from video

where ((west(X,Y) before disjoint(X,Y)) and

((appear(Y) before touch(X,Y)) and

(X != car1 and Z=project(X, [west(X,a)])))

BEFORE

west(X,Y)

appear(Y) touch(X,Y) X != car1 Z=project(X,
[west(X,car1)])

AND

AND

AND

 BEFOREdisjoint(X,Y)

AND

X != car1 appear(Y) touch(X,Y)

west(X,Y) disjoint(X,Y)

Z=project(X,
[west(X,car1)])

 BEFORE

AND

BEFOREAND

(a) (b)

Figure 7: (a) Initial query tree for Query 2 and (b) Query tree for Query 2 after internal node

reordering

In the query tree, the children of the root `AND' node are exchanged since the type of the

left child is `TEMPORAL' and the type of the right child is `AND' in the initial query tree. The

children of the `AND' node, which is a child of the root node, are also exchanged since the type

of the left child is `TEMPORAL' and the type of the right child is `AND' in the initial query

tree (see Figure 7).

15

4.3 Leaf Node Reordering Algorithm

After the internal node reordering, the leaf nodes are reordered for each deepest internal node.

Fact base statistics for each video is kept in a separate �le. The number of each spatio-temporal

relation in the video is stored in this �le. Thus, the numbers of south, northwest, southwest,

equal, cover, inside, touch, disjoint, overlap, infrontof, behind, strictlyinfrontof, strictlybehind,

touchfrombehind, touchedfrombehind and samelevel facts are included in the �le. These fact base

statistics are used in the leaf node reordering algorithm. In this algorithm, the facts in the leaf

nodes are sorted starting from the fact with the least number in fact base statistics �le to the

fact with the largest number. `PPQ' and `PRQ' type leaf nodes are reordered according to these

statistics. These leaf nodes contain maximal subqueries that can be directly sent to the inference

engine. Consequently, subquery trees for these maximal subqueries must be constructed to

reorder leaf nodes. This construction is implemented within the query tree construction part.

As a result, subquery trees for each maximal subquery in the `PPQ' and `PRQ' type leaf nodes

are built and kept in a list data structure. The leaf node reordering algorithm is given in

Figure 8.

This algorithm iterates on the query tree. Steps of the algorithm are as follows:

1. Find the `PPQ' and `PRQ' type leaf nodes.

2. Find the subquery trees of these nodes in the subquery list.

3. Reorder these subquery trees.

4. Get the content of the reordered subqueries.

5. Replace the contents of the leaf nodes with this content.

As it can be seen from the algorithm, only the condition parts of the `PRQ' type leaf nodes are

replaced. The functions used in the algorithm are explained in the sequel.

FindPPQinList function is used for locating the subquery tree of a particular leaf node in

the subquery list (see Figure 9).

The reorderAlg function iterates on the subquery tree, which is located in the subquery tree

list, and restructures this tree (see Figure 10). The algorithm �rst locates the highest `AND'

16

LeafNodeReorder(QueryNode qnode,QueryTree qtree)

// Iterate on the tree if node is not null

if (qnode != NULL)

begin

type=qnode->Type()

queryid=qnode->getQID(INORDER)

// locate `PPQ' and `PRQ' leaf nodes

if (type==PPQ or type==PRQ)

begin

// find the subquery tree of

// the nodes in subquery list

tmpppq=FindPPQinList(qtree, queryid)

// reorder the subquery tree

reorderAlg(tmpppq->ppqnode)

// get the reordered subquery

getSubquery(tmpppq->ppqnode)

// set the content of the node

if (type==PPQ)

set content of qnode as subquery

else if (type==PRQ)

set content of the condition part of

qnode as subquery

end

end

// call the function recursively for left and right subtrees

if (qnode->Left != NULL)

LeafNodeReorder(qnode->Left,qtree)

if (qnode->Right != NULL)

LeafNodeReorder(qnode->Right,qtree)

Figure 8: Leaf node reordering algorithm

FindPPQinList(QueryTree qtree, int queryid)

// locate the subquery tree of the leaf node with

// id=queryid in the subquery list tmpppq

tmpppq=qtree->headppq

for (int i=1; i<qtree->ppqcount ; i++)

if (queryid != tmpppq->queryid)

tmpppq=tmpppq->nextppq

else break

Figure 9: The function that �nds subquery tree of a leaf node

17

reorderAlg(QueryNode qnode)

// Iterate on the subquery tree located

// in the subquery tree list

norecurse=0

if (qnode!= NULL)

begin

type=qnode->Type

// locate the highest `AND' node on the subquery tree

if (type==AND)

if (qnode->Left != NULL and qnode->Right != NULL)

begin

ltype=qnode->Left->Type

rtype=qnode->Right->Type

// exchange left and right children

// if the left child is `NOT-OR' type

// and the right child is `AND' type

if (ltype==NOT-OR and rtype==AND)

exchange(qnode->Left, qnode->Right)

// If children are `PPQ' and `AND' typed and

// there is no `NOT-OR' type node below these

// children order the leaf nodes of this subtree

// else if there is no `NOT-OR' type node in the

// right subtree put this subtree to left

else if ((ltype==AND and rtype==AND)

or(ltype==AND and rtype==PPQ)

or(ltype==PPQ and rtype==AND)

or(ltype==PPQ and rtype==PPQ))

if (ThereIsNoOrNot(qnode)==1)

begin

OrderLeafNodes(qnode)

norecurse=1

end

else if (ThereIsNoOrNot(qnode->Right)==1)

exchange(qnode->Left, qnode->Right)

end

// call the function recursively for left and right

// subtrees if a maximal `AND' subtree is not located

if (norecurse != 1)

begin

reorderAlg(qnode->Left)

reorderAlg(qnode->Right)

end

end

Figure 10: The function that reorders the located subquery tree

18

ThereIsNoOrNot(QueryNode root)

// return 0 if there is at least one `NOT-OR'

// type node in the tree return 1 otherwise

if (root->Left != NULL)

begin

if (root->Left->Type==NOT-OR)

return 0

if (ThereIsNoOrNot(root->Left)==0)

return 0

end

if (root->Right != NULL)

begin

if (root->Right->Type==NOT-OR)

return 0

if (ThereIsNoOrNot(root->Right)==0)

return 0

end

return 1

Figure 11: The function that �nds if there is a `NOT-OR' type node in a tree

type node in the subquery tree. If this node has left and right children and the left child is

`NOT-OR' type and the right one is `AND' type, it exchanges the left and right nodes. If the

children are `PPQ' or `AND' type and there is no `NOT-OR' type node below these children,

this subtree is called maximal AND subtree and it is reordered according to fact-base statistics.

If the children are `PPQ' or `AND' type and there is at least one `NOT-OR' type node below

these children, the algorithm �nds out whether the right child is a maximal AND subtree or

not. If it is a maximal AND subtree, then it exchanges the right child with the left child. If the

algorithm locates a maximal AND subtree, it does not recurse because it has already reordered

all the nodes in the subtree. Otherwise, it recurses.

ThereIsNoOrNot function returns 0 if there is a `NOT-OR' type node in a tree and returns

1 if all the nodes are `AND' type (see Figure 11).

OrderLeafNodes function orders a maximal AND subtree. It �rst puts the leaf nodes into an

array structure, then sorts the array according to the fact-base statistics and puts the leaf nodes

back to the tree (see Figure 12).

GetLeafNodes function gets the leaf nodes of a tree and puts the contents and global variable

counts of the nodes to an array structure to be used in the sorting procedure (see Figure 13).

19

OrderLeafNodes(QueryNode qnode)

// get the leaf nodes of the maximal AND subtree

// sort the leaf nodes according to the fact base statistics

// put the leaf nodes back to the tree

leafcounter=0

GetLeafNodes(qnode,nodesarr)

SortLeafNodes(nodesarr)

leafcounter=0

PutLeafNodes(qnode,nodesarr)

Figure 12: The function that orders leaf nodes

GetLeafNodes(QueryNode qnode,nodedata nodesarr[])

// get the leaf nodes of the tree and put their contents

// and global variable counts to the array nodesarr

if (qnode->Left != NULL)

if (qnode->Left->Type==PPQ)

begin

nodesarr[leafcounter].ncontent=qnode->Left->Content

nodesarr[leafcounter].ppqflag=gvcount(qnode->Left)

leafcounter++

end

if (qnode->Right != NULL)

if (qnode->Right->Type==PPQ)

begin

nodesarr[leafcounter].ncontent=qnode->Right->Content

nodesarr[leafcounter].ppqflag= gvcount(qnode->Right)

leafcounter++

end

// call the function recursively for left and right subtrees

if (qnode->Left != NULL)

GetLeafNodes(qnode->Left, nodesarr)

if (qnode->Right != NULL)

GetLeafNodes(qnode->Right, nodesarr)

Figure 13: The function that gets leaf nodes

20

SortLeafNodes(nodedata nodesarr[])

// sort the leaf nodes according to the fact base

// statistics

for (i=1; i<leafcounter; i++)

begin

for (j=i; j>0 and getnum(nodesarr[j])

<getnum(nodesarr[j-1]);j--)

exchange(nodesarr[j],nodesarr[j-1])

// put the relations that query an inequality

// between any two objects in the video

// to the end of the order

for (i=0; i<leafcounter; i++)

if ((nodesarr[i].ncontent.find("!=")) and

(nodesarr[i].ppqflag>1))

begin

shift nodesarr left starting from i+1 to j

put nodesarr[i] to the end of the array nodesarr

end

end

Figure 14: The function that sorts the leaf nodes

SortLeafNodes function sorts the leaf nodes according to the fact-base statistics. It orders

the relations in the increasing number of statistics (see Figure 14). The getnum function gets the

statistics of a particular relation from the statistics �le of the video. After sorting the relations

according to the statistics, the function puts the relations that query an inequality between any

two objects in the video to the end of the order.

PutLeafNodes function puts the elements of an array structure to the leaf nodes of a tree.

Hence, the nodes of the unsorted tree are replaced with the sorted nodes (see Figure 15).

4.3.1 Examples

Some query examples for leaf node reordering algorithm are given in this part. The initial

queries and the queries after leaf node reordering according to the fact base statistics are shown.

The relations in the query examples are reordered according to (south facts < samelevel facts

< west facts < overlap facts < disjoint facts < appear facts).

Query 1:

select segment, X, Y

from video

21

PutLeafNodes(QueryNode qnode,nodedata nodesarr[])

// put the elements of the array nodesarr to the

// leaf nodes of the tree with the root qnode

if (qnode->Left != NULL)

begin

if (qnode->Left->Type==PPQ)

begin

qnode->Left->setContent(nodesarr[leafcounter].ncontent)

leafcounter++

end

PutLeafNodes(qnode->Left,nodesarr)

end

if (qnode->Right != NULL)

begin

if (qnode->Right->Type==PPQ)

begin

qnode->Right->setContent(nodesarr[leafcounter].ncontent)

leafcounter++

end

PutLeafNodes(qnode->Right,nodesarr)

end

Figure 15: The function that puts the elements to the leaf nodes

where ((appear(X) and samelevel(X,Y)) or overlap(X,Y))

and ((appear(Y) or south(X,Y)) and

(appear(X) and west(X, Y) and disjoint(X,Y)))

Query 1 after leaf node reordering:

select segment, X, Y

from video

where ((west(X, Y) and disjoint(X,Y) and appear(X))

and (appear(Y) or south(X,Y)))

and ((samelevel(X,Y) and appear(X)) or overlap(X,Y))

The initial subquery tree for Query 1 and the subquery tree for Query 1 after leaf node

reordering, which are located in the subquery tree list, are shown in Figure 16.

The leaf node reordering algorithm exchanges the left and right children of the root node �rst,

then it exchanges the left and right children of the new left child which is an `AND' node. After

these steps, the algorithm reorders the relations in the left child of this `AND' node according to

22

AND
overlap(X,Y)

OR

appear(X) samelevel(X,Y)

AND

OR

 appear(X)

disjoint(X,Y)

AND

west(X,Y)

AND

AND
south(X,Y) appear(Y)

AND

AND

AND

AND

AND
overlap(X,Y)

OR

 west(X,Y) disjoint(X,Y)

appear(X)

OR

south(X,Y) appear(Y) samelevel(X,Y) appear(X)

(a) (b)

Figure 16: (a) Initial subquery tree for Query 1 and (b) Subquery tree for Query 1 after leaf

node reordering

the ordering rule west facts < disjoint facts < appear facts. The algorithm processes the right

child of the root which is now an `OR' node after the above steps. It reorders the relations in

the left child of this `OR' node according to the rule samelevel facts < appear facts.

Query 2:

select segment, X, Y

from video

where disjoint(X,Y) and X != Y and west(X,Y)

and X=car1 and appear(Y) and south(Y,X)

Query 2 after leaf node reordering:

select segment, X, Y

from video

where X=car1 and south(Y,X) and west(X,Y)

and disjoint(X,Y) and appear(Y) and X != Y

The initial subquery tree for Query 2 and the subquery tree for Query 2 after leaf node

reordering, which are located in the subquery tree list, are shown in Figure 17.

The relations in Query 2 are reordered as it can be seen from the second query according to

the ordering south facts < west facts < disjoint facts < appear facts. The equality relations are

executed at the beginning of the condition part and the inequality relations between variable

objects are executed at the end.

23

AND

ANDAND

AND

 disjoint(X,Y)

 west(X,Y) X=car1

X != Y

 appear(Y) south(Y,X)

AND

AND

ANDAND

AND

 west(X,Y)

AND

 disjoint(X,Y)

X=car1 south(Y,X)

X != Y appear(Y)

(a) (b)

Figure 17: (a) Initial subquery tree for Query 1 and (b) Subquery tree for Query 1 after leaf

node reordering

5 Performance Results

In this section, the performance results obtained for the proposed query optimization algorithms

are presented. Our performance tests have been conducted on an example video that was

extracted from television news. The sample video contains 16,351 frames and 98 salient objects.

The tests have been carried out on Linux environment using the query processor of BilVideo

implemented in C++.

5.1 Fact-Base Statistics

The fact-base of the example video is created using the fact-extractor tool of BilVideo

(D�onderler et al., 2002a). In this process, �rst of all, the objects in the sample video are de�ned,

then the spatio-temporal relationships between these objects in each frame are calculated by our

fact-extractor tool and stored in a fact base. Some example facts from our fact base are shown

in Figure 18.

The statistics of the video are given in Table 1. This statistical information contains the

number of facts in the fact base for each type of relation. These statistics are used in the

optimization algorithm to reorder the leaf nodes.

5.2 Performance Results

Five query sets were used in the performance tests. The �rst query set was used for testing

the Leaf Node Reordering algorithm. The second set was used for testing the Internal Node

24

// Directional Relations

west(tank1,car1,259).

west(car1,car2,259).

south(palestinianofficer4,officialcar,579).

//Topological Relations

disjoint(car2,car5,303).

disjoint(car1,car5,303).

overlap(officialcar,powell,503).

overlap(bodyguard1,officialcar,503).

// 3-D Relations

touchfrombehind(erbil,prizecheck,14434).

strictlyinfrontof(powell,officialcar,535).

strictlyinfrontof(powell,officialcar,542).

infrontof(policevehicle2,tank10,3076).

infrontof(vuralsavas,ozbek,10491).

// Appear Facts

appear(tank1,[[259,286]]).

appear(car1,[[259,365]]).

Figure 18: Example facts from our fact base

Reordering and Leaf Node Reordering algorithms together. The third and fourth sets were

constructed for testing the algorithms on di�erent reorderings of the same query. Finally, the

�fth set was used for testing the same query on di�erent sizes of fact bases and result sets. The

query sets can be found in Appendix A. Optimization overhead given in the results speci�es the

time that the optimization process takes and performance gain is formulated as follows:

performance gain =
(processing time without opt:� processing time with opt:)

processing time without opt:
: (1)

The �rst set of results are given in Table 2. These results show that leaf node reordering

algorithm enhances the performance of the query processor. There are di�erent amounts of

performance gain for each query in the set. This is because the performance gain depends on

the size of the query (i.e. the number of nodes in the query tree of the query), and the degree of

di�erence between the initial query tree and the optimal query tree. The sizes of the �rst, ninth,

eleventh and twelfth queries are small; therefore, their performance gains are at most 0.21. If

the size of the query is small, the performance gain is also small compared to the larger queries.

Leaf node reordering algorithm reduces the processing cost because the relations in the leaf

25

Table 1: The statistics of the fact base

Type of relation Number

west 1055

east 1055

south 206

northwest 0

southwest 0

disjoint 1682

overlap 1235

inside 0

appear 10234

touch 9

touchfrombehind 37

strictlyinfrontof 184

infrontof 276

samelevel 487

nodes are ordered starting from the relation with the smallest size of output to the relations

with larger sized outputs. Thus, the unbound variables in the nodes are �rst bound with smaller

sets of values and relations with constant parameters are executed earlier. This results in an

increase in performance. The second set of results are given in Table 3.

These results show that the overall query optimization algorithm improves the query pro-

cessing performance. The factors that a�ect the results obtained with the leaf node reordering

algorithm discussed above also a�ect those with the whole optimization process.

The query optimization algorithms reduce the processing cost because the subqueries with

larger selectivities are processed before the subqueries with smaller selectivities. For example,

if the children of an `and' node are `or' and `and' type internal nodes, the `and' type child is

processed before the other, which results in a considerable gain in performance.

The performance gain depends on the size and complexity of the query. Another factor

a�ecting the performance is the degree of di�erence between the initial query tree and the

optimal query tree. The third and fourth performance tests were conducted using di�erent

reorderings of the same query. The query tree converges to the optimal query tree starting from

the �rst query. The third result set that uses a simple Prolog query is given in Table 4. The

fourth result set that uses a larger query tree is given in Table 5.

These two result sets show that when the query tree converges to the optimal query tree, the

26

Table 2: Leaf node reorder algorithm test results (msecs)

query time time optimization performance

without with overhead gain

opt. opt.

1 310 263 1.0 0.15

2 1002 609 1.0 0.39

3 512 264 1.0 0.48

4 490 291 1.0 0.41

5 508 217 1.0 0.57

6 423 261 1.0 0.38

7 2027 259 1.0 0.87

8 752 708 2.0 0.06

9 303 258 1.0 0.15

10 2030 1603 3.0 0.21

11 225 214 1.0 0.05

12 270 215 1.0 0.20

performance gain of the optimization algorithm decreases. This also justi�es the correctness of

the optimization algorithm.

The last performance test was conducted for investigating the impact of the query result set

size on the performance gain. A query was selected and its result set size was decreased by

decreasing the fact base size at each step. The results of this test are presented in Table 6. As

it can be seen from the performance results, when the size of query result set decreases, the

performance gain of the query does not change much, and it is within the range of 0.64-0.71.

The performance test results prove that the query optimization method implemented for Bil-

Video improves the performance of the query processor. Since the performance gain is observed

to decrease when the query tree converges to the optimal query tree, it can be said that the

reordering heuristics used by the algorithm are correct. As a conclusion, it is shown that pro-

cessing more selective subqueries contained in the internal nodes and leaf nodes of the query tree

earlier than the others is very useful in optimizing query processing times for spatio-temporal

queries in video database systems.

5.3 Examples

Some queries selected from the set of queries used in the performance tests are discussed in this

part. The initial query trees and the query trees after optimization are shown for each query.

27

Table 3: Query optimization algorithm test results (msecs)

query time time optimization performance

without with overhead gain

opt. opt.

1 690 212 1.0 0.69

2 958 530 2.0 0.45

3 532 270 1.0 0.49

4 327 267 1.0 0.18

5 644 283 2.0 0.56

6 639 344 1.0 0.46

7 545 337 1.0 0.38

8 274 214 1.0 0.22

9 261 211 1.0 0.19

10 985 286 1.0 0.71

11 302 213 2.0 0.29

12 845 283 2.0 0.67

Table 4: Convergence to the optimal query tree; �rst test results (msecs)

query time time optimization performance

without with overhead gain

opt. opt.

1 1327 256 2.0 0.81

2 341 256 2.0 0.25

3 305 255 1.0 0.16

4 253 253 1.0 0.00

Query 1:

select segment, X, Y

from video

where (west(X,Y) and disjoint(X,Y) and X != car1

or Z = project(X,[west(X, car1)])) and (west(X,Y)

and T = project(X,[west(X, car1)]))

The initial query tree of Query 1 (Figure 19 (a)) is processed in 985 milliseconds and the opti-

mized query tree (Figure 19 (b)) is processed in 286 milliseconds. Consequently, the performance

gain is 71%.

28

Table 5: Convergence to the optimal query tree; second test results (msecs)

query time time optimization performance

without with overhead gain

opt. opt.

1 1306 218 2.0 0.83

2 1213 220 1.0 0.82

3 663 218 2.0 0.67

4 647 219 3.0 0.66

5 563 220 2.0 0.61

6 345 222 2.0 0.36

7 324 219 2.0 0.32

8 219 219 2.0 0.00

west(X,Y) and
disjoint (X,Y) and
X != car1

Z = project (X,
[west(X,car1)]

west(X,Y) T = project (X,
[west(X,car1)]

OR

AND

AND

T = project (X,
[west(X,car1)]

west(X,Y) west(X,Y) and
disjoint (X,Y) and
X != car1

Z = project (X,
[west(X,car1)]

AND

AND

OR

(a) (b)

Figure 19: (a) Initial query tree for Query 1 and (b) Query tree for Query 1 after optimization

Query 2:

select segment, X, Y

from video

where (samelevel(X,Y) before disjoint(X,Y)) and

(infrontof(X,Y) and X != car1 and tr(X, [[west], [1]]))

samelevel (X,Y) disjoint(X,Y) tr(X, [[west],[1]])

BEFORE

AND

AND

infrontof (X,Y) and
X != car1

tr(X, [[west],[1]]) X != car1 and
infrontof (X,Y)

disjoint(X,Y)samelevel (X,Y)

AND

BEFOREAND

(a) (b)

Figure 20: (a) Initial query tree for Query 2 and (b) Query tree for Query 2 after optimization

The initial query tree of Query 2 (Figure 20 (a)) is processed in 845 milliseconds and the

optimized query tree (Figure 20 (b)) is processed in 283 milliseconds. Thus, the performance

gain is 67%.

29

Table 6: Query result set size parameter test results (msecs)

size of time time performance

result without with gain

set opt. opt.

133 2533 786 0.69

120 2259 713 0.68

105 2067 665 0.68

94 2013 632 0.69

85 1960 616 0.69

74 1673 538 0.68

65 1399 449 0.68

45 1275 379 0.70

34 1209 353 0.71

27 830 281 0.66

20 688 251 0.64

11 669 231 0.65

2 650 208 0.68

6 Conclusions and Future Work

Query processing is essential for retrieving data from database management systems and has

been explored in the last 30 years in the contest of relational and object-oriented database

management systems. Query optimization constitutes an important part of query processing,

and it is a promising research area since the amount of data that can be managed by database

systems is growing rapidly and new data types are becoming widely used. Besides, new types of

database management systems such as multimedia databases require new techniques for query

processing and query optimization.

In this paper, we have presented a query optimization strategy for video database systems,

which was implemented on a particular system, BilVideo. The proposed optimization method

has two basic parts: internal node reordering and leaf node reordering. The children of the

internal nodes of the query tree of a given query are reordered using the internal node reordering

algorithm which places more selective children to the left of their parents. The contents of the

Prolog and Project type leaf nodes are reordered using the leaf node reordering algorithm, which

makes use of statistical information to sort the relations forming the contents of the leaf nodes.

Therefore, our optimization method reorders the query tree along two dimensions that results

in a considerable improvement in performance. The performance tests conducted on the query

30

processor justify the e�ciency and correctness of the query optimization algorithms, internal

node reordering and leaf node reordering.

Currently, the proposed optimization algorithms are used by a query processor that uses

linear processing methods. The algorithms can be adapted to a parallel query processor as a

future work, which can result in an even better performance. Another future work can be the

use of genetic algorithms in query optimization of BilVideo as they are becoming widely used

and accepted method for new and di�cult optimization problems. This method must propose a

�tness value function for the query trees in the solution space and adapt cross-over and mutation

operations to produce e�cient query trees.

References

Atnafu, S., Brunie, L., Kosch, H., 2001. Similarity-based operators and query optimization for

multimedia database systems, In: Proc. of Int. Database Eng. and App. Symp., 346-355.

Chang, N.S., Fu, K.S., 1980. Query by pictorial example, IEEE Trans. on Software Eng., SE6,

519-524.

Chang, S., Chen, W., Meng, H.J., Sundaram, H., Zhong, D., 1997. VideoQ: an automated

content-based video search system using visual cues, In: Proc. of ACM Multimedia Con-

ference, 313-324, Seattle, WA.

Chaudhuri, S., 1998. An overview of query optimization in relational systems, In: Proc. of the

17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,

34-43.

Chu, W.W., Cardenas, A.F., Taira, R.K., 1995. A knowledge-based multimedia medical dis-

tributed database system - KMED, Information Systems, 20 (2), 75-96.

D�onderler, M.E., Ulusoy, �O, G�ud�ukbay, U., 2000. A rule-based approach to represent spatio-

temporal relations in video data, In: Yakhno, T. (Ed.), Advances in Information Systems

(ADVIS'00), Lecture Notes in Computer Science, 1909, 409-418, Springer, Berlin.

D�onderler, M.E., Ulusoy, �O, G�ud�ukbay, U., 2002a. A rule-based video database system archi-

tecture, Information Sciences, 143 (1-4), 13-45.

31

D�onderler, M.E., Ulusoy, �O, G�ud�ukbay, U., 2002b. Rule-based spatio-temporal query process-

ing for video databases, Technical Report, BU-CE-0210, Bilkent University, Dept. of Com-

puter Eng. (also submitted to a journal).

Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., Gorkani, M., Hafner,

J., Lee, D., Petkovic, D., Steele, D., Yanker, P., 1995. Query by image and video content:

the QBIC system, IEEE Computer, 28, 23-32.

Garofalakis, M.N., 1998. Query scheduling and optimization in parallel and multimedia

databases, Ph.D. Thesis, University of Wisconsin, Madison, Wisconsin.

Guting, R.H., Bohlen, M.H., Ervig, M., Jensen, C.S., Lorentzos, N.A., Schneider, M., Vazir-

giannis, M., 2000. A foundation for representing and querying moving objects, ACM

Trans. on Database Sys., 25 (1), 1-42.

Jarke, M., Koch, J., 1984. Query optimization in database Systems, ACM Computing Surveys,

16 (2), 111-152.

Li, J.Z., �Ozsu, M.T., Szafron, D., 1997. Modeling of moving objects in a video database, In:

Proc. of IEEE Multimedia Computing and Systems, 336-343, Ottawa, Canada.

Mahalingam, L.P., Candan, K.S., 2001. Query optimization in the presence of top-k predicates,

In: Proc. of Workshop on Multimedia Information Systems (MIS'01), 31-40, Capri, Italy.

Nabil, M., Ngu, A.H., Shepherd, J., 2001. Modeling and retrieval of moving objects, Multimedia

Tools and Apps., 13, 35-71.

Oomoto E., Tanaka, K., 1993. OVID: design and implementation of a video object database

system, IEEE Trans. on Knowl. and Data Eng., 5, 629-643.

Sistla, A.P., Wolfson, O., Chamberlain, S., Dao, S., 1997. Modeling and querying moving

objects, In: Proc. of IEEE Data Engineering Conf., 422-432.

So�er, A., Samet, H., 1999. Query processsing and optimization for pictorial query trees, In:

Huijsmans D.P., Smeulders, A.W.M. (Eds.) Visual Information and Information Systems

(VISUAL'99), Lecture Notes in Computer Science, 1614, 60-67, Springer, Berlin.

32

A Appendix: Query Sets Used in Performance Experiments

A.1. Query Set Used to Test Leaf Node Reorder Algorithm:

1. select segment, X, Y

from 1

where disjoint(X,Y) and south(X,Y)

2. select segment, X, Y

from 1

where appear(X) and west(X,Y)

and disjoint(X,Y)

3. select segment, X, Y

from 1

where disjoint(X,Y) and west(X,Y)

and X=car1

4. select segment, X, Y

from 1

where west(X,Y) and disjoint(X,Y)

and south(X,Y)

5. select segment, X, Y

from 1

where disjoint(X,Y) and X != Y and

west(X,Y) and X=car1 and appear(Y)

and south(Y,X)

6. select segment, X, Y

from 1

where disjoint(X,Y) and west(tank1,car1)

and X=car1 and appear(Y) and south(Y,X)

7. select segment, X, Y

from 1

where appear(Y) and west(X,Y) and south(Y,X)

and X=tank1 and west(tank1,car1)

8. select segment, X, Y

from 1

where west(X,Y) and appear(X) and overlap(X,Y)

9. select segment, X, Y

from 1

where west(A,B) and touch(X,Y)

10. select segment, X, Y

from 1

where (samelevel(X,Y) and appear(X) and

overlap(X,Y)) or (appear(X) and

west(X, Y) and disjoint(X,Y))

33

11. select segment

from all

where Z = project(X, [disjoint(X, car1) and

west(X,tank1) and south(car1,tank1)])

12. select segment

from all

where Z = project(X, [west(X, car1) and

disjoint(X,tank1) and south(X,car2)])

A.2. Query Set Used to Test Query Optimization Algorithm:

1. select segment, X, Y

from 1

where (west(X,Y) and disjoint(X,Y) and

X != Y or Z = project(X,[west(X, a)])) and

(west(X,Y) and X=car1 and appear(Y) and south(Y,X))

2. select segment, X, Y

from 1

where (west(X,Y) and disjoint(X,Y) and

X != car1 or Z = project(X,[west(X, car1)]))

and (west(X,Y) before south(Y,X))

3. select segment, X, Y

from 1

where (west(X,Y) before disjoint(Y,X))

and (X != car1 and Z = project(X,[west(X, car1)]))

4. select segment

from all

where tr(X, [[west], [1]]) and

Y = project(X, [west(X, car1)])

5. select segment, X, Y

from 1

where west(X,Y) and disjoint(X, Y) and

X != car1 and Z = project(X,[west(X, car1)])

6. select segment, X, Y

from 1

where west(X,Y) and disjoint(X, Y)

and X != car1 and tr(X, [[west],[1]])

7. select segment, X, Y

from 1

where west(X,Y) and tr(X, [[west],[1]])

8. select segment

from all

where Y = project(X, [west(X, car1)]) and

Z = project(X, [south(X,car1) and west(X,tank1)

and disjoint(X, car1)])

34

9. select segment

from all

where tr(X, [[west], [1]]) and

tr(car3, [[west,north], [10,10]])

10. select segment, X, Y

from 1

where (west(X,Y) and disjoint(X,Y) and X != car1 or

Z = project(X,[west(X, car1)])) and (west(X,Y) and

T = project(X,[west(X, car1)]))

11. select segment, X, Y

from 1

where (west(X,Y) and touch(X, Y) and X != car1 or

Z = project(X,[west(X, tank1)])) and (disjoint(X,Y)

and overlap(X,Y) and Y != car2)

12. select segment, X, Y

from 1

where (samelevel(X,Y) before disjoint(X,Y)) and

(infrontof(X,Y) and X != car1 and tr(X, [[west], [1]]))

A.3. First Query Set that Tests the Convergence of the Initial Query Tree to the

Optimal Query Tree:

1. select segment, X, Y

from 1

where appear(X) and disjoint(X,Y) and south(X,Y)

2. select segment, X, Y

from 1

where disjoint(X,Y) and appear(X) and south(X,Y)

3. select segment, X, Y

from 1

where disjoint(X,Y) and south(X,Y) and appear(X)

4. select segment, X, Y

from 1

where south(X,Y) and disjoint(X,Y) and appear(X)

A.4. Second Query Set that Tests the Convergence of the Initial Query Tree to the

Optimal Query Tree:

1. select segment, X, Y

from 1

where (disjoint(X,Y) and west(X,Y) and X != Y or

Z = project(X,[west(X,a)])) and (appear(Y) and

west(X,Y) and south(Y,X) and X=car1)

2. select segment, X, Y

from 1

35

where (west(X,Y) and disjoint(X,Y) and X != Y or

Z = project(X,[west(X,a)])) and (appear(Y) and

west(X,Y) and south(Y,X) and X=car1)

3. select segment, X, Y

from 1

where (west(X,Y) and disjoint(X,Y) and X != Y or

Z = project(X,[west(X,a)])) and (west(X,Y) and

appear(Y) and south(Y,X) and X=car1)

4. select segment, X, Y

from 1

where (west(X,Y) and disjoint(X,Y) and X != Y or

Z = project(X,[west(X,a)])) and (west(X,Y) and

south(Y,X) and appear(Y) and X=car1)

5. select segment, X, Y

from 1

where (west(X,Y) and disjoint(X,Y) and X != Y or

Z = project(X,[west(X,a)])) and (X=car1 and

south(Y,X) and west(X,Y) and appear(Y))

6. select segment, X, Y

from 1

where (west(X,Y) and appear(Y) and south(Y,X) and

X=car1) and (west(X,Y) and disjoint(X,Y) and

X != Y or Z = project(X,[west(X,a)]))

7. select segment, X, Y

from 1

where (west(X,Y) and south(Y,X) and X=car1 and

appear(Y)) and (west(X,Y) and disjoint(X,Y) and

X != Y or Z = project(X,[west(X,a)]))

8. select segment, X, Y

from 1

where (X=car1 and south(Y,X) and west(X,Y) and

appear(Y)) and (west(X,Y) and disjoint(X,Y) and

X != Y or Z = project(X,[west(X,a)]))

36

