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Abstract In this paper, we address the problem of multi-agent pursuit in dynamic and

partially observable environments, modeled as grid worlds; and present an algorithm

called Multi-Agent Real-Time Pursuit (MAPS) for multiple predators to capture a

moving prey cooperatively. MAPS introduces two new coordination strategies namely

Blocking Escape Directions (BES) and Using Alternative Proposals (UAL), which help

the predators waylay the possible escape directions of the prey in coordination. We com-

pared our coordination strategies with the uncoordinated one against a prey controlled

by Prey A*, and observed an impressive reduction in the number of moves to catch

the prey.

Keywords Real-time pursuit · Multi-agent search · Real-time search · Path Planning

1 Introduction

Pursuing a moving target is one of the most challenging problems in areas such as

robotics and computer games. The first challenge here is to successfully plan a dynamic

path towards a changing goal by a single agent. Off-line and incremental path planning

algorithms are not able to handle moving targets in real-time, and most of the on-line

search algorithms are specifically designed for partially observable environments with

static targets. There are only a few number of algorithms capable of pursuing a moving

target in environments with obstacles, two of which are Moving Target Search (MTS)

[1] and Moving Target Evaluation Search (MTES) [2,3]. The second challenge in that

area raises when the number of predators involved in the search is increased. In this

case, the single agent path search problem becomes a search against a moving prey

with multiple coordinated agents called multi-agent pursuit, on which there is not
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much successful study done so far, especially against moving preys in environments

with obstacles.

In this paper, we focus on developing a successful and practically usable multi-

agent pursuit algorithm that can be applied to real-world problems in domains such as

modeling and simulation, game programming and robotics; and propose Multi-Agent

Real-Time Pursuit (MAPS), which is capable of pursuing a moving prey with multiple

coordinated predators in partially observable grid worlds with obstacles, and employs

two coordination strategies namely blocking escape directions (BES) and using alter-

native proposals (UAL). The first strategy is executed before the path search for deter-

mining the blocking location, which is an estimated point that the agent may possibly

waylay the prey at. Then the blocking location is fed as an input to the path planner,

which is MTES in our case, but can also be any other planner. And the latter strategy,

which can only work with MTES, is performed after the path search for selecting the

best estimated direction from the alternative moving directions that are proposed by

the path planner.

We compared our coordinated pursuit algorithm with uncoordinated one against a

moving prey guided by Prey-A*, and observed that the number of moves to catch the

prey is significantly reduced by multiple agents in coordination.

The organization of the paper is as follows: The related work on path planning,

multi-agent pursuit and preys are given in Section 2. In section 3, MTES is described

in summary. Section 4 introduces our new algorithm, MAPS, and Section 5 presents

the performance analysis of MAPS. Finally, Section 6 is the conclusion.

2 Related Work

2.1 Off-Line Search Algorithms

In the context of navigation, path planning can be described as finding a path from an

initial point to a target point if there exists one. Path planning algorithms are either

off-line or on-line. Off-line algorithms find the whole solution in advance before starting

execution, and can be uninformed, which do not require the domain knowledge such

as Dijkstra’s algorithm [4], or can be informed, which uses domain knowledge such as

A* [5,6], genetic algorithms [7,8], random trees [9–11], probabilistic roadmaps [12,13].

2.2 Incremental Search Algorithms

Off-line path planning algorithms are hard to use for large dynamic environments

because of their time requirements. One solution is to make off-line algorithms to be

incremental [14], which is a continual planning technique that make use of information

from previous searches to find solutions to the problems potentially faster than are

possible by solving the problems from scratch. D* [15,16], Focused D* [17], D* Lite

[18–20] and MT-Adaptive A* [21] are some of the well-known optimal incremental

heuristic search algorithms applied to path planning domain. These algorithms are

efficient in most cases, but sometimes a small change in the environment may cause to

re-plan almost a complete path from scratch, which requires polynomial time and does

not meet real-time constraints. That’s why these algorithms are usually considered as

efficient off-line path planning algorithms.
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2.3 Real-Time Search Algorithms

2.3.1 Static Target Algorithms

Due to the efficiency problems of off-line techniques, a number of on-line approaches

that determine only one step ahead towards the goal in real-time are proposed. Tangent-

Bug [22] is one of the former heuristic search algorithms. It is based on the Bug algo-

rithm [23], and uses vision information to reach the target. It constructs a local tangent

graph (LTG), a limited visibility graph, in each step only considering the obstacles in

the visible set. Then, the agent either moves to the locally optimal direction on the

current LTG or moves along the obstacle borders depending on the conditions.

Learning Real-Time A* (LRTA*), introduced by Korf [24], is another former generic

heuristic search algorithm, which is applicable to real-time path search for fixed goals.

LRTA* builds and updates a table containing admissible heuristic estimates of the

distance from each state in the problem space to the fixed goal state, which are learned

in exploration time. In the early runs, the algorithm does not guarantee optimality,

but when the heuristic table is converged, the solutions generated become optimal.

Although LRTA* is convergent and optimal, the algorithm is able to find poor solutions

in the first run. To solve the problem, Korf also proposed a variation of LRTA*, called

Real-Time A* (RTA*) [24], which gives better performance in the first run, but is lack

of learning optimal table values. If you have only one chance to reach the goal, RTA* is

surely a better choice. Since we have employed RTA* in our blocking location validation

phase, which will be described later on, we briefly present RTA* in Algorithm 1.

Algorithm 1 An Iteration of RTA* Algorithm [24]

1: Let x be the current state of the problem solver.
2: Calculate f(x′) = h(x′) + k(x, x′) for each neighbor x′ of the current state, where h(x′) is the

current heuristic estimate of the distance from x′ to a goal state, and k(x, x′) is the cost of the
move from x to x′.

3: Move to a neighbor with the minimum f(x′) value. Ties are broken randomly.

4: Update the value of h(x) to the second best f(x′) value.

Koenig proposed a new version of LRTA* that uses look-ahead depth more effec-

tively to examine the local search space [25]. In each planning episode, the algorithm

performs an A* search from the current state towards the goal state until either the goal

state is about to be expanded or the number of states expanded reaches the look-ahead

depth. Next, the heuristic values of expanded states are updated using Dijkstra’s algo-

rithm, and the agent follows the path minimizing the heuristic values. Most recently,

Koenig and Likhachev proposed a second version of this LRTA* variation called Real-

Time Adaptive A* (RTAA*) [26]. For the sake of efficiency and simplicity, RTAA*

replaces Dijkstra’s algorithm with another one, which updates the heuristic values of

expanded states more efficiently, but with less informed values. Some other versions of

LRTA* could be found in [27–33].

In the literature, there are also some probabilistic on-line search algorithms based

on genetic algorithms [34], random trees [35] and probabilistic roadmaps [36] since a

significant portion of the previous search data generated by these algorithms could be

still valid after an environmental change, and can be used in real-time for deciding on

the next move.
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Recently, two real-time search algorithms, Real-Time Edge Follow (RTEF) [37,

38] and Real-Time Target Evaluation Search (RTTES) [39,40] have been proposed

for partially observable environments. Although these algorithms were developed for

static targets, they were having the potential to handle moving targets with little

modification. This potential inspired the moving target version of this algorithm called

Moving Target Evaluation Search (MTES) [2,3].

2.3.2 Moving Target Algorithms

Since LRTA*, RTA* and their variations are all limited to work on fixed goals, Ishida

and Korf proposed another algorithm called Moving Target Search (MTS) [1]. Their

algorithm is built on LRTA* and capable of pursuing a moving target. The algorithm

maintains a table of heuristic values, representing the function h(x, y) for all pairs of

locations x and y in the environment, where x is the location of the agent and y is the

location of the target.

The original MTS is a poor algorithm in practice because when the target moves

(i.e., y changes), the learning process has to start all over again that causes a per-

formance bottleneck in heuristic depressions. Therefore, two MTS extensions called

Commitment to Goal (MTS-c) and Deliberation (MTS-d) are proposed to improve the

solution quality [1]. In order to use the learned table values more effectively, MTS-c

ignores some of the target’s moves while in a heuristic depression, and MTS-d per-

forms an off-line search (deliberation) to update the heuristic values if the agent enters

a heuristic depression.

Moving Target Evaluation Search (MTES) proposed in [2,3] is able to detect the

closed directions around the agent, and determine the estimated best direction that

avoids the nearby obstacles leading to a static or moving target from a shorter path.

It was reported that a significant improvement was observed over MTS-c and MTS-d.

2.4 Multi-Agent Real-Time Search Algorithms

The algorithms described so far are only applicable to the problem of reaching a static or

moving prey with single or multiple predators without coordination. Moving predators

in coordination to pursuit a moving prey is a challenging problem, and most of the

studies done so far only focus on multi-agent coordination in environments that are free

of obstacles (non-hazy). The pursuit problem is originally proposed by Benda et al [41],

which was involving four coordinated predators pursuing a prey moving randomly. The

environment was a non-hazy grid world, and the agents were allowed to move only in

horizontal and vertical directions. According to the experiments, the authors concluded

that an organization with one controlling predator and three communicating predators

performs the best for solving the problem. Note that the coordination is centralized in

this case.

2.4.1 Machine Learning Algorithms

In the literature, there are two common ways for studying pursuit problem, which are

either hand-crafted coordination strategies or machine learning algorithms that let the

predators learn themselves how to cooperate in order to catch the prey. For instance,

in [42], a new reinforcement learning method, Two Level Reinforcement Learning with
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Communication (2LRL), is used to provide cooperative action selection in a multi-

agent predator-prey environment. In 2LRL, the decision mechanism of the agents is

divided into two hierarchical levels, in which the agents learn to select their target in

the first level and to select the action directed to their target in the second level.

In [43], another reinforcement learning algorithm is employed to make four preda-

tors learn to pursue a moving prey in non-hazy environments. The authors assumed

that the sensor and communication ranges of predators are limited, and hence a preda-

tor does not know the location of other predators and the prey all the time. Therefore

they used Q-learning with partially observable Markov decision process and two kinds

of predictions. The first prediction is the location of the other predators and the prey,

and the second one is the possible moving direction of the prey in the next step. In

their model, a state is defined with the velocity of the predator, the existence of any

predators in communication range and/or observing the prey, and the relative coor-

dinates/angles of the prey and the center of gravity of other predators. As a result,

the authors observed that the predators can learn cooperative behavior and different

roles, and the way in which the predators organize themselves depends on the initial

locations of the predators, the style of the target movement, and the speed differences

of the predators and the prey.

In [44], a recent variation of reinforcement learning algorithm known as TD-FALCON

(A Temporal Difference Fusion Architecture for Learning, COgnition, and Navigation)

is used for developing a cooperative strategy to surround a prey in all directions by

four predators. TD-FALCON is an extension of predictive Adaptive Resonance The-

ory (ART) networks for learning multi-model pattern mappings across multiple input

channels. TD-FALCON makes use of a 3-channel architecture representing the current

state, the set of available actions and the values of the feedbacks (rewards) received

from the environment. The FALCON network is used to predict the value of performing

each available actions in the current state. Then the values are processed to select an

action, the action is executed, and the received reward (if any) is used to update FAL-

CON network. The authors compared non-cooperative and cooperative (TD-FALCON)

predator teams in a 16x16 sized non-hazy grid world, and observed about 15% success

rate increase with the help of cooperation.

Another instance of learning algorithms for pursuit is introduced by Haynes and

Sen in [45,46]. They employed strong typed genetic programming (STGP) to evolve

pursuit algorithms represented as Lisp S-expressions for predators and preys moving in

a 30x30 sized non-hazy toroidal grid world, which has left-right and bottom-top edges

bend and connected to each other forming an infinite sized environment. They reported

that good building blocks or subprograms are being identified during the evolution,

and the performance of the best evolved program is comparable to a manually derived

greedy strategy proposed by Korf [47].

Different from the work of Haynes and Sen, the generic algorithm is used by Yong

and Miikkulainen [48] to evolve (and coevolve) neural network controllers, rather than

program controllers. Co-evolution in this domain refers to maintaining and evolving

individuals for taking different roles in a pursuit task. In the study, Enforced Subpop-

ulations (ESP), a powerful and fast problem solver, is used to evolve three different

strategies, which are a single centralized neural network, multiple distributed commu-

nicating neural networks, and multiple distributed non-communicating (Co-evolved)

neural networks. Three predators were trained in a series of incrementally more chal-

lenging tasks obtained by starting with a static prey first, increasing the speed of prey

in later iterations, and ending with the same speed as the predators. A 100x100 sized
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non-hazy toroidal grid world is used, in which the agents can move in horizontal and

vertical directions. As a result of experiments, the authors reported that evolving sev-

eral distinct autonomous, cooperating neural networks to control a team of predators

is more efficient and robust than evolving a single centralized controller. This claim

was contradictory to that reported by Benda et al. And very interestingly, they also

observed that non-communicating distributed neural networks perform better than the

communicating ones because of niching in coevolution, which obtains a set of simpler

subtasks, and optimizes each team member separately and in parallel for one special-

ized subtask.

2.4.2 Hand-Crafted Algorithms

In [49], a hand-crafted coordination strategy that uses a game theoretic approach is

suggested to solve the pursuit problem in non-hazy grid worlds, where the predators are

coordinated implicitly by incorporating the global goal of a group of predators into their

local interests using a payoff function. In fact, that study is not presenting a classical

predator-prey problem since the predators does not always behave for the sake of the

global objective. In that model, a predator should take into account the coalitions he

may participate in along with their incomes, and decide the best coalition for him. For

every move reducing/increasing the manhattan distance to the prey, the predator is

given a positive/negative payment. Additionally, the amount of global utility is shared

among the predators. Therefore, the predators should also consider the global objective,

which is to block maximum number of prey’s escape directions that are north, south,

east and west. In this study, a predator is said to be blocking an escape direction d only

if he moves towards the direction opposite to direction d (e.g., moving west towards

the prey if the escape direction is to east), and dp is smaller than da, where dp is the

distance of the predator from the prey along a line perpendicular to direction d, and

da is the distance of predator from the prey along direction d. Our multi-agent pursuit

algorithm is similar to this work in the sense that it is based on the strategy of blocking

escape directions, but our definition of escape directions is significantly different.

Another hand-crafted coordination strategy is proposed by Kitamura et al in [50].

Their coordination algorithm is build on a multi-agent version of RTA* called Multi-

Agent Real-Time A* (MARTA*) [51], which can work in hazy environments, but is only

for static goals. Kitamura et al introduced two organizational strategies to MARTA*

namely repulsion and attraction, where the repulsion strengths the discovering effect by

scattering agents in a wider search space, and in contrast, the attraction strengths the

learning effect by making agents update estimated costs in a smaller search space more

actively. They performed their experiments in 120x120 sized maze grids with random

obstacles with a ratio of 40%, and also in 15-puzzles. As a result, the repulsion showed

a good performance with mazes in which deep heuristic depressions are spotted, and

the attraction showed a good performance with 15-puzzles in which shallow depressions

are distributed all over.

In [52], a multi-agent pursuit algorithm is proposed for fully known grid worlds

with randomly placed obstacles. The authors proposed an application domain called

Multiple Agent Moving Target (MAMT), where the agents are permitted to see or

communicate with other agents only if they are in line of sight, and can move in

horizontal or vertical directions simultaneously. Different from the previous algorithms

described, the predators cannot see the prey all the time and need to explore a hazy

environment. But, one missing point in their approach is that the predators only use
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coordination to search different parts of the environment when the prey is hiding, but

cannot chase the prey in coordination when they see the prey.

Another similar problem studied in the literature is called the evasion, the goal of

which is to detect all the unknown targets within a region in cooperation, and to guar-

antee that the region is completely searched and all the possible targets are detected in

a finite time. In [53,54], evasion problem is examined, and cooperative search strategies

(swarm flying patterns) are proposed for unmanned air vehicles (UAVs) against mobile

and evasive targets. In these studies, UAVs are arranged into a flight configuration that

optimizes UAVs integrated sensing capability while allowing quick reconfiguration of

the topology in the event that some of the UAVs become unavailable (e.g. killed).

The last hand-crafted coordination strategy we will examine is proposed by Kota

et al [55]. Their coordination approach is based on deflecting the predators from the

centroid of the group meanwhile attracting themselves towards the prey. Although

the environment they used is free of obstacle, they introduced an artificial haze to

their environment by making the predators lose track of the prey location from time

to time. In such cases, the predators use the last observed location of the prey for

deciding the next move. Their algorithm calculates the direction of the next move

using the weighted sum of the attraction vector towards the prey and the repulsion

vector away from the centroid. As a results, the authors stated that their algorithm

shows moderate performance, and hence they are studying for better strategies.

2.5 Prey Algorithms

When we look at the prey algorithms, we usually see hybrid techniques mixing a number

of reactive strategies. For instance, the strategy, moving randomly in any possible

direction not blocked by a predator, is commonly used in pursuit problems [49,43,1,

52]. In the study of Ishida and Korf [1], the avoid strategy of the prey is developed as

to move towards a position as far from the predators as possible using MTS algorithm.

In [43,55], the prey is let to escape from the predators along a straight line or a circle.

In [43], additionally a third method is also used as moving in the opposite direction of

the predator if the prey sees only one predator, and otherwise moving in the direction

that bisects the largest angle of its field of view in which there are no predators. In

[52], a weighted combination of four sub-strategies: moving towards a direction that

maximizes the distance from the predator’s location, moving towards a direction that

maximizes the mobility by preferring a move that leads to more move choices, moving

towards a position that is not in line of sight of predators and moving randomly, are

used. There are also some studies focussing on evolving behavioral strategies [45,46].

Since these reactive algorithms are not good enough to challenge successful predator

algorithms, an off-line strategy called Prey A*, which is slow but more powerful, is

developed [2,3]. In this paper, we employed Prey A* in our experiments to challenge

our pursuit algorithms. Prey-A* generates two grids, costspredator and costsprey, whose

sizes are the same as the size of the environment, and have one to one mapping to the

cells of the grid world. Each cell of the costspredator contains the length of the optimal

path from the nearest predator to the cell, and similarly, each cell of the costsprey

stores the length of the optimal path from the prey to the cell. The objective is to find

a cell such that the number of moves from the nearest predator to the cell (the cost in

costspredator) is maximized, and the prey will not be caught by the predators during

the travel to the cell through the optimal path. This is checked by ensuring that each
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cell on the optimal path satisfies costspredator[cell]− α.costsprey[cell] > 0, where α is

computed by the formula speedpredator/speedprey. In order to find the best cell, the

algorithm examines each non-obstacle cell within a limited search window centered at

the prey location, and moves one step towards the selected one.

3 MTES Algorithm

In this section, we summarize Real-time Moving Target Evaluation Search (MTES) [2,

3], on which one of our coordination algorithms, Using Alternative Proposals (UAL),

is built. MTES is a real-time single-agent path search (predator) algorithm for moving

targets that works on partially observable planar grid worlds, where any grid cell can

either be free or obstacle. Predator has no control over the movements of the prey and

is able to move north, south, east or west direction in each step, and uses Euclidian

distance metric for heuristic estimations.

It is assumed that the predator knows the location of the prey all the time, but

perceives the obstacles around him within a limited region. The unknown part of the

grid world is assumed to be free of obstacle by the agent, until it is explored. The

agent maintains a tentative map, which holds the known part of the grid world, and

updates it as he explores the environment. Therefore, when an obstacle is mentioned,

that refers to the known part of that obstacle.

MTES repeats the steps in Algorithm 2 until reaching the target or detecting that

the target is inaccessible, and MTES makes use of a heuristic, Real-Time Target Eval-

uation (RTTE-h) (see Algorithm 3), which analyzes obstacles and proposes a moving

direction that avoids these obstacles and leads to the target through shorter paths.

To do this, RTTE-h geometrically analyzes the obstacles nearby, tries to estimate the

lengths of paths around the obstacles to reach the target, and proposes a moving di-

rection. RTTE-h works in continuous space to identify the moving direction, which is

then mapped to one of the actual moving directions (north, south, east and west).

Algorithm 2 An Iteration of MTES Algorithm [2,3]

Require: s: current cell the agent is on
1: Let d be proposed direction to move on cell s, which is determined by RTTE-h (Algorithm 3)
2: if d exists then
3: Let n be the set of neighbor cells of s with minimum visit count
4: Let c be the cell in n with maximum utility. Ties are broken randomly
5: Move to cell c
6: Increment the visit count of cell s by one
7: Insert cell s into the history
8: else
9: if History is not empty then

10: Clear all the History
11: Jump to 1
12: else
13: Destination is unreachable, stop the search with failure
14: end if
15: end if

In the first step, MTES calls RTTE-h heuristic function, which returns a moving

direction (proposed direction) and the utilities of neighbor cells (see Algorithm 5)

according to that proposed direction. Next, MTES selects one of the neighbor cells

on non-closed directions (described later on in this section), with the minimum visit
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count, which stores the number of visits to the cell. If there exists more than one

cell having the minimum visit count, the one with the maximum utility is selected. If

utilities are also the same, then one of them is selected randomly. After the move is

performed, the visit count of the previous cell is incremented by one and the cell is

inserted into the history. The set of previously visited cells forms the history of the

agent. History cells are treated as obstacles. Therefore, if the agent discovers a new

obstacle during the exploration and realizes that the target became inaccessible due to

history cells, the agent clears the history to be able to backtrack.

To better handle moving targets, the following procedure is applied in MTES.

Assuming that (x1, y1) and (x2, y2) are the previous and newly observed locations of

the target, respectively, and R is the set of cells the target could have visited in going

from (x1, y1) to (x2, y2), the algorithm clears the history along with visit counts when

any cell in set R appears in history or has non-zero visit count. In the algorithm, R

can be determined in several ways depending on the required accuracy. The smallest

set has to contain at least the newly observed location of the target, (x2, y2). One can

choose to ignore some of the set members and only use (x2, y2) to keep the algorithm

simple, or one may compute a more accurate set, which has the cells fall into the ellipse

whose foci are (x1, y1) and (x2, y2), and the sum of the radii from the foci to a point

on the ellipse is constant m, where m is the maximum number of moves the target

could have made in going from (x1, y1) to (x2, y2).

Algorithm 3 RTTE-h Heuristic [2,3]

Require: s: current cell the agent is on
Ensure: Final proposed direction to move (if any) on cell s
Ensure: Utilities of neighbor cells of s
1: Mark all the moving directions of cell s as open (non-closed)
2: Propagate four diagonal rays from cell s
3: for each ray r hitting an obstacle do
4: Let o be the obstacle hit by ray r
5: Extract border b of obstacle o
6: Detect closed directions of cell s using border b
7: Analyze border b to extract geometric features of obstacle o
8: Evaluate result and determine best direction to avoid obstacle o (Algorithm 4)
9: end for

10: Merge individual results of entire rays to determine a proposal (Algorithm 5)

Real-Time Target Evaluation heuristic method (RTTE-h) given in Algorithm 3

propagates four diagonal virtual rays (propagated in the mind of the agent) away from

the agent location (line 2 in Algorithm 3) to split north, south, east and west moving

directions as shown in Fig 1. The rays move outwards from the agent until they hit

an obstacle or maximum ray distance is achieved. Four rays split the area around the

agent into four regions. A region is said to be closed if the target is inaccessible from

any cell in that region. If all the regions are closed, the target is unreachable from the

current location. To detect closed regions and identify closed directions (see Fig 1),

the boundary of the obstacle is extracted by starting from the hit-point and tracing

the edges towards the left side until making a complete tour around the obstacle (line

5) and analyzed (line 6). Next, the obstacle border is re-traced from both left and

right sides to determine geometric features of the obstacle (line 7). These features are

evaluated and a moving direction to avoid the obstacle is identified (line 8). After all

the obstacles are evaluated, the results are merged (line 10) in order to propose a final

moving direction and to compute the utilities of neighbor cells of the agent location
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Fig. 1 Sending rays to split moving directions [38]

accordingly. Details of these steps are not given in this paper except analyzing an

obstacle border (line 7), evaluating individual obstacle features (line 8), and merging

entire results (line 10) since only these parts are related with the modifications we have

made.

3.1 Analyzing an Obstacle Border

After extracting an obstacle border, the border information is represented as a polyg-

onal area, which is stored as a list of vertices. Later on that information is analyzed in

order to determine the geometric features of the obstacle (see [40] for details). Border

analysis (line 7 in Algorithm 3) is done by tracing the border of an obstacle from left

and right. In left analysis, the known border of the obstacle is traced edge by edge to-

wards the left starting from the hit point, making a complete tour around the obstacle

border. During the process, several geometric features of the obstacle are extracted.

These features are described in Definitions 1 to 7 (see Fig. 2 for illustrations):

Definition 1 (Outer leftmost direction) Relative to the ray direction, the largest

cumulative angle is found during the left tour on the border vertices. In each step of

the trace, we move from one edge vertex to another on the border. The angle between

the two lines (TWLNS) starting from the agent location and passing through these

two following vertices is added to the cumulative angle computed so far. Note that the

added amount can be positive or negative depending on whether we move in counter-

clockwise (ccw) or clockwise (cw) order, respectively. This trace (including the trace for

the other geometric features) continues until the sum of the largest cumulative angle

and the absolute value of smallest cumulative angle is greater than or equal to 360.

The largest cumulative angle before the last step of trace is used as the outer leftmost

direction.

Definition 2 (Inner leftmost direction) The direction with the largest cumulative

angle encountered during the left tour until reaching the first edge vertex where the

angle increment is negative and the target lies between TWLNS. If such a situation is

not encountered, the direction is assumed to be 0 + ε, where ε is a very small number

(e.g., 0.01).
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Fig. 2 Geometric features of an obstacle: Outer leftmost and inner leftmost directions (left-
top), Inside of left (right-top), Inside of inner left (left-middle), Behind of left (right-middle),
Outer-left-zero angle blocking and Inner-left-zero angle blocking (bottom) [40]

Definition 3 (Inside of left) True if the target is inside the polygon whose vertices

starts at agent’s location, jumps to the outer leftmost point, follows the border of the

obstacle to the right and ends at the hit point of the ray.

Definition 4 (Inside of inner left) True if the target is inside the polygon that

starts at agent’s location, jumps to the inner leftmost point, follows the border of the

obstacle to the right and ends at the hit point of the ray.

Definition 5 (Behind of left) True if the target is in the region obtained by sweeping

the angle from the ray direction to the outer leftmost direction in ccw order and the

target is not inside of left.

Definition 6 (Outer-left-zero angle blocking) True if target is in the region ob-

tained by sweeping the angle from the ray direction to the outer leftmost direction in

ccw order.

Definition 7 (Inner-left-zero angle blocking) True if target is in the region ob-

tained by sweeping the angle from the ray direction to the inner leftmost direction in

ccw order.
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Fig. 3 Left alternative point [40]

Fig. 4 Exemplified dleft estimation [40]

In right analysis, the border of the obstacle is traced towards the right side and the

same geometric properties listed above but now symmetric ones are identified. In the

right analysis, additionally the following feature given in Definition 8 is extracted (see

Fig. 3 for illustration):

Definition 8 (Left alternative point) The last vertex in the outer leftmost direction

encountered during the right tour until the outer rightmost direction is determined.

3.2 Evaluating Individual Obstacle Features

In individual obstacle evaluation step (line 8 in Algorithm 3), if an obstacle blocks the

line of sight from the agent to the target, we determine a direction to move avoiding

the obstacle to reach the target through a shorter path. In addition, the length of the

path through the moving direction to the target is estimated. The method is given

in Algorithm 4 (see [40] for details and proof of correctness), which requires the path

length estimations given in Definitions 9 to 11 (see [2,3] for details) in addition to the

acquired geometric features of the obstacle .

Definition 9 (dleft) The approximated length of the path which starts from the agent

location, jumps to the outer leftmost point, and then follows a part of the border of

the obstacle from left side, and finally jumps to the target (Fig. 4 and 5).

Definition 10 (dleft.alter) The approximated length of the path which starts from

the agent location, jumps to the outer rightmost point, and then follows a part of the

border of the obstacle from left side, and finally jumps to the target (see Fig. 6).

Definition 11 (dleft.inner) The approximated length of the path passing through the

agent location, the inner leftmost point, and the target (see Fig. 7).
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Algorithm 4 Individual Obstacle Evaluation Step [40]

Require: s: current cell the agent is on
Require: o: evaluated obstacle
Require: g: geometric features of obstacle o (Definitions 1 to 8)
Require: p: path length estimations of obstacle o (Definitions 9 to 11)
Ensure: Proposed direction to move on cell s avoiding obstacle o
Ensure: Estimated distance to target on cell s avoiding obstacle o
1: if (behind of left and not inside of right) or (behind of right and not inside of left) then
2: Case 1:
3: if outer leftmost angle + outer rightmost angle ≥ 360 then
4: Case 1.1:
5: if distance from agent to outer leftmost point < distance from agent to left alternative

point then
6: Case 1.1.1: Let estimated distance be min(dleft, dright.alter), and propose outer left-

most direction as moving direction
7: else
8: Case 1.1.2: Let estimated distance be min(dleft.alter, dright), and propose outer right-

most direction as moving direction
9: end if

10: else
11: Case 1.2:
12: if dleft < dright then
13: Case 1.2.1: Let estimated distance be dleft, and propose outer leftmost direction as

moving direction
14: else
15: Case 1.2.2: Let estimated distance as dright, and propose outer rightmost direction as

moving direction
16: end if
17: end if
18: Mark obstacle as blocking the target
19: else if behind of left then
20: Case 2:
21: if Target direction angle 6= 0 and outer-right-zero angle blocking then
22: Case 2.1: Let estimated distance be dleft, and propose outer leftmost direction as moving

direction
23: else
24: Case 2.2: Let estimated distance be dright.inner , and propose inner rightmost direction

as moving direction
25: end if
26: Mark obstacle as blocking the target
27: else if behind of right then
28: Case 3:
29: if Target direction angle 6= 0 and outer-left-zero angle blocking then
30: Case 3.1: Let estimated distance be dright, and propose outer rightmost direction as

moving direction
31: else
32: Case 3.2: Let estimated distance be dleft.inner, and propose inner leftmost direction as

moving direction
33: end if
34: Mark obstacle as blocking the target
35: else
36: Case 4:
37: if (inside of left and not inside of right) and (inner-left-zero angle blocking and not inside

of inner left) then
38: Case 4.1: Let estimated distance be dleft.inner, and propose inner leftmost direction as

moving direction
39: Mark obstacle as blocking the target
40: else if (inside of right and not inside of left) and (inner-right-zero angle blocking and not

inside of inner right) then
41: Case 4.2: Let estimated distance be dright.inner , and propose inner rightmost direction

as moving direction
42: Mark obstacle as blocking the target
43: end if
44: end if
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Fig. 5 A more complex dleft estimation [2,3]

Fig. 6 Exemplified dleft.alter estimation [40]

Fig. 7 Exemplified dleft.inner estimation [40]

The estimated target distances over right side of the obstacle are similar to those

over left side of the obstacle, and computed symmetrically (the terms left and right are

interchanged in definitions). So, we have additional estimated target distances dright,

dright.alter and dright.inner. The details of path estimation can be found in [2,3].

3.3 Merging Entire Results

In the result merging step (line 10 in Algorithm 3), the evaluation results (moving

direction and estimated distance pairs) for all obstacles are used to determine a fi-

nal moving direction to reach the target. The proposed direction will be passed to

MTES algorithm (see Algorithm 2) for final decision. The merging algorithm is given

in Algorithm 5 (see [40] for details).

The most critical step of the merging phase is to compute the moving direction

to get around the most constraining obstacle, which is the obstacle that is marked as
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blocking the target on direct flying direction and which has the largest estimated path

length (see Definitions 9 to 11). The reason why we determine the moving direction

(line 6 in Algorithm 5) based on the most constraining obstacle is the fact that it might

be blocking the target the most. We aim to get around the most constraining obstacle

and to do this we have to reach its border. In case there are some other obstacles on

the way to the most constraining obstacle, we need to avoid them and determine the

moving direction accordingly. The algorithm works even if the intervening obstacles are

ignored but the following technique is employed in order to improve solution quality

with respect to path length.

Algorithm 5 Merging Phase [40]

Require: s: current cell the agent is on
Require: t: current cell the target is on
Require: r: individual results of entire rays, which are determined in Algorithm 3
Ensure: Final proposed direction to move (if any) on cell s
Ensure: Utilities of neighbor cells of s.
1: if All the directions to neighbor cells of s are closed then
2: Return no moving direction and halt with failure.
3: end if
4: Determine the most constraining obstacle m using results in r.
5: if m exists then
6: Let final proposed direction d be a direction that gets around obstacle m.
7: else
8: Let final proposed direction d be the direct flying direction from cell s to cell t.
9: end if
{Compute utility of each neighbor cell of s}

10: for Each neighbor cell n of s do
11: if Direction to cell n is closed then
12: Let utility of cell n be zero.
13: else
14: Let dif be the smallest angle between direction d and the direction of cell n.
15: Let utility of cell n be (181− dif)/181.
16: end if
17: end for

Let the final direction to be proposed by the algorithm considering ray r be pdr.

Initially pdr is set to the direction dictated by the most constraining obstacle or hit by

ray r. Assume that pdr is computed in the left tour. Note that the pdr was determined

during the counter clockwise (ccw) tour started from the hit point of ray r. If pdr is

blocked by some obstacles, pdr can be changed by sweeping pdr in clockwise direction

until pdr is not blocked by any obstacle or pdr becomes the direction of ray r. By

definition, we know that r is guaranteed to reach the border of obstacle or before hitting

any other obstacle. In order to determine intervening obstacles, we check obstacles (not

equal to or) hit by the other rays fall into ccw angle between r and pdr. If an obstacle

os hit by ray s has outer leftmost direction outside ccw angle between ray s and pdr,

and has outer rightmost direction inside ccw angle between r and s, then the obstacle

os blocks pdr and proposed direction should be swept to outer leftmost direction of

obstacle os. Using this information we compute the direction nearest to pdr between

r and pdr and not blocked by the intervening obstacles. The method is exemplified in

Fig. 8. The similar mechanism is also used to compute the proposed direction for pdr

detected in the right tour, but this time, left/right and ccw/cw are interchanged.

A complete sample illustrating the entire process of MTES can be seen in Fig. 9. In

the sample, there exist three obstacles, two of which are blocking the prey (obstacle A

and B). Assuming that all the obstacles are known by the agent, MTES first propagates
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Fig. 8 An example of avoiding the intervening obstacles [40]

Fig. 9 Illustration of entire process of RTTE-h heuristic [2,3]

4 diagonal rays that hit obstacle A, B and C. Then border extraction, close direction

detection, obstacle border analysis and individual obstacle feature evaluation phases

are executed for each ray hitting an obstacle. In border extraction phases, borders of

obstacles are determined by performing complete tours around the obstacles starting

from the hit points of rays. During border extraction, the rays that share the same

obstacles are also determined. Next, in closed direction detection phases, north mov-

ing direction is closed since north-west and north-east rays share the same obstacle

(obstacle A), and the inner region bordered by these two rays does not contain the

prey. Afterwards, obstacle border analysis phases are initiated, and geometric features

of obstacles such as outer leftmost direction, left alternative point, are determined. In

individual obstacle feature evaluation phases, estimated best and second best paths,

their lengths and initial moving directions are determined for each obstacle. While

evaluating an obstacle, all the other obstacles are ignored, and just the obstacle itself

is taken into account. For obstacle A and B, there are two alternative paths around

left and right sides of each obstacle, totally making four paths. There is no path de-
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termined for obstacle C since it does not block the prey. When all the phases for the

entire rays are completed, result merging phase is performed. In that phase, obstacle

A is chosen as the most constraining obstacle since minimum of its estimated path

lengths is longer than minimum of estimated path lengths of obstacle B. Most con-

straining obstacle proposes south-east moving direction, but that direction is blocked

by obstacle B. Therefore, the proposed direction is swept in counter clockwise angle

until obstacle B does not intersect the direction any more. That is the final proposed

direction, but it should be mapped into one of the four possible moving directions tak-

ing into account unclosed directions and their utilities. Finally, the east direction will

probably be chosen to move (visit counts may change the result) since final proposed

direction is closest to that direction.

3.4 Analysis of the Algorithm

The worst case complexity of MTES is O(w ·h) per step, where w is the width and h is

the height of the grid. Here w · h represents the length of longest obstacle border that

is possible in a grid world. The worst case environments are rarely possible in practice,

and enlarging the area will not drop the performance very sharply most of the time

since the average length of obstacle borders does not strictly depend on the grid size.

For instance, in an urban area, the sizes of buildings are similar independent of how

large the city is. But, note that such worse cases are usually possible in complex mazes.

Since increasing the grid size decreases the efficiency, a search depth (d) can be

introduced in order to limit the worst case complexity of MTES. A search depth is a

rectangular area of size (2d + 1) · (2d + 1) centered at agent location, which makes the

algorithm treat the cells beyond the rectangle as non-obstacle. With this limitation,

the complexity of MTES becomes O(d2) (see [38] for details).

For the proof of correctness and completeness of the MTES algorithm please see

[38,2,3].

4 MAPS Algorithm

In this section, we present our pursuit algorithm called Multi-Agent Real-Time Pursuit

(MAPS). First, we start with the assumptions of our problem domain.

In our environment, there are multiple agents (predators) that aim to reach a

moving target (prey) in coordination. The predator group and the prey are randomly

located far from each other in non-obstacle grid cells. The predators are expected to

reach the prey in coordination as soon as possible avoiding the obstacles in real-time.

The prey is escaping from the predators using Prey-A* [2,3], and its location is assumed

to be known by the predators all the time. This assumption can be relaxed if a hidden

prey search is integrated into the predator behaviors.

The predators perceive the obstacles around them within a square region centered

at the agent location. The size of the square is (2v +1) · (2v +1), where v is the vision

range. The unknown parts of the grid world is assumed to be free of obstacle by the

agent, until it is explored. The term infinite vision is used to emphasize the setting

where the predators has unlimited sensing capability and knows the entire grid world

before the search starts. The prey has unlimited perception and knows all the grid

world and the location of the predators all the time.
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Fig. 10 Common neighbors of diagonal cell and current cell

The predators and the prey can only perform nine actions in each step, which are

staying still or moving to a non-obstacle neighbor cell in horizontal (east, west), vertical

(north, south) or diagonal (north-east, north-west, south-east, south-west) directions.

The effects of actions are all deterministic. In order to decide on moving to a diagonal

neighbor cell in north-east, north-west, south-east or south-west direction, both the

predators and the prey should make sure that the common neighbors (see Definition

12) of the diagonal neighbor cell and the current cell is also free (see Figure 10 for

illustration). We assume that a cell cannot be shared by more than one predator.

Therefore the predators also should not move to a cell that is blocked by another

predator. The size of the grid cells is assumed to be 1x1 unit, and the coordinates of

the agents are stored in continuous space (i.e., in floating numbers). All the moves

take 1 unit step for fairness. Therefore, some diagonal moves may not cause the cell

coordinate of the agent to be changed if the step size is not long enough to reach the

next cell.

Definition 12 (Common Neighbors) Common neighbors of two cells (source cells)

are defined as the cells that are neighboring both source cells at the same time.

The predators and the prey move sequentially in each iteration, and the first step is

always taken by the prey. Next, the predators make their moves one by one considering

the new location of the prey and the other predators. The prey is assumed to be caught

when the prey and any of the predators are in the same cell.

MAPS offers two different coordination strategies: blocking escape directions (BES)

and using alternative proposals (UAL). One may selectively enable one or both of these

strategies in order to increase the pursuit performance. The first strategy, blocking

escape directions, is executed before the path search, and moves the target coordinate

of path planner from the prey’s current location to the prey’s possible future escape

location in order to better waylay the prey. Therefore, the path planner will determine

a path for reaching the possible escape location instead of the current location of the

prey. This strategy is generic and can be integrated into any moving target search

algorithm. The second strategy, using alternative proposals, is performed after the

path search for selecting from the alternative moving directions proposed by the path

search algorithm. Since the alternative moving directions and their estimated path

lengths can be determined by our path search heuristic, Advance Real-Time Target

Evaluation (ARtte), the second strategy is not generic and only applicable to our path

planner. MAPS given in Algorithm 6 is executed by all the predators independently in

each step until one of the predators catch the prey. The algorithm first determines a

location, called the blocking location, for the predator to move in order to waylay the

prey considering all the other predators and the possible escape directions of the prey

(line 1 in Algorithm 6). Then the blocking location (see Definition 13) is used as the

target coordinate to be reached in the path search algorithm (line 2 and 4).
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Definition 13 (Blocking Location) The intersection point, which the predator and

the prey will possibly meet at the same time if they both insist on continuously moving

to that point at full speed, and there is no obstacles on the way. The blocking location is

computed based on the assumption that the prey will move to a fixed direction called

the escape direction (see Definition 14), which passes through that point.

Definition 14 (Escape Direction) A direction that the prey may move to in order

to escape from the predators. Escape directions are chosen heuristically, and there is

no guarantee that the prey will move that way.

Algorithm 6 An Iteration of MAPS Algorithm
Require: p: this predator
Require: s: current cell predator p is on
1: Let (tx, ty) be blocking location for predator p determined by BES (Algorithm 7)
2: Let st be set of closed directions for cell s determined by ARtte (tx, ty) (Algorithm 9)
3: Let pr be best and second best direction proposals determined by ARtte (tx, ty) (Algorithm 9)
4: if pr does not exist then
5: if History is not empty then
6: Clear all the history.
7: Jump to 3.
8: else
9: The prey is unreachable, stop search with failure.

10: end if
11: end if
12: Let dir be final proposed moving direction determined by UAL (pr) (Algorithm 12)
13: Let ut[8] be set of utilities for neighbor cells of s determined using st and dir (Algorithm 13)
14: Let n be set of neighbor cells with smallest visit count and non-zero utility in ut[8].
15: Let m be the neighbor cell to move with the highest utility in n. Ties are broken randomly.
16: if m exists then
17: Perform one step move to cell m.
18: if Cell s is changed after move then
19: Increment the visit count of previous cell s by one.
20: Insert previous cell s into the history.
21: end if
22: else
23: Clear all the history in order to search for an alternative way.
24: The way is temporarily blocked by another predator, stop search and wait for one iteration.
25: end if

For performing path search, a modified version of RTTE-h heuristic (see Algorithm

3), called Advance Real-Time Target Evaluation (ARtte), is used. ARtte analyzes the

current state, and produces a set of proposals for the next move. There are three

possible outcomes. ARtte may propose two alternative moving directions (the best and

the second best directions), or propose one moving direction (the best direction), or

may not propose anything at all if the target is unreachable. If any proposal is made

by ARtte, the proposal is evaluated in order to select a final moving direction (line

12). According to the final moving direction, the utilities of the eight neighbor cells

are computed next (line 13). Then, a move is selected considering the utilities of the

neighbor cells (line 14 and 15). Finally, the move (if there exists one) is performed (line

17) and the agent information is updated for the next step (lines 18-20).

In order to avoid infinite loops and re-visiting the same locations redundantly,

MAPS uses visit counts and history together. The set of previously visited cells forms

the history of the agent. History cells are treated as obstacles. If the agent discovers a

new obstacle and realizes that the target becomes inaccessible due to history cells, the

agent clears the history to be able to backtrack. The algorithm maintains the number
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of visits, visit count, to the grid cells, and the agent moves to one of the neighbor

cells with non-zero utility and minimum visit count. If there exists more than one cell

satisfying the condition, the one with the maximum utility is selected. If they are also

the same, then one of them is selected randomly. In situations where there is no cell

having non-zero utility (the way may be temporarily blocked by another predator), the

agent stays still for one step, and clears the history to be able to search alternative

ways in the next step (line 23 and 24).

If the agent selects a cell to move from the eight neighbors, he performs a one-step

move towards the direction of that cell (line 17). If a neighbor cell in horizontal or

vertical direction is selected, we move to that cell horizontally or vertically, and the

step will directly cause the cell of the agent to be changed, but if a neighbor cell in

diagonal direction is selected, we compute the direction from the agent location to the

corner of the diagonal cell, and move to that direction, which may not sometimes cause

the cell of the agent to be changed. Therefore, in addition to the cell coordinate of the

predator, we also maintain its real coordinate in continuous space. In the following

sections, some of the phases mentioned above are described in more details.

4.1 Determining the Blocking Location

In order to waylay the prey in its escape direction, a blocking location for the predator to

move is determined using Algorithm 7. This phase is optional and only executed unless

escape direction blocking is disabled (checked by line 3 in Algorithm 7). If it is disabled

or there is only one predator, the current location of the prey is returned as the blocking

location (line 4). To compute the blocking location of the predator, the algorithm first

needs to determine n possible escape directions (lines 9), where n is the number of

predators. The first escape direction is always chosen as the vector directed from the

location of the prey to the location of the nearest predator to the prey. Other escape

directions are distributed uniformly based on the first escape direction, and computed as

vectors, which are originated from the prey location, and angle differences of which from

its two neighbor vectors are all equal (see Figure 11 for illustration). Thus, we allocate

360 degrees to escape directions such that we get equal angle differences. After selecting

the escape directions, the algorithm assigns escape directions to predators optimally (see

Figure 12) such that the total distance from predators to blocking locations waylaying

their assigned escape directions is minimized (line 10). In this assignment procedure,

the first escape direction should always be matched to the nearest predator to the prey

and the nearest predator should always aim to reach the prey location as its blocking

location. When the assignment is completed, the initial blocking location of the predator

is determined based on the escape direction assigned to him (lines 11-12). And as the

final step, the computed blocking location is validated and corrected if required (lines

13-16). The validation is done by checking if there exists a path from the prey to

the blocking location or not. If no path is determined, then the nearest location to

the blocking location is selected (line 16). To find this location, RTA* algorithm (see

Algorithm 1) is executed (line 15) starting from the prey location until the blocking

location is reached or the number of moves executed by RTA* exceeds a threshold

computed proportional to the Manhattan distance from the prey to the blocking location

(line 13 and 14).

In order to compute blocking location given the escape direction (see Algorithm 8),

we assume that the speeds of the prey and the predator are known, but we have no
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Algorithm 7 Determining the Blocking Location
Require: p: this predator
Require: s: current cell predator p is on
Require: t: current cell the prey is on
Require: n: number of predators
Ensure: Blocking location
1: Let (hx, hy) be the coordinate of cell p
2: Let (tx, ty) be the coordinate of cell t
3: if n=1 or BES is disabled then
4: Let blocking location (bx, by) be (tx, ty)
5: else
6: if predator p is the nearest predator to (tx, ty) then
7: Let blocking location (bx, by) be (tx, ty)
8: else
9: Determine e as the set of n escape directions.

10: Determine assignment m that maps n predators to e optimally.
11: Let esc be the escape direction assigned to predator e in m.
12: Determine initial blocking location (ix, iy) using esc (Algorithm 8)
13: Let β be the path search limit multiplier (e.g., 2 times)
14: Let d be β.(abs(hx− ix) + abs(hy − iy))
15: Run RTA* (Algorithm 1) from (hx, hy) to (ix, iy) until (ix, iy) is reached or # steps > d
16: Let blocking location (bx, by) be nearest point to (ix, iy) determined during RTA* search.
17: end if
18: end if

Fig. 11 Determining the escape directions

Fig. 12 Assigning escape directions to predators minimizing the total walking cost to the
blocking locations
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Fig. 13 Determining the blocking location

Fig. 14 Sinus theorem

constraint on their speeds. The prey may be slower or faster than the predators. In

case the prey is faster, there is still hope for the predators to catch the prey since the

environment is complicated, and at the end the prey may have to wait somewhere or

change direction for avoiding obstacles and dead-ends. The blocking location is chosen

as the coordinate on the way of the prey’s escape direction, which the predator can

reach the prey at if the prey decides to follow the escape direction in the next step and

keeps his decision until reaching that point. This is illustrated in Figure 13.

To compute θ given in Figure 13, we base our formula on sinus theorem shown in

Figure 14, and according to the sinus theorem we get the following formula:

θ = arcsin(sin(α) · Vp/Vh)

Note that θ is feasible only if the input to arcsin is in the range [−1, +1], therefore

we need to examine the input and act accordingly using Algorithm 8.

If α is close to 0 or 180 degrees (checked by line 5 in Algorithm 8), we skip the

computation and select the blocking location as the location of the prey (line 23) since

this will make the predator direction (see Figure 13) aim to the prey location and be

almost parallel to the escape direction causing errors in floating point computations.

Otherwise, we additionally check if sin(α) · (1 + ε) · vp/vh is less than or equal to 1

(line 6) since arc sinus of numbers greater than 1 is undefined. In the formula, ε is a

very small number (e.g., 0.05), which makes the formula over estimate the prey speed

in order to let the predator reach the blocking location a little bit earlier than the prey.

If this conditional check is also satisfied, then we can compute θ using the formula

arcsin(sin(α) · (1 + ε) · vp/vh) (line 7). And last, we have to do a test to see if θ is less

than 180 − α − ε (line 8) since sinus theorem is unreliable (in our problem, it is not

guaranteed that a feasible triangle is always formed) and may give incorrect results

if α is greater than 90 degrees. Here, ε is a small number (e.g., 0.5) preventing the

floating point errors. Satisfying this final test means it is possible for predator to catch

the prey, and the algorithm returns the blocking location as the intersection point of

two lines passing through the escape direction and the predator direction (line 10) (see

Figure 13). But we limit the distance of the blocking location to the prey with distance

dmax (line 11 and 12) in order to reduce the computational cost of the blocking location

validation (see lines 13-15 in Algorithm 7). In all the other conditions, the predator is

not able to catch the prey, and the best way to act is to move parallel to the escape
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Algorithm 8 Computing the Blocking Location
Require: p: this predator
Require: vh: velocity of predator p
Require: vp: estimated velocity of the prey
Require: es: escape direction originated from the prey that is assigned to predator p
Ensure: Blocking location
1: Let ε be a small number (e.g., 0.5)
2: Let ε be a very small number (e.g., 0.05)
3: Let α be the smallest angle between es and the direction from prey to predator p
4: Let dmax be maximum permitted distance between blocking location and the prey (e.g., 100)
5: if ε < α < 180− ε then
6: if sin(α) · (1 + ε) · vp/vh ≤ 1 then
7: Let θ be arcsin(sin(α) · (1 + ε) · vp/vh)
8: if θ < 180− α− ε then
9: Let pdir be predator direction originated from predator p, which is determined using θ

(see Figure 13)
10: Let bl be the intersection point of lines passing through es and pdir
11: if Distance between bl and prey > dmax then
12: Let blocking location (bx, by) be the point with distance dmax from the prey in the

direction of es
13: else
14: Let blocking location (bx, by) be bl
15: end if
16: else
17: Let blocking location (bx, by) be a far point with distance dmax from the prey in the

direction of es {It is not possible to catch the prey}
18: end if
19: else
20: Let blocking location (bx, by) be a far point with distance dmax from the prey in the

direction of es {It is not possible to catch the prey}
21: end if
22: else
23: Let blocking location (bx, by) be the location of the prey since the direction to the prey is

almost parallel to the direction of es
24: end if

direction. But, since we cannot give a direction as an output, we need to select the

blocking location as a far point with distance dmax from the prey in the escape direction

(lines 17 and 20).

4.2 Searching For a Path

For determining the next move to reach the blocking location of the predator, we use

a modified version of RTTE-h (see Algorithm 3) called Advanced Real-Time Target

Evaluation (ARtte) given in Algorithm 9. In ARtte, all the phases are the same as

RTTE-h except evaluating individual obstacle features (line 8 in Algorithm 9), merging

entire results (line 10), and the outputs.

We have modified the method in evaluating individual obstacle features phase (see

Algorithm 4) to determine both the best and the second best proposals for individual

obstacles (see Figure 15 for an illustration). First, we have assumed that all the propos-

als in Algorithm 4 were pointing to the best direction and its estimated path length.

Next we have modified Case 1.2 as shown in Algorithm 10 in order to propose two

alternatives, the best and the second best directions and their estimated path lengths.

We have also modified the method in merging entire results phase (see Algorithm

5) to determine the best and the second best proposals considering all the obstacles.

The new method given in Algorithm 11 is similar to the previous one. But, instead

of only determining the best moving direction, both the best and the second best (if
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Algorithm 9 The algorithm ARtte
Require: p: this predator
Require: s: current cell predator p is on
Require: tx, ty: blocking location of predator p
Ensure: Closed directions of cell s.
Ensure: Best and second best (if any) moving directions on cell s
Ensure: Estimated distances from cell s to prey through best and second best moving directions
1: Mark all the moving directions of cell s as open (non-closed)
2: Propagate four diagonal rays from cell s
3: for each ray r hitting an obstacle do
4: Let o be the obstacle hit by ray r
5: Extract border b of obstacle o
6: Detect closed directions of cell s using border b
7: Analyze border b to extract geometric features of obstacle o
8: Evaluate result and determine best and second best (if any) directions to avoid obstacle o

(combined evaluation method using Algorithms 4 and 10).
9: end for

10: Merge individual results of entire rays to determine proposals (Algorithm 11)

Fig. 15 The best and the second best proposed moving directions

Algorithm 10 Modified Case 1.2 of Individual Obstacle Evaluation Phase

1: Case 1.2:
2: if dleft < dright then
3: Case 1.2.1:
4: Propose outer left most direction as the best direction and let dleft be its estimated path

length
5: Propose outer right most direction as the second best direction and let dright be its estimated

path length
6: else
7: Case 1.2.2:
8: Propose outer right most direction as the best direction and let dright be its estimated path

length
9: Propose outer left most direction as the second best direction and let dleft be its estimated

path length
10: end if

exists) moving directions are determined, and the utility computations are removed

since they are performed in Algorithm 13 from now on. The details of the moving

direction determination for getting around the most constraining obstacle is the same

as the previous algorithm.

4.3 Selecting the Final Moving Direction

Following the selection of proposals, the best and the second best (if exists) moving

directions, the pursuit algorithm calls UAL to decide on a final proposed moving direc-

tion (see Algorithm 12). If there is only one predator or there exists only one direction

proposed or using alternative proposals is disabled (checked by line 1 in Algorithm

12), then we just return the best direction as the final direction. Otherwise we require

analyzing the proposals furthermore keeping in mind the locations of all the other

predators and the prey.
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Algorithm 11 Modified Merging Phase
Require: p: this predator
Require: s: current cell predator p is on
Require: t: cell of blocking location for predator p
Require: r: individual results of entire rays, which are determined in Algorithm 9
Ensure: Best and second best (if any) moving directions on cell s
Ensure: Estimated distances to cell t through best and second best moving directions
1: if All the directions to neighbor cells of s are closed then
2: Return no moving direction and halt with failure.
3: end if
4: Determine the most constraining obstacle m using results in r
5: if m exists then
6: Determine best and second best (if any) moving directions that get around obstacle m
7: else
8: Determine best moving direction as direct flying direction from cell s to cell t
9: end if

Fig. 16 Moving round an obstacle continuously

Fig. 17 Assigning escape directions to predators minimizing the total angle difference

The motivation behind UAL algorithm comes from a difficulty encountered in the

pursuit problem. Imagine that we have a large piece of obstacle in the environment,

and the predators and the prey are all moving round that obstacle in the same circular

direction continuously (see Fig. 16). In such a case, the prey can not be captured by

the predators forever if the prey’s speed is equal to or greater than the speed of the

predators. This problem could only be solved if the circling direction of one of the

predators could be switched to the opposite direction in order to stop the prey do that

circular movement. Therefore, by selecting the second best moving direction, the UAL

algorithm explicitly tries to switch the circling direction and to obtain the desired

behavior. As a result of our experiments, we observed that we mostly managed our

goal, and the desired behavior occurred if the alternative route was not significantly

longer than the best one. However, we also noticed that our first strategy, BES, was

also able to obtain the same goal implicitly in some cases.
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Algorithm 12 Selecting the Final Moving Direction
Require: p: this predator
Require: n: number of predators
Require: pr: set containing best and second best (if exists) proposals for the next move
Ensure: Final moving direction
1: if n=1 or UAL is disabled or there is no second best proposal in pr then
2: Let final moving direction be the best direction proposed in pr
3: else
4: Let nr be the nearest predator to the prey
5: if this predator is nr then
6: Let final moving direction be the best direction proposed in pr
7: else
8: Determine e as the set of n escape directions.
9: Determine assignment m that maps n predators to e optimally.

10: Let edir be the escape direction assigned to predator p in m.
11: Let dif be the smallest angle between edir and prey-predator vector.
12: Let attraction factor af be 0.5 + dif/360
13: Let cw be the clockwise angle from prey-predator vector to edir
14: Let ccw be the counter clockwise angle from prey-predator vector to edir
15: if cw < cww then
16: Let attraction direction ad be 90 degree left of predator-prey vector
17: else
18: Let attraction direction ad be 90 degree right of predator-prey vector
19: end if
20: Let angle1 be the smallest angle between ad and the best direction proposed in pr
21: Let angle2 be the smallest angle between ad and the second best direction proposed in pr
22: Let d1 be the estimated path length of the best direction in pr
23: Let d2 be the estimated path length of the second best direction in pr
24: Let angle factor be (angle1/180 + 1)/(angle2/180 + 1)
25: Let utility factor be af .angle factor
26: Let utility alternative as utility factor.(d1/d2)
27: if utility alternative ≥ 1 then
28: Let final moving direction be the second best direction proposed in pr
29: else
30: Let final moving direction be the best direction proposed in pr
31: end if
32: end if
33: end if

To compute the final proposed moving direction, the algorithm first determines n

possible escape directions (line 8), where n is the number of predators. The method

used to select these directions is the same as the one used in determining the blocking

location. The first escape direction is chosen as the vector directed from the prey to the

nearest predator to the prey, and the others are determined based on the first one. The

final proposed moving direction of the nearest predator to the prey is always selected

as the best direction (line 5 and 6) since we would like to have someone following the

prey from a short path, but the others may decide going from longer routes for the

sake of better coordination. After selecting the escape directions, the algorithm assigns

escape directions to predators optimally (see Figure 17 for illustration) such that the

total angle difference between the directions from the prey to the predators and their

assigned escape directions is minimized and the first escape direction is assigned to the

nearest predator to the prey (line 9). Then we compute the attraction factor and the

attraction direction as given in lines through 10 to 18. Attraction factor is a number

between 0.5 and 1.0, and proportional to the angle difference between the direction

from the prey to the predator and the escape direction. Attraction direction is the

direction the predator should move in order to get closer to the escape direction (see

Figure 18 for illustration). Finally we compute the utility of the second best alternative

(lines 20-26), and if the utility is greater than or equal to 1, we select the second best

direction, otherwise we select the best direction as the final proposed moving direction
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Fig. 18 Computing attraction direction

(lines 27-30). The utility formula increases when attraction direction is closer to the

second best direction or the estimated path length of second best route is closer to

the best one; and is determined such that the second best alternative route may be

selected only when it is at most two times longer than the best one.

4.4 Computing the Utilities of Neighbor Cells

After determining the final proposed moving direction, we compute the utilities of eight

neighbor cells (see Algorithm 13) considering the proposed direction. The utility is a

rating value indicating the availability of the neighbor cell (unavailable cells have zero

utility), and the angle difference between the proposed direction and the direction of

the neighbor cell (smaller difference is better).

Algorithm 13 Computing the Utilities of Neighbor Cells
Require: p: this predator
Require: s: current cell predator p is on
Require: st : set containing closed directions of cell s, which may be north, south, east or west
Require: dir : final proposed direction
Ensure: Utilities of the neighbor cells of s
1: for Each eight neighbor cell c of s do
2: if Cell c is not an obstacle and not occupied by another predator then
3: Let dif be the smallest angle between dir and the direction of cell c
4: if Cell c is a diagonal neighbor cell then
5: Let m be the two common neighbors of cell c and cell s
6: if Cells in m are not obstacle and at least one of the directions to cells in m is not

marked as closed in st then
7: Let utility of cell c be (181− dif)/181
8: else
9: Let utility of cell c be zero

10: end if
11: else
12: if Direction to cell c is not marked as closed in st then
13: Let utility of cell c be (181− dif)/181
14: else
15: Let utility of cell c be zero
16: end if
17: end if
18: else
19: Let utility of cell c be zero
20: end if
21: end for

First of all, we set the utilities of all the neighbor cells, which are obstacle or

temporarily blocked by another predator, to zero (line 19 in Algorithm 13). Otherwise

we branch according to whether the neighbor cell is a diagonal (north-east, north-west,

south-east or south-west) one, or not. If the cell is a diagonal one, then we determine
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Fig. 19 A complete sample illustrating the entire process of MAPS

the two common neighbors (see Definition 12) of the diagonal cell and the cell the

predator is on (line 5). If common neighbors are both not obstacles, and at least one

of the directions to these cells are not closed by the ARtte algorithm (line 6), then

we set the utility of the diagonal cell to (181 − dif)/181 (line 7), where dif is the

smallest angle between the final proposed moving direction and the direction of the

diagonal neighbor cell (line 3). Otherwise, we set the utility of the diagonal cell to zero

(line 9). If the neighbor cell is a horizontal or vertical one, then we set the utility to

(181− dif)/181 (line 13) if the direction to that cell is not closed (line 12), else we set

the utility to zero (line 15).

A complete sample illustrating the entire process of MAPS is given in Figure 19.

In the sample, we assume that all the computations are performed from the view point

of the first predator. The escape directions are computed first and next the blocking

locations are determined (BES). Since the blocking location of the first predator falls

into an obstacle, it is corrected before used by the path search algorithm. Later on,

the best and the second best moving directions are determined (ARtte). Finally, these

proposals are examined by the algorithm (UAL) in order to decide on a final moving

direction.

4.5 Analysis of the Algorithm

In each move of a predator, MAPS performs three time consuming phases, which are

path search with ARtte, validation of the blocking location with RTA*, and the optimal

assignments of escape directions to predators.

In ARtte, there is only one modification towards determining the second best di-

rection, and the rest of the algorithm is the same as Rtte-h. We have just exported

an additional information, which potentially existed in Rtte-h, but was not used. That

modification does not change the complexity, which is O(w · h) per step, where w is

the width and h is the height of the grid. Proof of completeness is also the same since

we haven’t done any modification on close direction detection step, which the proof of
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completeness is built on. And the last important feature of ARtte derived from Rtte-h

is the search depth. Since increasing the grid size decreases the efficiency, we usually

use a search depth (d) in order to limit the worst case complexity with O(d2).

The validation of the blocking location takes time proportional to dmax, where dmax

is the maximum permitted distance between the blocking location and the prey. Thus

the complexity of this phase is O(dmax).

And finally, the complexity of the optimal assignment is O((n−1)!), where n is the

number of predators. Therefore the total complexity becomes O(d2 +dmax +(n− 1)!),

but n and dmax will most probably be taken not very high in practice, so we may

assume the complexity be O(d2) since path search will be the most time consuming

part. Additionally, if one needs to have many predators, then the optimal assignment

requirement can be relaxed by using a greedy algorithm.

The final question that is not answered yet is the proof of completeness of the

pursuit algorithm as a whole, which actually depends on answering the question ”is it

possible to guarantee catching of the prey in a finite time?”. The answer is yes for a

static prey, which comes from the completeness of the path planning algorithm against

a static target. But the answer is not straightforward against a moving target since

there are some difficulties and preconditions.

Firstly, in our problem, there is an hazy environment full of obstacles, thus preda-

tors cannot move freely and they have to find paths toward the moving prey meanwhile

avoiding obstacles. That prevents having predetermined search patterns, which also

makes difficult to find an analytical proof.

Secondly, in order to guarantee a catch, some preconditions must hold. If the speed

of the prey is faster than the predators, the prey can run away forever if there is

no dead-ends the prey can get in. If the speed of the prey is slower, it is still not

always possible to guarantee a catch because that depends on the path planners used

for both prey and the predators. The pursuit problem necessarily requires real-time

path planning algorithms, which can only provide sub-optimal solutions. Therefore,

if the performance of the real-time path planner of the prey is better than that of

the predators on the average, the prey will make less mistakes than the predators do.

Therefore it may be possible for the prey to escape forever if its speed is not significantly

slower than the predators or there is not enough number of predators in the field.

Finally, it is also not straightforward to determine the number of predators re-

quired for a successful pursuit since that strictly depends on the topography of the

environment. If there are many gateways providing corridors for the prey to escape,

more predators will be required to block these gateways. However, if the environment

is full of free spaces, a few predators will be just enough.

5 Experimental Results

In this section, we present the experimental results of our coordinated pursuit algorithm

against moving preys guided by Prey-A*. In each iteration, the prey and the predators

are executed alternately in order to prevent the side effects caused by the difference in

efficiency of the algorithms. For coordination, we used four strategies: without coordi-

nation (None), with blocking escape directions (BES), with using alternative proposals

(UAL) and with both BES and UAL (BES+UAL).

For the test runs, we used 9 randomly generated sample grids of size 150x150. Six

of them were the maze grids (see Figure 20), and three of them were the U-type grids
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Fig. 20 Maze grids with %25 (left), %30 (middle) and 35% (right) obstacles

Fig. 21 U-type grids with 70 (left), 90 (middle) and 120 (right) u-type obstacles

(see Figure 21). The maze grids were produced with the constraint that every two non-

obstacle cells are always connected through a path. For each obstacle ratio (25%, 30%

and 35%), two test mazes were randomly generated. The obstacle ratio is chosen not to

be more than 35% in order to make enough room for prey to escape. The U-type grids

were created by randomly putting U-shaped obstacles of random sizes (5 to 30 cells)

on an empty grid limiting the number of U-type obstacles with 70, 90 or 120. For each

grid, three different strategies (one corner, one side and all sides) were used to select

the initial predator locations, and for each strategy, 15 different predator-prey location

sets were generated and kept the same for all different test configurations for fairness.

To get random locations, the grid world was divided into 5 columns and 5 rows, which

formed 25 regions. With the one corner strategy, the predators were randomly located

together in one of the four corner regions of the grid world, and with the one side

strategy, the predators were randomly located together in one of the four side regions.

Finally, using the all sides strategy, the predators were randomly located in any of the

side regions of the grid world. The prey was always randomly located in the center

region.

In the experiments, we assumed that the prey knows the entire grid world and the

location of the predators all the time, and the predators always know the location of

the prey, but perceive the grid world up to predefined vision range. Our tests were

performed with 10, 20 and infinite vision ranges and 40 search depth. Additionally, we

assumed that the prey is slightly slower than the predators, and skips 1 move after

each 24 moves.

In addition to the experiments that will be examined in the following sections, we

have also demonstrated the behavior of uncoordinated and coordinated predators (us-

ing BES) in an empty environment in Fig. 22. We only used the coordination algorithm

BES since UAL will not change the result in an empty grid (there is no second best

proposal in such a case).
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Fig. 22 The behavior of uncoordinated predators (left) and the behavior of coordinated preda-
tors using BES (right)

5.1 Analysis of Path Lengths

In this section, we examine the effect of coordination on the number of moves to catch

a moving prey. In Figure 23, we present the experimental results with respect to team

size, vision range and initial locations of the predators, and in Figure 24, we present

the results in terms of grid types. In the charts, the horizontal axis is the team size,

the vision range or the initial locations of the predators, and the vertical axis is the

number of moves to reach the target.

When we examine the results, we see that increasing the number of predators in-

volved in the coordinated search significantly reduces the number of moves to catch the

prey, and the solutions with coordination are clearly better than the ones without co-

ordination. The coordination strategies, BES and BES+UAL, are very competitive to

each other, and usually perform much better than UAL. With more than 2 predators,

BES is slightly ahead of BES+UAL, but with 2 predators, BES usually becomes worse

than BES+UAL. Examining the reasons, we observe that when two predators exist,

the two escape directions are selected in exactly the opposite directions (180 degrees

between them), therefore the first blocking location is selected as the location of the

prey, and the second one is selected usually as a far point in front of the preys mov-

ing direction. When the predators using BES are following the prey behind, blocking

the second escape direction (laying in front of the prey) is a hard task for the second

predator, thus it decides to follow the prey in a direction parallel to the escape direc-

tion, which is also almost parallel to the moving direction of the prey. This behavior

sometimes makes the second predator follow the similar path as the first one, which

can be better avoided if integrated with UAL.

In Figures 25 to 28, we exemplify routes of four different strategies in a maze grid

with 30% obstacles followed by 2, 3, 4 and 5 predators, respectively. In the example,

the initial locations of the predators were selected from the bottom-right corner. The

general aim of the prey is moving to the top-left corner first, waiting there until the

predators get nearer, and finally performing a quick manoeuvre in order to escape from
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Fig. 23 Average number of moves to reach a moving prey for different number of predators
(top), vision ranges (middle) and initial locations of predators (bottom)

the predators and move to the bottom-right corner. From the figures, we see that with-

out coordination, the predators usually move together on a line, and in coordination,

the predators spread to the environment in order to surround the prey better and to

close the potential gateways that the prey may escape through. We also observe that

BES+UAL strategy spread the predators the most.
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Fig. 24 Average number of moves to reach a moving prey in maze (top) and U-type (bottom)
grids

According to the experimental results, vision range does not seem to affect the

results much. For instance, the average number of moves to reach the prey is 814 with

10 vision range, and 719 with infinite vision range. This is not very surprising since

our grid worlds are not very complicated (obstacle percentage is less than or equal to

35), and increasing the vision range does not gain much. But interestingly, the initial

locations of the predators are not also affecting the results. This possibly means that

positional distribution of predators around the prey and coordination behaviors are

mostly insignificant when predators are far away from the prey, which is the case for

initial setting, but becomes significant when they get closer, where initial distribution

is mostly corrupted so far.

We also examined the average and the standard deviations of the number of moves

to catch the prey for various grid types and coordination strategies. The results given

in Table 1 show that the standard deviations of the strategy with no coordination are

the highest and tend to decrease slightly with the increase in the number of predators

involved in the search. The strategies, BES and BES+UAL, are again the best and have

standard deviations close to each other. With 2 predators, BES+UAL has the lowest

standard deviation, and with more than 2 predators, BES becomes the best. UAL

follows BES and BES+UAL in the third place, and has significantly higher standard

deviations, but better than having no coordination for sure.
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Fig. 25 2 predators against a moving prey: No coordination (top-left), coordination with BES
(top-right), UAL (bottom-left) and BES+UAL (bottom-right)

Fig. 26 3 predators against a moving prey: No coordination (top-left), coordination with BES
(top-right), UAL (bottom-left) and BES+UAL (bottom-right)

With respect to grid types, we observe that the maze grids with 35% obstacles are

the most difficult ones for the predators, and the U-types grids are the easiest. One

interesting result was that mazes with 25% obstacles were more difficult for predators

than mazes with 30% obstacles. This shows that the obstacle ratio is not strictly the

determining factor for the difficulty of the maze when pursuing a moving prey. Although
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Fig. 27 4 predators against a moving prey: No coordination (top-left), coordination with BES
(top-right), UAL (bottom-left) and BES+UAL (bottom-right)

Fig. 28 5 predators against a moving prey: No coordination (top-left), coordination with BES
(top-right), UAL (bottom-left) and BES+UAL (bottom-right)

there is more obstacles, a prey may not sometimes be able to escape easily if there are

many dead-ends.
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Table 1 The average number of moves and their standard deviations to reach a moving prey
using different coordination strategies with 2, 3, 4 and 5 predators

All grids
Number of None BES UAL BES+UAL
Predators Avg. Stdev. Avg. Stdev. Avg. Stdev. Avg. Stdev.

2 1262 1460 979 867 1081 866 878 626
3 1200 1111 503 340 883 807 546 369
4 1162 1253 409 265 721 695 435 267
5 1006 1136 326 169 675 711 343 172

maze grids with 25% obstacles
Number of None BES UAL BES+UAL
Predators Avg. Stdev. Avg. Stdev. Avg. Stdev. Avg. Stdev.

2 1151 947 921 886 1095 821 913 646
3 1020 805 544 461 819 773 585 455
4 1128 1219 426 321 761 931 511 354
5 909 874 320 191 778 920 375 237

maze grids with 30% obstacles
Number of None BES UAL BES+UAL
Predators Avg. Stdev. Avg. Stdev. Avg. Stdev. Avg. Stdev.

2 871 635 811 622 966 738 914 669
3 812 712 522 400 797 687 606 484
4 727 596 430 330 655 619 466 309
5 733 674 326 179 608 663 340 159

maze grids with 35% obstacles
Number of None BES UAL BES+UAL
Predators Avg. Stdev. Avg. Stdev. Avg. Stdev. Avg. Stdev.

2 2398 4322 1538 1716 1619 1706 1124 977
3 2504 2874 556 363 1396 1596 585 386
4 2421 3244 443 266 1060 1129 446 254
5 1994 3035 371 167 909 1153 386 188

U-type grids
Number of None BES UAL BES+UAL
Predators Avg. Stdev. Avg. Stdev. Avg. Stdev. Avg. Stdev.

2 839 442 757 450 791 419 667 350
3 709 405 427 202 640 382 452 222
4 636 385 360 184 512 297 355 187
5 596 350 298 146 494 309 296 125

Table 2 The average number of moves per second per predator for different coordination
strategies and predator team sizes

maze grids with 25% obstacles
Algorithm 2 Predators 3 Predators 4 Predators 5 Predators

None 765 772 775 774
BES 558 537 531 523
UAL 763 738 735 685

BES+UAL 557 519 519 517

maze grids with 30% obstacles
Algorithm 2 Predators 3 Predators 4 Predators 5 Predators

None 491 495 450 441
BES 380 347 329 328
UAL 453 444 435 413

BES+UAL 355 326 322 317

maze grids with 35% obstacles
Algorithm 2 Predators 3 Predators 4 Predators 5 Predators

None 216 210 206 207
BES 191 180 169 169
UAL 211 210 199 198

BES+UAL 187 177 166 166

U-type grids
Algorithm 2 Predators 3 Predators 4 Predators 5 Predators

None 547 534 507 492
BES 408 388 376 375
UAL 550 522 504 447

BES+UAL 418 389 377 376
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5.2 Analysis of Step Execution Times

We have also examined the step execution times of MAPS with different coordination

strategies and predator team sizes running on a laptop computer with 1.66 GHz Solo

processor. In Table 2, the average number of moves executed per second per predator

in maze and U-type grids are shown. The rows are for the compared coordination

strategies and the columns are for the predator team sizes from 2 to 5.

The results showed that increasing the number of predators does not reduce the

efficiency much, and the most efficient algorithms are MAPS with no coordination and

MAPS with UAL, which perform almost the same speed. MAPS with BES and MAPS

with BES+UAL perform slightly slower since computation and validation of blocking

locations take time. We also see that the step execution times are the lowest in maze

grids with 25% obstacles, and the highest in maze grids with 35% obstacles since the

worse case complexity of MAPS depends on both the search depth, which is 40 in our

experiments, and the sizes of the obstacles in the environment, which are the largest

in maze grids with 35% obstacles.

6 Conclusion and Future Work

In this paper, we have focused on pursut domain and presented a multi-agent real-time

pursuit algorithm, MAPS, which employs two coordination strategies called blocking

escape directions (BES) and using alternative proposals (UAL). We compared four co-

ordination configurations: no coordination, coordination with BES, coordination with

UAL and coordination with BES+UAL, and observed that coordination significantly

reduces the number of moves to catch a moving target. We also observed that coordi-

nation with BES and BES+UAL performs the best.

As a future work, we think there is still much to do on multi-agent pursuit domain

from the view point of both predators and preys, especially in environments with

obstacles. In the paper, we have proposed a pursuit algorithm, which estimates the

escape directions of the prey analytically with less considering the environment, but it

would be very valuable if the topography of the environment is taken into account for

determining where the prey may move to. We have also assumed that the location of

the prey is always known by the predators. This assumption can be relaxed, and the

coordination algorithms can be extended to be able to estimate the location of the prey

and search the environment in situations where the prey is not seen. And lastly, we

have employed a deliberative prey algorithm in order to place a powerful rival against

the predators. Although this algorithm is strong enough most of the time, we think

there is still much research to be done on the prey algorithms in terms of both escape

capability and execution time efficiency.
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