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ABSTRACT 
 

Surveillance of large terrains using limited sensor capabilities is a challenging task in many military applications. In 
this paper, we present a new method to determine the number, type and location of sensor platform systems to 
effectively cover a large terrain, which is composed of areas of varying importance. A sensor platform system is an 
integrated system that consists of a platform (human, jeep, aircraft, etc.) and one or more sensors (day-tv, infra-red, 
radar, etc.) integrated to that platform. The objective in the optimization is twofold: first, determine locations of a 
given set of sensor platform systems in order to effectively cover areas in accordance with importance. Second, 
determine the number, type and locations of sensor platform systems to effectively cover the terrain. We developed 
a genetic algorithm to solve this optimization problem. In the optimization, user may specify a budget and the tool 
may be run to determine the number, type and locations of the sensor platform systems within this budget to 
maximize effective coverage as much as possible. Alternatively the tool may be run to guarantee a predefined 
effectiveness measure concerning coverage, minimizing total cost of sensor platform systems. In order to simulate 
optical sensors and radars, we developed a generic probabilistic sensor model, which is based on line-of sight and 
ray tracing. This stochastic modeling allows us to simulate detection, recognition and identification capabilities of 
different types of sensors on high-resolution terrains. The next part of that study is a distributed human in the loop 
simulation, which is developed to demonstrate the usage of the sensor platforms under the control of a tactical level 
control center. To perform the simulation, a tactical command center, an HLA compliant physical radar simulator, a 
number of sensor platform consoles and semi-automated agents are developed. 
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INTRODUCTION 

In recent years, genetic algorithms (see Goldberg, 1989, 
Allenson, 1992, Beasley, Bull & Martin, 1993, Ahuja, 
Orlin & Tiwari, 1995) have been successfully applied 
to many different domains such as radio frequency 
planning, path planning, mission planning, scheduling, 
electronic circuit designing, time-tabling, etc. The great 
attention on genetic algorithms is because of its 
applicability to many different domains, weak 
algorithmic dependence to the problem parameters, 
robustness and successful results gained on many 
applied problems so far. 

The genetic algorithm is chosen for the optimization 
due to the advantages mentioned above. At first the 
factors affecting the problem are determined. Later on, 
the representation for the terrain, atmosphere, sensors, 
platforms and integrated sensor platform systems are 
designed. An efficient terrain coverage analysis 
algorithm, which is a derivation of viewshed algorithms 
(see Franklin & Ray, 1994a, Franklin, Ray & Mehta, 
1994b) is developed and implemented in order to 
compute the effectiveness of a given state (a set of 
integrated sensor platforms and their locations). And 
finally two optimization algorithms; location 
optimization and cost/effectiveness optimization, are 
developed on top of the virtual environment designed.  

The location optimization module gets 4 main inputs; 
the virtual environment, available sensor platform 
system types and their parameters, location constraints 
and a set of sensor platform systems whose locations 
are going to be optimized. At the end of optimization, 
best locations of the given sensor platform systems are 
found. 

The cost/effectiveness optimization module gets 5 main 
inputs; the virtual environment, available sensor 
platform system types and their parameters, location 
constraints, the optimization objective and budget or 
effectiveness limit (depending on the objective). There 
are two optimization objectives, which are effectiveness 
optimization and cost optimization. In the effectiveness 
optimization mode, we have a fixed budget, and we 
want to maximize the effectiveness of the sensor 

platform systems within that budget. In the cost 
optimization mode, we need the effectiveness about a 
given amount, and we want to minimize the cost while 
getting the desired effectiveness. At the end, the 
number of sensor platforms needed from each type and 
their best locations are found. 

RELATED WORK 

Although sensor location optimization over large 
terrains is a crucial need for the military domains, it is a 
hard problem and there is not much work published in 
the literature.  

Franklin et al (1994b) studied on optimal placing of 
observers, and worked on 1-D or 2-D terrains where 
heights are given at the vertices of regular grids. His 
objective was to find the minimum number of the 
observers and their locations such that each point of the 
terrain is visible from at least one observer. He 
proposed a greedy algorithm to solve the mentioned 
problem, which is a special case of the well-known set-
covering problem (NP-complete). Although the 
problem is similar to the one we have focused on, the 
major difference is that we do not need to cover all the 
terrain, because the terrain is very mountainous and the 
cost of covering all the terrain is unacceptably high. 
Also a straightforward greedy algorithm does not work 
well on such a mountainous terrain having many local 
optimums.  

In 1998, Kewley and Embrechts developed a fuzzy-
genetic algorithm to position military combat units for 
optimum performance. Their objective was not to 
maximally cover the terrain, but to successfully 
complete a tactical mission in a battle, so a simulation 
model to evaluate solutions, and a fuzzy logic module 
to map simulation outputs to a single fitness value is 
developed to work with GA. In the study, they used 
random selection, steady-state replacement (50% 
replacement with poorest half of the old population), 
and a bit-flip mutation with a mutation rate of 0.02. The 
reason of using the above form of genetic algorithm 
was to make the GA less sensitive to the fluctuations in 
fitness, which is computed stochastically. They stated 



that the developed fuzzy-genetic system outperformed a 
human expert during a simulated battle.  

In 1998, Rabinkin proposed a two-step sound source 
location optimization algorithm for optimum sensor 
placement on microphone arrays. In the first step, time 
delay of arrival (TDOA) estimates for selecting 
microphone pairs are determined using a modified 
version of the Omologo-Svaizer cross-power spectrum 
phase expression. In the second step, the TDOA 
estimates are used in a least-mean-squares gradient 
descent search algorithm to obtain location estimates. 
Also robotics and computer vision communities are 
studying a similar problem called sensor planning to 
locate the sensors on a robot to enhance its navigation 
capabilities in a closed environment (see Briggs & 
Donald, 1996, Stamos & Allen, 1998). These 
researches mostly focus on small, closed environments 
such as offices, houses, laboratories, and the objective 
of the optimization is to collect as much information as 
possible about the surrounding environment. 

A similar problem, the antenna-positioning for radio 
network planning, was studied by Michel Vasquez and 
Jin-Kao Hao, in 2000. They developed a tabu search 
algorithm to find a set of good sites for antennas from a 
set of pre-defined candidate sites, and for each selected 
site, to determine the number and types of antennas, as 
well as the associated values for each of the antenna 
parameters. Their proposed approach was composed of 
three phases: a constraint-based pre-processing phase to 
filter out bad configurations, an optimization phase 
using tabu search, and a post-optimization phase to 
improve solutions given by tabu search. To validate the 
approach, the computational results were presented 
using large and realistic data sets. 

In 2001, Kim and Clarke studied new spatial 
optimization techniques to carry out a visibility analysis 
on topological surfaces in GIS, which searches for the 
best viewpoint or site locations. Their paper was aiming 
on comparison of four developed algorithms: an 
extensive iterative search technique; a Tornqvist based 

search algorithm as conventional spatial solution 
algorithms; genetic algorithms; and simulated annealing 
techniques as newer spatial search techniques. The 
performance of the four solution techniques was 
compared using a visibility site selection problem. As a 
result of the experiments, they observed that the genetic 
algorithm always outperforms the other methods, the 
simulated annealing algorithm shows its algorithmic 
consistency over the two conventional methods by the 
standard deviation values, and even if there is a poor 
starting configuration for the genetic algorithm or 
simulated annealing they can generate good solutions. 

In 2000, Can proposed a meta-heuristics based on 
genetic algorithms. The algorithm was focusing on 
optimizing the locations of a given set of sensor 
platform systems on large terrains. A part of our paper 
improves the work of Can. In addition, the developed 
genetic algorithm also supports selecting the optimum 
number of sensor platform systems and their locations 
according to the given constraints such as budget, 
effectiveness. 

ENVIRONMENT REPRESENTATION 

To perform the optimization in the right manner, the 
real world must be represented in a computer-generated 
world (virtual environment) as realistically as possible. 
So the virtual environment is defined using terrain 
elevations, satellite images, surface slopes, surface 
materials and atmospheric conditions. 

The 3D model of the terrain is loaded from high 
resolution DEM (Digital Elevation Model) or DTED 
(Digital Terrain Elevation Data) files (see USGS 
National Mapping Information, 1998, National Imagery 
and Mapping Agency, 1999), and stored in a 2D matrix 
(height fields) that contains elevations (elevations from 
sea level) of equally distanced samples on the terrain. 
After loading the height fields, the slope magnitudes 
and directions are computed for each rectangular 
surface. A surface is defined by the elevations of its 
four corners (see Figure 1). 

 

Figure 1. Height fields (left) and slope information of a surface (right) 



After loading the 3D model, high-resolution satellite 
images are mapped on the terrain, and by analyzing 
these images; materials such as water, soil, rock etc. are 
assigned to the surfaces of the terrain. Finally the 
atmospheric conditions are defined in detail using 
statistics of recent years. The visualization of slope 
magnitudes, slope directions and surface materials are 
shown in Figure 2. 

 

 

 

Figure 2. Visualization of slope magnitudes, slope 
directions and surface materials 

Location Constraints 

Location constraints are very important for simulating 
real world, because sensor platform systems cannot be 
located at every coordinate on the terrain. For instance, 

it is not feasible to locate a land platform on a river, on 
a cliff or outside of the country boundary. To prevent 
locating platforms at infeasible locations, special set of 
constraints such as slope, elevation limits, is defined for 
each sensor platform system type. Although these 
parameters determine the performance differences 
among the sensor platform system types, they are not 
enough to describe conceptual differences such as area 
of responsibility, being inside of the country boundary 
etc. So a matrix having same size as the height field 
matrix is generated to define the global location 
constraints, which are entered manually by the user or 
by a set of analysis functions (analysis of point, line, 
area, features, ridges, cliffs, boundaries etc.). This 
matrix is called location availability matrix and 
illustrated in Figure 3. 

 

 

 

 

Figure 3. Location availability matrix 

Region Importance 

With limited resources, it is almost impossible to 
protect every region in large terrains. So in order to 
focus, we must decide on some regions having higher 
importance. In the developed model, importance of the 
regions is defined using an importance matrix having 
equal size as the height field matrix. There are six 
importance values starting with 1st priority (100% 
important) and ending with 6th priority (0% important). 
An importance matrix is illustrated in Figure 4. 

 

 

 

Figure 4. Importance matrix 

THE COVERAGE & THE EFFECTIVENESS 

The coverage of a single sensor is defined as the region 
visible to the sensor from a specified location on the 
terrain (e.g. the region in line of sight for optical 
sensors). This region depends on the specification of a 
sensor. For example, although some sensors such as 
radars can detect tens of kilometers away, some others 
such as infra-red cameras can only detect several 

Location available 

Location  unavailable 

1th priority 

2th priority 



kilometers. Within that range, the detection probability 
distributions of these sensors are also different. Hence a 
generic sensor coverage algorithm satisfying the above 
needs is developed, and three levels of coverage 
matrices are generated for detection, recognition and 
identification probabilities. That coverage algorithm 
calculates the coverage of each sensor on the terrain 
and merges them to the coverage matrices using 
probabilistic computations. The visualization of the 
coverage matrix for detection level is visualized in 
Figure 5. 

 

 

Figure 5. The visualization of the coverage matrix: 
White illustrates effectively detected regions by a set of 

sensors, and probability to detect a target decreases 
while white color turns to dark green. 

The basic idea behind the developed generic sensor 
coverage model is using a normalized range/probability 
distribution graph given for ideal conditions, and a set 
of range scale multipliers for the deviations from ideal 
conditions. An ideal conditions graph is illustrated in 
Figure 6, and a multiplier graph for fog is illustrated in 
Figure 7. 

We have also integrated a generic radar model 
developed by Sengul (2001) to the optimization module 
for realistically simulating radars. We observed that 
generating the radar coverage takes much more CPU 
time than the generic sensor model. Hence we 
compared the radar coverages with the line of sight 
simulated radar coverages ignoring the probability 
levels, and observed that the radars cover a little area 
out of line of sight, but have significant uncovered area 
in line of sight. Hence we are planning to ignore the 
area out of line of sight, and significantly increase the 
efficiency. 

 

Figure 6. Ideal conditions graph: the horizontal axis is 
the ratio relative to the maximum detection range, and 

the vertical axis is the probability of detection. 

 

Figure 7. A multiplier graph for fog: the horizontal axis 
is the max visible eye range (m) in fog, and the vertical 

axis is the multiplier for shrinking the max detection 
range of sensor. 

The effectiveness is a single floating value that is 
computed from the coverage and importance matrices. 
For each level of coverage matrices, the cell 
probabilities are weighted by respective cell importance 
values, and summed up. Then the detection, recognition 
and identification levels are merged weighted forming a 
single value. The computed value is called current 
effectiveness score. Then a similar computation is 
performed assuming that each cell of the coverage 
matrices has 100% probability. This value is called max 
possible effectiveness score. Finally overall 
effectiveness is computed by the following equation: 

Effectiveness = current effectiveness score / max 
possible effectiveness score 

Hence the effectiveness is mapped to a floating value 
between 0 and 1. 

OPTIMIZATION 

Location Optimization 

In the location optimization, there is no need to 
optimize sensor platform system types and numbers, 
because the user gives them as input. The only 
parameter to be optimized is the coordinates of the 
given sensor platform systems. So the location 
optimization is the simplest form of the developed 
optimization algorithms, and it only needs fixed-length 
chromosomes having n genes for executing the genetic 
algorithm (GA), where n is the number of sensor 
platform systems that are going to be located. In a 



chromosome, the gene position of each sensor platform 
system is also fixed. That means; the first gene is the 
first platform, the second gene is the second platform 
and so on. For implementing GA, a non-binary 
representation is chosen, and the genes are assumed to 
be indivisible members. The chromosome coding of 
GA is shown in Figure 8. 

 

 

 

 

Figure 8. Chromosome coding of GA 

As seen, the looking directions of the sensor platform 
systems are not optimized. That is because of the real-
world usage technique of these systems and for the sake 
of efficiency of the GA. In real world, generally, there 
is at least one operator assigned for each system. An 
operator uses the sensors interactively to search a wide 
region. So there is no mean of giving a fixed direction, 
which won’t be applied appropriate. In addition, we 
observed that, in most cases, a located sensor covers 
just one side well on a mountainous terrain, but not all 
the sides. In optimization, choosing a random direction 
may cause to miss a good location because of bad 
direction selection. So there is also no need to slow 
down the optimization using a non-critical parameter. 

The fitness function of GA is the effectiveness of the 
sensor platform systems located to the coordinates 
given in the chromosome, and we just want to 
maximize the effectiveness.  

The initial population is generated randomly, and all the 
chromosomes are kept feasible. The feasibility is 
guaranteed because sensor platform systems are never 
allowed to be located on unavailable locations. The 
population size is chosen as 30 after performing an 
analysis of a factorial experiment with all the other GA 
parameters. 

In addition to the population size, a new GA parameter 
is introduced called population multiplier, which is an 
integer number greater or equal to 1. If population 
multiplier is set to 1, then the size of initial population 
is just set to be the same as the actual population size, 
but if population multiplier is greater than 1, the size of 
initial population is set to population size times 
population multiplier. That increases the size of initial 
population so increasing the variety in the population. 

After starting the optimization, the population size is 
decreased 2 by 2 in each 5 iterations until the 
population size becomes the actual population size. 
After the experimental runs, the population multiplier is 
set to 2. 

In the GA model, two parent selection techniques 
(tournament selection and roulette wheel selection) and 
three replacement techniques (whole replacement, 
queen principle replacement and steady-state 
replacement) are implemented and their behaviors are 
examined in detail.  

In the tournament selection, 2 chromosomes are 
randomly selected from the population and the one 
having greater fitness is chosen for the first parent of 
crossover operator. For selecting the second parent, 
same process is repeated. In roulette wheel selection, 2 
parents are randomly chosen, where the selection 
probabilities are proportional to their fitness values. 

In the whole replacement, the old population is 
completely replaced with the newly generated 
population (offsprings). In the queen principle 
replacement, the new population is generated with size 
p–2, where p is the old population size. Then only the 
first two chromosomes (queens) having the greatest 
fitness values are kept from the old ones and the rest is 
replaced with the new population members.  Finally, in 
the steady-state replacement, only 2 new offsprings are 
generated and the worst two of the old population 
members are killed. So the population mostly becomes 
a mixture of new and old chromosomes in time. 

Experimental results showed that the tournament 
selection works fine with all the replacement methods, 
but roulette wheel selection works fine only with 
steady-state replacement. In the final configuration, the 
roulette wheel selection with steady-state replacement 
is chosen to be the best among all the combinations. 
And the second alternative was the tournament 
selection with queen principle replacement. The 
crossover rate is set to 0.6; the mutation rate is set to 
0.08 for each gene; and the crossover technique is 
chosen to be 2-point crossover among 1-point, 2 point 
and uniform crossover operators. While applying 
crossover, no feasibility check is performed because 
only the genes in the same positions (in other words the 
same platforms) are swapped. 

The mutation rate is used as probability of mutating a 
single gene. Three mutation operators are implemented, 
and used together. If a gene passes the mutation 
probability test, then one of the below mutation 
operators are randomly selected and applied. The first 
one randomly changes the coordinate of a gene. The 

x1, y1 x2, y2 ....... xn, yn 

1st gene (1st platform) 

a chromosome 

nth gene (nth platform) 



second one randomly moves the coordinate of a gene to 
a neighbor point.  And the last one swaps the 
coordinates of a gene with the coordinate of another 
randomly selected gene within the same chromosome 
so obtaining sensor type swap for the coordinates. 
While these mutations are performed, the feasibility of 
the chromosomes is always guaranteed.   

In addition to the described GA operators, two copy 
protection algorithms for chromosomes and genes are 
implemented. The first one catches the offsprings that 
are duplicated within the new or none-killed old 
population members, and deletes these duplicated 
chromosomes before replacing them with the old 
members. And the second copy protection algorithm 
prevents duplicated genes within the chromosomes, 
because locating two same typed sensor platform 
systems on the same coordinate is not preferred. So if 
any duplicated gene is found, its coordinate is 
randomized until a valid location is generated.  

Effectiveness Optimization 

In the effectiveness optimization, a budget limit is 
determined by the user, and in addition to the 
optimization of locations, the number of sensor 
platform systems needed from each type is also 
optimized provided that the cost does not exceed the 
given budget. As seen the problem becomes more 
complicated and so a type parameter is added to each 
gene, and the length of chromosomes is not fixed now. 
The chromosome coding of GA is shown in Figure 9. 

For the effectiveness optimization, a new initial 
population creation technique, and a new crossover 
operator and three new mutation operators are 
developed. The fitness function and the rest of the GA 
parameters/operators are kept the same. 

The chromosomes of the initial population is created 
randomly around the budget limit, but not exceeding 
the budget. In addition to the coordinates, the types are 
also randomly selected from a given list of available 
sensor platform system types. The critical point for 
creating the chromosomes is the random selection 
distribution among the available sensor platform system 
types. If expensive platforms have the same selection 
probability as the cheap platforms, then the 
chromosomes will be mostly filled with expensive ones, 
and crowded combinations (with cheaper platforms) 
won’t have much chance to be tested. If we distribute 
selection probability inversely proportional to the costs, 
then rare combinations (with expensive platforms) 
won’t have much chance to be tested. The solution is to 
select one of the techniques randomly to create a single 
chromosome. 

 

 

 

 

 

Figure 9. Chromosome coding of GA 

For the crossover operators, 1-point, 2-point, uniform 
crossovers and a new one called region crossover are 
implemented. The region-crossover randomly selects a 
rectangular region from the terrain, and swaps some of 
the platforms fall into that region meanwhile balancing 
the cost. As a result of the experiments, a mixture of 2-
point crossover (with low probability) and the region 
crossover (with high probability) is set as default. In the 
entire crossover operators applied, the cost variations of 
the offsprings relative to their parents are kept as small 
as possible. So the cost of new offsprings does not vary 
much from the budget, and they are well protected from 
corruptions in the repair phase, which is going to be 
described later on. To perform cost balancing, the 
swapped parts of the parents are chosen to have almost 
the same cost. But if possible they are not kept the 
same, because we need some small varieties to find 
ideal combinations, and in the cost optimization, we 
need to increase or decrease the cost in time.  

For effectiveness optimization, 5 mutation operators are 
implemented and used together. If a gene passes the 
mutation probability test, then one of the below 
mutation operators are randomly selected and applied. 
The first one randomly changes the coordinate of a 
gene. The second one randomly moves the coordinate 
of a gene to a neighbor point.  The third one randomly 
changes the type of the gene. The fourth operator 
deletes the gene and the last one inserts a randomly 
created gene. While these mutations are performed, the 
feasibility of the chromosomes is always guaranteed.   

As a result of the crossover and the mutations, the 
feasibility of a chromosome may be lost either by 
exceeding the budget or not using the budget enough. 
Hence a repair function is implemented. If the unused 
budget is greater than the cost of the cheapest sensor 
platform system type, the function adds random sensor 
platforms systems. If the budget is exceeded, the 
function deletes the cheapest sensor platform systems in 
the chromosome.  

type1, x1, y1 type2, x2, y2 ...... typen, xn, yn 

1st gene (1st sensor platform) 

a chromosome 

nth gene (nth sensor platform), where n is not fixed 



Cost Optimization 

In the cost optimization, the user wants to get a 
specified effectiveness level with minimum cost, so the 
number of sensor platform systems from each type and 
their locations are optimized in order to obtain this 
objective. Now the problem is much more complicated, 
because we don’t know the cost of getting the desired 
effectiveness and we don’t have a clue for creating the 
initial population. So we need to estimate the budget to 
create an initial population, and while optimizing the 
types, numbers and locations, we also need to search 
for the minimum cost. For the optimization, 2 fitness 
functions and a new initial population creation 
technique is developed. 

First a cost estimation is needed to create the initial 
population. So a preprocess is done as follows: Random 
sensor platform systems are created and added to a list 
while effectiveness is less than 50 percent of the desired 
effectiveness limit. This process is repeated 3 times 
with random seeds, and the average cost is used to 
create the initial population. 

As mentioned, 2 fitness functions are developed, where 
the first one is relaxed and the second one is more 
restricted. The first fitness function is computed as the 
effectiveness multiplied by the variable called mult, 
where mult is a floating value between 0 and 1. 
Computing the fitness function and choosing the value 
of the variable mult is shown below: 

Fitness = Effectiveness x Mult 

Mult =      1   if the cost of the chromosome < Estimated Cost 

      Normal distribution         otherwise (a penalty is given) 

If the cost of a chromosome is less than a dynamically 
updated estimation of the cost (for objective), then mult 
is set to 1. Else depending on the cost, the variable mult 
is decreased from 1 to 0 using the normal distribution. 
The distribution of the variable mult is illustrated in 
Figure 10. 

As seen above, an estimated cost is needed to run the 
optimization, and this estimated cost must be more than 
the actual cost, because if it is under estimated, then the 
population is prevented to converge to a solution. So 
the initial estimated cost is chosen infinite, and when a 
solution, which has more than the desired effectiveness, 
is found, the estimation is updated with the cost of that 
solution. This process is continuously performed each 
iteration, and the fitness values of the old population 
members are also updated according to the new 
estimated cost. 

 

 

 

 

 

Figure 10. Distribution of the variable mult 

For the second fitness function, ranks between 1 and 
n+m are assigned to the chromosomes, where n is the 
population size and m is the number of offsprings 
generated in the iteration. So the best one gets the rank 
n+m and the worst one gets the rank 1. Then the ranks 
are used as the fitness values. To assign ranks, the old 
population and the new population (offsprings) are 
sorted together according to the following criteria: 

• A is better than B if 

o A is above or equal to the 
effectiveness limit and B is below 
effectiveness limit  

o Both A and B are above or equal to 
effectiveness limit but A has lower 
cost 

o Both A and B are below effectiveness 
limit but A has higher effectiveness 

After sorting, the ranks are assigned in order from 1 to 
n+m starting from the worst one. 

The first fitness function is more relaxed, and a 
chromosome having higher cost can get a higher fitness 
value if its effectiveness is very high. So during the 
optimization, the cost of best solution may increase or 
decrease. But the second fitness function always gives 
the highest rank to the one that is above the 
effectiveness and having the minimum cost. So it is 
much restricted by the cost, and the cost of best one 
never increases. As a result of the experiments, the first 
fitness function is found to be the best in many cases. 

Initial Population Heuristics 

For a GA, the selection of initial population is critical. 
Instead of randomly selecting the locations, we might 
chose these locations using some heuristics. But we 
must also keep in mind that there might be some 
drawbacks. For example, if we choose higher locations, 
the results might be wrong, because higher is not 
always better as stated in the work of Franklin. In 

Dynamically estimated cost 

Stdev = budget x 0.3 



general, the visibility index maps (see Franklin & Ray, 
1994a) seems to be the best heurist among all. A 
visibility index map is a 2D matrix showing how much 
of the map is seen from each cell. The map can be 
generated as a pre-process, which takes a high CPU 
time, and used as a selection heuristic. If we need to 
locate just a single sensor, the cell with the highest 
value is optimum, but if we need to locate n sensors, 
selecting first n highest valued cells is not optimum. 

DISTRIBUTED SENSOR SIMULATION 

The next part of the study was the demonstration of the 
sensor systems in a human-in-the-loop simulation. The 
distributed simulation environment consists of a group 
of sensor platform systems (user guided blue forces) 
and one or more groups of threats (semi-automated red 
forces). All the sensor platform systems were 
coordinated through a command and control center 
(KomKon), which can visualize four sensor monitors at 
the same time, render the 3D terrain structure from the 
digital elevation data, construct the tactical picture, and 
give commands to the sensor platform operators on the 
field. The platforms were controlled by the user 
operators through the developed consoles. The consoles 
were capable of simulating the driver vision and the 
sensor monitors (DayTV and Infra-Red). The radar 
screens (RAMOSFd) and the jammer screens 
(JAMOSFd) were distinct applications (HLA federates) 
that work on PC workstations. 

The developed distributed simulation was a mixture of 
socket programming and HLA, because the Radar 
simulation (RAMOS), which works on HLA, was a 
later study, and had to be integrated into the previous 
work. A second need was keeping the two working 
groups distinct as much as possible in order not to delay 
the on going studies. The solution found was to develop 
a distinct service federate (SimActFd), which 
coordinates radars and the command and control center 
(KomKon) using a message queue. The message queue 
is implemented using the IRIX operating system IEEE 
1003.1b-1993 standard. The general structure of the 
simulation is illustrated in Figure 11. 

To fire the sensors in the distributed simulation, we 
developed semi-automated forces that would 
accomplish a specified mission, which may be to attack, 
escape or just pass through a selected tactical area. 
Hence we proposed techniques (see Undeger, Isler & 
Ipekkan, 2000, Undeger, 2001a) to define the way to 
represent agents, groups and goals, perform path 
planning, and establish the communication and the 
synchronization among groups. We also developed off-
line and real-time path-planning algorithms, and 
observed that the proposed algorithm RTEF (see 

Undeger, Polat & Ipekkan, 2001b) has the capability to 
meet the efficiency and the solution quality 
requirements of the reactive agent navigation in real-
time. 

 

 

 

 

 

 

 

 

 

 

Figure 11. The structure of the simulation 

CONCLUSION 

In this paper, we have proposed a whole working 
system for sensor optimization on large terrains. We 
have started with the definition of the environment, the 
constraints, coverage and effectiveness of the sensors, 
and later on described three categories of optimization; 
location, effectiveness and cost optimization. The 
location optimization part of the algorithm is compared 
with the work of Can (2000) and the results showed that 
the algorithm performs significantly better than the 
previous one. In addition, we have evaluated the results 
of effectiveness and cost optimization with the help of 
location optimization part, and observed that the 
effectiveness/cost optimizations give results similar to 
the ones that can be achieved by a set of well-prepared 
location optimization experiments. But the cost 
optimization needs much more GA iterations than the 
effectiveness optimization to get a good result because 
of the unknown budget limit. We have also observed 
there are still things that can be done for increasing the 
solution performance and quality by introducing some 
heuristics such as extracting good locations as a 
preprocess using visibility index maps (see Franklin & 
Ray, 1994a), or selecting the mutation rate individually 
inversely proportional to the gain of the sensor platform 
system.  
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