
SENSOR PLATFORM OPTIMIZATION AND SIMULATION FOR
SURVEILLANCE OF LARGE SCALE TERRAINS

Cagatay Undeger

Modeling and Simulation Section
Defense Technologies Engineering Inc.

Ankara, Turkey

Murat Balci, Sertan Girgin,
Volkan Koc, Faruk Polat

Modeling and Simulation Center
Middle East Technical University

Ankara, Turkey

Sukru Bilir, Ziya Ipekkan
Scientific Decision Support Center

Turkish General Staff, HQ
06100 Ankara, Turkey

ABSTRACT

Surveillance of large terrains using limited sensor capabilities is a challenging task in many military applications. In
this paper, we present a new method to determine the number, type and location of sensor platform systems to
effectively cover a large terrain, which is composed of areas of varying importance. A sensor platform system is an
integrated system that consists of a platform (human, jeep, aircraft, etc.) and one or more sensors (day-tv, infra-red,
radar, etc.) integrated to that platform. The objective in the optimization is twofold: first, determine locations of a
given set of sensor platform systems in order to effectively cover areas in accordance with importance. Second,
determine the number, type and locations of sensor platform systems to effectively cover the terrain. We developed
a genetic algorithm to solve this optimization problem. In the optimization, user may specify a budget and the tool
may be run to determine the number, type and locations of the sensor platform systems within this budget to
maximize effective coverage as much as possible. Alternatively the tool may be run to guarantee a predefined
effectiveness measure concerning coverage, minimizing total cost of sensor platform systems. In order to simulate
optical sensors and radars, we developed a generic probabilistic sensor model, which is based on line-of sight and
ray tracing. This stochastic modeling allows us to simulate detection, recognition and identification capabilities of
different types of sensors on high-resolution terrains. The next part of that study is a distributed human in the loop
simulation, which is developed to demonstrate the usage of the sensor platforms under the control of a tactical level
control center. To perform the simulation, a tactical command center, an HLA compliant physical radar simulator, a
number of sensor platform consoles and semi-automated agents are developed.

ABOUT THE AUTHORS

Cagatay Undeger received his B.Sc. degree from Kocaeli University, Turkey in 1998 and went to the Department of
Computer Engineering, Middle East Technical University, where he has worked as a research assistant and obtained
his M.S. degree in 2001. He is currently doing his Ph.D. in the same university and studying on Modeling and
Simulation within Defense Technologies Engineering Inc.

Faruk Polat is an associate professor in the Department of Computer Engineering of Middle East Technical
University, Ankara, Turkey. He received his B.Sc. in computer engineering from the Middle East Technical
University, Ankara, in 1987 and his M.S. and Ph.D. degrees in computer engineering and information science from
Bilkent University, Ankara, in 1989 and 1993 respectively. He conducted research as a visiting NATO science
scholar at Computer Science Department of University of Minnesota, Minneapolis in 1992-93. His research
interests include artificial intelligence, multi-agent systems and object oriented data models.

Lt.Col.Ziya Ipekkan is currently the Force Structure Analyses Team Leader in Scientific Decision Support Center of
Turkish General Staff, Ankara, The Republic of Turkey. He received his B.Sc. in electronic engineering from War
College, Ankara, in 1981 and his M.Sc. degree in operations research from Naval PostGraduate School, Monterey,
CA, USA in 1989.

SENSOR PLATFORM OPTIMIZdATION AND SIMULATION FOR
SURVEILLANCE OF LARGE SCALE TERRAINS

Cagatay Undeger

Modeling and Simulation Section
Defense Technologies Engineering Inc.

Ankara, Turkey

Murat Balci, Sertan Girgin,
Volkan Koc, Faruk Polat

Modeling and Simulation Center
Middle East Technical University

Ankara, Turkey

Sukru Bilir, Ziya Ipekkan
Scientific Decision Support Center

Turkish General Staff, HQ
06100 Ankara, Turkey

INTRODUCTION

In recent years, genetic algorithms (see Goldberg, 1989,
Allenson, 1992, Beasley, Bull & Martin, 1993, Ahuja,
Orlin & Tiwari, 1995) have been successfully applied
to many different domains such as radio frequency
planning, path planning, mission planning, scheduling,
electronic circuit designing, time-tabling, etc. The great
attention on genetic algorithms is because of its
applicability to many different domains, weak
algorithmic dependence to the problem parameters,
robustness and successful results gained on many
applied problems so far.

The genetic algorithm is chosen for the optimization
due to the advantages mentioned above. At first the
factors affecting the problem are determined. Later on,
the representation for the terrain, atmosphere, sensors,
platforms and integrated sensor platform systems are
designed. An efficient terrain coverage analysis
algorithm, which is a derivation of viewshed algorithms
(see Franklin & Ray, 1994a, Franklin, Ray & Mehta,
1994b) is developed and implemented in order to
compute the effectiveness of a given state (a set of
integrated sensor platforms and their locations). And
finally two optimization algorithms; location
optimization and cost/effectiveness optimization, are
developed on top of the virtual environment designed.

The location optimization module gets 4 main inputs;
the virtual environment, available sensor platform
system types and their parameters, location constraints
and a set of sensor platform systems whose locations
are going to be optimized. At the end of optimization,
best locations of the given sensor platform systems are
found.

The cost/effectiveness optimization module gets 5 main
inputs; the virtual environment, available sensor
platform system types and their parameters, location
constraints, the optimization objective and budget or
effectiveness limit (depending on the objective). There
are two optimization objectives, which are effectiveness
optimization and cost optimization. In the effectiveness
optimization mode, we have a fixed budget, and we
want to maximize the effectiveness of the sensor

platform systems within that budget. In the cost
optimization mode, we need the effectiveness about a
given amount, and we want to minimize the cost while
getting the desired effectiveness. At the end, the
number of sensor platforms needed from each type and
their best locations are found.

RELATED WORK

Although sensor location optimization over large
terrains is a crucial need for the military domains, it is a
hard problem and there is not much work published in
the literature.

Franklin et al (1994b) studied on optimal placing of
observers, and worked on 1-D or 2-D terrains where
heights are given at the vertices of regular grids. His
objective was to find the minimum number of the
observers and their locations such that each point of the
terrain is visible from at least one observer. He
proposed a greedy algorithm to solve the mentioned
problem, which is a special case of the well-known set-
covering problem (NP-complete). Although the
problem is similar to the one we have focused on, the
major difference is that we do not need to cover all the
terrain, because the terrain is very mountainous and the
cost of covering all the terrain is unacceptably high.
Also a straightforward greedy algorithm does not work
well on such a mountainous terrain having many local
optimums.

In 1998, Kewley and Embrechts developed a fuzzy-
genetic algorithm to position military combat units for
optimum performance. Their objective was not to
maximally cover the terrain, but to successfully
complete a tactical mission in a battle, so a simulation
model to evaluate solutions, and a fuzzy logic module
to map simulation outputs to a single fitness value is
developed to work with GA. In the study, they used
random selection, steady-state replacement (50%
replacement with poorest half of the old population),
and a bit-flip mutation with a mutation rate of 0.02. The
reason of using the above form of genetic algorithm
was to make the GA less sensitive to the fluctuations in
fitness, which is computed stochastically. They stated

that the developed fuzzy-genetic system outperformed a
human expert during a simulated battle.

In 1998, Rabinkin proposed a two-step sound source
location optimization algorithm for optimum sensor
placement on microphone arrays. In the first step, time
delay of arrival (TDOA) estimates for selecting
microphone pairs are determined using a modified
version of the Omologo-Svaizer cross-power spectrum
phase expression. In the second step, the TDOA
estimates are used in a least-mean-squares gradient
descent search algorithm to obtain location estimates.
Also robotics and computer vision communities are
studying a similar problem called sensor planning to
locate the sensors on a robot to enhance its navigation
capabilities in a closed environment (see Briggs &
Donald, 1996, Stamos & Allen, 1998). These
researches mostly focus on small, closed environments
such as offices, houses, laboratories, and the objective
of the optimization is to collect as much information as
possible about the surrounding environment.

A similar problem, the antenna-positioning for radio
network planning, was studied by Michel Vasquez and
Jin-Kao Hao, in 2000. They developed a tabu search
algorithm to find a set of good sites for antennas from a
set of pre-defined candidate sites, and for each selected
site, to determine the number and types of antennas, as
well as the associated values for each of the antenna
parameters. Their proposed approach was composed of
three phases: a constraint-based pre-processing phase to
filter out bad configurations, an optimization phase
using tabu search, and a post-optimization phase to
improve solutions given by tabu search. To validate the
approach, the computational results were presented
using large and realistic data sets.

In 2001, Kim and Clarke studied new spatial
optimization techniques to carry out a visibility analysis
on topological surfaces in GIS, which searches for the
best viewpoint or site locations. Their paper was aiming
on comparison of four developed algorithms: an
extensive iterative search technique; a Tornqvist based

search algorithm as conventional spatial solution
algorithms; genetic algorithms; and simulated annealing
techniques as newer spatial search techniques. The
performance of the four solution techniques was
compared using a visibility site selection problem. As a
result of the experiments, they observed that the genetic
algorithm always outperforms the other methods, the
simulated annealing algorithm shows its algorithmic
consistency over the two conventional methods by the
standard deviation values, and even if there is a poor
starting configuration for the genetic algorithm or
simulated annealing they can generate good solutions.

In 2000, Can proposed a meta-heuristics based on
genetic algorithms. The algorithm was focusing on
optimizing the locations of a given set of sensor
platform systems on large terrains. A part of our paper
improves the work of Can. In addition, the developed
genetic algorithm also supports selecting the optimum
number of sensor platform systems and their locations
according to the given constraints such as budget,
effectiveness.

ENVIRONMENT REPRESENTATION

To perform the optimization in the right manner, the
real world must be represented in a computer-generated
world (virtual environment) as realistically as possible.
So the virtual environment is defined using terrain
elevations, satellite images, surface slopes, surface
materials and atmospheric conditions.

The 3D model of the terrain is loaded from high
resolution DEM (Digital Elevation Model) or DTED
(Digital Terrain Elevation Data) files (see USGS
National Mapping Information, 1998, National Imagery
and Mapping Agency, 1999), and stored in a 2D matrix
(height fields) that contains elevations (elevations from
sea level) of equally distanced samples on the terrain.
After loading the height fields, the slope magnitudes
and directions are computed for each rectangular
surface. A surface is defined by the elevations of its
four corners (see Figure 1).

Figure 1. Height fields (left) and slope information of a surface (right)

After loading the 3D model, high-resolution satellite
images are mapped on the terrain, and by analyzing
these images; materials such as water, soil, rock etc. are
assigned to the surfaces of the terrain. Finally the
atmospheric conditions are defined in detail using
statistics of recent years. The visualization of slope
magnitudes, slope directions and surface materials are
shown in Figure 2.

Figure 2. Visualization of slope magnitudes, slope
directions and surface materials

Location Constraints

Location constraints are very important for simulating
real world, because sensor platform systems cannot be
located at every coordinate on the terrain. For instance,

it is not feasible to locate a land platform on a river, on
a cliff or outside of the country boundary. To prevent
locating platforms at infeasible locations, special set of
constraints such as slope, elevation limits, is defined for
each sensor platform system type. Although these
parameters determine the performance differences
among the sensor platform system types, they are not
enough to describe conceptual differences such as area
of responsibility, being inside of the country boundary
etc. So a matrix having same size as the height field
matrix is generated to define the global location
constraints, which are entered manually by the user or
by a set of analysis functions (analysis of point, line,
area, features, ridges, cliffs, boundaries etc.). This
matrix is called location availability matrix and
illustrated in Figure 3.

Figure 3. Location availability matrix

Region Importance

With limited resources, it is almost impossible to
protect every region in large terrains. So in order to
focus, we must decide on some regions having higher
importance. In the developed model, importance of the
regions is defined using an importance matrix having
equal size as the height field matrix. There are six
importance values starting with 1st priority (100%
important) and ending with 6th priority (0% important).
An importance matrix is illustrated in Figure 4.

Figure 4. Importance matrix

THE COVERAGE & THE EFFECTIVENESS

The coverage of a single sensor is defined as the region
visible to the sensor from a specified location on the
terrain (e.g. the region in line of sight for optical
sensors). This region depends on the specification of a
sensor. For example, although some sensors such as
radars can detect tens of kilometers away, some others
such as infra-red cameras can only detect several

Location available

Location unavailable

1th priority

2th priority

kilometers. Within that range, the detection probability
distributions of these sensors are also different. Hence a
generic sensor coverage algorithm satisfying the above
needs is developed, and three levels of coverage
matrices are generated for detection, recognition and
identification probabilities. That coverage algorithm
calculates the coverage of each sensor on the terrain
and merges them to the coverage matrices using
probabilistic computations. The visualization of the
coverage matrix for detection level is visualized in
Figure 5.

Figure 5. The visualization of the coverage matrix:
White illustrates effectively detected regions by a set of

sensors, and probability to detect a target decreases
while white color turns to dark green.

The basic idea behind the developed generic sensor
coverage model is using a normalized range/probability
distribution graph given for ideal conditions, and a set
of range scale multipliers for the deviations from ideal
conditions. An ideal conditions graph is illustrated in
Figure 6, and a multiplier graph for fog is illustrated in
Figure 7.

We have also integrated a generic radar model
developed by Sengul (2001) to the optimization module
for realistically simulating radars. We observed that
generating the radar coverage takes much more CPU
time than the generic sensor model. Hence we
compared the radar coverages with the line of sight
simulated radar coverages ignoring the probability
levels, and observed that the radars cover a little area
out of line of sight, but have significant uncovered area
in line of sight. Hence we are planning to ignore the
area out of line of sight, and significantly increase the
efficiency.

Figure 6. Ideal conditions graph: the horizontal axis is
the ratio relative to the maximum detection range, and

the vertical axis is the probability of detection.

Figure 7. A multiplier graph for fog: the horizontal axis
is the max visible eye range (m) in fog, and the vertical

axis is the multiplier for shrinking the max detection
range of sensor.

The effectiveness is a single floating value that is
computed from the coverage and importance matrices.
For each level of coverage matrices, the cell
probabilities are weighted by respective cell importance
values, and summed up. Then the detection, recognition
and identification levels are merged weighted forming a
single value. The computed value is called current
effectiveness score. Then a similar computation is
performed assuming that each cell of the coverage
matrices has 100% probability. This value is called max
possible effectiveness score. Finally overall
effectiveness is computed by the following equation:

Effectiveness = current effectiveness score / max
possible effectiveness score

Hence the effectiveness is mapped to a floating value
between 0 and 1.

OPTIMIZATION

Location Optimization

In the location optimization, there is no need to
optimize sensor platform system types and numbers,
because the user gives them as input. The only
parameter to be optimized is the coordinates of the
given sensor platform systems. So the location
optimization is the simplest form of the developed
optimization algorithms, and it only needs fixed-length
chromosomes having n genes for executing the genetic
algorithm (GA), where n is the number of sensor
platform systems that are going to be located. In a

chromosome, the gene position of each sensor platform
system is also fixed. That means; the first gene is the
first platform, the second gene is the second platform
and so on. For implementing GA, a non-binary
representation is chosen, and the genes are assumed to
be indivisible members. The chromosome coding of
GA is shown in Figure 8.

Figure 8. Chromosome coding of GA

As seen, the looking directions of the sensor platform
systems are not optimized. That is because of the real-
world usage technique of these systems and for the sake
of efficiency of the GA. In real world, generally, there
is at least one operator assigned for each system. An
operator uses the sensors interactively to search a wide
region. So there is no mean of giving a fixed direction,
which won’t be applied appropriate. In addition, we
observed that, in most cases, a located sensor covers
just one side well on a mountainous terrain, but not all
the sides. In optimization, choosing a random direction
may cause to miss a good location because of bad
direction selection. So there is also no need to slow
down the optimization using a non-critical parameter.

The fitness function of GA is the effectiveness of the
sensor platform systems located to the coordinates
given in the chromosome, and we just want to
maximize the effectiveness.

The initial population is generated randomly, and all the
chromosomes are kept feasible. The feasibility is
guaranteed because sensor platform systems are never
allowed to be located on unavailable locations. The
population size is chosen as 30 after performing an
analysis of a factorial experiment with all the other GA
parameters.

In addition to the population size, a new GA parameter
is introduced called population multiplier, which is an
integer number greater or equal to 1. If population
multiplier is set to 1, then the size of initial population
is just set to be the same as the actual population size,
but if population multiplier is greater than 1, the size of
initial population is set to population size times
population multiplier. That increases the size of initial
population so increasing the variety in the population.

After starting the optimization, the population size is
decreased 2 by 2 in each 5 iterations until the
population size becomes the actual population size.
After the experimental runs, the population multiplier is
set to 2.

In the GA model, two parent selection techniques
(tournament selection and roulette wheel selection) and
three replacement techniques (whole replacement,
queen principle replacement and steady-state
replacement) are implemented and their behaviors are
examined in detail.

In the tournament selection, 2 chromosomes are
randomly selected from the population and the one
having greater fitness is chosen for the first parent of
crossover operator. For selecting the second parent,
same process is repeated. In roulette wheel selection, 2
parents are randomly chosen, where the selection
probabilities are proportional to their fitness values.

In the whole replacement, the old population is
completely replaced with the newly generated
population (offsprings). In the queen principle
replacement, the new population is generated with size
p–2, where p is the old population size. Then only the
first two chromosomes (queens) having the greatest
fitness values are kept from the old ones and the rest is
replaced with the new population members. Finally, in
the steady-state replacement, only 2 new offsprings are
generated and the worst two of the old population
members are killed. So the population mostly becomes
a mixture of new and old chromosomes in time.

Experimental results showed that the tournament
selection works fine with all the replacement methods,
but roulette wheel selection works fine only with
steady-state replacement. In the final configuration, the
roulette wheel selection with steady-state replacement
is chosen to be the best among all the combinations.
And the second alternative was the tournament
selection with queen principle replacement. The
crossover rate is set to 0.6; the mutation rate is set to
0.08 for each gene; and the crossover technique is
chosen to be 2-point crossover among 1-point, 2 point
and uniform crossover operators. While applying
crossover, no feasibility check is performed because
only the genes in the same positions (in other words the
same platforms) are swapped.

The mutation rate is used as probability of mutating a
single gene. Three mutation operators are implemented,
and used together. If a gene passes the mutation
probability test, then one of the below mutation
operators are randomly selected and applied. The first
one randomly changes the coordinate of a gene. The

x1, y1 x2, y2 xn, yn

1st gene (1st platform)

a chromosome

nth gene (nth platform)

second one randomly moves the coordinate of a gene to
a neighbor point. And the last one swaps the
coordinates of a gene with the coordinate of another
randomly selected gene within the same chromosome
so obtaining sensor type swap for the coordinates.
While these mutations are performed, the feasibility of
the chromosomes is always guaranteed.

In addition to the described GA operators, two copy
protection algorithms for chromosomes and genes are
implemented. The first one catches the offsprings that
are duplicated within the new or none-killed old
population members, and deletes these duplicated
chromosomes before replacing them with the old
members. And the second copy protection algorithm
prevents duplicated genes within the chromosomes,
because locating two same typed sensor platform
systems on the same coordinate is not preferred. So if
any duplicated gene is found, its coordinate is
randomized until a valid location is generated.

Effectiveness Optimization

In the effectiveness optimization, a budget limit is
determined by the user, and in addition to the
optimization of locations, the number of sensor
platform systems needed from each type is also
optimized provided that the cost does not exceed the
given budget. As seen the problem becomes more
complicated and so a type parameter is added to each
gene, and the length of chromosomes is not fixed now.
The chromosome coding of GA is shown in Figure 9.

For the effectiveness optimization, a new initial
population creation technique, and a new crossover
operator and three new mutation operators are
developed. The fitness function and the rest of the GA
parameters/operators are kept the same.

The chromosomes of the initial population is created
randomly around the budget limit, but not exceeding
the budget. In addition to the coordinates, the types are
also randomly selected from a given list of available
sensor platform system types. The critical point for
creating the chromosomes is the random selection
distribution among the available sensor platform system
types. If expensive platforms have the same selection
probability as the cheap platforms, then the
chromosomes will be mostly filled with expensive ones,
and crowded combinations (with cheaper platforms)
won’t have much chance to be tested. If we distribute
selection probability inversely proportional to the costs,
then rare combinations (with expensive platforms)
won’t have much chance to be tested. The solution is to
select one of the techniques randomly to create a single
chromosome.

Figure 9. Chromosome coding of GA

For the crossover operators, 1-point, 2-point, uniform
crossovers and a new one called region crossover are
implemented. The region-crossover randomly selects a
rectangular region from the terrain, and swaps some of
the platforms fall into that region meanwhile balancing
the cost. As a result of the experiments, a mixture of 2-
point crossover (with low probability) and the region
crossover (with high probability) is set as default. In the
entire crossover operators applied, the cost variations of
the offsprings relative to their parents are kept as small
as possible. So the cost of new offsprings does not vary
much from the budget, and they are well protected from
corruptions in the repair phase, which is going to be
described later on. To perform cost balancing, the
swapped parts of the parents are chosen to have almost
the same cost. But if possible they are not kept the
same, because we need some small varieties to find
ideal combinations, and in the cost optimization, we
need to increase or decrease the cost in time.

For effectiveness optimization, 5 mutation operators are
implemented and used together. If a gene passes the
mutation probability test, then one of the below
mutation operators are randomly selected and applied.
The first one randomly changes the coordinate of a
gene. The second one randomly moves the coordinate
of a gene to a neighbor point. The third one randomly
changes the type of the gene. The fourth operator
deletes the gene and the last one inserts a randomly
created gene. While these mutations are performed, the
feasibility of the chromosomes is always guaranteed.

As a result of the crossover and the mutations, the
feasibility of a chromosome may be lost either by
exceeding the budget or not using the budget enough.
Hence a repair function is implemented. If the unused
budget is greater than the cost of the cheapest sensor
platform system type, the function adds random sensor
platforms systems. If the budget is exceeded, the
function deletes the cheapest sensor platform systems in
the chromosome.

type1, x1, y1 type2, x2, y2 typen, xn, yn

1st gene (1st sensor platform)

a chromosome

nth gene (nth sensor platform), where n is not fixed

Cost Optimization

In the cost optimization, the user wants to get a
specified effectiveness level with minimum cost, so the
number of sensor platform systems from each type and
their locations are optimized in order to obtain this
objective. Now the problem is much more complicated,
because we don’t know the cost of getting the desired
effectiveness and we don’t have a clue for creating the
initial population. So we need to estimate the budget to
create an initial population, and while optimizing the
types, numbers and locations, we also need to search
for the minimum cost. For the optimization, 2 fitness
functions and a new initial population creation
technique is developed.

First a cost estimation is needed to create the initial
population. So a preprocess is done as follows: Random
sensor platform systems are created and added to a list
while effectiveness is less than 50 percent of the desired
effectiveness limit. This process is repeated 3 times
with random seeds, and the average cost is used to
create the initial population.

As mentioned, 2 fitness functions are developed, where
the first one is relaxed and the second one is more
restricted. The first fitness function is computed as the
effectiveness multiplied by the variable called mult,
where mult is a floating value between 0 and 1.
Computing the fitness function and choosing the value
of the variable mult is shown below:

Fitness = Effectiveness x Mult

Mult = 1 if the cost of the chromosome < Estimated Cost

 Normal distribution otherwise (a penalty is given)

If the cost of a chromosome is less than a dynamically
updated estimation of the cost (for objective), then mult
is set to 1. Else depending on the cost, the variable mult
is decreased from 1 to 0 using the normal distribution.
The distribution of the variable mult is illustrated in
Figure 10.

As seen above, an estimated cost is needed to run the
optimization, and this estimated cost must be more than
the actual cost, because if it is under estimated, then the
population is prevented to converge to a solution. So
the initial estimated cost is chosen infinite, and when a
solution, which has more than the desired effectiveness,
is found, the estimation is updated with the cost of that
solution. This process is continuously performed each
iteration, and the fitness values of the old population
members are also updated according to the new
estimated cost.

Figure 10. Distribution of the variable mult

For the second fitness function, ranks between 1 and
n+m are assigned to the chromosomes, where n is the
population size and m is the number of offsprings
generated in the iteration. So the best one gets the rank
n+m and the worst one gets the rank 1. Then the ranks
are used as the fitness values. To assign ranks, the old
population and the new population (offsprings) are
sorted together according to the following criteria:

• A is better than B if

o A is above or equal to the
effectiveness limit and B is below
effectiveness limit

o Both A and B are above or equal to
effectiveness limit but A has lower
cost

o Both A and B are below effectiveness
limit but A has higher effectiveness

After sorting, the ranks are assigned in order from 1 to
n+m starting from the worst one.

The first fitness function is more relaxed, and a
chromosome having higher cost can get a higher fitness
value if its effectiveness is very high. So during the
optimization, the cost of best solution may increase or
decrease. But the second fitness function always gives
the highest rank to the one that is above the
effectiveness and having the minimum cost. So it is
much restricted by the cost, and the cost of best one
never increases. As a result of the experiments, the first
fitness function is found to be the best in many cases.

Initial Population Heuristics

For a GA, the selection of initial population is critical.
Instead of randomly selecting the locations, we might
chose these locations using some heuristics. But we
must also keep in mind that there might be some
drawbacks. For example, if we choose higher locations,
the results might be wrong, because higher is not
always better as stated in the work of Franklin. In

Dynamically estimated cost

Stdev = budget x 0.3

general, the visibility index maps (see Franklin & Ray,
1994a) seems to be the best heurist among all. A
visibility index map is a 2D matrix showing how much
of the map is seen from each cell. The map can be
generated as a pre-process, which takes a high CPU
time, and used as a selection heuristic. If we need to
locate just a single sensor, the cell with the highest
value is optimum, but if we need to locate n sensors,
selecting first n highest valued cells is not optimum.

DISTRIBUTED SENSOR SIMULATION

The next part of the study was the demonstration of the
sensor systems in a human-in-the-loop simulation. The
distributed simulation environment consists of a group
of sensor platform systems (user guided blue forces)
and one or more groups of threats (semi-automated red
forces). All the sensor platform systems were
coordinated through a command and control center
(KomKon), which can visualize four sensor monitors at
the same time, render the 3D terrain structure from the
digital elevation data, construct the tactical picture, and
give commands to the sensor platform operators on the
field. The platforms were controlled by the user
operators through the developed consoles. The consoles
were capable of simulating the driver vision and the
sensor monitors (DayTV and Infra-Red). The radar
screens (RAMOSFd) and the jammer screens
(JAMOSFd) were distinct applications (HLA federates)
that work on PC workstations.

The developed distributed simulation was a mixture of
socket programming and HLA, because the Radar
simulation (RAMOS), which works on HLA, was a
later study, and had to be integrated into the previous
work. A second need was keeping the two working
groups distinct as much as possible in order not to delay
the on going studies. The solution found was to develop
a distinct service federate (SimActFd), which
coordinates radars and the command and control center
(KomKon) using a message queue. The message queue
is implemented using the IRIX operating system IEEE
1003.1b-1993 standard. The general structure of the
simulation is illustrated in Figure 11.

To fire the sensors in the distributed simulation, we
developed semi-automated forces that would
accomplish a specified mission, which may be to attack,
escape or just pass through a selected tactical area.
Hence we proposed techniques (see Undeger, Isler &
Ipekkan, 2000, Undeger, 2001a) to define the way to
represent agents, groups and goals, perform path
planning, and establish the communication and the
synchronization among groups. We also developed off-
line and real-time path-planning algorithms, and
observed that the proposed algorithm RTEF (see

Undeger, Polat & Ipekkan, 2001b) has the capability to
meet the efficiency and the solution quality
requirements of the reactive agent navigation in real-
time.

Figure 11. The structure of the simulation

CONCLUSION

In this paper, we have proposed a whole working
system for sensor optimization on large terrains. We
have started with the definition of the environment, the
constraints, coverage and effectiveness of the sensors,
and later on described three categories of optimization;
location, effectiveness and cost optimization. The
location optimization part of the algorithm is compared
with the work of Can (2000) and the results showed that
the algorithm performs significantly better than the
previous one. In addition, we have evaluated the results
of effectiveness and cost optimization with the help of
location optimization part, and observed that the
effectiveness/cost optimizations give results similar to
the ones that can be achieved by a set of well-prepared
location optimization experiments. But the cost
optimization needs much more GA iterations than the
effectiveness optimization to get a good result because
of the unknown budget limit. We have also observed
there are still things that can be done for increasing the
solution performance and quality by introducing some
heuristics such as extracting good locations as a
preprocess using visibility index maps (see Franklin &
Ray, 1994a), or selecting the mutation rate individually
inversely proportional to the gain of the sensor platform
system.

....

Console 1

Socket programming

Console n

Driver and Sensor Simulators (SGI IRIX)

KomKon
Message Queue

RTI

RAMOSFd
WINNT

SimActFd
SGI IRIX

JAMOSFd
WINNT

REFERENCES

Ahuja, R.K., Orlin, J.B. & Tiwari, A. (1995). A Greedy
Genetic Algorithm for the Quadratic Assignment
Problem. Working paper, Sloan School of
Management, WP\#3826-95.

Allenson, R. (1992). Genetic Algorithms with Gender
for Multi-function Optimisation. Technical Report
EPCC-SS92-01, Edinburgh Parallel Computing Centre,
Edinburgh, Scotland.

Beasley, D., Bull, D.R. & Martin, R.R. (1993). An
Overview of Genetic Algorithms: Part 1, Fundamentals,
and Part 2, Research Topics. University Computing,
15(2) 58-59 and 15(4) 170-181.

Briggs, A. & Donald, B. (1996). Robust Geometric
Algorithms for Sensor Planning. The proceedings of the
2nd International Workshop on Algorithmic Foundation
of Robotic, Toulouse, France.

Can, T., Isler, V. & Ipekkan, Z. (2000). Sensor
Optimization in a Virtual Environment. In proceedings
of the 9th Conference on Computer Generated Forces
and Behavioral Representation, pp. 421-426, Orlando,
Florida.

Franklin, W.R. & Ray, C.K. (1994a). Higher isn't
necessarily better: visibility algorithms and
experiments. In proceedings of the 6th International
Symposium on Spatial Data Handling, pp 751 – 770,
Edinburgh, UK.

Franklin W.R., Ray, C.K. & Mehta, S. (1994b).
Geometric Algorithms for Siting of Air Defense Missile
Batteries. Research Proj. for Battelle, Contract Number
DAAL-86-D-0001, Electrical, Computer and Systems
Engineering Department, Rensselaer Polytechnic
Institute.

Goldberg, D.E. (1989). Genetic Algorithms in Search
Optimisation & Machine Learning. Addison Wesley
Logman, Inc.

Kewley, R.H. & Embrechts, M.J. (1998). Fuzzy-
Genetic Decision Optimization for Positioning of
Military Combat Units. The proceedings of SMC’98,
IEEE International Conference on Systems, Man, and
Cybernetics, pp. 3658 – 3664, La Jolla, California.

Kim, Y.H. & Clarke, G. (2001). Exploring Optimal
Visibility Site Selection Using Spatial Optimisation
Techniques: The Potential of Geographical Information
Science. In proceedings of GISRUK’ 2001.

National Imagery and Mapping Agency. (1999). Digital
Terrain Elevation Data (DTED). Standards and
Specifications Publications: MIL-PRF-89020A
Amendment-1, 27.

Rabinkin, D.V. (1998). Optimum Sensor Placement For
Microphone Arrays. Ph.D. thesis, Electrical and
Computer Engineering Department, The State
University of New Jersey.

Sengul, O. (2001). Low Altitude Radar Simulation
Program Radcal. M.S. thesis, Electric and Electronic
Engineering Department of Middle East Technical
University, Ankara, Turkey.

Stamos, L. & Allen, P.K. (1998). Interactive Sensor
Planning. The proceedings of 17th Conference on
Computer Vision and Pattern Recognation, IEEE, pp.
489-494.

Undeger, C., Isler, V. & Ipekkan, Z. (2000). An
Intelligent Action Algorithm for Virtual Human Agents.
In Proceedings of the 9th Conference on Computer
Generated Forces and Behavioral Representation, pp.
25-33, Orlando, Florida.

Undeger, C. (2001a). Real-Time Mission Planning For
Virtual Human Agents. M.S. thesis, Computer
Engineering Department of Middle East Technical
University, Ankara, Turkey.

Undeger, C., Polat, F. & Ipekkan, Z. (2001b). Real-
Time Edge Follow: A New Paradigm To Real-Time
Path Search. The Proceedings of GAME-ON 2001,
London, England.

USGS National Mapping Information. (1998). Digital
Elevation Models. Technical Instructions for Digital
Elevation Model Standards.

Vasquez, M. & Hao, J.K. (2000). A Heuristic Approach
for Antenna Positioning in Cellular Networks. Journal
of Heuristics.

