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ABSTRACT 
 

 

 

REAL TIME MISSION PLANNING FOR VIRTUAL HUMAN AGENTS 

 

 

 

Ündeğer, Çağatay 

M.S., Department of Computer Engineering 

Supervisor : Assoc. Prof. Dr. Faruk Polat 

 

January 2001, 94 pages 

 

 

 

Path searching and mission planning are challenging problems in many domains 

such as wargames, robotics, military mission planning, computer-generated 

forces, etc. The objective of this study is to develop a multi-agent system for 

virtual human agents on three-dimensional large landscapes (terrain) to 

accomplish a specified mission by group synchronization. The terrain contains 

natural and artificial entities such as rivers, lakes, forests, rocks, roads, houses, 

bridges, etc. The agent groups enter a specific area to perform a specified 

mission, which may be to attack, escape or just pass through a selected tactical 

area. The terrain contains static and dynamic platforms that carry different kinds 

of sensors such as DayTV, infra-red, radar, night-vision. The goal of the agents is 

to complete their mission under control of a group commander without being 

detected or caught by any platform. Monitors of the platform sensors are 
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observed by the user at tactical command center in order to make the detection 

process more realistic. The agents plan path in real-time and follow their path in 

order to complete the mission. For that purpose, an off-line path planning, a real-

time path update, and a real time goal directed path search algorithm are proposed 

to find suitable routes passing through mission control points considering the 

terrain, weather and the threat information known or gathered on the fly.  When 

an agent is detected or identified, it tries to alter its plan to accomplish the 

mission. 

 

 

Keywords : Computer generated forces, mission planning, off-line path 

planning, real-time path update, multi agent real-time search. 
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SANAL İNSAN ETMENLER İÇİN GERÇEK ZAMANLI GÖREV 

PLANLAMA 
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Güzergah ve görev planlama, oyunlar, robotik, askeri görev planlama, yarı 

otonom kuvvetler gibi bir çok çalışma alanın ilgi konusu olmuştur. Bu çalışmanın 

amacı, sanal insan etmenlerle, geniş arazi üzerinde bir görevi grup 

senkronizasyonunu da göz önünde bulundurarak tamamlamak için bir çoklu 

etmen modeli geliştirmektir. Arazi üzerinde, nehirler, göller, ormanlar, kayalar, 

yollar, evler, köprüler gibi doğal ve yapay detaylar bulunmaktadır. Etmenlerimiz 

önceden tanımlanmış bir görevi başarmak (saldırı, kaçış, intikal vb.) için stratejik 

bir alana girmektedir. Bu alanda, gündüz kamera, infra-red kamera, radar, gece 

görüş cihazı gibi farklı tip sensörleri üzerinde bulundurabilen statik ve dinamik 

platformlar bulunmaktadır. Etmenlerin amacı, herhangi bir platform tarafından 
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tespit edilmeden veya yakalanmadan bir grup lideri öncülüğünde görevini 

tamamlayabilmektir. Tespitin gerçekciliğini arttırmak için platform sensörlerin 

görüntüleri kullanıcılar tarafından taktik komuta merkezinden izlenmektedir. 

Etmenler, gerçek zamanlı olarak güzergah planlamakta ve görevi tamamlamak 

için planlanan güzergahı izlemektedir. Kontrol noktalarından geçen uygun 

güzergahların gerçek zamanlı güncellenen bilgilerle, arazi, hava koşulları ve 

düşmanı da göz önünde bulundurarak tespit edilebilmesi için bir çevrim dışı 

güzergah planlama, bir gerçek zamanlı güzergah güncelleme ve bir de çoklu 

etmenli gerçek zamanlı arama algoritması geliştirilmi ştir. Her hangi bir etmen 

düşman tarafından tespit edilir veya tanınırsa, görevini tamamlamak için planını 

değiştirmeye çalışacaktır. 

 

Anahtar Kelimeler : Yarı otonom kuvvetler, görev planlama, çevrim dışı 

güzergah planlama, gerçek zamanlı güzergah güncelleme, 

çok etmenli gerçek zamanlı arama. 
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CHAPTER I 

 

 

INTRODUCTION 

 

 

 

1.1 The Subject 

Multi agent systems can be used to model computer-generated environments 

where intelligent agents react suitably to various events. Many of the applications 

in this context need realistic environment generation, efficient search algorithms 

and heuristics suitable for real-time simulations. Multi agent systems are 

integrated into these simulations for supporting automatic and semi-automatic 

human and group behaviors to complete a given mission. Planning a mission 

usually means to plan suitable paths and actions that lead to the goal-state.  

The problem of path planning can be described as finding a sequence of state 

transitions through a graph from some initial state (starting point) to a goal state 

(target point), or determining that no such sequence exists. Path-planning 

algorithms can be off-line or on-line. Off-line path planning algorithms like A* 

[SP95] find the whole solution before starting execution. They plan paths in 

advance and usually find optimal solutions. Their efficiency is not considered to 

be crucial and the agent just follows the generated path. Although this is a good 

solution for a static environment, it is completely infeasible for dynamic 

environments, because if the environment or the cost function changes, the 

remaining path may need to be re-planned, which is not efficient for real-time 

applications. Real-time path planning algorithms such as Real-Time A* [MY96], 
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D* [A94], Focused D* [A95] are on-line and offer more efficient solutions. Some 

of them produce optimal solutions for dynamic changes such as D* and Focused 

D*, and some only bring efficiency but not optimality such as Real-Time A*. 

 

1.2 Scope and Objective 

In this thesis, we study dynamic simulation environments and mission planning 

algorithms in military applications. We have constructed a dynamic simulation 

environment, which consists of defense forces, assault forces and other entities, 

and furthermore developed suitable scenario generation, group synchronization 

and path planning algorithms meeting requirements of real-time applications. 

Assault forces, which are intelligent bodies, learn about the environment, terrain 

and moving entities, and react according to changing situations under some 

assumptions. To support decision-making, path planning, and suitably reacting 

based on some goals, we have proposed techniques to gather, store and evaluate 

environment information. 

We have proposed a new off-line path planning, a real-time path update, and an 

improved version of Real-Time A* [MY96] algorithm. The off-line path-

planning algorithm does not guarantee optimal solutions, the generated paths do 

not contain loops and they are usually near to optimal path. It is efficient and may 

be applied to many problems. We used the basic idea behind our off-line path 

planning algorithm to modify Real-Time A* and managed to develop a new real-

time search algorithm (Real-Time Horizontal A*), which performs better in large 

and mountainous landscapes. 

As we need modifications on off-line generated paths on the fly during the 

simulation, we have also presented a path refinement and update algorithm based 

on energy minimization technique, which is frequently used in image processing 

called Snakes [EA98]. Thus, we combined the advantages of off-line path 

planning and real-time path search to support real-time simulation systems.  
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1.3 Outline  

In Chapter II, a survey of related work on path planning and its background needs 

for simulation systems are given.  

In Chapter III, the simulation architecture, which serves the environment and 

control systems for our study, is introduced in detail. The static and dynamic 

environment and the analysis performed on this datum are described on samples. 

The command and control interface that allows the users, the defense forces, to 

observe the environment is introduced in brief. 

In Chapter IV, the analysis on the landscape and their displaying techniques are 

described in detail and also the 3D rendering concept for landscape rendering is 

briefly given. 

In Chapter V, we introduce our intelligent agent concept and the agent 

capabilities: perception gathering, probability of detection, perception evaluation 

by similarity analysis, knowledge, group formation, group synchronization by 

radio communication, location availability and physical appearance. 

In Chapter VI, the proposed path planning algorithms, their advantages and 

drawbacks are given in detail. 

In Chapter VII, our test-bed is introduced. Test results and their evaluation are 

given on example test runs.  

Finally, the conclusion and the future work are given in Chapter VIII. 
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CHAPTER II 

 

 

 RELATED WORK  

 

 

 

Multi-agent systems are used in many domains such as robotics, computer 

generated forces, games, training, RoboCup soccer and their simulators. In 

robotics [SJ99] and Robocup soccer [RM98], intelligent planning aims to find out 

ways for interacting with the physical world, which makes the problem hard to 

solve. In contrast, intelligent planning for computer generated forces [RA98, 

CVZ00, JG99, E98] and games [M00] aim to generate behaviors similar to the 

real world in virtual environments. Simulating real world actions in a virtual 

environment is basically used to test some conditions that are not possible in the 

real world. Intelligent agents such as airplane, chopper, tank, soldier that behave 

much like real world entities are frequently used for pilot trainings in flight 

simulators [RJMP94, RMJP93]. In such simulations, realistic modeling of agent 

behaviors is important for the realism of training. In order to be able to plan 

actions realistically, deciding on appropriate parameters, modeling environment, 

and using suitable algorithms for gathering information are very important. 

Parallel to the development of intelligent systems, the demand for integrating 

them to simulation systems also increased especially by the help of military 

domains. Thus, in 1999, the Defense Modeling and Simulation Office (DMSO) of 

USA established a working group of government and industry representatives and 

tied to decide the standards of intelligent agents within the High Level 

Architecture, HLA [PS99]. 
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In simulation, environment modeling and visualization is very important. 

Although there are many powerful techniques that have capability of rendering 

very realistically such as ray-tracing [A97], and modeling landscapes and their 

plant covers characteristics natural such as the technique used in [OPBRMP98], 

they are not applicable to real-time simulations because of their efficiency 

problems. The 3D modeling and rendering techniques generally used in these 

kinds of simulations are rendering polygons or voxels by Z-buffer [A97] or voxel 

based rendering [DEUV96]. These algorithms offer efficiency, but they are 

usually lack of realism.  

3D environments are generally represented using polygons or voxel 

representations (digital elevation data). In the proposed approach of Champhell 

[CM99], the terrain database and features are stored and optimized using 

triangles. In contrast, the terrain and features are modeled and rendered using 

voxel rendering techniques in [DEUV96]. 

In order to gather necessary information from the virtual environment, physical or 

stochastic methods can be used. In the proposed technique of Knuffner [JJ99], a 

physical based method is used. To collect information from the 3D environment 

and to check which objects are visible to a particular character, the scene is 

rendered off-screen from the character’s point of view, using flat shading with a 

unique color (object ID) for each object. Knowledge base of agents is organized 

as link-lists to store the information about the objects that are seen. The proposed 

approach makes use of stochastic perceptions [CVZ00] for gathering 

environment information. Visual perception is simulated using some criteria such 

as being in line of sight and viewing angle, range, volume, moving state, and 

plant cover density. Similarly audio perception is also simulated stochastically 

using information such as range and being in line of sight. 

In multi agent simulations, evaluating the environment information, learning and 

reacting in time is essential. Erol Gelenbe proposed modeling computer-

generated forces with learning stochastic finite-state machines whose state 

transitions are controlled by state and signal dependent random neural networks 

[E98]. In Knuffner’s approach [JJ99, JJ98], rendering off-screen from the 
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character’s point of view and real-time path planning is used. His path-planning 

module aims to find a collision free path between a starting and ending point over 

the 3D terrain using the information gathered from vision based perceptions. 

As we have gathered the environment information, we also need to plan valid 

path to reach the goal state. In the study of Knuffner [JJ99, JJ98], the terrain is 

divided into embedded graph cells, which have vertical, horizontal and diagonal 

costs of walking through. Then, the suitable path is found using Dijkstra’s 

algorithm, which is actually an optimal off-line path-planning algorithm 

integrated into a real-time application. 

The help of some guidance such as admissible heuristics can increase efficiency 

of these path-planning algorithms. A* [SP95] is one of best-known efficient path 

planning algorithms, which is guided by a heuristic function. A* always finds the 

optimal solution and uses linear distances between points for the heuristic 

function. 

Although heuristic can lead to efficient algorithms, it is not enough and optimal 

path planning algorithms cannot be used for large and dynamic landscapes 

because of its complexity. To avoid this drawback, some partial path update 

algorithms are also proposed such as D* [A94] and focused D* [A95]. These 

algorithms plan an off-line path, let the agent follow the path, and if any new 

environment information is gathered, they partially re-plan the existing solution.  

A number of algorithms exist for supporting real-time simulations such as Real-

time A* (RTA*) [MY96], which is actually one of the best known ones. RTA* is 

usually used for maze environments and it uses a greedy search strategy and a 

heuristic together to guide the search. It guarantees to find a solution if one exists, 

but the solution may not be optimal. In this thesis, we also propose an 

improvement for Real-Time A* for the domain of large mountainous landscapes. 

There are some path-planning algorithms that use random search techniques such 

as genetic algorithms, random tree generators. In [KJ97], an adaptive path-

planning algorithm based on genetic approach is proposed. In the study, they 

assumed that a valid path that is not optimal is initially found and they refine this 

given path by genetic algorithm. Considering this concept, the proposed not 
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optimal off-line path-planning algorithm seems to be applicable to the study 

successfully. In the study of LaValla and Knuffner [SJ99], a randomized planning 

technique based on a version of random tree generation called rapidly exploring 

random tree is presented. They generated two random trees starting from the goal 

and the target points, and try to catch an intersection among the points of distinct 

trees to find a path. 

In addition to path planning, many agent systems have a module called 

“Intelligent Reactive Planning” for the purpose of deciding and reacting 

efficiently to various events considering the goals, knowledge base and the 

previous experiences [JP94, RM98]. For example, reactive planning modules 

may be used with rule sets such as a goal-directed decision tree. 

Group coordination is also an important concept in multi agent simulations. 

Without coordination, the agents can only be considered as individual groups 

with no relation. Baxter and Horn [JG99], organized a command and control 

hierarchy used by the agents, which is based upon the military command and 

control structure. In the hierarchy, the groups are under control of a squadron 

commander. In addition, groups have their own troop commanders. Organizing 

the groups along the same lines as the military formations allows emulating the 

change of getting plausible behaviors. It also provides a framework to guide the 

communication among the agents and allows the planning of complex group 

orders to be divided into several smaller problems. Communication of orders 

passes straight down the hierarchy and intelligent information is shared between 

peers and communicated to superiors. The commanders are responsible for 

gathering information about their own situation, passing it up to their superiors 

and peers, and giving orders to their subordinates to achieve the commander’s 

high level objective. That structure shows similarity to the proposed group and 

command structure. We have organized the agents in groups with a commander 

to achieve a specified group mission. Commanders are responsible for executing 

mission, passing the state up to other group commanders by radio messages and 

guiding the group. The subordinates are responsible for following their group 

commanders and executing the commander’s orders. 
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CHAPTER III 

 

 

SIMULATION ARCHITECTURE 

 

 

 

3.1. Introduction 

A simulation environment is designed and implemented. The developed 

simulation architecture consists of two main parts: an environment and a 

command and control system. The architecture context diagram of the simulation 

is shown in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Architecture context diagram of the simulation 
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The static environment (landscape, features and weather condition) and the 

dynamic entities (the defense forces, the assault forces and the natural creatures) 

form the environment altogether. The structure of the environment is illustrated in 

Figure 3.2. 

 

 

 

 

 

Figure 3.2: The static environment and the dynamic entities form the whole 

environment. 

 

 

 

The command and control systems enable the defense forces (platform systems) 

to partially observe the environment by the help of their sensor systems. The 

Natural Creatures 
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detection of a sensor may belong to a member of the friend forces, or a member 

of the assault forces, or just an animal. Figure 3.3 shows the display monitors of 

two different sensor types; DayTV (normal camera) and infra-red camera (heat 

sensitive camera). 

 

 

 

    

 

Figure 3.3: Views captured from a DayTV camera (left) and an infra-red camera 

(right). A DayTV views the visible light reflected from any surface, instead an 

infra-red camera shows the temperature differences of the surfaces. 

 

 

 

The users control the defense forces, and the command and control systems help 

them to locate, view and control their platform/sensor systems on the terrain. 

Their objective may be to defend a tactical area from any assault forces. 

The assault forces are our intelligent human agents. Their objective is to complete 

their high-level mission without being detected by any sensor systems of the 

opposing forces. The mission may be to attack, escape or just pass through the 

selected tactical area. 

Animals have simple automated behaviors and they are used for misleading the 

platforms and agents’ perceptions. 
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3.2. Static Environment 

3.2.1. Landscape 

3.2.1.1. Terrain: Polygons vs. Voxels 

Terrain, the landscape surface, is the fundamental part of a simulation 

environment and how to model a terrain is one of the most important decisions to 

be made, as it affects efficiency, accuracy and computational cost of the 

simulation. There are two common methods to be used: the polygonal base 

modeling, and voxel base modeling. A polygonal-based and a voxel-based 

landscape are illustrated in Figure 3.4. 

 

 

 

 
 

 
 

Figure 3.4: A polygonal based terrain (top) and a voxel-based terrain (bottom) 

generated from a matrix of elevations 

 

A polygon 

A voxel 
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Polygons are frequently used in 3D modeling of virtual environments such as in 

computer simulations, computer games and 3D modeling tools. There are 

powerful hardware and software support for displaying polygonal objects, and 

they are simple to model and easy to use in any 3D visualization system. That is 

why they are commonly used in 3D world. But using polygons has also some 

disadvantages. For some special purposes they may be incapable or sometimes 

they may be too complicated. For example, In the filed of health, voxel based 

rendering techniques are most commonly preferred because of its accuracy and 

capability of storing and representing the volume data. In the field, they do need 

the data of a volume such as the inside of a body. Polygonal representations can 

only handle a surface modeling; in contrast voxels can handle a volume of an 

object. The critical point is that the advantage brings also a drawback. Using 

volume data reduces the efficiency sharply and the hardware support for the 

technique rarely found such as ONYX-II. 

When we consider using voxels for landscape, the condition changes in some 

ways. The data representation becomes a matrix of sampled heights (elevations), 

on earth, which is called "digital terrain elevation data" (DTED). The samples are 

taken equally distanced in x and y directions and a matrix is generated. Thus, this 

time the data is not a 3D volume, because only the information of surface 

elevations exists. So the computational cost decreases significantly and the 

technique becomes an alternative to polygonal representations in some cases such 

as in the game called “Delta Force II”. Triangle calculations are hard to perform 

on large terrains, such as mountains, generated from millions of polygons. Using 

elevation matrix, computations can be more accurate and efficient because of the 

homogenous distribution of the voxels. It can be used in the background 

computations, but the similar problem of volume rendering also appears for this 

kind of representation. For the polygons, we have hardware accelerators to 

calculate triangle intersection tests efficiently, but the voxel rendering techniques 

suffer from the lack of hardware support. 

To be more efficient, there are several optimization techniques for polygonal 

terrains. But, on a mountainous area, optimization cannot be performed well and 
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accuracy can be lost in many cases. A third alternative is to use polygons and 

voxels all together. The terrain data is loaded as a matrix of elevations. The 

background computations are all performed on the data, but the rendering is done 

using polygons. Thus, the polygons are extracted from the matrix of elevations, 

but left hardware to be drawn by introducing some additional culling phases, 

which increases efficiency. Figure 3.5 shows an image rendered on a high-

resolution terrain using a version of the mentioned technique. 

 

 

 

 

 
 
Figure 3.5: An image rendered using both digital elevation data and polygons. 

The rendering operation is performed using polygonal rendering of elevation 

matrix. 
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3.2.1.2. Loading DEM Files 

A DEM (Digital Elevation Model) [USGS98] file is a matrix of elevations 

sampled on a limited region of the earth. DEM files are used in the model 

because of its data representation capacity. An alternative file structure could 

have been the DTED (Digital Terrain Elevation Data) [NIMA99] file format, but 

it cannot model a terrain as accurate as a DEM file, because a DTED file can 

store at most 1-second frequency of elevations, which is 30 meters on the 

average. The general file structure of DEM is as follows: 

DEM is saved as an ASCII file and does not contain a specific file signature. The 

matrix of elevations is stored as profiles, which are one or more columns of 

elevation samples starting from south west. The Table 3.1 and 3.2 is the C-like 

pseudo code for loading a DEM file. 

 

 

 

Table 3.1: Type definition of RecordA and RecordB 
 

struct RecordA { 
  int    DEM_Level;           // 3 
  int    Pattern_Code;        // 1 
  int    Plan_Ref_Sys_Code;   // 1 
  int    Zone_Code;           // 0 
  float  Map_Projections[15]; // should be ignored for geographic systems 
  int    Units_Code;          // the units stored; UTM(meter)/GEOGRAPHIC(degree or second) 
  int    Units_Code2;         // 1; elevation unit 1 indicating meter 
  int    Num_of_Sides;        // 4; number of corners; assumed to have 4 corners 
  float  Four_Corners[4][2];  // four corner coordinates of the map 
  float  Min_Elev;            // minimum elevation value on the map 
  float  Max_Elev;            // maximum elevation value on the map 
  float  CCW_Angle;           // 0; counterclockwise angle of dem 
  int    Accuracy_Code;       // 0; indicates no accuracy 
  float  Spatial_x;           // resolution of each sample on x axis 
  float  Spatial_y;           // resolution of each sample on y axis 
  float  Spatial_z;           // resolution of each sample on z axis; elevation 
  int    Profile_Dimension;   // 1; number of columns in a single profile 
  int    Num_of_Profiles;     // number of profiles; profiles are located from west to east 
}; 
struct RecordB { 
  int    Row;                 // the profile rows number 
  int    Col;                 // the profile column number 
  int    Num_of_Rows;         // number of rows in a profile 
  int    Num_of_Cols;         // number of columns in a profile 
  float  First_ElevC1;        // x coordinate of first elevation in the profile 
  float  First_ElevC2;        // y coordinate of first elevation in the profile 
  float  Elev_of_Local_Datum; // 0; elevation local datum for the profile 
  float  Min_Elev;            // minimum elevation value in the profile 
  float  Max_Elev;            // maximum elevation value in the profile 
}; 
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Table 3.2: Loading a DEM File 

 
 
Open the input DEM file for reading. 

 
Read 145 characters of string file description. 

 
Read RecordA, which usually contains 39 header items (If we assume that the area is 
rectangular and there are four corners). The Record A is shown in Table 3.1. 

 
if (Units_Code == 2)     // Unit Type is in Metric Coordinates as meters 
    unit_type_of_dem = utMetric; 
else 
if (Units_Code == 3)    // Unit Type is in Geographic Coordinates as seconds 
    unit_type_of_dem = utGeographic_sec; 
else 
if (Units_Code == 4)     // Unit Type is in Geographic Coordinates as degree 
    unit_type_of_dem = utGeographic_deg; 
 
Calculate area properties. 

 
Read a set of RecordBs, which contains profiles. The Record B is shown in Table 3.1.  
    
for ( int pf = 0; pf< Num_of_Profiles ; pf++ )  
    { 
      Reading Record B, which is single profile information. 
 
      for ( cx = 0; cx< Num_of_Cols; cx++ ) // Number of columns in the profile 
          { 
            for ( cy = 0; cy< Num_of_Rows; cy++ ) // Number of rows in the profile 
                  read one elevation item 
          }; 
    };  

 
Close the input DEM file. 
 

 

 

 

3.2.1.3. Generating Slope Matrix 

Loading the digital elevation data file, we analyze the elevations to find out the 

slope properties of each voxel. 

 

 

 

 

 

 

 

 

Figure 3.6: Four elevations let two different triangulation styles. 

Triangle 1 

Triangle 2 

Triangle 1 

Triangle 2 
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For each voxel, there is a single elevation value, which is measured form the sea 

level in meters. Every group of 4 corners forms a surface. The surface properties 

are not known exactly, because we only know four elevation points, but the inner 

part is uncertain. We can triangulate the points by connecting four corners in two 

ways, which results in two triangles. The connection alternatives of four points 

are shown in Figure 3.6. The problem is that we cannot known which way is the 

right one because the connection method is unknown. So, any of them can be 

selected.  

 

 

 

 

 

 

 

 

 

Figure 3.7: Calculating slope directions and magnitudes 

 

 

 

For simplicity, it is better to have a matrix of slopes corresponding to each voxel 

data of elevation matrix. The slope matrix will have the same dimension as the 

elevation matrix. So we have to generate a single slope value for each group of 

four-points. Each of the alternative triangles has its own surface normal; we get 

the average of two surface normals. But, a single row and column from the upper 

and right of the matrix remain unfilled because of the lack of elevation data. 

Computations are illustrated in Figure 3.7 and a sample result is shown in Figure 

3.8. 

 

n 
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Figure 3.8: Visualization of slope directions and magnitudes of a terrain 

 

 

 

3.2.1.4. Mapping Texture  

Raster or satellite images are mapped on the terrain in order to let us recognize 

the area or realistically display the environment. A raster image is an artificial 

map and a satellite or other air vehicles images are orthographically taken 

photographs of the landscape. A texture matrix, which is the same size as the 

terrain, is allocated for texture mapping. Different regions can be loaded from 

different texture files and merged on that matrix to shape the whole area. For that 

purpose, windows’ bitmap file format is supported by the system. When a texture 

is loaded, it is mapped by using two diagonal corner coordinates, which is 

sampled in Figure 3.9. The coordinates are given as geographic coordinates in 

degrees or seconds. Then they are converted into row and column numbers of the 

texture matrix and the image is scaled onto the matrix using the row and column 

coordinates of the corners. 
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Figure 3.9: The texture is mapped on the terrain using two diagonal corners, 

which are given as geographic coordinates. 

 

 

 

3.2.1.5. Surface Materials 

Surface materials are the features of landscape surface. In the system, surface 

materials are classified into 12 main categories. These are as follows: 

 

•  Soil, 

•  Rock, 

•  Forest, 

•  Pasture, 

•  Shrubbery, 

•  Agricultural area, 
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•  Road, 

•  Urban area, 

•  Dry snow, 

•  Wet snow, 

•  Salty water, 

•  Fresh water 

 

The above list is the main categories, but they are not directly used. Instead they 

are selected to make a list of materials to be used on the surface. Changing the 

parameters (such as average height of the trees, salt level) generates variations 

from the basic material types. 

Semi-automated tools are used in order to guide the user while defining region 

properties. First, the user can select a region and assign a material. This is the 

manual operation. A second option is to select regions by color similarities on the 

texture. For example the user can select a blue color from a river, and give a color 

tolerance to define how similar colors are accepted to be the same material. Thus, 

an automated image analysis is performed on the whole texture and similar 

colored regions are marked as the same material. 

The tolerance is an integer value between 0 and 255. To assign the selected 

material to a voxel the following condition must be satisfied:  
 

 If ( abs(R-SelectedColorR) <= Tolerance) and 

    ( abs(G-SelectedColorG) <= Tolerance) and 

    ( abs(B-SelectedColorB) <= Tolerance) and 

    ( abs((R-SelectedColorR)-(G-SelectedColorG)) <= Tolerance)) and 

    ( abs((R-SelectedColorR)-(B-SelectedColorB)) <= Tolerance)) and 

    ( abs((G-SelectedColorG)-(B-SelectedColorB)) <= Tolerance)) 

    then assign the material. 

 

It is our experience that, the best similarity detection is obtained with the criteria 

described above. The first three lines helps a lot to find a color near to the 

selected one which is given as red, green and blue components, but it is not 

enough alone because the change can be in positive or negative direction. If red 
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changes in +tolerance and green changes in –tolerance, the distance between red 

and green will be 2 times of the tolerance. So, the next three lines are also 

needed. The result of the applied operation is shown in Figure 3.10. 

  

 

 

   

 

Figure 3.10: Rivers are extracted (right) from the texture (left) using color 

similarity. The white region on the right  image is the extracted river. 

 

 

 

Applying similarity criteria to the whole area is one approach. Depending on the 

state and region distributions, different methods are needed. So, the tools can be 

extended in many ways such as selecting similar neighbor voxels or selecting 

zero-sloped areas such as lakes, rivers, etc. 
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3.2.2. Features 

Features are the natural or build-in static objects located on the terrain such as 

lakes, trees, rocks, roads, houses, bridges, etc. 

There are three different feature types according to their location: point located, 

path located and area located features. A point located feature is positioned on the 

terrain by its x, y coordinate and face direction (e.g., houses, trees, bridges). A 

path located feature is defined as a list of x and y coordinates forming a path such 

as roads, rivers, etc. By using area located features, you can define areas such as 

lakes and seas. 3D models of some sample features can be seen in Figure 3.11. 

 

 

 

     

 

Figure 3.11: Static features: a 3D hut (left) and tree (middle), specification of 

road segments and trees (right). 

 

 

 

3.2.3. Weather Conditions 

Weather condition is a very important environmental effect. It may even cause a 

sensor or a platform completely unusable. For example, an UAV (Unmanned Air 

Vehicle) cannot fly on a windy day or above a limited altitude. A normal camera 

(DayTV) can not see at night because of low light, an infra-red camera can not 
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work fine on hot days because of its sensitivity to temperature, or a Doppler radar 

can not be used on windy days because of too much movement which increases 

false alarm rate. Also fog, rain, snow, humidity, etc. reduce the maximum seeing 

distance of many optical sensors.  

Different weather conditions on a large landscape can be defined. A matrix of 

indexes similar to the landscape elevation matrix is stored to assign different 

weather conditions to different regions. Each member of the matrix holds an 

index pointing to a member of weather conditions list. The matching of each 

voxel to a weather condition is obtained by a simple linear distance check. A 

voxel gets the condition of the nearest weather condition object in the list. The 

result of a sample assignment is illustrated in Figure 3.12. 

 

 

 

 

 

Figure 3.12: Regions having various weather conditions are colored in different 

colors. Triangles shapes are weather condition objects. 
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Each weather object stores a set of weather parameters defining the current state. 

These parameters are as follows: 

 

•  Day time temperature, 

•  Night time temperature, 

•  The type of rain, 

o Rain, 

o Snow, 

o Hail, 

•  Level of rain, 

•  Density of fog, 

•  Density of humidity, 

•  Density of cloud, 

•  Direction of wind, 

•  Strength of wind. 

 

The value of parameters except the temperature and direction of wind are 

discritized as none, very low, low, mean, high, and very high. The reason of not 

using real values and units is the difficulty of finding them.  

 

3.3. Dynamic Entities 

Dynamic entities on the terrain are grouped into three categories: the blue group, 

the red group and the white group. The group structure is shown in Figure 3.13. 
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Figure 3.13: The group structure of the dynamic entities 

 

 

 

The blue group is the defense forces that have platforms carrying different kinds 

of sensor systems such as DayTV, infra-red camera, etc. They are controlled by 

the users. The control can be achieved in two different ways: the remote control 

and the driver control. The remote control means watching and controlling the 

sensors from a far central system (command center), and the driver control means 

watching and controlling the sensors as the driver of platform carrying the sensor 

itself. The objective of the blue group is to defense a tactical area from any 

assault forces. 

The red groups are the assault forces that are intelligent human agents. They have 

a semi-automated behavior system. They are organized in one or more groups 

each having a commander. Their objective is to complete a given mission without 

being detected or caught by any defense forces. The mission may be to attack, 

escape or just pass through the selected tactical area. 

The white group is the animals that are natural creatures such as birds, bears, 

horses, wolves, etc. They have a simple automated behavior system making them 
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move randomly on the terrain. The idea behind introducing them to the 

environment is to make the platforms and agents’ perceptions go wrong.  

 

3.4. Command & Control Systems 

3.4.1. Test Environment 

In order to simulate defense and assault forces, a real-time simulation system is 

generated using the previously described environment. The simulation system 

enables the users to defend the selected area by monitoring and controlling the 

sensors and platforms from the field or tactical command center. It also supplies 

the environment with our intelligent agents. 

The tactical command center has the capability of monitoring the views of one or 

more sensors at the same time, and controlling them remotely. It can also assign a 

driver console to interactively control a platform in the field. There are two driver 

consoles; so two platforms can be controlled at the same time. 

 

3.4.2. Command Center 

The command center has four sensor monitors. The user can use any of the 

monitors to view a selected sensor of a platform. Each sensor assigned to a 

monitor can be controlled remotely. For example, the looking direction or the 

zoom level of a sensor can be changed at any time. The command center console 

is shown in Figure 3.14. 
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Figure 3.14: A snapshot from command center 

 

 

 

The current coordinates of the platforms can be seen from the command center. 

An orthographic raster map showing all the platforms on the area gives this 

capability. The map can be moved or zoomed, or the 3D model of any region can 

be viewed by just using mouse. 

 

An automatic alarm generation support is also added to the system. When a new 

object is detected, the laser distance finder can find the estimated coordinate of 

the object. It is also possible to send any platforms to the area to recognize and 

identify any detected object. The driver consoles are used for that purpose. 

 

3.4.3. Driver Consoles 

The driver consoles are used to control movement of platforms in the field. There 

are consoles that can be used at the same time. The controlled platform can either 

be a land or an air platform. The driver console has three display channels. These 

are the view of the driver eyes, the view of one of the sensors at the platform, and 
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the orthographic map centering the current coordinate of the platform under 

control. The Figure 3.15 is a snapshot form the driver console. 

 

 

 

 

 

Figure 3.15: A snapshot from a driver console 
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CHAPTER IV 

 

 

DISPLAYING ENVIRONMENT INFORMATION 

 

 

4. Number 

4.1. Visualization 

The user needs to see and edit the information gathered. So, a visualization 

method is essential in order to view elevation, slope, surface, texture, and weather 

condition data. 

In the system, there are two main displaying types according to their projection, 

which are the orthographic (top view with no perspective) and the perspective 

projection. The orthographic displaying of the landscape is indeed a top view of 

the area. You can move, zoom-in or zoom-out to any region loaded using mouse. 

The 3D displaying (rendering) is used to view the area in a camera manner. It 

allows you to see or investigate a specific region in detail, or just to travel in the 

area such as being in a helicopter. 

 

4.2. Orthographic Viewing 

4.2.1. Displaying Elevation Data 

The elevation data is a matrix of heights sampled equally distanced on the terrain. 

The values are elevations from the sea level in meters. We can find the minimum 

and maximum elevation on a loaded terrain to limit the values, so that we can 

colorize the map. The color of a voxel is calculated using a linear interpolation 
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between the dark green (minimum elevation) and light green (maximum 

elevation). The result is shown in Figure 4.1. 

 

 

 

 

 

Figure 4.1: Visualization of elevation matrix 

 

 

 

4.2.2. Displaying Slope Magnitudes and Directions 

When the elevation matrix is loaded, slope magnitudes and directions are 

calculated automatically, which is described in Section 3.2.1.3. The slope 

magnitudes are values between 0 and 100, so the color of a voxel is calculated 

using a linear interpolation between the dark green (0) and light green (100). A 

sample slope magnitude map is shown in Figure 4.2.  
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Figure 4.2: Visualization of slope magnitude matrix 

 

 

 

The slope directions are values between 0 and 360, but we cannot use a simple 

linear interpolation this time because the values near to 0 and 360 are similar 

directions and must be colorized with similar colors. So the value-color matching 

is white for 0 degree and black for 180 degree. The color turns to white again as 

the degree increases to 360. The result of colorizing the directions is illustrated in 

Figure 4.3. 
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Figure 4.3: Visualization of slope direction matrix 

 

 

 

4.2.3. Displaying Texture 

Texture is the easiest information to display because of the data format used. The 

matrix of texture stores the red, green and blue values for each voxel. So no 

conversion is needed at all. A sample satellite texture is shown in Figure 4.4. 
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Figure 4.4: Visualization of texture matrix 

 

 

 

4.2.4. Displaying Mixed Information 

In some cases, we may need to see a mixture of the environment information 

such as elevation and slope direction values in a mixed form. In this case, two 

colors must be mixed in a weighted manner called alpha blending. For example, 

when we want to merge the elevation matrix to slope direction matrix using 70% 

transparency, the color of each image pixel is calculated using the following 

formula: 

 

MergedColorRed  = (0.7) ElevationColorred  + (0.3) DirectionColorred  

MergedColorGreen  = (0.7) ElevationColorGreen  + (0.3) DirectionColorGreen  

MergedColorBlue  = (0.7) ElevationColorBlue  + (0.3) DirectionColorBlue  

 

So the general formula of alpha blending an image A over an image B for an 

transparency value, α (between 0 and 1) is: 
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BlendedColorRed  = (α) Ared  + (1-α) Bred  

BlendedColorGreen  = (α) AGreen  + (1-α) BGreen  

BlendedColorBlue  = (α) ABlue  + (1-α) BBlue  

 

This technique is used for displaying elevation-slope matrix, surface materials 

and weather conditions. The blending of elevation and slope direction matrix is 

shown in Figure 4.5. 

 

 

 

 

 

Figure 4.5: Visualization of elevation and slope direction matrix using alpha 

blending 
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4.2.5. Displaying Surface Materials 

We have 12 different surface material types that are described in Section 3.2.1.5. 

For each type, a specific color is assigned and the information is displayed by 

merging the result to the slope direction matrix using alpha blending technique. A 

sample snapshot is shown in Figure 4.6. 

 

 

 

 

 

Figure 4.6: Visualization of surface materials blended on slope direction matrix 

 

 

 

4.2.6. Displaying Weather Conditions 

The weather condition of an area is determined by the weather objects added to 

the environment. Each voxel takes the properties of the nearest weather object on 

the area. So, the visualization of the weather condition depends on the number of 

weather objects added to the scene, which changes from 1 to 255. If we use 

similar color values for different weather objects (such as 1, 2, and so on), it may 
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be impossible to see the color difference. In practice there are at most several 

weather objects in an environment. So it is better to assign color values 

dynamically using the number of objects in the environment, covering the whole 

color spectrum. For example, when we have 3 weather objects in the 

environment, the color of first object will be 0, the second object will be 127, and 

the third one will be 255, which is the upper bound of the color. The result of 

coloring the weather distribution of 6 weather objects is shown in Figure 4.7. 

 

 

 

 

 

Figure 4.7: Visualization of weather condition distribution blended on slope 

direction matrix 

 

 

 

4.3. 3D Rendering 

In order to visualize the environment in details, 3D rendering by perspective 

projection is also supported in the system developed. The common techniques for 
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rendering a landscape are polygonal and voxel based rendering, which are 

discussed in Section 3.2.1.1. In this study, both techniques are implemented, but 

the polygonal based rendering is mainly used because of the efficiency increase 

by the help of hardware support. But, voxel based rendering enables some 

features that cannot be managed by using just polygons. For example, the plant 

cover density of an area can be rendered using the technique. The information is 

the average plant height and density of the area, and the output is the probability 

of seeing for each voxel and the air above. The result of rendering is shown in 

4.8. 

 

 

 

 

 

Figure 4.8: 3D Visualization of the plant-cover density. On the image, the plant 

cover density of the dark colored regions is low, and density of the light colored 

regions is high. 
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If we don’t need the additional capability of voxel based rendering techniques, 

the polygonal rendering is commonly preferred because of hardware support. An 

area rendered by both polygons and voxels using different textures is shown in 

Figure 4.9. 

 

 

 

   

 

Figure 4.9: Polygonal and voxel rendering: The image on the left is rendered 

using polygons and the one on the right is rendered using voxels. Note that the 

textures, the camera positions, and the resolutions are not the same. 
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CHAPTER V 

 

 

AGENTS 

 

 

5. Hidden 

5.1. Introduction 

This thesis involves modeling and representing actions for virtual human 

agents that should accomplish a given tactical mission in a virtual battlefield, 

which is a part of a sensor simulation system. The objective of developed 

software is to test a sensor optimization algorithm using scenarios that are 

executed by the intelligent human agents. The main goal of the agents is to 

accomplish the given mission without being detected or caught by a sensor 

platform. 

 

5.2. Goal Description (Mission) 

In the proposed approach, the goal belongs to the group, not the individuals. 

Every group has its own goal plan (group mission) and moves with its 

commander’s orders. The group commander gives decisions to accomplish the 

mission and subordinates follow their commander under normal conditions. All 

the group missions form the higher-level mission of the assault forces altogether. 

Goal description is given as a set of tactical control points and a list of actions to 

be achieved at each point. Path control points are categorized into five group, 

which are starting point, target point, home point, pass through points and 

tactical points. To reach these control points, commander generates a path 
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considering the terrain and currently detected threat information. Then, the 

commander follows that path. A screen snapshot of a sample scenario is shown in 

Figure 5.1. 

 

 

 

 

 

Figure 5.1: Scenario control points for two agent groups. Before planning a real 

path, the connections between control points are just straight lines. 

 

 

 

The objective of a group is to pass through each given tactical point, but all the 

points do not have the same priority. For example, the group must pass through 

the target point. However it is not obligatory for a group to go through the points 

whose types are pass through. 

The group can accomplish some tasks/actions at control points. Actions define 

the activities to be done such as wait 5 minutes, put bomb, etc. Synchronization 

among groups is also handled using a special action type called the radio 

messages. 
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5.3. Perceptions 

5.3.1. How Perceptions Work 

Agents gather information from the environment by seeing and hearing based on 

probabilistic computations. Actually, the sensor perceptions do not work 

stochastically, but the notification of a sensor perception by an agent is based on 

probability. That means; the sensors percept every thing around, but the agent 

may not notice it depending on the probability of detection. The sensor 

perceptions are sent to agent even the probability is very low. Then the agent 

checks the probability. If the perception is owned by an unknown entity, which 

means the attention is low; a probability test is done before accepting it. If the 

agent decides to notice the entity, then the entity is always seen or heard without 

calculating the probability until it is away from the agent’s point of view. That 

can be described by the following example. A person always looks around. Eyes 

capture everything that is possible to be seen, but human may not notice them 

because of his low attention. Once an entity is noticed, seeing and following it 

becomes continuous by the help of high attention. Hearing can also be considered 

similarly. The difference is that hearing doesn’t depend on being in viewing 

angle. 

 

5.3.2. Seeing 

The detection probability of image gathering perceptions, seeing, is related to the 

optical capabilities. Therefore, the probability of detection by seeing depends on 

the following parameters: 

 

•  Being in line of sight 

•  Being in viewing angle 

•  Volume of the target 

•  Range to the target 

•  Movement of the target 
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•  Plant cover 

•  Weather condition 

 

The being in viewing frustum and in line of sight means; the agent looks in the 

direction of the target and there is no other object between them to prevent seeing 

each other. The volume of target also affects the probability, because if an object 

is big, it is easy to see, but if small, then it is hard to see. The increase in the 

range between the agent and the target reduces the probability, and the movement 

of target increases the probability. Plant cover is also an important property 

affecting the probability. For example, if the target or the agent is in a forest, the 

probability of detection decreases sharply. Bad weather condition such as fog, 

rain, snow also reduces the probability. 

 

5.3.3. Being in Line of Sight 

If a location p1 is visible from another location p2, we say that p1 is in line of 

sight (LOS) of p2, and the line of sight test of two coordinates; p1 and p2 results 

in true. To do the test, we check the existence of any other objects intersecting the 

line connecting p1 and p2. If so, that means p1 is not visible from p2, and the line 

of sight test returns false. 

 

In the system, LOS is only tested using landscape, but not the objects on the 

terrain. LOS test for landscape is illustrated in Figure 5.2 and 5.3. 
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Figure 5.2: Two points are in line of sight of each other. 

 

 

 

 

 

Figure 5.3: Two points are not in line of sight of each other. 

 

 

 

The voxel base line of sight tests are much more efficient than polygonal 

intersection tests. In polygonal models, we don’t have a systematic polygon 

distribution. For that reason many polygonal grouping techniques such as oc-

trees, are used to increase efficiency, but voxels are already in that systematic 

format. Thus, intersection test are very efficient. Our implemented line of sight 

algorithm uses an incremental technique that works on voxels, which is 

commonly used in ray tracing for increasing efficiency of polygonal intersection 

tests. The algorithm finds the boundary intersection points of the voxels and the 

ray sent, which is illustrated in Figure 5.4. For each intersection point, the height 

of the ray and the landscape elevation at the point is compared. If ray is under the 

terrain in any point, it means; a hit is found and the two points are not in line of 

sight of each other. 
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Figure 5.4: Line of sight test: The boundary intersection points of the voxels and 

the line are founded. 

 

 

 

The line of sight algorithm or similar algorithms are applicable to many 

problems. For example, the algorithm is used for the computation of sensor 

coverage, agents’ visibility tests, radio communication availability tests, direct 

path availability tests between two coordinates, voxel rendering, ray tracing, etc. 

 

5.3.4. Being in Viewing Frustum 

To see a target, being in line of sight is not enough alone, but also the agent must 

be looking nearly at the direction of the target. The eyes of an agent have a 

vertical and horizontal angle limit that bounds the seeing capabilities at a given 

time. This limited volume depending on the viewing direction, and vertical and 

horizontal angle limits is called viewing frustum which is illustrated in Figure 

5.5. 
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Figure 5.5: Viewing frustum of an agent 

 

 

 

If the angle difference between the viewing direction and the direction of the line 

passing through the agent and the target coordinates is less than the angle limits 

of the eyes, the target is in viewing frustum and it can be seen by the agent. That 

is illustrated from top view in Figure 5.6. 
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Figure 5.6: Testing viewing frustum: Angle A is the horizontal angle of the eye. 

Angle B is the angle between the viewing direction and the direction of the line 

passing through the agent and the target coordinates. 

 

 

 

5.3.5. Stochastic Detection 

5.3.5.1. Introduction 

The detection process of an agent depends on the probability of detection. A 

probability test is done for each new perception received from the sensors, which 

is described in Section 5.3.1. The important question is how to compute the 

probability in a given situation. Being in line of sight and viewing frustum is a 

must, but they don’t affect the probability. The main property that affects the 

probability of detecting a target is the distance between the target and the agent. 

Theoretically, there is a maximum detection range, which has a probability of 

detection above zero percent. Up to this range, an agent may notice the target 

depending on the probability. A probability curve can be given in this maximum 

range. But, in this study it is usually accepted as a linear graph decreasing from 
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100% probability to 0% probability for zero and maximum detection range in 

meters. 

 

5.3.5.2. Detection Range 

Detection range is the maximum distance between a specific type of target and an 

agent such that agent can detect the target by its visual perception. The detection 

range is not a static value and mostly depends on the weather condition. So we 

get the range values for ideal conditions and dynamically compute the new 

detection ranges for current state using a set of parameters defining the amount of 

possible changes. For example, if there is fog or rain, the detection range of a 

DayTV decreases by some rate. In the study, we usually get these parameters 

from the domain experts. 

 

5.3.5.3. Weather Condition 

5.3.5.3.1. Ideal Conditions 

The weather condition that maximizes the maximum detection range of a sensor 

is called the ideal weather condition. Although the conditions are ideal, there is a 

limit on detection range because of many effects such as the volume of the target 

(type of the target), and the capabilities of the sensor. For example, the detection 

range of a tank is much more than a human because of the volume. A DayTV 

cannot detect far at night; in contrast an infra-red works fine in dark. 

 

The ideal detection ranges can be found by real-life experiments. In our system, 

these values are taken from the experts for specific kinds of sensors and target 

types. Than a curve is constructed using linear interpolation. A sample 

probability curve is shown in Figure 5.7. 
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Figure 5.7: A probability graph, which is constructed from a set of sample points 

 

 

 

5.3.5.3.2. Deviate From Ideal Conditions 

After getting the maximum detection range of the ideal condition, derivations 

from ideals are calculated from the current weather condition and a set of 

parameters and graphs defining multipliers. These parameters and graphs are as 

follows: 

 

•  Temperature: 

multipliers as a graph constructed from a set of sample temperatures 

•  Light: 

multipliers as a graph constructed from a set of sample light levels 

•  Wind: 

multipliers for very low, low, mean, high and very high wind levels 

•  Rain: 

multipliers for very low, low, mean, high and very high rain levels 

•  Wind: 

multipliers for very low, low, mean, high and very high wind levels 

 

Probability 

1.0 

Distance 

Maximum Detection range 

A sample point 
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•  Snow: 

multipliers for very low, low, mean, high and very high snow levels 

•  Hull: 

multipliers for very low, low, mean, high and very high hull levels 

•  Fog: 

multipliers for very low, low, mean, high and very high fog levels 

•  Humidity: 

multipliers for very low, low, mean, high and very high humidity levels 

 

For example, to generate the temperature graph, a set of sample temperatures and 

their multiplier values are given such as 0.9 for 23 degree, 0.6 for 10 degree. 

Than a graph is constructed from the given values using interpolation. This 

process is also applied to light level graph. We don’t construct a graph for wind, 

snow, hull, fog and humidity multipliers, because these conditions are discritized 

as very low, low, mean, high and ver high. From these parameters and graphs, a 

merged multiplier is computed. Than the maximum detection range is multiplied 

by this multiplier to find the deviated range. This operation is sampled in Figure 

5.8. 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: The graph on the left is probability distribution for ideal condition and 

the one on the right is a scaled graph multiplied by 0.7. 
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It is possible to visualize the probability values using sensor coverage (visible 

areas from a sensor). The results are shown in Figure 5.9. 

 

 

 

   

 

Figure 5.9: The image on the left is the coverage of a DayTV while there is no 

rain and the one on the left is while there is heavy rain. The change from light 

gray to dark green shows the probability reduces. 

 

 

 

5.3.5.4. Plant Cover 

The plant cover density also reduces the probability of detection by a multiplier 

between 0 and 1. To find this multiplier, all the voxels along the ray connecting 

the agent and the target must be traversed. This traversal is performed by the LOS 

algorithm, which is described in Section 5.3.3. Initially the multiplier is 1. While 

going along the ray, if the ray passes near to the ground (below the average height 

of the plant cover), the plant cover densities are used to update the multiplier. 

This process is illustrated in Figure 5.10. 
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Figure 5.10: The effect of plant cover density and viewing angle 

 

 

 

The density is a value that shows how the probability will reduce for passing a 

distance of 1 meter along the ray. For example, if a target is in 25 meters away in 

a forest, this 25 m travel may reduce the probability of detection by a multiplier 

0.1, which actually depends on the plant cover density of the forest. The hard 

thing to do is to find out the densities in real world. 

 

5.3.6. Hearing 

There is no chance of detecting by seeing the objects that are neither in the line of 

sight nor viewing angle. However the objects can be sensed using audio cues. 

Hearing is modeled as a probability function depending on the range and the 

speed of the movement of the object that causes noise. The noise from a truck is 

because of its engine while the noise of a human is caused because of his steps. If 

the object is not in the line of sight (e.g., the target is behind a wall), the 

probability of hearing is also decreased using reasonable multiplier. 

Detection by hearing is very important for an agent. For example, for a 

commander, being aware of his subordinates is important, but it is not possible to 

walk all the time by looking at every one in the group. However, the commander 

can hear and detect the average position of a person by its food steps. This 

enables the commander to aware of his subordinates without looking at them. 
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5.4. Classifying and Storing Perceptions 

The gathered information from seeing and hearing is classified into three 

categories by using range and type of the target. These are detection, recognition 

and identification. Classification criteria are shown in Figure 5.11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: Perception is classified into three categories: detection, recognition 

and identification. 

 

 

 

If a new perception occurs, it is added to the knowledge base of the agent. The 

knowledge base is stored in a dynamic link list. The problem is to decide whether 

the perception is a new object or an update of a previous detected object. 

Although we are in a computer-generated world and have the information of all 

the objects in the environment, the ID of detected object is not sent to the agent 

unless it is identified. The agents have to find the similarities themselves and 

update the knowledge base. The similarity is found out using estimated positions 

Perception 

Else The object is not seen 

If object is in line of sight and 

viewing frustum, and nearer 

If in identification range The object is 

If in recognition range by 
seeing or hearing 

The object is 
recognized 

Else 

The object is detected 

If the object is moving and 
nearer than maximum hearing 

distance 

If in recognition range and 
the object type is 

recognizable by hearing 

The object is 
recognized by hearing 

Else The object is detected 
by hearing 
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of previous detected objects and the positions of new detected objects. If a similar 

perception is searched for the previous detected object information in the 

knowledge base, an estimate of position is calculated using previous movement 

direction. If the range between the estimated position and the new detected object 

position is smaller than a threshold that is calculated considering the previous 

speed, we may accept that they are similar. If a similar perception is found, the 

previous knowledge base is updated using new detected perception; otherwise the 

perception is added to the knowledge base as a new item. The algorithm, which 

controls the agents, is shown in Table 5.1. 

 

 

 

 
 

Figure 5.12: A sample scenario for similarity detection 

 

 

 

The similarity detection is sampled in Figure 5.12. In the figure, an agent detects 

an object walking in the south east direction and adds it to its knowledge base. It 

also stores its detection type (detected, recognized, identified), object type (if 

known), last seen position, and average speed. After some time, the object is not 

seen any more because of a wall, but the agent has the previous object 

information and it starts to make estimation of the object position. Time passes 
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and the object is again seen in some other position. This time it is a new 

perception because it is not recognized yet. It starts to search the new perception 

in the knowledge base. The previous object positions were update in the previous 

simulation frame, so if the estimated position and the new perception position are 

similar, that is near than a similarity threshold which is also dynamically 

calculated using previous average speed (error tolerance of speed), than the new 

perception is said to be the same object detected before. In that situation, the 

previous knowledge base is just updated, else if no similar perception is found; 

the new perception is added to the knowledge base. 
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Table 5.1: The algorithm, which controls the agents 

 

 
Main loop 
 
 
For each group 

For each agent 
If the agent is a red team member (intelligent agent) 

Construct the sensor perception list for the agent; (A) 
Analyse the perception list and update the knowledge base; (B) 
Execute behavior module; (C) 
Update the physical appearance in virtual environment; 
 

 
A) Construct the sensor perception list for the agent 

 
 
Backup the previous perception list and create a new list; 
For each group 

For each agent except himself 
Calculate the seeing and hearing statistics between the agent and the target; (D) 
 

 
B) Analyze the detected list and update the knowledge base 
 
 
For each member of perception list 

If the perception exists in the previous list and unsensed because of the probability test and no probability change 
occurred after that time 

Mark the member of new detected list as “not-sensed” again; 
For each sensed member (not checked as “not-sensed”) of new perception list 

Do a comparison to knowledge base, find the similarities; 
If similarity found 

Update the knowledge base and check the member of perception list as “similarity-found”; 
For each member of new detected list which is not checked as “similarity-found” 

Do a probability test and if it passes the test 
Add the list member to the knowledge base as a new perception; 

Else 
Check the member of perception list as “not-sensed”; 
 

 
C) Execute behavior module 
 
 
Find who the commander is; 
Find the status of the mission plan by using previous actions and radio messages; 
If the agent is a commander 

Wait or Update the path and follow the path depending on the mission status; 
Else 

If the commander position is known 
Follow the commander; 

Else 
Stop and search for the commander; 
 

 
D) Calculate the seeing and hearing statistics between the agent and the target 
 
 
Compute the statistics between the agent and the target (line of sight, viewing angle, range, etc.); 
If there is any possibility of detection, add the perception to the perception list; 
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5.5. Decision and Reaction 

Agents give decisions and react to various events using only their knowledge 

base. In addition to object positions, knowledge base also contains the 

information of who the commander is and the radio and face-to-face messages. 

By using this information, agents find out their commander and the status of the 

mission plan. If an agent is a commander, it executes the mission otherwise it 

follows the commander. If an agent doesn’t know the position of his commander, 

it stops and tries to find out the commander by looking around. 

 

Route between control points is generated using “Off-line Path Planning 

Module”. Unless an abnormal situation occurs, the commander follows that path. 

Otherwise, the path is updated considering the objective, not to be seen by any 

sensor platform. The off-line path planning and the path update algorithm will be 

described in Section 6. 

 

5.6. Group Formation 

The group formation is concerned with the distribution of members within a 

group. A group formation is necessary for a systematic achievement of tasks. The 

position of a member in the group is defined by (dx,dy) coordinates relative to the 

commander, which is shown in Figure 5.13. 

The member coordinates are calculated using the current position and direction of 

the commander and this calculated position is given to the member as a target 

position to be reached. If a subordinate is too far from its expected position, it 

runs for a while to take the right position else it only walks until arriving at the 

target position. A snapshot from a group formation is shown in Figure 5.14. 

In our study, the user gives the group formation to the group. In fact, changing 

formations using military rules is also possible while executing the mission. This 

can be a future work. 
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Figure 5.13: Group formation of a group with a commander and the three 

subordinates. 

 

 

 

 

 

Figure 5.14: A group of agents walking in a formation: The commander is in 

front of five subordinates and a helicopter is about to capture them. 

 

 

 

 

The commander 

Subordinates 

y 

x 

dy 

dx 

Group 



 57 

5.7. Group Synchronization by Radio Communication 

Every group has a mission, which is a part of a high level mission. The mission is 

a set of control points and a list of goals to be achieved at these points. Some of 

these goal pieces contain radio messages to be sent at these points. Radio 

messages are used for coordinating the groups allowing a coordinated mission. 

These radio messages are: 

 

•  arriving at a control point, 

•  becoming ready to leave a control point, 

•  continuing the mission (leaving a control point), 

•  canceling the mission, 

•  sending a keyword, 

•  an enemy identified, 

•  being in danger (I am in danger), 

 

Sending a radio message is managed using a message string carrying the 

information to be sent. A message string includes the following fields: 

 

•  Radio message type, 

•  The sender group, 

•  The receiver group, 

•  The sender group member, 

•  The receiver group member, 

•  Where the message is sent from, 

•  A keyword string. 

 

Although the message may contain who the message is for, it is heard by all the 

agents having a radio message receiver, so all the agents know the status of the 

groups and the mission. A set of radio communications occurred while 

performing a mission is shown in Table 5.2. 
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Table 5.2: The list shows a set of radio communications occurred on a mission. 

At specific coordinates (1.4, 2.3, 3.3), all the groups are rendezvoused and 

synchronized, than continued the mission at the same time. 

 
 
group (2 and 3) is waiting for keyword “First step go” from group (1). 

♦  Radio Msg. From group (1) to all : we are leaving point 1.1 to continue mission 
♦  Radio Msg. From group (1) to all : send keyword >> “First step go” 

 Radio Msg. From group (2) to all : we are ready to continue from point 2.1 
♦  Radio Msg. From group (3) to all : we are ready to continue from point 2.1 

 Radio Msg. From group (2) to all : we are leaving point 2.1 to continue mission 
♦  Radio Msg. From group (3) to all : we are leaving point 2.1 to continue mission 

 Radio Msg. From group (2) to all : we arrived at point 2.2 
 Radio Msg. From group (2) to all : we are ready to continue from point 2.2 
 Radio Msg. From group (2) to all : we are leaving point 2.2 to continue mission 

♦  Radio Msg. From group (1) to all : we arrived at point 1.2 
♦  Radio Msg. From group (1) to all : we are ready to continue from point 1.2 
♦  Radio Msg. From group (1) to all : we are leaving point 1.2 to continue mission 
⇒ Radio Msg. From group (3) to all : we arrived at point 3.2 
⇒ Radio Msg. From group (3) to all : we are ready to continue from point 3.2 
⇒ Radio Msg. From group (3) to all : we are leaving point 3.2 to continue mission 
♦  Radio Msg. From group (2) to all : we arrived at point 2.3 

group (2) is waiting at point 2.3 for message “arrival at point 1.4” from group (1). 
⇒ Radio Msg. From group (3) to all : we arrived at point 3.3 

group (3) is waiting at point 3.3 for message “leaving point 2.3” from group (2). 
♦  Radio Msg. From group (1) to all : we arrived at point 1.3 
♦  Radio Msg. From group (1) to all : we are ready to continue from point 1.3 
♦  Radio Msg. From group (1) to all : we are leaving point 1.3 to continue mission 
♦  Radio Msg. From group (1) to all : we arrived at point 1.4 

group (1) is waiting at point 1.4 for keyword “Ready for Mission” from group (2). 
 Radio Msg. From group (2) to all : we are ready to continue from point 2.3 
 Radio Msg. From group (2) to all : send keyword >> “Ready for Mission” 

group (2) is waiting at point 2.3 for keyword “Target is Kartal Gozu” from group (1). 
♦  Radio Msg. From group (1) to all : we are ready to continue from point 1.4 
♦  Radio Msg. From group (1) to all : send keyword >> “Target is Kartal Gozu” 

 Radio Msg. From group (2) to all : we are leaving point 2.3 to continue mission 
⇒ Radio Msg. From group (3) to all : we are ready to continue from point 3.3 
♦  Radio Msg. From group (1) to all : we are leaving point 1.4 to continue mission 
⇒ Radio Msg. From group (3) to all : we are leaving point 3.3 to continue mission 

 

 

 

 

5.8. Location Availability 

If an agent can pass through a specified voxel, that voxel is said to be an available 

location for the agent. For the agents, a matrix storing the available and not-

available locations is allocated. The size of location availability matrix is equal to 

the terrain elevation matrix. The matrix is filled by the user in design phase. For 

the process, a set of tools is supported. These are setting elevation limit, slope 

limit, and surface material limit. 
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The elevation limit culls the voxels being above, below or equal to an elevation 

value. The result of culling the voxels above 1500 m is shown in Figure 5.15.  

The slope limit similarly culls the voxels being above, below or equal to a slope 

magnitude value. The result of culling the voxels having slope magnitude more 

than 30 degree is shown in Figure 5.16.  

The surface material limit culls the voxels being equal to a selected material type. 

For example, culling fresh water means setting rivers not-available places. 

All these culling operations can be applied any number of times and in any order 

resulting a location availability map mixed of different operators shown in Figure 

5.17. 

 

 

 

 

 

Figure 5.15: Location availability matrix after culling voxels above 1500 m (light 

colored regions are available locations) 
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Figure 5.16: Location availability matrix after culling voxels having slope 

magnitude more than 30 degree (light colored regions are available locations) 

 

 

 

 

 

Figure 5.17: Location availability matrix after culling voxels above 1500 m, 

having slope magnitude more than 30 degree and having material water, rock or 

forest (light colored regions are available locations) 
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5.9. Physical Modeling 

A 3D model is generated for the agents in order to be sensed by the platform 

sensors. A sample model is shown in Figure 5.18. For the physical appearance of 

the agents in the environment, only the coordinates are used and body motions 

are ignored. The motion kinematics or motion capture may be used to generate 

their body movements, but this may be a future work. 

 

 

 

 

 

Figure 5.18: The 3D human model used for agents 
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CHAPTER VI 

 

 

PATH PLANNING 

 

 

 

6.1. The Objective 

The group mission is given by a set of tactical control points. So we need to plan 

a path connecting these points in order to complete the mission. If a path is 

generated, the commander may follow the path to complete the given task. 

Off-line path planning is not suitable for real time mission execution. It serves a 

static path that is only available for short period of time, but agents are in a 

dynamic environment and unknown threats may appear in any time, so a new 

path has to be generated under abnormal conditions. Generating an off-line path 

for every frame is an inefficient way of mission planning. Indeed, only a partial 

update is enough in many situations. 

In this study, two different approaches are proposed for real-time mission 

planning. First one is an off-line path planning followed by a real-time path 

update algorithm, which partially update the path during the simulation cycle. 

And the alternative is a real-time goal directed path search algorithm that does 

not need any off-line path-planning phase. 

Both approaches have some advantages and drawbacks. Planning of an off-line 

path is a natural way of deciding a mission plan before going out to field. You 

generate a plan on the map, and want to keep it same as much as possible. 

However, during the mission execution, many abnormal events may happen and 

the previous plan can be completely unfeasible. Partially updating the path may 
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not be enough and off-line path planning may be inevitable. The second 

approach, an efficient real-time path search algorithm, can lead to a solution, but 

this is the way that ignores a fact. In our problem, we assume that the map is 

completely known, so ignoring that information is not a good way of planning. 

 

6.2. Off-line Path Planning 

In this study, an off-line path-planning algorithm that finds a path connecting two 

points on a large landscape is proposed. The algorithm doesn’t guarantee the 

shortest path, but finds an acceptable short path that does not contain any loops. 

A sample result is shown in Figure 6.1. 

 

 

 

 

 

Figure 6.1: The image shows an off-line path search result between two given 

points. The dark regions are not available for passing through. 
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The main advantage of the algorithm is its efficiency as it runs in linear time and 

prevents loops. It is similar to the breath-first search algorithm, which uses 

heuristics aiming to the goal point. It searches block regions, checks where it has 

gone before and never comes back again. Thus, the complexity of the algorithm 

is O(nm), where n and m are the number of cells in horizontal and vertical axes. 

Thus, n times m gives the total number of voxels. 

The second advantage is its possibility to be integrated to real-time applications 

by doing simple modifications. The off-line search steps can be distributed over 

simulation frames, which allow the algorithm to search a path in real-time. This 

approach is used in our proposed real-time path search algorithm. Another 

advantage is that it allows finding random paths by changing the parameters of 

heuristic function randomly during the search. 

Although it has the advantage of being efficient, it has also disadvantages. The 

main drawback of the algorithm is its generated paths, which are not the shortest 

paths in general. The result is usually near to the shortest path, but not the 

shortest one. Also the generated path usually contains sharp edges, which is 

illustrated in Figure 6.1 and Figure 6.2. These sharp edges can be fixed using the 

proposed path update algorithm, which usually aims to minimize the curvature. 
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Figure 6.2: A set of tactical control points and generated paths between these 

points. 

 

 

 

We assume that the landscape is defined as a 2 dimensional matrix of elevations, 

which forms a grid. Each grid member (voxel) of the landscape is marked as 

available or not available for passing through by considering slope magnitudes, 

surface materials, etc. The planning starts from the initial position (sx,sy) called 

the starting point and ends at the position (tx,ty) called the target point.  

First, we horizontally move left from the point (sx,sy) until a not available voxel 

is reached. Then, the same search is done to the right direction. Thus, the left and 

right boundaries (a1 and a2) of the point (sx,sy) are found. The points, a1 and a2 

are x coordinates of two voxels that are on the same row of starting point (sx,sy). 

Indeed, the found boundaries form a 1-dimensional horizontal line (the y 
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coordinate of the line is ly) and it splits the local area into north and south part, 

which is illustrated in Figure 6.3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: The initial state of the algorithm 

 

 

 

Next step is to call a recursive function, “boundary”, by sending the current 

parameters ly, gx, a1, a2, where ly is the current y coordinate of the line and gx is 

the x coordinate of entry point to the line that are initially the sx and sy 

coordinates, a1 is the left bound of (gx,ly) and a2 is the right bound of (gx,ly). 

Each recursive function checks the north and south neighbor voxels of the 

bounded line (ly,a1,a2) for available exits. If one or more new neighbor exits are 

found, one of them is chosen using a heuristic function and “boundary” function 

is called again for the new exit line. After entering each recursive function the 

bounded line (ly,a1,a2) is filled with a sign for the sake of preventing loops, 

which means “gone before”. The process steps are illustrated on a sample in 

Figure 6.4. 

 

 

Starting point (sx,sy) 

First step: a horizontal line passing 
through starting point is found. This 
line splits the local region into north 
and south. 

Target point (tx,ty) 

Left boundary (a1) Right boundary (a2) 
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Figure 6.4: The recursive search process continues until reaching the line that the 

target point is on. 

 

 

 

When a path is found as a result of the search, the result usually contains too 

many control points. So, it needs to be optimized. The result is optimized while 

going out of the recursive functions. Thus, the process occurs from target point to 

starting point, which is actually the reverse order. While each point is added to 

the list, a linear connection test is done with the previous added control points. If 

any linear connection is available among the points am and an, all the interval 

control points in the range of am+1 and an-1 are deleted. The C-like pseudo code 

of the basic path-planning algorithm is shown in Table 6.1 and an optimized path 

is illustrated in Figure 6.5. 

 

 

 

 

 

 

 

found path 



 68 

 

 

 

 

 

 

 

 

Figure 6.5: An off-line generated path (left) and an optimized version of the same 

path (right) 

 

 

 

The optimization decreases the number of path points significantly, but the 

drawback is the time spent while checking the availability of linear path between 

two points. The LOS algorithm described in Section 5.3.3 is used for this 

purpose.  
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Table 6.1: The basic algorithm for the off-line path planning 

 
 

short tx; 

short ty; 

short found; 

 

 

void boundary( short ly, short gx, short a1, short a2 ) 

{ 

 

 short tar; 

 short goinfrom; 

 char xyon, yyon; 

 

          if ((ly == ty) && (tx>=a1) && (tx<=a2)) 

  { 

                     found = true; 

                     return; // path is found, generate the path now 

  } 

 

check the voxels on line (ly,a1,a2) as “gone before” 

 

// if target is at north, search north first else search south first. 

 if ( ly<ty ) yyon = 1; else yyon = -1;  

 

// if target is near to a1, start search from west else start search from east. 

 if ( abs(a1-tx)<abs(a2-tx) ) xyon = 1; else xyon = -1; 

 

search the north and south sides considering the priority determined 

by xyon and yyon, find all the available neighbor regions (ly±yyon,n1,n2) and 

their suitable entry points (goinfrom) 

call boundary( y±yyon,n1,n2,goinfrom); 

   if (found) 

{ 

// path is already found, continue generating the path 

   return; 

} 

 } 

 

 

char Search_Path( short sx, short sy, short targetx, short targety ) 

{ 

 short a1,a2; 

 

 tx = targetx; 

 yy = targety; 

 

 a1 = left boundary of sx,sy 

 a2 = right boundary of sx,sy 

 

 found = false; 

 

 boundary( sy, sx, a1, a2 ); 

    

 return found; 

 } 
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6.3. Real-Time Path Refinement and Update 

6.3.1. Energy Minimization 

After having generated an off-line path, the commander follows the path under 

normal conditions. When a threat is detected, this path needs to be updated 

considering the new situation. For that purpose, a path update algorithm is 

developed based an energy minimization of path points, which is a commonly 

used algorithm in image processing called the snakes. 

The algorithm assumes that every tactical control point has a potential energy, 

which is harmful such as radioactive energy. The objective is to get rid of or 

minimize this harmful energy. The energy sources are in two forms: internal or 

external. Internal energies are the curvature of path on the control point and 

deviation of initial distances between the neighbor control points. The external 

energy sources are the elevation, slope, and the threats. 

 

6.3.2. Internal Energies 

The two neighbors of a control point form a curvature, which is illustrated in 

Figure 6.6. Having high curvature on a path point is an unwanted effect, because 

this may cause the path become longer. So the curvature increase also increases 

the negative energy on a control point. 

In the Figure 6.6, the curvature of point 2 is computed using the following 

formula: 

 

Curvature = sqrt ( cx2 + cy2 ) / ( d1 + d2 ) , 

where  cx = x1 – 2x2 +x3 , cy = y1 – 2y2 + y3 
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Figure 6.6: Illustration of a high and low curvature. Moving a control point where 

causes a low curvature shortens a path. 

 

 

 

Another internal energy is the continuity. In ideal conditions, the distances 

between the neighbor points (edge distances) must be equal to each other and also 

the average of edge distances. The deviation from the average distance causes to 

increase the energy, which is shown in Figure 6.7. 

 

 

 

 

 

 

 

 

 

 

Figure 6.7: Illustration of a balanced (left) and not balanced path (right) 
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In Figure 6.7, the continuity of the left node is computed using the following 

formula: 

 

Continuity = ( r1
2 + r2

2 ) / 2 , 

where  r1 = abs ( d1 - average distance ) / average distance , 

r2 = abs ( d2 - average distance ) / average distance 

 

6.3.3. External Energies 

Slope magnitude is one of the external energy functions to be minimized. If slope 

magnitude increases, the negative energy also increases. The slope magnitude is a 

value between 0 and 90, so the Slope function is as follows: 

 

Slope Energy = slope magnitude / 90 

 

Another introduced energy source is the elevation. The objective is to minimize 

the control point elevations. So the function is as follows: 

 

Elevation Energy = elevation / maximum elevation on the terrain 

 

The last external energy function is for the threats. We assume that the threats are 

energy sources, and being near to a threat increases the collected negative energy 

on a control point. So the aim of the control points is to escape from threats, 

which is illustrated in Figure 6.8. Every threat has a limited visual capability and 

the agents has some believes about these capabilities. Using these believes, they 

find the maximum detection range (maximum range) for a specific type of threat. 

If a threat is detected and it is near to a control point, the energy on the point 

starts to increase depending on the maximum range. The function is as follows: 

 

If (distance to threat>maximum range) then Threat Energy = 0 else 

   Threat Energy = (maximum range – distance to threat) / maximum range 
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Figure 6.8: Threat energy causes the path points go far away from the threats. 

 

 

 

A total energy is computed from the energy functions using suitable weights, and 

all the control points are updated each frame. To update a control point, the 

energy of each voxel, which is near to the control point and has an available 

linear connection to the next point, is calculated. Then the control point jumps to 

the voxel, which has the minimum energy. The result of this process is shown in 

Figure 6.9. 

Using the minimization algorithm, the path refinement can be done to a limit, but 

the result is not satisfactory all the time, because this process cannot modify a 

path radically. For example, the path cannot pass over an obstacle, which is 

illustrated in Figure 6.10. 

Points can be moved using local energy minima on the fly 

 
Target point 

Starting point 

a threat 
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Figure 6.9: A path update sample: Left figure shows the initial paths of three 

agent groups. Their target, which is a non-deformable control point, is at middle 

of the area. Right image shows the updated paths after some time. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10: The path on the left aims to flow right, but an obstacle prevents this 

movement. 

 

An obstacle 

A threat 
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6.4. Real-Time Path Search: Real-time Horizontal A* 

If the agent doesn’t have a complete map or an off-line generated path, it has to 

decide on the fly while executing the mission. Thus, you don’t plan an off-line 

path, but you search a path that will make you reach the goal state. Our proposed 

real-time goal directed search algorithm is based on off-line path planning 

algorithm introduced in Section 6.2. This is a modified version of the algorithm 

integrated with real-time A* [MY96]. In the algorithm, linear regions (horizontal 

lines) and real-time A* approach are used to direct the search, so we call it Real-

Time Horizontal A* (RTHA*). 

In the off-line path planning, the search is started from the bounded horizontal 

line passing through the starting point (sx,sy). Then the search goes on by 

jumping available neighbors of the current line. Similar to off-line path planning, 

RTHA* search the area horizontally, but the process is done on the fly distributed 

to the whole simulation period. 

Real-Time A* is a greedy search algorithm that uses heuristics to direct the 

search. It evaluates the costs of the neighbor voxels at the current position and 

jumps to the voxel having minimum cost. While jumping to the next voxel, the 

algorithm writes 1 plus the cost of the second best neighbor to the previous voxel. 

This is illustrated in 6.11. 

 

 

 

 

 

 

 

 

 

 

Figure 6.11: State transition of Real-Time A* 
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The algorithm is effective for maze environments, but if the terrain is large and 

there are many semi-closed regions having large open areas inside, the agent may 

be stuck in the regions for a long time, because the search strategy is too local, 

only the neighbor voxels are evaluated. This state is simulated in Figure 6.12. 

Real-Time Horizontal A* is proposed to prevent that problem. RTHA* extends 

the search space from single voxels to large linear regions, so making the 

algorithm more useful in large environments having many open areas and semi-

closed areas. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12: The agent, directed by Real-Time A* may stuck in semi-closed 

regions having large open areas inside for a long time searching the same voxels 

hopelessly. 

 

 

 

RTHA* uses the same cost update technique as real-time A*, but it evaluates the 

costs of the neighbor linear regions instead of a single voxel and decides to reach 

the region having the minimum cost. While going to the next region, the 

algorithm writes 1 plus the cost of the second best neighbor to the previous 

region. This is illustrated in Figure 6.13. 

target 

agent 

The agent will stuck in that 
semi-closed region for a  
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target is at nort-west and 
the only out is at south-
east. 
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Figure 6.13: State transition of Real-Time Horizontal A* 

 

 

 

The algorithm almost gives the same results for maze environments, but if the 

terrain is large and there are many semi-closed regions having large open areas 

inside, the agent can go out of the region much more earlier than real-time A* 

does, because the search strategy is not as local as real-time A*. This state is 

simulated in Figure 6.14. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14: The agent, directed by Real-Time Horizontal A* can go out of semi-

closed regions quickly. 
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Table 6.2: The basic algorithm for Real-Time Horizontal A* 

 
 

x          = current x coordinate of the agent; 

y          = current y coordinate of the agent; 

current_a1 = left bound of x,y , initially –1; 

current_a2 = right bound of x,y , initially –1; 

 

 

float GetCost( short a1, short a2, short ay ) 

{ 

return minimum distance of the target to the bounded horizontal line (a1,a2,ay); 

} 

 

 

 

aa1        = left bound of best region found; 

aa2        = right bound of best region found; 

yy1        = y coordinate of the best region found; 

 

if (current_a1 == -1) // initially, current_a1 and current_a2 must be found 

{ 

       current_a1 = left boundary of x,y; 

       current_a2 = right boundary of x,y; 

       }; 

 

if (abs(targetx-x)<1 && abs(targety-y)<1) the target is reached, stop search; 

 

if (current_a1<=targetx && targetx<=current_a2 && y=targety) // at the row of the target 

{ 

if (targetx<x) x-- else x++; // go horizontally to the direction of the target 

} 

     else 

{ 

Search all the neighbor linear regions and 

find the best and the second best regions by calling GetCost evaluation function 

(the variables aa1, aa2 and yy1 is found) 

  

// go to the best linear region if any found 

 

if (aa1<=x && x<=aa2) // go one voxel up or down in the direction of the target 

{ 

               current_a1   := aa1; 

               current_a2   := aa2; 

               y            := yy1;          // jump to the row of best region 

if (x<targetx && x<aa2) x++   // go right voxel mean while 

     else 

if (x>targetx && x>aa1) x--;  // go left voxel mean while 

update the region cost of the previous region as the second best + 1; 

} 

      else 

if (aa1<x) x--   // go left voxel 

      else x++;  // go right voxel 

}; 
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The algorithm for RTHA* is given in Table 6.2. The path search function is 

called at each frame in the simulation. When the function is called for the first 

time, the left and right bounds of the initial agent coordinate (x,y) will be found. 

Then, the current state is evaluated. If the agent is at the target point, it stops. If 

the agent is at the same row as the target, then it just goes left or right, else it 

searches for the best linear region to be targeted. 

The main drawback of both RTA* and RTHA* is being not capable of handling 

dynamic environments successfully. For example, if new threat information is 

gathered, than it takes time to converge to a new direction, because the cost 

function output for each region changes and the previously stored cost values 

become partially invalid. While time passes, the costs are updated to new values, 

but during this time period, the probability of been captured by the threat 

increases significantly. 
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CHAPTER VII 

 

 

PERFORMANCE ANALYSIS 

 

 

7. Hidden 

7.1. Test Platform 

In this study, off-line path planning and path update algorithms are implemented 

by C++ programming language under both Windows and SGI IRIX platforms. 

The test environment for Real-Time A* (RTA*) and Real-Time Horizontal A* 

(RTHA*) are implemented by Borland Delphi programming language under 

Windows platform, which is shown in Figure 7.1. 

 

 

 

 

 

Figure 7.1: The test program for Real-Time A* and Real-Time Horizontal A* 
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We used a high resolution mountainous terrain having 2251x2251 voxels and 

split it into 6 regions to perform tests. These 6 regions are shown in Figure 7.2, 

7.3, 7.4, 7.5, 7.6, and 7.7. White colored regions denote accessible regions and 

dark colored ones denote not accessible. 

 

 

 

 

 

Figure 7.2: Test region 1: A map having widely open area is north and south part, 

but there is only one mountain pass between these regions.  
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Figure 7.3: Test region 2: A map having widely open areas, which is the south 

path of the one shown in Figure 7.2. 

 

 

 

 

 

Figure 7.4: Test region 3: A mountainous area having many semi-closed regions. 
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Figure 7.5: Test region 4: A map having widely open areas, which is the east path 

of the map shown in Figure 7.3. 

 

 

 

 

 

Figure 7.6: Test region 5: A mountainous area having many semi-closed regions. 

The map is the west part of the one shown in Figure 7.4. 
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Figure 7.7: Test region 6: A mountainous area having many semi-closed regions. 

The west and east parts are separated by narrow mountain passes. The map is the 

west part of the one in Figure 7.6. 

 

 

 

7.2. Test Results of Real-Time Horizontal A* 

In the tests, two agents are used, which are implemented by RTA* and RTHA* 

algorithms. Various starting and target points are chosen on these maps 

illustrating different initial states and region conditions. For each test, a target 

point and a starting point are given, and the two agents start from the same 

starting point and end at the same target point. 

Agents using RTA* and RTHA* can move in 9 different ways: north, south, east, 

west, north-east, north-west, south-east or south-west. There are only four states 

that an agent cannot move diagonally although the voxel is available, which are 

shown in Figure 7.8. 
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Figure 7.8: Moves that are not allowed for both RTA* and RTHA* 

 

 

 

Concerning the performance, we used one criterion that is the number of moves 

performed by an agent before reaching the goal. In each test run, two outputs are 

obtained (one from RTA* and one from RTHA*). Having lower values for 

number of moves means spending less time and energy to reach the goal state. 

For a chosen coordinate pair, tests are performed in both forward and backward 

directions. The first test is done choosing the first coordinate as the starting and 

the second as the target point. Second test swaps these points making the moving 

direction reverse. The results are shown in Table 7.1. 

In addition, we have done experiments to compare efficiency of both algorithms 

on an Intel Celeron-466, 128 MB Ram without displaying the process on the 

screen. RTA* performed 1000 moves in 0.135 seconds (7407 frames/second) and 

RTHA* performed 1000 moves in 1.666 seconds (1666 frames/seconds). The 

efficiency of RTA* is 4.444 times better than RTHA*, but both of them are 

acceptable for real-time applications. 
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Table 7.1: RTA* vs. RTHA*: the gray cells are the ones RTA* performs better. 

The performance increase is usually slight in RTA*, but in RTHA* it is generally 

very high. 

 

Area RTA* 

moves 

(forward) 

RTHA* moves 

(forward) 

RTLA/RTA 

ratio 

(forward) 

RTA* 

moves 

(reverse) 

RTHA* moves 

(reverse) 

RTLA/RTA 

ratio 

(backward) 

Average 

ratio 

R1.1 133,351 7,560 17.639 4,280,827 2,575,641 >1.662 >9.650 

R2.1 149,344 361,859 0.412 1,234 5,380 0.229 0.320 

R2.2 727 1,240 0.586 3,535 2,177 1.623 1.19 

R3.1 598 1.156 0.517 54,360 4,785 11.360 5.938 

R3.2 148,382 2,012 73.748 519,759 50,814 10.228 41.988 

R3.3 13,094 1,932 6.777 1,408 10,427 0.135 3.456 

R4.1 832 4,882 0.170 982 1,348 0.728 0.449 

R5.1 78,509 21,505 3.650 139,096 21,429 6.491 5.070 

R5.2 49,976 10,395 4.807 98,060 4,080 24.034 14.420 

R6.1 580 551 1.052 542 320 1.693 1.372 

R6.2 >2,858,922 705,010 >4.055 >662,805 45,778 >14.478 >9.266 

R6.3 1,721 1,799 0.956 1,074 1,346 0.797 0.876 

R6.4 1,337 586 2.281 447 654 0.683 1.482 

R6.5 13,404 5,173 2.591 893 1,009 0.885 1.738 

Total 3,450,777 1,125,660 - 5,765,022 2,725,188 - - 

Avg. 246,484 80,404 8.510 411,787 194,656 5.359 6.943 

 

 

 

The tests on RTA* and RTHA*, shows that in many situations RTHA* is more 

powerful than RTA*, but RTA* usually performs better in widely open areas 

such as the ones in Figure 7.3, 7.5.  RTHA* usually aims to move in east west 

direction. So if the area is widely open, first, the agent goes in the direction east 

west and centers the target in x coordinate, than moves north or south direction, 

which is illustrated with one of the sample areas (Result R4.1) in Figure 7.9. In 

the figure, the target is at north west and the agent is at south east. So the agent 

moves west for a while to center the target in x-axis. Than, it moves north. This 

causes the RTA* algorithm to reach the target slightly earlier than RTHA*, but 

the difference is not so much in general. 

Having large horizontal regions has another bad effect on RTHA*. RTHA* 

search algorithm is based on horizontal lines and their neighbor linear regions. If 
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the horizontal lines are wide, this causes the agent move a lot in the direction east 

west making it spend so much effort and time while traveling around. This effect 

is illustrated with one of the sample areas (Result R2.1) in Figure 7.10. 

 

 

 

 

 

Figure 7.9: Performance of RTA* and RTHA* on a widely open area 

 

 

 

If the area is complex, having semi-closed regions a lot as illustrated in Figure 

7.4, 7.6 and 7.7, than RTA* becomes very ineffective and time consuming, in 

contrast the RTHA* becomes a very good alternative. In that condition, the 

performance of RTA* reduces significantly, whereas the performance of RTHA* 

increases, because the semi-closed regions badly effect the RTA* algorithm and 

make it get stuck inside these areas for a long time period. 
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Figure 7.10: Having large horizontal regions has a bad effect on RTHA*. 
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CHAPTER VIII 

 

 

CONCLUSION AND FUTURE WORK 

 

 

 

In this thesis, we have studied the concept of computer-generated forces in order 

to construct a real-time simulation system. We have formed defense and assault 

forces against each other on a large mountainous landscape and tried to solve 

real-time path planning problem for mission planning purposes. 

We have developed a complete simulation architecture which consists of the 

environment generation and analysis, geographic information systems, 

environment displaying techniques, command and control systems, group and 

command hierarchy, radio messaging, group formation, group synchronization, 

stochastic perception gathering, physical modeling and real-time path planning. 

A test environment is generated using high-resolution real data of a mountainous 

area. Automatic and semi-automatic techniques are developed for analyzing 

slope, defining surface materials. A user interface is provided to modify the 

environment properties and to add features on the terrain. 

The defense and assault forces are generated in a group manner and a set of 

scenarios is generated to evaluate performance of developed algorithms: off-line 

path planning, real-time path update and real-time path search. It has been 

observed that planning an off-line path and updating real-time are a good choice 

if the partial updates are not significant, but if the mission plan changes sharply 

during the execution, real-time search algorithms serves more efficient solutions. 

Tests on real-time path search algorithms show that the proposed algorithm, Real-
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Time Horizontal A*, makes remarkable improvements on time spent for reaching 

the goal state. 

As a result of mentioned observations, we state that the real-time path planning 

techniques can be improved by increasing the visual depth, which helps a lot to 

escape earlier from the local semi-closed regions. But we have also noticed that 

there is much to do for better intelligent search strategies. More visual perception 

and evaluation techniques are needed to go one step forward. 

The techniques presented in this thesis mainly attempt to solve the problem 

“where to go for reaching a goal state”, but there is also an important question 

“how to behave while on the way”, which is a reactive behavior problem. For 

example, you may decide to follow a generated path, but how an agent must 

behave on the way (for example, running, walking or waiting) may not be known. 

Future research on behavior concept will help much to increase the success of a 

mission. 

Another important future research area is group coordination and corporation 

among the agents in order to complete a mission. Although this is a crucial need 

in computer-generated forces and military applications, we have seen that there is 

not much study in the area mainly because of its difficulty. So we have to focus 

on the domain and come up with new approaches. 

In this thesis, we have also studied briefly the group formation, which is a 

coordination technique among the team members of a group. This study was only 

aiming at moving a group according to a given group formation, but there can be 

future research on how to decide and change a group formation on the fly. 
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