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ABSTRACT 
In this paper we propose a real-time search algorithm called Real-
Time Target Evaluation Search (RTTES) for the problem of 
searching a route in grid worlds from a starting point to a static or 
dynamic target point in real-time. The algorithm makes use of a 
new effective heuristic method which utilizes environmental 
information to successfully find solution paths to the target in 
dynamic and partially observable environments. The method 
requires analysis of obstacles to determine closed directions and 
estimate the goal relevance of open directions in order to identify 
the most beneficial move. The environment is assumed to be a 
planar grid and the agent has limited perception. In this paper, we 
compared RTTES with Real-Time A* (RTA*) and Real-Time 
Edge Follow (RTEF), and observed a significant improvement.   

Categories and Subject Descriptors 
I.2 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search 

General Terms 
Algorithms, Performance, Experimentation 

Keywords 
Path planning, Grid world, Real-time search, Heuristic search 

1. INTRODUCTION 
Path planning can be described as finding a path from an initial 
point to a target point if there exists one. Path planning algorithms 
are either off-line or on-line. Off-line algorithms find the whole 
solution in advance before starting. These algorithms suffer from 
execution time in dynamic or partially observable environments 
due to frequent re-planning requirements. In on-line case, an 
agent repeatedly plans its next move in limited time and executes 
it, but they are not designed to be optimal and usually find poor 
solutions with respect to path length. Furthermore, there exist 
some hybrid solutions such as incremental heuristic search 
algorithms that are more efficient than off-line path planning. 

However, they are still slow for some real-time applications and 
are not applicable to moving targets. There are some on-line 
algorithms trying to overcome these difficulties. For instance, 
Real-Time Edge Follow (RTEF) [16, 17] uses a powerful 
heuristic function that can discard some non-promising alternative 
moving directions in real-time to guide the agent to a static or 
dynamic target. Although RTEF is able to determine the closed 
(non-promising) directions successfully, it is weak in selecting the 
right move from the rest of the alternatives since it uses poor 
Euclidian distance heuristic. Therefore, we focused on a new 
method for better selection.  

In this paper, we propose a real-time search algorithm, Real-Time 
Target Evaluation Search (RTTES), and a heuristic method, Real-
Time Target Evaluation (RTTE) capable of estimating distance to 
the target considering the obstacles. The method sends rays away 
from the agent in four directions, and determines obstacles that 
the rays hit. For each such obstacle, we extract its border and 
determine best direction that avoids the obstacle. Finally, by using 
a resolution mechanism, one of the proposed directions is chosen.  

In the next section, the related work is given. In section 3, RTTES 
is described in brief. The performance analysis is presented in 
section 4. And finally, the conclusion is given in section 5. 

2. RELATED WORK 
Optimal [11, 14] and probabilistic [2, 4, 7, 9, 10] off-line path 
planning algorithms are hard to use for large dynamic 
environments because of their time requirements. One solution is 
to make off-line algorithms to be incremental [5, 6, 12, 13] to 
avoid re-planning from scratch. Although incremental algorithms 
are efficient in most cases, sometimes a small change in the 
environment may cause to re-plan almost from scratch. Due to the 
efficiency problems of off-line techniques, a number of on-line 
approaches such as Learning Real-Time A* (LRTA*), Real-Time 
A* (RTA*) [8], Real-Time Horizontal A* (RTHA*) [15], 
Execution Extended Rapidly Exploring Random Trees [1], and 
PRM with Kinodynamic Motion Planner [3] are proposed.  

Recently, a new on-line path search algorithm (Real-Time Edge 
Follow - RTEF) [16, 17] is proposed for grid-type environments. 
RTEF uses a new heuristic (RTEF-ARM) that effectively makes 
use of global environmental information. With this heuristic, the 
agent can detect closed directions (directions that cannot reach the 
target) using perceptual data and tentative map, and determine its 
next move from open directions. Experimental study shows that 
RTEF performs better than RTA* and RTA* with n-look-ahead 
depth in terms of solution path and execution time [17]. 
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3. RTTES & RTTE 
We assume that the environment is a planar grid and is partially 
known by the agent. The agent located at a particular cell is 
required to reach a target cell avoiding obstacles in real-time. At 
any step, agent can move north, south, east or west, and is able to 
maintain a tentative map in its memory while exploration.   

RTTES uses the heuristic method RTTE, which analyzes 
obstacles and proposes moving directions to reach the target 
through approximately short paths avoiding the obstacles. For 
this, RTTE geometrically analyzes the obstacles nearby and tries 
to estimate lengths of paths around obstacles to reach the target. 
To avoid infinite loops and re-visiting the same locations 
redundantly, RTTES uses two mechanisms (visited count grid & 
history). Visited count grid is a 2D matrix storing the number of 
visits to the cells, and history is the set of previously visited 
marked cells. History cells are assumed to be obstacle. When 
exploring an unknown environment, the agent may realize that all 
the ways leading to the target are blocked. In such a case the 
history should be cleared in order to let the agent backtrack as 
history cells may cause this. RTTES repeats the following steps 
until reaching the target or detecting that the target is inaccessible: 

1) Use RTTE to compute proposed direction and utilities of neighbor cells  
2) If a direction is proposed by RTTE: 
 a) Select the neighbor cell with the highest utility from the set of non-obstacle 
neighbors with the smallest visited count  
 b) Move to the selected direction, increment the visited count of the previous 
cell by one, and insert the cell into the History  
3) Else if History is not empty, clear all the History 
4) Else destination is unreachable, stop the search with failure. 

The RTTE algorithm works as follows: 

1) Mark all the moving directions as open 
2) Propagate four rays away from the agent to north, south, east and west 
2) For each ray hitting an obstacle: 
 a) Trace and extract the border of the obstacle 
 b) Analyze the border by re-tracing it from left and right sides 
 c) Detect closed directions 
 d) Evaluate results and determine a direction to avoid obstacle 
3) Merge individual results, propose a direction to move, and compute utilities of 
neighbor cells 

As seen above, RTTE propagates four rays from the agent 
location to north, south, east and west directions, and analyzes the 
obstacles these rays hit to find out the best direction to move. If a 
ray hits an obstacle before exceeding the maximum ray distance, 
the obstacle border is extracted by tracing cells on the border 
starting from the hit-point. Next the border is re-traced from both 
left and right sides to determine the geometric features of the 
obstacle. The closed moving directions are determined similar to 
RTEF [17]. The obstacle features are evaluated and a moving 
direction to avoid the obstacle is identified. After all the obstacles 
are evaluated, the results are merged in order to propose a final 
moving direction. 

4. PEFORMANCE ANALYSIS 
In this paper, we compared RTTES with RTA* and RTEF on 
randomly generated sample grids. We used RTTES and RTEF 
with two variations: “VC” that only uses visited counts and 
“VCH” that uses both history and visited counts. Thus, we tested 
five algorithms: RTTES-VC, RTTES-VCH, RTEF-VC, RTEF-
VCH and RTA*. We used grids of three different types: random, 
maze and U-type with size 200x200. Random grids are generated 

randomly based on different obstacle ratios. Maze grids are the 
ones where every two non-obstacle cells are always connected 
through a path (usually one path). U-type grids are created by 
randomly putting U-shaped obstacles. We assume that the agent 
has limited vision (called visual depth v) and perceives only the 
grid cells within the square region (2v+1)*(2v+1) centered at 
agent’s location. We take the visual depth as 20 or infinite (full 
vision) which means the agent knows the entire grid world in 
advance.  
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Figure 1. Path Length comparison of 20 cell and full vision 
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Figure 2. Execution Time comparison of 20 cell and full vision 

Figure 1 contains test results that show improvements over RTA* 
in path length (i.e., path length of RTA* divided by these of 
compared algorithms) for different grid types. We observed that 
RTEF and RTTES performed significantly better than RTA* all 
the time. In random grids, RTEF-VCH and RTTES variations 
were almost head to head. In maze grids, all the RTEF and 
RTTES variations performed almost the same with full vision. 
With 20 cell vision, the results of RTEF-VCH and RTTES-VCH 
were very close to each other, and they performed better than 
RTEF-VC and RTTES-VC on the average. In U-type grids, the 
results of RTTES variations were almost the same, and they 
performed better than RTEF variations on the average.  



Figure 2 contains comparison of total execution times of previous 
runs similarly. We report ratios in terms of execution times taking 
RTA* as basis. In random grids with 20 cell vision RTEF-VC, 
RTTES-VC and RTA* performed almost the same, and were 
better than RTEF-VCH and RTTES-VCH. In random grids with 
full vision, RTA* is better since the efficiency of RTEF and 
RTTES usually drop in fully known grids. In maze grids, RTEF-
VCH and RTTES-VC performed similarly, and were better than 
the others with 20 cell vision. With full vision, RTA* is better. In 
U-type grids, RTEF and RTTES usually performed much better 
than RTA*. The results of RTTES-VC were the best among all. 
We also compared the path length of the algorithms with the 
optimal solutions generated by A* in fully known grids. The ratios 
of the algorithms’ solution path lengths over optimal paths lengths 
are presented in Tables 1-2. The results show that solutions of 
both RTTES variations were only 1.14 times longer than the 
optimal ones on the average, whereas the solutions of RTEF-VC, 
RTEF-VCH and RTA* were 4.39, 1.5 and 33 times longer 
respectively. The standard deviations of RTTES algorithms were 
significantly less than RTEF algorithms. And we see that best 
improvement was obtained in U-type grids. 

Table 1. Average ratios of algorithms’ path lengths over 
optimal path lengths 

  RT-VC RT-VCH RTTES-VC RTTES-VCH RTA* 
Average 4,394 1,501 1,142 1,140 33,022
Standart Deviation 8,555 1,068 0,194 0,169 50,417

Table 2. Average ratios of algorithms’ path lengths over 
optimal path lengths in random, U-type, and maze grids 

  RT-VC RT-VCH RTTES-VC RTTES-VCH RTA* 
Random Grids 3,577 1,432 1,369 1,339 10,532
Maze Grids 1,967 1,346 1,078 1,081 37,800
U-Type Grids 10,467 1,903 1,113 1,123 39,141

5. CONCLUSION 
In this paper, we have focused on real-time search for grid-type 
problems, and presented an effective heuristic method (RTTE) 
and a real-time search algorithm (RTTES).  
We have compared RTA*, RTEF and RTTES with the help of 
1600 test runs. With respect to the path length, experimental 
results showed that RTTES is able to make use of environmental 
information very successfully to improve the solutions. In U-type 
grids, RTTES discovers much shorter paths compared to RTEF 
and RTA*. In random and maze grids, RTTES and RTEF are 
almost head to head, and both are much better than RTA*. With 
respect to execution time, we have observed that RTTES-VC is 
highly efficient in U-type grids. In random and maze grids, RTEF 
and RTTES almost perform the same, but it is hard to say about 
RTA* since the results change much depending on the vision 
range. With limited vision, the agent knows less about its 
environment, which increases the efficiency of RTEF and RTTES, 
and makes them perform usually better than RTA*. The 
performance decrease in case of unlimited vision is due to the fact 
that the agent knows more than it requires. We have also seen that 
RTTES converges to almost optimal solutions in fully known 
grids with respect to path length.  
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