
Moving Target Search in Grid Worlds

Cagatay Undeger
Savunma Teknolojileri Muhendislik ve Tic.A.S.

Kafkas Sk. No:56 Bestepe
06510 Ankara, Turkey

cundeger@stm.com.tr

Faruk Polat
Department of Computer Engineering

Middle East Technical University
06531 Ankara, Turkey

polat@ceng.metu.edu.tr

ABSTRACT
In this paper, we propose a real-time moving target search
algorithm for dynamic and partially observable environments,
modeled as grid world. The proposed algorithm, Real-time
Moving Target Evaluation Search (MTES), is able to de-
tect the closed directions around the agent, and determine
the best direction that avoids the nearby obstacles, leading
to a moving target which is assumed to be escaping almost
optimally. We compared our proposal with Moving Target
Search (MTS) and observed a significant improvement in the
solution paths. Furthermore, we also tested our algorithm
against A* in order to report quality of our solutions.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search

General Terms
Algorithms, Performance, Experimentation

Keywords
Moving target search, Grid world, Path planning, Predator

1. INTRODUCTION
Pursuing a moving target is one of the most challenging

problems in areas such as robotics, virtual simulations, com-
puter games, etc. Off-line and incremental path planning al-
gorithms are not able to handle moving targets in real-time,
and most of the on-line search algorithms are specifically de-
signed for partially observable environments with static tar-
gets. The most well known algorithm for moving targets is
Moving Target Search (MTS) [3], which maintains a heuris-
tic table that contains estimated costs of paths between ev-
ery pair of coordinates. Convergence of the estimated costs
takes considerable time making MTS a poor algorithm to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’07 May 14–18 2007, Honolulu, Hawai’i, USA.
Copyright 2007 IFAAMAS .

be used in practice. Upon seeing such inefficiency, the au-
thors developed two extensions namely Commitment to Goal
(MTS-c) and Deliberation (MTS-d).

In this paper, we propose a moving target search algo-
rithm, Real-Time Moving Target Evaluation Search (MTES),
which is able to make use of environmental information
available to the agent successfully in order to select the
best moving direction avoiding nearby obstacles to capture a
moving target as soon as possible. To show its performance,
we compared MTES with MTS-c, MTS-d and A*.

The related work is given in Section 2. In section 3, MTES
is described in brief. The performance analysis is presented
in Section 4. Finally, the conclusion is given in Section 5.

2. RELATED WORK
Off-line path planning algorithms [7] are hard to use for

large dynamic environments and for moving targets because
of their time requirements. One way to make these algo-
rithms more efficient is to change them from off-line to in-
cremental [8, 4] in order to avoid re-planning from scratch.
Although these algorithms work fine with partially observ-
able environments, they are not capable of handling moving
targets. There are also a number of on-line approaches [6,
5, 9, 11, 10, 3]. As a matter of fact, only few of these algo-
rithms can be adapted against a moving target.

Moving Target Search (MTS) [3] is a well known real-
time search algorithm for pursuing a moving target. The
algorithm maintains a table of heuristic values, presenting
the function h(x, y) for all pairs of locations x and y in
the environment, where x is the location of the agent and
y is the location of the target. The original MTS is a poor
algorithm in practice. Therefore, two MTS extensions called
Commitment to Goal (MTS-c) and Deliberation (MTS-d) are
also proposed to improve the solution quality [3]. In order to
use the learned table values more effectively, MTS-c ignores
some of the target’s moves, and MTS-d performs an off-line
search (deliberation) while in a heuristic depression.

When we look at the prey algorithms, we usually cannot
see very successful studies. Mostly the focus is on the preda-
tors, and the prey algorithms commonly use hybrid tech-
niques mixing the reactive strategies [1, 3, 2]. Since these
reactive algorithms are not good enough for our predator
algorithms, we developed an off-line strategy, which is slow
but more powerful with respect to its escape capability.

3. MTES
We assume that the environment is a planar grid world

and partially observed by the agent. There is a single agent



(predator) that aims to reach a static or moving target
(prey) avoiding obstacles in real-time. The agents are able
to move north, south, east or west direction in each step.
The predator knows the location of the prey all the time,
but perceives the grid world up to a predefined vision range,
thus maintains a tentative map that holds the known part
of the grid world, as he explores the environment. The prey
has unlimited perception and knows all the grid world and
the location of the predator all the time. The search contin-
ues until the predator reaches the prey.

MTES makes use of a heuristic (RTTE-h), which geomet-
rically analyzes the obstacles nearby, tries to estimate the
lengths of paths to the prey around these obstacles, and
proposes a moving direction in order to lead the predator to
the prey through shorter paths. MTES executes the steps
shown in Algorithm 1 until reaching the target or deter-
mining that the target is unreachable. The algorithm in-
ternally calls RTTE-h heuristic to determine the proposed
moving direction and the utilities of neighbor cells according
to that proposed direction. RTTE-h propagates four diago-
nal rays away from the agent location to split north, south,
east and west moving directions, and analyzes the obstacles
these rays hit to find out the best direction to move. If a
ray hits an obstacle before exceeding the maximum ray dis-
tance, the obstacle border is extracted by tracing cells on the
border starting from the hit-point. Then, the closed moving
directions and the geometric features of the obstacles are
determined. Next, these features are evaluated and a mov-
ing direction to avoid the obstacle is identified. After all the
obstacles are evaluated, the results are merged in order to
propose a final moving direction.

Algorithm 1 An Iteration of MTES Algorithm

1: Call RTTE-h to compute the proposed direction and the utilities
of the neighbor cells.

2: if a direction is proposed by RTTE-h then
3: Select the neighbor cell with the highest utility from the set of

neighbors cells with non-zero utility and smallest visit count.
4: Move to the selected direction.
5: Increment the visit count of previous cell by one.
6: Insert the previous cell into the history.
7: else
8: if History is not empty then
9: Clear all the History.

10: Jump to 1.
11: else
12: Destination is unreachable, stop search with failure.
13: end if

14: end if

The complexity of MTES is O(w.h) per step, where w is
the width and h is the height of the grid world. Since increas-
ing the grid size decreases the efficiency, a search depth (d)
can be introduced in order to limit the worst case complex-
ity. With this limitation, the complexity becomes O(d2).

4. PERFORMANCE ANALYSIS
In this section, we present our experimental results on

MTS, MTES and A*. As being an off-line algorithm, we
executed A* in each step from scratch. We used 9 randomly
generated sample grids of size 150x150. Six of them were
the maze grids, and three of them were the U-type grids (see
Fig. 1). The location of predators were randomly chosen
from left or right sides of the grids, and the prey locations
were chosen randomly from the middle part. The predator
always knows the location of the prey, but perceives the

Figure 1: A maze grid (left), a U-type grid (right)

Figure 2: Average of path length results of maze
grids for increasing vision ranges

grid world up to a limit, which is called vision range (v).
The predator can only sense the cells within the rectangular
area of size (2v + 1).(2v + 1) centered at the agent location.
We used the statement infinite vision to emphasize that the
predator has unlimited sensing capability. Our tests are
performed with 10, 20, 40 and infinite vision ranges and
search depths. Additionally, we assumed that the prey is
slower than the predator, and skips 1 move after each 7
moves. To test the algorithms, we also developed an off-
line prey algorithm, (Prey-A*), which is powerful but not
very efficient. To prevent the side effects caused by the
efficiency difference, the predator and the prey algorithms
are executed alternately in performance tests.

With respect to vision ranges and search depths, the av-
erages of path lengths on maze grids are given in Figures
2 and 3, and the averages of path lengths on U-type grids
are given in Figures 4 and 5, respectively. In the charts, the
horizontal axis is either the vision range or the search depth,
and the vertical axis contains the ratio of improvement in

Figure 3: Average of path length results of maze
grids for increasing search depths



Figure 4: Average of path length results of U-type
grids for increasing vision ranges

Figure 5: Average of path length results of U-type
grids for increasing search depths

the path length with respect to MTS-c. The results showed
that MTES performs significantly better than MTS-c and
MTS-d even with small search depths, and usually offers
near optimal solutions that are almost as good as the ones
produced by A*. Especially in U-type grids, MTES mostly
outperforms A*. When we examined this interesting result,
we observed that they behave very differently in sparse parts
of the grid. MTES prefers performing diagonally shaped ma-
noeuvres for approaching targets located in diagonal direc-
tions, whereas A* prefers performing L-shaped manoeuvres.
Since the agents are only permitted to move in horizontal
and vertical directions, these two manoeuvre patterns have
equal path distances to a fixed location, but this is not the
case for a moving target since the strategy difference signif-
icantly affects the behavior of the prey in U-type grids.

We also examined the step execution times of the algo-
rithms running on an AMD Athlon 2500+ computer. In
Table 1, the worst case and the average number of moves
executed per second in maze and U-type grids are shown.
The rows are for the compared algorithms and the columns
are for the search depths. According to the results, we can
conclude that MTS-c and MTS-d have low and almost con-
stant step execution times whereas the efficiency of MTES
is tied to the search depth and obstacle ratio, and hence
the appropriate depth should be chosen according to the
required efficiency. A* is the worst as expected.

5. CONCLUSION
In this paper, we have examined the problem of pursuing

a moving target in grid worlds, and introduced a moving

Table 1: The worst case and average number of
moves per second for increasing search depths

Maze grids
Depth 10-sd 20-sd 40-sd INF-sd
MTS-c 1063/2676 1063/2676 1063/2676 1063/2676
MTS-d 937/2412 937/2412 937/2412 937/2412
MTES 531/1101 212/692 82/413 23/283

A* 20/189 20/189 20/168 20/189
U-type grids

Depth 10-sd 20-sd 40-sd INF-sd
MTS-c 1063/2855 1063/2855 1063/2855 1063/2855
MTS-d 1062/2498 1062/2498 1062/2498 1062/2498
MTES 793/1257 400/747 133/348 57/233

A* 8/104 8/104 8/104 8/104

target search algorithm, MTES. To see the performance of
MTES, we have compared MTS-c, MTS-d, MTES and A*
against a successful prey algorithm, Prey-A*.

With respect to path lengths, the experimental results
showed that MTES performs significantly ahead of MTS,
and competes with A*. We also observed that the two
MTS versions are significantly different from each other.
Although, MTS-d performs acceptably good, MTS-c almost
never offers good solutions. In terms of step execution times,
we observed that MTS is the most efficient algorithm, and
almost spend constant time in each move. But its solution
path lengths are usually unacceptably long. MTES follows
MTS, and its efficiency is inversely proportional to the in-
crease in obstacle density. Finally, A* is always the worst.

6. REFERENCES
[1] M. Goldenberg, A. Kovarsky, X. Wu, and J. Schaeffer,

‘Multiple agents moving target search’, 1536–1538,
(2003).

[2] T. Haynes and S. Sen, ‘Evolving behavioral strategies
in predators and prey’, (1996).

[3] T. Ishida and R.E. Korf, ‘Moving target search: A
real-time search for changing goals’, IEEE Trans
Pattern Analysis and Machine Intelligence, 17(6),
97–109, (1995).

[4] S. Koenig and M. Likhachev, ‘Fast replanning for
navigation in unknown terrain’, Transactions on
Robotics, 21(3), 354–363, (2005).

[5] S. Koenig and M. Likhachev, ‘Real-time adaptive a*’,
5th Int’l Joint Conf. on Autonomous Agents and
Multiagent Systems, 281–288, (2006).

[6] R.E. Korf, ‘Real-time heuristic search’, Artificial
Intelligence, 42(2-3), 189–211, (1990).

[7] S. Russell and P. Norving, Artificial Intelligence: a
modern approach, Prentice Hall, Inc., 1995.

[8] A. Stentz, ‘The focussed D* algorithm for real-time
replanning’, In Proceedings of the Int’l Joint
Conference on Artificial Intelligence, (1995).

[9] C. Undeger and F. Polat, ‘Real-time edge follow: A
real-time path search approach’, IEEE Transaction on
Systems, Man and Cybernetics, Part C, (In press).

[10] C. Undeger and F. Polat, ‘Rttes: Real-time search in
dynamic environments’, Applied Intelligence (In
press).

[11] C. Undeger and F. Polat, ‘Real-time target evaluation
search’, 5th Int’l Joint Conf. on Autonomous Agents
and Multiagent Systems, AAMAS-06, 332–334, (2006).


