

An Intelligent Action Algorithm for Virtual Human Agents

Cagatay Undeger

 Veysi Isler
Department of Computer Engineering

Middle East Technical University
06531 Ankara TURKEY

+90-532-664-9015, +90-312-210-5579
undeger@metu.edu.tr, isler@ceng.metu.edu.tr

Maj. Ziya Ipekkan

General Plans and Policy Division
Technology, Defense Research and Armament Department

06100 Bakanliklar Ankara TURKEY
+90-312-402-1387

zipekkan@tsk.mil.tr

Keywords:

Computer Generated Forces, Virtual Human Agents, Mission Planning

ABSTRACT: The objective of this study is to develop an intelligent action algorithm for virtual human agents on
three-dimensional large terrains to accomplish a specified mission by group communication and coordination. The
area contains natural and build-in entities such as trees, rocks, rivers, roads, houses, bridges, etc. Our platoons that
are represented by virtual human agents enter a specific area to perform a specified mission, which may be to
attack, escape or just pass through a selected tactical area. The area contains static and/or moving platforms such
as jeeps, planes, helicopters, commandos, and etc. The goal of the agents is to complete their mission in a group or
by being divided into groups of two or more without being detected or caught by a platform that carries different
kinds of sensors (Day TV, Infra-Red, SAR). The output views of the platform sensors are observed by the user at
tactical command center in order to make the detection process realistic. Agents may follow rivers, go through the
forests, and hide behind trees, run, or even crawl in order not to be seen. When any of the agents are detected and
identified, they try to escape or hide to complete their mission until they are caught or terminated.

1. Introduction

Multi agent simulations are used to test real world
behaviors and situations in computer-generated
environments where intelligent agents react suitably to
various events. Multi agent simulations are divided
into two categories: on-line and off-line. Off-line
simulations often use pre-processing and learning by
fault techniques. To decide on the best strategy for a
static situation, a set of generated plans is evaluated to
choose the most suitable one for the current situation.
Such off-line simulations can be ideal for tactical
planning. In on-line simulations, a dynamic
environment is tested in real-time. The agents learn
about the environment by time and react to the events

in real-time by using their knowledgebase. Such on-
line simulations can be ideal for generating land, sea,
and air battlefields, or testing sensor systems.

Agents are expected to learn about the environment,
terrain and moving entities, and react according to
changing situations under some assumptions. This is
sometimes called “Reactive Planning”. In fact, the
problem is how to gather environment information
under which assumptions, how to store them, how to
evaluate them for decision-making, and how to react
suitably based on some goals. In this paper, a set of
solutions is proposed for the mentioned problems.

The paper is organized as follows: in Section 2, a
survey on related work is given, In Section 3, the

 2

proposed approach is described in detail. The
implementation of the prototype and a sample scenario
are discussed in Section 4. Finally, Section 5 contains
the conclusion.

2. Related Work

Intelligent systems are used in various domains such
as robotics, computer generated forces, RoboCup
soccer simulators. In robotics, intelligent planning
aims to find out ways for interacting with the physical
world which makes the problem hard to solve. In
contrast, intelligent planning for computer generated
forces aims to generate behaviors similar to the real
world in a virtual environment. Simulating real world
actions in a virtual environment is basically used to
test some conditions that are not possible in the real
world. Intelligent agents that behave much like
humans are frequently used for pilot trainings in flight
simulators[1,2]. In such simulations, realistic
modeling of agent behaviors is important for the
success of training. In order to be able to plan actions
realistically, deciding on appropriate parameters,
modeling environment, and using suitable algorithms
for gathering information are very important. In 1999,
the Defence Modelling and Simulation Office (DMSO)
of USA established a working group of government
and industry representatives and tied to decide the
standarts of intelligent agents within the High Level
Architecture, HLA [3].

In such applications, 3D environments are usually
represented using polygons or DTED matrix. In the
proposed approach of Champhell[4], terrain database
and features are stored using triangles. In order to
efficiently access information about roads, forests,
buildings, rivers etc., spatial organization is utilized
for representing the terrain. In our proposed technique,
DTED matrix is used for calculating line of sight,
planning path and generating slope matrix for the sake
of efficiency.

In order to gather necessary information from the
virtual environment, physical or stochastic methods
can be used. In the proposed technique of Knuffner[5],
a physically based method is used. To collect
information from the 3D environment and to check
which objects are visible to a particular character, the
scene is rendered off-screen from the character’s point
of view, using flat shading with an unique color
(object ID) for each object. Knowledgebase of agents
are organized as link lists to store the information
about the objects that are seen. Our proposed approach

makes use of stochastic perceptions for gathering
environment information. Visual perception is
simulated using some criteria such as being in line of
sight and viewing angle, range, volume, moving state,
and plant cover density. Similarly audio perception is
also simulated stochastically using information such as
range and being in line of sight.

In multi agent simulations, evaluating the
environment information and learning in time is
essential. Erol Gelenbe proposed modelling computer
generated forces with learning stochastic finite-state
machines whose state transitions controled by state
and signal dependent random neural networks[6]. In
Knuffner’s approach[5], rendering off-screen from the
character’s point of view and real-time path planning
is used. His path-planning module aims to find a
collision free path between a starting and ending point
over the 3D terrain. In the study, the terrain is divided
into embedded graph cells, which have vertical,
horizontal (cost=1) and diagonal (cost=1.4) costs of
walking through. The suitable path is found using
Dijkstra’s algorithm by minimizing the total cost. Path
planning is categorized into two: real-time and off-line
planning. The above method is considered to be real-
time path planning. In off-line systems, it is enough to
find a path in advance for a static environment, but in
real-time systems, it is essential to use an efficient
algorithm that considers the environmental changes in
order to find a collision free and threat safe path [7,8].

In addition to path planning, many agent simulation
systems have a module called “Reactive Planning” for
the purpose of deciding and reacting efficiently to
various events using a rule set considering the goals,
knowledgebase and previous experiences[9,10]. We
decided to use reactive planning module in our
simulation environment using a goal-directed decision
tree in order to react efficiently to new detected
perceptions such as sensor platforms.

Group coordination is also an important concept in
multi agent simulations. Without coordination, the
agents can only be considered as individual groups
with no relation. Baxter and Horn[11], organized a
command hierarchy used by the agents which based
upon the military command structure. In the hierarchy,
the groups are under control of a squadron
commander. In addition, groups have their own troop
commanders. Organizing the groups along the same
lines as the military formations allows emulating the
change of getting plausible behaviors. It also provides
a framework to guide the comminication between the
agents and allows the planning of complex group

 3

orders to be divided into several smaller problems.
Communication of orders passes straight down the
hierarchy and intelligent information is shared
between peers and comminicated to superiors. The
commanders are responsible for gathering information
about their own situation, passing it up to their
superiors and peers, and giving orders to their
subordinates to achieve the commander’s high level
objective. That structure shows similarity to our
proposed group and command structure. We have
organized the agents in groups with a commander to
achieve a specific group mission. Commanders are
responsible for gathering environment information,
passing it up to other group commanders by radio
messages and controlling the group. The subordinates
are resposible for following their group commanders
and executing the commander orders.

3. Proposed Approach

This study involves modeling and representing actions
for virtual human agents that should accomplish a
given tactical mission in a virtual battlefield, which is
a part of a sensor simulation system. The objective of

developed software is to test a sensor optimization
algorithm using realistic scenarios that are executed by
our intelligent human agents. The main goal of the
agents is to accomplish the given mission without
being detected or caught by a sensor platform.

3.1 Agent Groups

Agents are organized in groups that are moving under
the control of a group commander. All the moving
entities, intelligent agents, sensor platforms, and
animals, are considered in groups and kept in the same
data structure. Groups are classified into three, red,
blue and white groups. Red groups are our intelligent
agents. Blue groups are threats that are sensor
platforms, and white groups are animals that are used
to make the agent perceptions go wrong. The
hierarchal structure of world, groups and environment
is shown in Figure 3.3.1.

We assume that the terrain and plant cover
information is known and the agents hear all the radio
messages.

3.2 Terrain Structure

Terrain information is stored in a DTED matrix.
Using this matrix, a slope matrix containing slope
directions and magnitudes is calculated. Slope
magnitude is a real number between 0 and 1 where 0
indicates that there is no slope and 1 indicates that
there is a 90-degree slope. We assume that the agents

moving along the slope direction slow down and
consume more energy while the agents moving along
the opposite slope direction go more easily and spends
less energy. The slope has no effect on an agent
moving perpendicular to the slope direction.
Calculation of slope direction and magnitude is shown
in Figure 3.2.1.

World

Environment

DTED Matrix

Slope Matrix

Plant cover

Natural and
Build-in entities

Agents

Knowledgebase

Groups

Group Mission

Mission Path Points

goals to do at point

Figure 3.1.1. The hierarchical structure of world, groups and the environment

 4

Figure 3.2.1. Calculation of slope direction and
magnitude

Terrain plant cover is stored in polygons. Every
polygon determines a limited area and defines terrain
structure (plant density, average plant cover height,
etc.) related to this area. Features like rivers and
bridges are also stored in this way. These features also
have 3D polygonal information.

3.3 Goal Description

In the proposed approach, the goal belongs to the
group. Every group has its own goal plan (group
mission) and moves with its commander’s orders. The
group commander gives decisions to accomplish the
mission and subordinates follow their commander
under normal conditions. Goal description is given as
a set of path control points and a list of goals to be
achieved at these points. Path control points are
categorized into five group which are starting point,
target point, home point, pass through points and
tactical points. To reach these control points,
commander generates a path considering the terrain
and detected threat information. Unless an abnormal
situation occurs, the commander follows that path.

Figure 3.3.1. A screen snapshot of a sample scenario

At tactical control points, a set of goals (send radio
message, put bomb, etc.) can be given. Control point
coordination is also handled using these goal lists.
Goal items define the activities to do on specific events
such as arriving at a control point, waiting at a control
point, or leaving from a control point.

3.4 Stochastic Based Seeing and Hearing

Agents gather information from the environment by
seeing and hearing based on probabilistic
computations, but that doesn’t mean that the sensor
detections work stochastically. The sensor perceptions
are calculated and sent to agents even the probability is
very low. The agents test the probability. If the
perception is owned by an unnoticed entity, a
probability test is done before accepting it. If the agent
decides to notice the entity, then the entity is always
seen or heard without calculating the probability until
it is away from the agent’s point of view. That can be
described by the following example. A person always
looks around. Eyes capture everything that is possible
to be seen, but human may not notice them because of
his low attention. Once an entity is noticed by the help
of attention, seeing and following it becomes
continuous. Hearing can be considered similarly. The
difference is that hearing doesn’t depend on being in
viewing angle. The important parameter is range and
being in line of sight.

Probability of detection depends on the following
parameters:

- Being at line of sight
- Being in viewing angle
- Volume
- Range
- Movement
- Plant cover
- Weather condition
- Noise

Being in line of sight means, the target is not occluded
by any object. In order to test the line of sight, DTED
matrix is used instead of 3D terrain information. But
the use of DTED matrix is not enough. We have to
perform another line of sight test for the natural and
build-in features in the environment.

n

x

z

y

e

slope magnitude

n
 e

slope direction
surface

 5

Figure 3.4.1 Calculating line of sight from the DTED

matrix

There is no probability of detection for the objects,
which are neither in the line of sight nor viewing
angle. But the objects can be sensed using audio cues.
If an object is both in line of sight and viewing angle,
then terrain plant cover, the position of the object in
the viewing frustum, range, volume, and movement of
the object forms a probability of detection. Closeness
to the line passing through the focus of the viewing
frustum and to the agent, speed of the movement, low
plant cover density and high volume are the criteria
that increase the probability.

Figure 3.4.2. The effect of plant cover density and
viewing angle

Hearing is modeled as a probability function
depending on the range and the speed of the
movement of the object that causes noise. The noise
from a truck is because of its engine while the noise of
a human is caused because of his steps. If the object is
not in the line of sight e.g. the target is behind a wall,
the probability of hearing is decreased.

In order to increase the frustum of agents, head
movements are added to the agent model. For some
specific conditions, agents move their heads in
different ways to collect more information. In normal
conditions the agents look around and also look at
their commanders and if there is a new perception,
they change their head directions to this new detected
object.

3.5 Classifying and Storing Perceptions

The gathered information from seeing and hearing is
classified into three categories by using range and
volume. These are detection, recognition and
identification. Classification criteria are shown in
Figure 3.5.1.

If a new perception is detected, it is added to the
knowledgebase of the agent. The knowledgebase is
stored in a dynamic link list. The problem is to decide
whether the perception is a new object or an update of
a previous detected object. Although we are in a
computer-generated world and have the information of
all the objects in the environment, the ID of detected
object is not sent to the agent unless it is identified.
The agents have to find the similarities themselves and

Else The object is not seen

If object is in line of sight and
viewing frustum, and nearer than

maximum seeing distance

If in identification range The object is identified

If in recognition range
by seeing or hearing

The object is
recognized

Else The object is detected

If the object is moving and
nearer than maximum

hearing distance

If in recognition range
and the object type is

recognizable by hearing

The object is
recognized by

hearing

Else The object is
detected by hearing

Perception

Figure 3.5.1. Perception is classified into three categories: detection, recognition and identification

 6

update the knowledgebase. The similarity is found out
using estimated positions of previous detected objects
and the positions of new detected objects. If a
similarity is searched for previous detected object
information in the knowledgebase, an estimate of
position is calculated using previous movement

direction. If the range between the estimated position
and the new detected object position is smaller than a

threshold that is calculated considering the previous
speed, we may accept that they are similar. If
similarity is found the previous knowledgebase is
updated using new detected perception, orherwise the
perception is added to the knowledgebase as a new
item.

3.6 Decision and Reaction

Main loop
For each group

For each agent
If the agent is a red team member (intelligent agent)

Construct the sensor detection list (perceptions) for the agent; > (A)
Analyse the detected list and update the knowledgebase; > (B)
Execute behavior module; > (C)

Update the pysical appearance;
A
Backup the previous detected list and create a new list;
For each group

For each agent (target) except himself
Calculate the seeing and hearing statistics between the agent and the target; > (D)

B
For each member of detected list

If the detection exists in the previous list and unsensed because of the probability test and no probability change
occurred after that time

Mark the member of new detected list as “unsensed”;
For each sensed member of new detected list

Do a comparison to knowledgebase, find the similarities;
If similarity found

Update the knowledge and check the member of detected list as “similarity_found”;
For each member of new detected list which is not checked as “similarity_found”

Do a probability test and if it is passed
Add the list member to the knowledgebase as a new perception;

Else
Check the member of detected list as “unsensed”;

C
Find who the commander is;
Find the status of the mission plan;
If the agent is a commander

If there is no abnormal condition
Follow the path;

Else
Execute the reaction planning module;

Else
If there is no abnormal condition

If the commander position is known
Follow the commander;

Else
Stop and search for the commander;

Else
Execute the reaction planning module;

D
Compute the statistics between the agent and the target (line of sight, viewing angle, range, etc.);
If there is any possibility of detection, add the perception to the detected list;

Table 3.6.1 Basic lines of the decision and reaction algorithm

 7

Agents give decisions and react to various events using
only their knowledgebase. In addition to object
positions, knowledgebase also contains the
information of who the commander is and the radio
and face-to-face messages. By using this information,
agents find out their commander and the status of the
mission plan. If an agent is a commander, it executes
the mission otherwise it follows the commander. If an
agent doesn’t know the position of his commander, it
stops and tries to find out the commander by radio
messages.

Route between control points is generated using “Path
Planning Module”. Unless an abnormal situation
occurs, the commander follows that path. Otherwise,
until the conditions become normal, “the Reaction
Planning Module” is executed by canceling the path.
The main objective of reaction planning module is not
to be seen by any sensor platform. To follow that
objective, the agent may decide to slow down, stop,
run, crawl, etc. For executing that purpose a decision
tree and a short distance path-planning module is
used. Having returned to normal conditions, a new
path planning is generated using “Path Planning
Module” considering the new world information.

3.7 Group Coordination

Every group has a mission, which is a part of a high
level mission. As mentioned in Section 3.3, the
mission is given using a set of control points and a list
of goals to be achieved at that point. Some of these
goal items contain radio messages to be sent at the
points. Radio messages are used for coordinating the
groups or giving information to other groups about
detected threats. Seven basic events may happen at a
point. These are arriving, waiting, becoming ready to
leave, waiting for a while before leaving, leaving,
canceling mission, being waited too much. The goal
list of a control point describes the actions to be done
if any of these events occurs.

Figure 3. A group having six agents is walking in a
formation. Walking and looking directions of agents

are shown with different arrows.

In addition to coordination between groups, there

is also coordination and a group formation for
positioning inside the group. The members of the
groups may talk to each other and notify them about
the threats that are detected. If it is needed, the
commander passes this information to other groups. A
group formation is used in order to make the members
move in-group. The position of a member in the group
is defined by relative (x,y) coordinates to the
commander. The member coordinates are calculated
using the current position and direction of the
commander and this calculated position is given to the
member as a target position to be reached. If a
subordinate is far from its expected position, it runs for
a while to take the right position.

3.8 Physical Modeling

A 3D model is generated for the agents in order to be
sensed by the platform sensors. For the physical status
of an agent, the coordinates, the posture, the status of
posture transition and the head direction is used. In
addition, a collision detection algorithm is needed for
the physically modeled agents. In our model, a
cylinder bounding volume is used for that purpose.

4. Implementation

The implementation is done on SGI ONYXII and O2
platforms using C++ and Vega Paradigm (based on
IRIS Performer). The 3D terrain is created from the
DTED information and saved as Open Flight File
format. Sample scenarios are generated in order to test
the agent actions. In the paper, we have proposed an
algorithm that searches for similarities in the
knowledgebase. The test of this algorithm shows that
in some extreme conditions, the method may generate

 8

wrong perception links to knowledgebase. But in
general, it works fine. A brief sample scenario input is
given and described in Table 4.1.

5. Conclusion

This paper presents a multi agent model for testing a
sensor simulation system. The agents are organized in
groups whose goal is to accomplish a specified mission
by group communication and coordination. The high
level mission is divided into smaller plans and
assigned to each group. Group plans are defined by a
set of control points that have a list of goals to do at.
The agents gather information about the environment
using sensor systems that work stochastically. The
gathered information is evaluated using an algorithm
that searches for similarities in knowledgebase. The

behaviors are generated using path planning, reactive
planning and decision trees.
6. References

[1] Randolph M. Jones, John E. Laird, Milind

Tambe, and Paul S. Rosenbloom: “Generating
Behavior in Response to Interacting Goals”
Proceedings of 4th conference on Computer
Gererated Forces and Behavioral Representation.
Orlando, Florida, 1994.

[2] Randolph M. Jones, Milind Tambe, John E.
Laird, and Paul S. Rosenbloom: “Intelligent
Automated Agents for Flight Training
Simulator” Proceedings of 3th conference on
Computer Gererated Forces and Behavioral
Representation. Orlando, Florida, pp. 33-42,
May 1993.

Description Peusedo Code
Create the world

database. Create the
DTED matrix

cPlatoon * plt; cAgent * agent; cGoalPoint * point; cGoalItem * item
world->Initialize();
world->Create_World(...);
world->Create_DTED(...);

Add a group and two
agents to the environment

plt = world->Add_Group(GroupRed);
agent = plt->Add_Agent(...);

 agent = plt->Add_Agent(...);
Set group position and
formation of the agents

plt->SetGroupPosition(9163.0, 10259.0);
plt->Set_Agents_Group_Formation(8,true);
point = plt->plt_goals->GetObjectFromIndex(0);
point->movingstate = MovingFast;

Get the starting control
point. Add a goal item for

the point. Move fast to
the next point

Goal item
1.1

Item=point->Add_GoalItem(giWaitUntilReceiveKeyword);
item->data.ReceiveFromID = 1;
item->SetKeyword("First Step Go...");

Add a control point point = plt->Add_Plt_GoalPoint(gpPassThrough, 9345.0, 9742.0);
point = plt->Add_Plt_GoalPoint(gpTactical , 9220.0, 9595.0); Add a tactical control

point. Wait until the
group 2 leaves from

point 3

Goal item
3.1

item= point ->Add_GoalItem(giWaitUntilContinueMission);
item->data.ReceiveFromID = 2;
item->data.GoalPointID = 3;

point = plt->Add_Plt_GoalPoint(gpTactical , 8945.0, 9270.0);
point ->movingstate = MovingSlow;
Goal item

4.1
item = point ->Add_GoalItem(giWaitUntilArrival);
item->data.ReceiveFromID = 1;
item->data.GoalPointID = 5;

Goal item

4.2

item = point ->Add_GoalItem(giReadyToContinueDo);
item->data.doAction = doSendKeyword;
item->data.SendToID = 1;
item->SetKeyword("Group 3 Ready");

Add another tactical
control point. Wait until

group 1 arrives at point 5.
When ready to continue,
send a keyword to group

1. Wait for a response
from group 1 to leave the
point. Move slow to the

next point
Goal item

4.3
item = point ->Add_GoalItem(giWaitUntilResponseKeyword);
item->data.ReceiveFromID = 1;
item->SetKeyword("Mission Start");

point = plt->Add_Plt_GoalPoint(gpTarget , 8935.0, 9130.0);
point ->movingstate = MovingFast;
Goal item

5.1
item = point ->Add_GoalItem(giArrivalDo);
item->data.doAction = doPutBomb;

Add the target point. Put
a bomb to the point and
move fast after leaving.
While leaving the point

send the keyword
“mission completed”

Goal item
5.2

item = point ->Add_GoalItem(giContinueMissionDo);
item->data.doAction = doSendKeyword;
item->data.SendToID = -1;
item->SetKeyword("Mission Complete");

Add another control point point = plt->Add_Plt_GoalPoint(gpPassThrough, 9212.0, 9124.0);
Home point point = plt->Add_Plt_GoalPoint(gpHome , 9683.0, 8400.0);

Table 4.1. A segment of sample scenario input

 9

[3] Paul T. Barham and Shirley M. Pratt: “The
Development of High Level Architecture (HLA)
Human Starter Simulation Object Model
(SOM)” Proceedings of 8th conference on
Computer Gererated Forces and Behavioral
Representation. Orlando, Florida, pp. 145-151,
May 1999.

[4] Charles E. Campbell and Michael A. Craft:
“Advancements in Synthetic Natual
Environment Representation” Proceedings of 8th
conference on Computer Gererated Forces and
Behavioral Representation. Orlando, Florida, pp.
81-86, May 1999.

[5] James J. Kuffner, jr. and Jean-Claude Latombe:
“Fast Synthetic Vision, Memory, and Learning
Models for Virtual Humans” Proc. of Computer
Animation, IEEE, pp. 118-127, May 1999.

[6] Erol Gelenbe: “Modelling CGF with Learning
Stochastic Finite-State Machines” Proceedings
of 8th conference on Computer Gererated Forces
and Behavioral Representation. Orlando,
Florida, pp. 113-115, May 1999.

[7] James J. Kuffner, Jr. and Jean-Claude Latombe:
“Goal-Directed Navigation for Animated
Characters Using Real-Time Path Planning and
Control” Proc. of CAPTECH ‘98: Workshop on
Modelling and Motion Capture Techniques for
Virtual Environments, Geneva, Switzerland, pp.
26-28, Nov 1998.

[8] Kazuo Sugihara and John K. Smith: “Genetic
Algorithms for Adaptive Planning of Path and
Trajectory of a Mobile Robot in 2D Terrains”
Technical Report, number ICS-TR-97-04,
University of Hawaii, Department of Information
and Computer Sciences, May 1997.

[9] Jin Joe Lee and Paul A. Fishwick: “Real-Time
Simulation-Based Planning for Computer
Generated Force Simulation”, Simulation, pp.
299-315, 1994.

 [10] Rune M. Jensen and Manuela M. Veloso:
“Interleaving Deliberative and Reactive
Planning in Dynamic Multi-Agent Domains”
AAAI Fall Symposium: Integrated Planning for
Autonomous Agent Architectures, October 1998.

[11] Jeremy W. Baxter and Graham S. Horn: “A
Model for Co-ordination and Co-operation
Between CGF Agents” Proceedings of 8th
conference on Computer Gererated Forces and
Behavioral Representation. Orlando, Florida, pp.
101-111, May 1999.

Author Biographies

CAGATAY UNDEGER is research assistant in
Department of Computer Engineering, Middle East
Technical University. He is working in the Modeling
and Simulation Laboratory as part of his master thesis.

VEYSI ISLER is a faculty member of the Department
of Computer Engineering, Middle East Technical
University (METU). He received his B.Sc. degree in
Computer Engineering from the same university, in
1987. He worked as a research assistant and instructor
for the Department of Computer Engineering and
Information Sciences, at Bilkent University where he
received his M.S. and Ph.D. degrees between 1987 and
1995. He is the Coordinator of Virtual Environments
Group in Modeling and Simulation Laboratory of
METU.

ZIYA IPEKKAN received M.S. degree in OR from
Naval Postgraduate School, Monterey, USA, in 1989.
He initiated development of several models,
approaches and solutions to assessment and evaluation
of force structures. He is currently responsible for
Modeling and Simulation activities within Turkish
Armed Forces.

