

REAL TIME MISSION PLANNING FOR VIRTUAL HUMAN AGENTS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÇAĞATAY ÜNDEĞER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF COMPUTER ENGINEERING

JANUARY 2001

Approval of the Graduate School of Natural And Applied Sciences.

Prof. Dr. Tayfur ÖZTÜRK

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master Science.

Prof. Dr. Ayşe KİPER

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master Science.

Assoc. Prof. Dr. Faruk POLAT

Supervisor

Examining Committee Members :

Assoc. Prof. Dr. Faruk POLAT

Assoc. Prof. Dr. Veysi İŞLER

Assoc. Prof. Dr. Göktürk ÜÇOLUK

Assist. Prof. Dr. Halit OĞUZTÜZÜN

Y. Müh. Yb. Ziya İPEKKAN

 iii

ABSTRACT

REAL TIME MISSION PLANNING FOR VIRTUAL HUMAN AGENTS

Ündeğer, Çağatay

M.S., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Faruk Polat

January 2001, 94 pages

Path searching and mission planning are challenging problems in many domains

such as wargames, robotics, military mission planning, computer-generated

forces, etc. The objective of this study is to develop a multi-agent system for

virtual human agents on three-dimensional large landscapes (terrain) to

accomplish a specified mission by group synchronization. The terrain contains

natural and artificial entities such as rivers, lakes, forests, rocks, roads, houses,

bridges, etc. The agent groups enter a specific area to perform a specified

mission, which may be to attack, escape or just pass through a selected tactical

area. The terrain contains static and dynamic platforms that carry different kinds

of sensors such as DayTV, infra-red, radar, night-vision. The goal of the agents is

to complete their mission under control of a group commander without being

detected or caught by any platform. Monitors of the platform sensors are

 iv

observed by the user at tactical command center in order to make the detection

process more realistic. The agents plan path in real-time and follow their path in

order to complete the mission. For that purpose, an off-line path planning, a real-

time path update, and a real time goal directed path search algorithm are proposed

to find suitable routes passing through mission control points considering the

terrain, weather and the threat information known or gathered on the fly. When

an agent is detected or identified, it tries to alter its plan to accomplish the

mission.

Keywords : Computer generated forces, mission planning, off-line path

planning, real-time path update, multi agent real-time search.

 v

ÖZ

SANAL İNSAN ETMENLER İÇİN GERÇEK ZAMANLI GÖREV

PLANLAMA

Ündeğer, Çağatay

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Faruk Polat

Ocak 2001, 94 sayfa

Güzergah ve görev planlama, oyunlar, robotik, askeri görev planlama, yarı

otonom kuvvetler gibi bir çok çalışma alanın ilgi konusu olmuştur. Bu çalışmanın

amacı, sanal insan etmenlerle, geniş arazi üzerinde bir görevi grup

senkronizasyonunu da göz önünde bulundurarak tamamlamak için bir çoklu

etmen modeli geliştirmektir. Arazi üzerinde, nehirler, göller, ormanlar, kayalar,

yollar, evler, köprüler gibi doğal ve yapay detaylar bulunmaktadır. Etmenlerimiz

önceden tanımlanmış bir görevi başarmak (saldırı, kaçış, intikal vb.) için stratejik

bir alana girmektedir. Bu alanda, gündüz kamera, infra-red kamera, radar, gece

görüş cihazı gibi farklı tip sensörleri üzerinde bulundurabilen statik ve dinamik

platformlar bulunmaktadır. Etmenlerin amacı, herhangi bir platform tarafından

 vi

tespit edilmeden veya yakalanmadan bir grup lideri öncülüğünde görevini

tamamlayabilmektir. Tespitin gerçekciliğini arttırmak için platform sensörlerin

görüntüleri kullanıcılar tarafından taktik komuta merkezinden izlenmektedir.

Etmenler, gerçek zamanlı olarak güzergah planlamakta ve görevi tamamlamak

için planlanan güzergahı izlemektedir. Kontrol noktalarından geçen uygun

güzergahların gerçek zamanlı güncellenen bilgilerle, arazi, hava koşulları ve

düşmanı da göz önünde bulundurarak tespit edilebilmesi için bir çevrim dışı

güzergah planlama, bir gerçek zamanlı güzergah güncelleme ve bir de çoklu

etmenli gerçek zamanlı arama algoritması geliştirilmi ştir. Her hangi bir etmen

düşman tarafından tespit edilir veya tanınırsa, görevini tamamlamak için planını

değiştirmeye çalışacaktır.

Anahtar Kelimeler : Yarı otonom kuvvetler, görev planlama, çevrim dışı

güzergah planlama, gerçek zamanlı güzergah güncelleme,

çok etmenli gerçek zamanlı arama.

 vii

Dedicated to my parents,

 viii

ACKNOWLEDGEMENTS

I would like to thank my supervisor Assoc. Prof. Faruk Polat for his

encouragement and guidance during the development of my thesis. Also, I would

like to thank Assoc. Prof. Veysi İşler, Asist. Prof. Halit Oğuztüzün, Ziya İpekkan,

Şükrü Bilir and all TUAF-METU ModSim Staff for their great effort to get work

done.

 ix

TABLE OF CONTENTS

ABSTRACT... iii

ÖZ..v

ACKNOWLEDGEMENTS.. viii

TABLE OF CONTENTS...ix

LIST OF FIGURES.. xiii

LIST OF TABLES ...xvii

CHAPTERS

1 INTRODUCTION...1

1.1 The Subject ..1

1.2 Scope and Objective...2

1.3 Outline ...3

2 RELATED WORK..4

3 SIMULATION ARCHITECTURE..8

3.1 Introduction..8

3.2 Static Environment...11

3.2.1 Landscape...11

3.2.1.1 Terrain: Polygons vs. Voxels ...11

3.2.1.2 Loading DEM Files ...14

 x

3.2.1.3 Generating Slope Matrix..15

3.2.1.4 Mapping Texture ...17

3.2.1.5 Surface Materials...18

3.2.2 Features ..21

3.2.3 Weather Conditions ..21

3.3 Dynamic Entities..23

3.4 Command & Control Systems ..25

3.4.1 Test Environment ...25

3.4.2 Command Center..25

3.4.3 Driver Consoles ..26

4 DISPLAYING ENVIRONMENT INFORMATION..28

4.1 Visualization ..28

4.2 Orthographic Viewing..28

4.2.1 Displaying Elevation Data ..28

4.2.2 Displaying Slope Magnitudes and Directions....................................29

4.2.3 Displaying Texture ...31

4.2.4 Displaying Mixed Information..32

4.2.5 Displaying Surface Materials..34

4.2.6 Displaying Weather Conditions ..34

4.3 3D Rendering...35

5 AGENTS...38

5.1 Introduction..38

5.2 Goal Description (Mission) ..38

 xi

5.3 Perceptions...40

5.3.1 How Perceptions Work ...40

5.3.2 Seeing...40

5.3.3 Being in Line of Sight...41

5.3.4 Being in Viewing Frustum..43

5.3.5 Stochastic Detection ...45

5.3.5.1 Introduction ...45

5.3.5.2 Detection Range ..46

5.3.5.3 Weather Condition...46

5.3.5.3.1 Ideal Conditions ...46

5.3.5.3.2 Deviate From Ideal Conditions ...47

5.3.5.4 Plant Cover..49

5.3.6 Hearing...50

5.4 Classifying and Storing Perceptions ...51

5.5 Decision and Reaction..55

5.6 Group Formation..55

5.7 Group Synchronization by Radio Communication....................................57

5.8 Location Availability..58

5.9 Physical Modeling..61

6 PATH PLANNING ...62

6.1 The Objective...62

6.2 Off-line Path Planning..63

6.3 Real-Time Path Refinement and Update...70

 xii

6.3.1 Energy Minimization ..70

6.3.2 Internal Energies...70

6.3.3 External Energies..72

6.4 Real-Time Path Search: Real-time Horizontal A*.....................................75

7 PERFORMANCE ANALYSIS..80

7.1 Test Platform ...80

7.2 Test Results of Real-Time Horizontal A* ...84

8 CONCLUSION AND FUTURE WORK ...89

REFERENCES...91

 xiii

LIST OF FIGURES

FIGURES

3.1 Architecture context diagram of the simulation ...8

3.2 The static environment and the dynamic entities form the whole

environment ...9

3.3 Views captured from a DayTV camera and an infra-red camera....................10

3.4 A polygonal based terrain and a voxel-based terrain generated from a matrix

of elevations ...11

3.5 An image rendered using both digital elevation data and polygons................13

3.6 Four elevations let two different triangulation styles15

3.7 Calculating slope directions and magnitudes...16

3.8 Visualization of slope directions and magnitudes of a terrain17

3.9 The texture is mapped on the terrain using two diagonal corners, which are

given as geographic coordinates ...18

3.10 Rivers are extracted from the texture using color similarity.........................20

3.11 Static features ...21

3.12 Regions having various weather conditions...22

3.13 The group structure of the dynamic entities...24

 xiv

3.14 A snapshot from command center ...26

3.15 A snapshot from a driver console ..27

4.1 Visualization of elevation matrix ..29

4.2 Visualization of slope magnitude matrix ...30

4.3 Visualization of slope direction matrix..31

4.4 Visualization of texture matrix..32

4.5 Visualization of elevation and slope direction matrix using alpha blending ...33

4.6 Visualization of surface materials blended on slope direction matrix.............34

4.7 Visualization of weather condition distribution blended on slope direction

matrix...35

4.8 3D Visualization of the plant-cover density...36

4.9 Polygonal and voxel rendering..37

5.1 Scenario control points for two agent groups...39

5.2 Two points are in line of sight of each other..42

5.3 Two points are not in line of sight of each other..42

5.4 Line of sight test ...43

5.5 Viewing frustum of an agent...44

5.6 Testing viewing frustum ...45

5.7 A probability graph, which is constructed from a set of sample points47

5.8 The graph on the left is probability distribution for ideal condition and the one

on the right is a scaled graph multiplied by 0.7 ...48

5.9 The image on the left is the coverage of a DayTV while there is no rain and

the one on the left is while there is heavy rain...49

 xv

5.10 The effect of plant cover density and viewing angle50

5.11 Perception is classified into three categories: detection, recognition and

identification ..51

5.12 A sample scenario for similarity detection...52

5.13 Group formation of a group with a commander and the three subordinates..56

5.14 A group of agents walking in a formation ...56

5.15 Location availability matrix after culling voxels above 1500 m...................59

5.16 Location availability matrix after culling voxels having slope magnitude

more than 30 degree ...60

5.17 Location availability matrix after culling voxels above 1500 m, having slope

magnitude more than 30 degree and having material water, rock or forest...........60

5.18 The 3D human model used for agents ...61

6.1 The image shows an off-line path search result between two given points.....63

6.2 A set of tactical control points and generated paths between these points65

6.3 The initial state of the algorithm ...66

6.4 The recursive search process continues until reaching the line that the target

point is on...67

6.5 An off-line generated path and an optimized version of the same path..........68

6.6 Illustration of a high and low curvature...71

6.7 Illustration of a balanced and not balanced path ..71

6.8 Threat energy causes the path points go far away from the threats.................73

6.9 A path update sample..74

 xvi

6.10 The path on the left aims to flow right, but an obstacle prevents this

movement...74

6.11 State transition of Real-Time A*...75

6.12 The agent, directed by Real-Time A* may stuck in semi-closed regions

having large open areas inside for a long time searching the same voxels

hopelessly...76

6.13 State transition of Real-Time Horizontal A* ...77

6.14 The agent, directed by Real-Time Horizontal A* can go out of semi-closed

regions quickly ...77

7.1 The test program for Real-Time A* and Real-Time Horizontal A*80

7.2 Test region 1...81

7.3 Test region 2...82

7.4 Test region 3...82

7.5 Test region 4...83

7.6 Test region 5...83

7.7 Test region 6...84

7.8 Moves that are not allowed for both RTA* and RTHA*85

7.9 Performance of RTA* and RTHA* on a widely open area87

7.10 Having large horizontal regions has a bad effect on RTHA*88

 xvii

LIST OF TABLES

TABLES

3.1 Type definition of RecordA and RecordB ...14

3.2 Loading a DEM File ...15

5.1 The algorithm, which controls the agents ..54

5.2 The list shows a set of radio communications occurred on a mission.............58

6.1 The basic algorithm for the off-line path planning...69

6.2 The basic algorithm for Real-Time Horizontal A* ..78

7.1 RTA* vs. RTHA*...86

 1

CHAPTER I

INTRODUCTION

1.1 The Subject

Multi agent systems can be used to model computer-generated environments

where intelligent agents react suitably to various events. Many of the applications

in this context need realistic environment generation, efficient search algorithms

and heuristics suitable for real-time simulations. Multi agent systems are

integrated into these simulations for supporting automatic and semi-automatic

human and group behaviors to complete a given mission. Planning a mission

usually means to plan suitable paths and actions that lead to the goal-state.

The problem of path planning can be described as finding a sequence of state

transitions through a graph from some initial state (starting point) to a goal state

(target point), or determining that no such sequence exists. Path-planning

algorithms can be off-line or on-line. Off-line path planning algorithms like A*

[SP95] find the whole solution before starting execution. They plan paths in

advance and usually find optimal solutions. Their efficiency is not considered to

be crucial and the agent just follows the generated path. Although this is a good

solution for a static environment, it is completely infeasible for dynamic

environments, because if the environment or the cost function changes, the

remaining path may need to be re-planned, which is not efficient for real-time

applications. Real-time path planning algorithms such as Real-Time A* [MY96],

 2

D* [A94], Focused D* [A95] are on-line and offer more efficient solutions. Some

of them produce optimal solutions for dynamic changes such as D* and Focused

D*, and some only bring efficiency but not optimality such as Real-Time A*.

1.2 Scope and Objective

In this thesis, we study dynamic simulation environments and mission planning

algorithms in military applications. We have constructed a dynamic simulation

environment, which consists of defense forces, assault forces and other entities,

and furthermore developed suitable scenario generation, group synchronization

and path planning algorithms meeting requirements of real-time applications.

Assault forces, which are intelligent bodies, learn about the environment, terrain

and moving entities, and react according to changing situations under some

assumptions. To support decision-making, path planning, and suitably reacting

based on some goals, we have proposed techniques to gather, store and evaluate

environment information.

We have proposed a new off-line path planning, a real-time path update, and an

improved version of Real-Time A* [MY96] algorithm. The off-line path-

planning algorithm does not guarantee optimal solutions, the generated paths do

not contain loops and they are usually near to optimal path. It is efficient and may

be applied to many problems. We used the basic idea behind our off-line path

planning algorithm to modify Real-Time A* and managed to develop a new real-

time search algorithm (Real-Time Horizontal A*), which performs better in large

and mountainous landscapes.

As we need modifications on off-line generated paths on the fly during the

simulation, we have also presented a path refinement and update algorithm based

on energy minimization technique, which is frequently used in image processing

called Snakes [EA98]. Thus, we combined the advantages of off-line path

planning and real-time path search to support real-time simulation systems.

 3

1.3 Outline

In Chapter II, a survey of related work on path planning and its background needs

for simulation systems are given.

In Chapter III, the simulation architecture, which serves the environment and

control systems for our study, is introduced in detail. The static and dynamic

environment and the analysis performed on this datum are described on samples.

The command and control interface that allows the users, the defense forces, to

observe the environment is introduced in brief.

In Chapter IV, the analysis on the landscape and their displaying techniques are

described in detail and also the 3D rendering concept for landscape rendering is

briefly given.

In Chapter V, we introduce our intelligent agent concept and the agent

capabilities: perception gathering, probability of detection, perception evaluation

by similarity analysis, knowledge, group formation, group synchronization by

radio communication, location availability and physical appearance.

In Chapter VI, the proposed path planning algorithms, their advantages and

drawbacks are given in detail.

In Chapter VII, our test-bed is introduced. Test results and their evaluation are

given on example test runs.

Finally, the conclusion and the future work are given in Chapter VIII.

 4

CHAPTER II

 RELATED WORK

Multi-agent systems are used in many domains such as robotics, computer

generated forces, games, training, RoboCup soccer and their simulators. In

robotics [SJ99] and Robocup soccer [RM98], intelligent planning aims to find out

ways for interacting with the physical world, which makes the problem hard to

solve. In contrast, intelligent planning for computer generated forces [RA98,

CVZ00, JG99, E98] and games [M00] aim to generate behaviors similar to the

real world in virtual environments. Simulating real world actions in a virtual

environment is basically used to test some conditions that are not possible in the

real world. Intelligent agents such as airplane, chopper, tank, soldier that behave

much like real world entities are frequently used for pilot trainings in flight

simulators [RJMP94, RMJP93]. In such simulations, realistic modeling of agent

behaviors is important for the realism of training. In order to be able to plan

actions realistically, deciding on appropriate parameters, modeling environment,

and using suitable algorithms for gathering information are very important.

Parallel to the development of intelligent systems, the demand for integrating

them to simulation systems also increased especially by the help of military

domains. Thus, in 1999, the Defense Modeling and Simulation Office (DMSO) of

USA established a working group of government and industry representatives and

tied to decide the standards of intelligent agents within the High Level

Architecture, HLA [PS99].

 5

In simulation, environment modeling and visualization is very important.

Although there are many powerful techniques that have capability of rendering

very realistically such as ray-tracing [A97], and modeling landscapes and their

plant covers characteristics natural such as the technique used in [OPBRMP98],

they are not applicable to real-time simulations because of their efficiency

problems. The 3D modeling and rendering techniques generally used in these

kinds of simulations are rendering polygons or voxels by Z-buffer [A97] or voxel

based rendering [DEUV96]. These algorithms offer efficiency, but they are

usually lack of realism.

3D environments are generally represented using polygons or voxel

representations (digital elevation data). In the proposed approach of Champhell

[CM99], the terrain database and features are stored and optimized using

triangles. In contrast, the terrain and features are modeled and rendered using

voxel rendering techniques in [DEUV96].

In order to gather necessary information from the virtual environment, physical or

stochastic methods can be used. In the proposed technique of Knuffner [JJ99], a

physical based method is used. To collect information from the 3D environment

and to check which objects are visible to a particular character, the scene is

rendered off-screen from the character’s point of view, using flat shading with a

unique color (object ID) for each object. Knowledge base of agents is organized

as link-lists to store the information about the objects that are seen. The proposed

approach makes use of stochastic perceptions [CVZ00] for gathering

environment information. Visual perception is simulated using some criteria such

as being in line of sight and viewing angle, range, volume, moving state, and

plant cover density. Similarly audio perception is also simulated stochastically

using information such as range and being in line of sight.

In multi agent simulations, evaluating the environment information, learning and

reacting in time is essential. Erol Gelenbe proposed modeling computer-

generated forces with learning stochastic finite-state machines whose state

transitions are controlled by state and signal dependent random neural networks

[E98]. In Knuffner’s approach [JJ99, JJ98], rendering off-screen from the

 6

character’s point of view and real-time path planning is used. His path-planning

module aims to find a collision free path between a starting and ending point over

the 3D terrain using the information gathered from vision based perceptions.

As we have gathered the environment information, we also need to plan valid

path to reach the goal state. In the study of Knuffner [JJ99, JJ98], the terrain is

divided into embedded graph cells, which have vertical, horizontal and diagonal

costs of walking through. Then, the suitable path is found using Dijkstra’s

algorithm, which is actually an optimal off-line path-planning algorithm

integrated into a real-time application.

The help of some guidance such as admissible heuristics can increase efficiency

of these path-planning algorithms. A* [SP95] is one of best-known efficient path

planning algorithms, which is guided by a heuristic function. A* always finds the

optimal solution and uses linear distances between points for the heuristic

function.

Although heuristic can lead to efficient algorithms, it is not enough and optimal

path planning algorithms cannot be used for large and dynamic landscapes

because of its complexity. To avoid this drawback, some partial path update

algorithms are also proposed such as D* [A94] and focused D* [A95]. These

algorithms plan an off-line path, let the agent follow the path, and if any new

environment information is gathered, they partially re-plan the existing solution.

A number of algorithms exist for supporting real-time simulations such as Real-

time A* (RTA*) [MY96], which is actually one of the best known ones. RTA* is

usually used for maze environments and it uses a greedy search strategy and a

heuristic together to guide the search. It guarantees to find a solution if one exists,

but the solution may not be optimal. In this thesis, we also propose an

improvement for Real-Time A* for the domain of large mountainous landscapes.

There are some path-planning algorithms that use random search techniques such

as genetic algorithms, random tree generators. In [KJ97], an adaptive path-

planning algorithm based on genetic approach is proposed. In the study, they

assumed that a valid path that is not optimal is initially found and they refine this

given path by genetic algorithm. Considering this concept, the proposed not

 7

optimal off-line path-planning algorithm seems to be applicable to the study

successfully. In the study of LaValla and Knuffner [SJ99], a randomized planning

technique based on a version of random tree generation called rapidly exploring

random tree is presented. They generated two random trees starting from the goal

and the target points, and try to catch an intersection among the points of distinct

trees to find a path.

In addition to path planning, many agent systems have a module called

“Intelligent Reactive Planning” for the purpose of deciding and reacting

efficiently to various events considering the goals, knowledge base and the

previous experiences [JP94, RM98]. For example, reactive planning modules

may be used with rule sets such as a goal-directed decision tree.

Group coordination is also an important concept in multi agent simulations.

Without coordination, the agents can only be considered as individual groups

with no relation. Baxter and Horn [JG99], organized a command and control

hierarchy used by the agents, which is based upon the military command and

control structure. In the hierarchy, the groups are under control of a squadron

commander. In addition, groups have their own troop commanders. Organizing

the groups along the same lines as the military formations allows emulating the

change of getting plausible behaviors. It also provides a framework to guide the

communication among the agents and allows the planning of complex group

orders to be divided into several smaller problems. Communication of orders

passes straight down the hierarchy and intelligent information is shared between

peers and communicated to superiors. The commanders are responsible for

gathering information about their own situation, passing it up to their superiors

and peers, and giving orders to their subordinates to achieve the commander’s

high level objective. That structure shows similarity to the proposed group and

command structure. We have organized the agents in groups with a commander

to achieve a specified group mission. Commanders are responsible for executing

mission, passing the state up to other group commanders by radio messages and

guiding the group. The subordinates are responsible for following their group

commanders and executing the commander’s orders.

 8

Dynamic Entities

Defense Forces

Assault Forces

Natural Creatures

Scenario

User Input from the command & control system (Command Center and Driver Consoles)

Simulation

Engine

Frame

Engine

Multi Agent

System

Current state of
the world

Rendered
views

Environment
parameters

Landscape
(Terrain, slope,

texture, material)

Features

Weather

Static Environment

CHAPTER III

SIMULATION ARCHITECTURE

3.1. Introduction

A simulation environment is designed and implemented. The developed

simulation architecture consists of two main parts: an environment and a

command and control system. The architecture context diagram of the simulation

is shown in Figure 3.1.

Figure 3.1: Architecture context diagram of the simulation

 9

The static environment (landscape, features and weather condition) and the

dynamic entities (the defense forces, the assault forces and the natural creatures)

form the environment altogether. The structure of the environment is illustrated in

Figure 3.2.

Figure 3.2: The static environment and the dynamic entities form the whole

environment.

The command and control systems enable the defense forces (platform systems)

to partially observe the environment by the help of their sensor systems. The

Natural Creatures

 10

detection of a sensor may belong to a member of the friend forces, or a member

of the assault forces, or just an animal. Figure 3.3 shows the display monitors of

two different sensor types; DayTV (normal camera) and infra-red camera (heat

sensitive camera).

Figure 3.3: Views captured from a DayTV camera (left) and an infra-red camera

(right). A DayTV views the visible light reflected from any surface, instead an

infra-red camera shows the temperature differences of the surfaces.

The users control the defense forces, and the command and control systems help

them to locate, view and control their platform/sensor systems on the terrain.

Their objective may be to defend a tactical area from any assault forces.

The assault forces are our intelligent human agents. Their objective is to complete

their high-level mission without being detected by any sensor systems of the

opposing forces. The mission may be to attack, escape or just pass through the

selected tactical area.

Animals have simple automated behaviors and they are used for misleading the

platforms and agents’ perceptions.

 11

3.2. Static Environment

3.2.1. Landscape

3.2.1.1. Terrain: Polygons vs. Voxels

Terrain, the landscape surface, is the fundamental part of a simulation

environment and how to model a terrain is one of the most important decisions to

be made, as it affects efficiency, accuracy and computational cost of the

simulation. There are two common methods to be used: the polygonal base

modeling, and voxel base modeling. A polygonal-based and a voxel-based

landscape are illustrated in Figure 3.4.

Figure 3.4: A polygonal based terrain (top) and a voxel-based terrain (bottom)

generated from a matrix of elevations

A polygon

A voxel

 12

Polygons are frequently used in 3D modeling of virtual environments such as in

computer simulations, computer games and 3D modeling tools. There are

powerful hardware and software support for displaying polygonal objects, and

they are simple to model and easy to use in any 3D visualization system. That is

why they are commonly used in 3D world. But using polygons has also some

disadvantages. For some special purposes they may be incapable or sometimes

they may be too complicated. For example, In the filed of health, voxel based

rendering techniques are most commonly preferred because of its accuracy and

capability of storing and representing the volume data. In the field, they do need

the data of a volume such as the inside of a body. Polygonal representations can

only handle a surface modeling; in contrast voxels can handle a volume of an

object. The critical point is that the advantage brings also a drawback. Using

volume data reduces the efficiency sharply and the hardware support for the

technique rarely found such as ONYX-II.

When we consider using voxels for landscape, the condition changes in some

ways. The data representation becomes a matrix of sampled heights (elevations),

on earth, which is called "digital terrain elevation data" (DTED). The samples are

taken equally distanced in x and y directions and a matrix is generated. Thus, this

time the data is not a 3D volume, because only the information of surface

elevations exists. So the computational cost decreases significantly and the

technique becomes an alternative to polygonal representations in some cases such

as in the game called “Delta Force II”. Triangle calculations are hard to perform

on large terrains, such as mountains, generated from millions of polygons. Using

elevation matrix, computations can be more accurate and efficient because of the

homogenous distribution of the voxels. It can be used in the background

computations, but the similar problem of volume rendering also appears for this

kind of representation. For the polygons, we have hardware accelerators to

calculate triangle intersection tests efficiently, but the voxel rendering techniques

suffer from the lack of hardware support.

To be more efficient, there are several optimization techniques for polygonal

terrains. But, on a mountainous area, optimization cannot be performed well and

 13

accuracy can be lost in many cases. A third alternative is to use polygons and

voxels all together. The terrain data is loaded as a matrix of elevations. The

background computations are all performed on the data, but the rendering is done

using polygons. Thus, the polygons are extracted from the matrix of elevations,

but left hardware to be drawn by introducing some additional culling phases,

which increases efficiency. Figure 3.5 shows an image rendered on a high-

resolution terrain using a version of the mentioned technique.

Figure 3.5: An image rendered using both digital elevation data and polygons.

The rendering operation is performed using polygonal rendering of elevation

matrix.

 14

3.2.1.2. Loading DEM Files

A DEM (Digital Elevation Model) [USGS98] file is a matrix of elevations

sampled on a limited region of the earth. DEM files are used in the model

because of its data representation capacity. An alternative file structure could

have been the DTED (Digital Terrain Elevation Data) [NIMA99] file format, but

it cannot model a terrain as accurate as a DEM file, because a DTED file can

store at most 1-second frequency of elevations, which is 30 meters on the

average. The general file structure of DEM is as follows:

DEM is saved as an ASCII file and does not contain a specific file signature. The

matrix of elevations is stored as profiles, which are one or more columns of

elevation samples starting from south west. The Table 3.1 and 3.2 is the C-like

pseudo code for loading a DEM file.

Table 3.1: Type definition of RecordA and RecordB

struct RecordA {
 int DEM_Level; // 3
 int Pattern_Code; // 1
 int Plan_Ref_Sys_Code; // 1
 int Zone_Code; // 0
 float Map_Projections[15]; // should be ignored for geographic systems
 int Units_Code; // the units stored; UTM(meter)/GEOGRAPHIC(degree or second)
 int Units_Code2; // 1; elevation unit 1 indicating meter
 int Num_of_Sides; // 4; number of corners; assumed to have 4 corners
 float Four_Corners[4][2]; // four corner coordinates of the map
 float Min_Elev; // minimum elevation value on the map
 float Max_Elev; // maximum elevation value on the map
 float CCW_Angle; // 0; counterclockwise angle of dem
 int Accuracy_Code; // 0; indicates no accuracy
 float Spatial_x; // resolution of each sample on x axis
 float Spatial_y; // resolution of each sample on y axis
 float Spatial_z; // resolution of each sample on z axis; elevation
 int Profile_Dimension; // 1; number of columns in a single profile
 int Num_of_Profiles; // number of profiles; profiles are located from west to east
};
struct RecordB {
 int Row; // the profile rows number
 int Col; // the profile column number
 int Num_of_Rows; // number of rows in a profile
 int Num_of_Cols; // number of columns in a profile
 float First_ElevC1; // x coordinate of first elevation in the profile
 float First_ElevC2; // y coordinate of first elevation in the profile
 float Elev_of_Local_Datum; // 0; elevation local datum for the profile
 float Min_Elev; // minimum elevation value in the profile
 float Max_Elev; // maximum elevation value in the profile
};

 15

Table 3.2: Loading a DEM File

Open the input DEM file for reading.

Read 145 characters of string file description.

Read RecordA, which usually contains 39 header items (If we assume that the area is
rectangular and there are four corners). The Record A is shown in Table 3.1.

if (Units_Code == 2) // Unit Type is in Metric Coordinates as meters
 unit_type_of_dem = utMetric;
else
if (Units_Code == 3) // Unit Type is in Geographic Coordinates as seconds
 unit_type_of_dem = utGeographic_sec;
else
if (Units_Code == 4) // Unit Type is in Geographic Coordinates as degree
 unit_type_of_dem = utGeographic_deg;

Calculate area properties.

Read a set of RecordBs, which contains profiles. The Record B is shown in Table 3.1.

for (int pf = 0; pf< Num_of_Profiles ; pf++)
 {
 Reading Record B, which is single profile information.

 for (cx = 0; cx< Num_of_Cols; cx++) // Number of columns in the profile
 {
 for (cy = 0; cy< Num_of_Rows; cy++) // Number of rows in the profile
 read one elevation item
 };
 };

Close the input DEM file.

3.2.1.3. Generating Slope Matrix

Loading the digital elevation data file, we analyze the elevations to find out the

slope properties of each voxel.

Figure 3.6: Four elevations let two different triangulation styles.

Triangle 1

Triangle 2

Triangle 1

Triangle 2

 16

For each voxel, there is a single elevation value, which is measured form the sea

level in meters. Every group of 4 corners forms a surface. The surface properties

are not known exactly, because we only know four elevation points, but the inner

part is uncertain. We can triangulate the points by connecting four corners in two

ways, which results in two triangles. The connection alternatives of four points

are shown in Figure 3.6. The problem is that we cannot known which way is the

right one because the connection method is unknown. So, any of them can be

selected.

Figure 3.7: Calculating slope directions and magnitudes

For simplicity, it is better to have a matrix of slopes corresponding to each voxel

data of elevation matrix. The slope matrix will have the same dimension as the

elevation matrix. So we have to generate a single slope value for each group of

four-points. Each of the alternative triangles has its own surface normal; we get

the average of two surface normals. But, a single row and column from the upper

and right of the matrix remain unfilled because of the lack of elevation data.

Computations are illustrated in Figure 3.7 and a sample result is shown in Figure

3.8.

n

x

z

y

e

slope magnitude

n
 e

slope direction

surface

 17

Figure 3.8: Visualization of slope directions and magnitudes of a terrain

3.2.1.4. Mapping Texture

Raster or satellite images are mapped on the terrain in order to let us recognize

the area or realistically display the environment. A raster image is an artificial

map and a satellite or other air vehicles images are orthographically taken

photographs of the landscape. A texture matrix, which is the same size as the

terrain, is allocated for texture mapping. Different regions can be loaded from

different texture files and merged on that matrix to shape the whole area. For that

purpose, windows’ bitmap file format is supported by the system. When a texture

is loaded, it is mapped by using two diagonal corner coordinates, which is

sampled in Figure 3.9. The coordinates are given as geographic coordinates in

degrees or seconds. Then they are converted into row and column numbers of the

texture matrix and the image is scaled onto the matrix using the row and column

coordinates of the corners.

 18

Figure 3.9: The texture is mapped on the terrain using two diagonal corners,

which are given as geographic coordinates.

3.2.1.5. Surface Materials

Surface materials are the features of landscape surface. In the system, surface

materials are classified into 12 main categories. These are as follows:

• Soil,

• Rock,

• Forest,

• Pasture,

• Shrubbery,

• Agricultural area,

 19

• Road,

• Urban area,

• Dry snow,

• Wet snow,

• Salty water,

• Fresh water

The above list is the main categories, but they are not directly used. Instead they

are selected to make a list of materials to be used on the surface. Changing the

parameters (such as average height of the trees, salt level) generates variations

from the basic material types.

Semi-automated tools are used in order to guide the user while defining region

properties. First, the user can select a region and assign a material. This is the

manual operation. A second option is to select regions by color similarities on the

texture. For example the user can select a blue color from a river, and give a color

tolerance to define how similar colors are accepted to be the same material. Thus,

an automated image analysis is performed on the whole texture and similar

colored regions are marked as the same material.

The tolerance is an integer value between 0 and 255. To assign the selected

material to a voxel the following condition must be satisfied:

 If (abs(R-SelectedColorR) <= Tolerance) and

 (abs(G-SelectedColorG) <= Tolerance) and

 (abs(B-SelectedColorB) <= Tolerance) and

 (abs((R-SelectedColorR)-(G-SelectedColorG)) <= Tolerance)) and

 (abs((R-SelectedColorR)-(B-SelectedColorB)) <= Tolerance)) and

 (abs((G-SelectedColorG)-(B-SelectedColorB)) <= Tolerance))

 then assign the material.

It is our experience that, the best similarity detection is obtained with the criteria

described above. The first three lines helps a lot to find a color near to the

selected one which is given as red, green and blue components, but it is not

enough alone because the change can be in positive or negative direction. If red

 20

changes in +tolerance and green changes in –tolerance, the distance between red

and green will be 2 times of the tolerance. So, the next three lines are also

needed. The result of the applied operation is shown in Figure 3.10.

Figure 3.10: Rivers are extracted (right) from the texture (left) using color

similarity. The white region on the right image is the extracted river.

Applying similarity criteria to the whole area is one approach. Depending on the

state and region distributions, different methods are needed. So, the tools can be

extended in many ways such as selecting similar neighbor voxels or selecting

zero-sloped areas such as lakes, rivers, etc.

 21

3.2.2. Features

Features are the natural or build-in static objects located on the terrain such as

lakes, trees, rocks, roads, houses, bridges, etc.

There are three different feature types according to their location: point located,

path located and area located features. A point located feature is positioned on the

terrain by its x, y coordinate and face direction (e.g., houses, trees, bridges). A

path located feature is defined as a list of x and y coordinates forming a path such

as roads, rivers, etc. By using area located features, you can define areas such as

lakes and seas. 3D models of some sample features can be seen in Figure 3.11.

Figure 3.11: Static features: a 3D hut (left) and tree (middle), specification of

road segments and trees (right).

3.2.3. Weather Conditions

Weather condition is a very important environmental effect. It may even cause a

sensor or a platform completely unusable. For example, an UAV (Unmanned Air

Vehicle) cannot fly on a windy day or above a limited altitude. A normal camera

(DayTV) can not see at night because of low light, an infra-red camera can not

 22

work fine on hot days because of its sensitivity to temperature, or a Doppler radar

can not be used on windy days because of too much movement which increases

false alarm rate. Also fog, rain, snow, humidity, etc. reduce the maximum seeing

distance of many optical sensors.

Different weather conditions on a large landscape can be defined. A matrix of

indexes similar to the landscape elevation matrix is stored to assign different

weather conditions to different regions. Each member of the matrix holds an

index pointing to a member of weather conditions list. The matching of each

voxel to a weather condition is obtained by a simple linear distance check. A

voxel gets the condition of the nearest weather condition object in the list. The

result of a sample assignment is illustrated in Figure 3.12.

Figure 3.12: Regions having various weather conditions are colored in different

colors. Triangles shapes are weather condition objects.

 23

Each weather object stores a set of weather parameters defining the current state.

These parameters are as follows:

• Day time temperature,

• Night time temperature,

• The type of rain,

o Rain,

o Snow,

o Hail,

• Level of rain,

• Density of fog,

• Density of humidity,

• Density of cloud,

• Direction of wind,

• Strength of wind.

The value of parameters except the temperature and direction of wind are

discritized as none, very low, low, mean, high, and very high. The reason of not

using real values and units is the difficulty of finding them.

3.3. Dynamic Entities

Dynamic entities on the terrain are grouped into three categories: the blue group,

the red group and the white group. The group structure is shown in Figure 3.13.

 24

Figure 3.13: The group structure of the dynamic entities

The blue group is the defense forces that have platforms carrying different kinds

of sensor systems such as DayTV, infra-red camera, etc. They are controlled by

the users. The control can be achieved in two different ways: the remote control

and the driver control. The remote control means watching and controlling the

sensors from a far central system (command center), and the driver control means

watching and controlling the sensors as the driver of platform carrying the sensor

itself. The objective of the blue group is to defense a tactical area from any

assault forces.

The red groups are the assault forces that are intelligent human agents. They have

a semi-automated behavior system. They are organized in one or more groups

each having a commander. Their objective is to complete a given mission without

being detected or caught by any defense forces. The mission may be to attack,

escape or just pass through the selected tactical area.

The white group is the animals that are natural creatures such as birds, bears,

horses, wolves, etc. They have a simple automated behavior system making them

 25

move randomly on the terrain. The idea behind introducing them to the

environment is to make the platforms and agents’ perceptions go wrong.

3.4. Command & Control Systems

3.4.1. Test Environment

In order to simulate defense and assault forces, a real-time simulation system is

generated using the previously described environment. The simulation system

enables the users to defend the selected area by monitoring and controlling the

sensors and platforms from the field or tactical command center. It also supplies

the environment with our intelligent agents.

The tactical command center has the capability of monitoring the views of one or

more sensors at the same time, and controlling them remotely. It can also assign a

driver console to interactively control a platform in the field. There are two driver

consoles; so two platforms can be controlled at the same time.

3.4.2. Command Center

The command center has four sensor monitors. The user can use any of the

monitors to view a selected sensor of a platform. Each sensor assigned to a

monitor can be controlled remotely. For example, the looking direction or the

zoom level of a sensor can be changed at any time. The command center console

is shown in Figure 3.14.

 26

Figure 3.14: A snapshot from command center

The current coordinates of the platforms can be seen from the command center.

An orthographic raster map showing all the platforms on the area gives this

capability. The map can be moved or zoomed, or the 3D model of any region can

be viewed by just using mouse.

An automatic alarm generation support is also added to the system. When a new

object is detected, the laser distance finder can find the estimated coordinate of

the object. It is also possible to send any platforms to the area to recognize and

identify any detected object. The driver consoles are used for that purpose.

3.4.3. Driver Consoles

The driver consoles are used to control movement of platforms in the field. There

are consoles that can be used at the same time. The controlled platform can either

be a land or an air platform. The driver console has three display channels. These

are the view of the driver eyes, the view of one of the sensors at the platform, and

 27

the orthographic map centering the current coordinate of the platform under

control. The Figure 3.15 is a snapshot form the driver console.

Figure 3.15: A snapshot from a driver console

 28

CHAPTER IV

DISPLAYING ENVIRONMENT INFORMATION

4. Number

4.1. Visualization

The user needs to see and edit the information gathered. So, a visualization

method is essential in order to view elevation, slope, surface, texture, and weather

condition data.

In the system, there are two main displaying types according to their projection,

which are the orthographic (top view with no perspective) and the perspective

projection. The orthographic displaying of the landscape is indeed a top view of

the area. You can move, zoom-in or zoom-out to any region loaded using mouse.

The 3D displaying (rendering) is used to view the area in a camera manner. It

allows you to see or investigate a specific region in detail, or just to travel in the

area such as being in a helicopter.

4.2. Orthographic Viewing

4.2.1. Displaying Elevation Data

The elevation data is a matrix of heights sampled equally distanced on the terrain.

The values are elevations from the sea level in meters. We can find the minimum

and maximum elevation on a loaded terrain to limit the values, so that we can

colorize the map. The color of a voxel is calculated using a linear interpolation

 29

between the dark green (minimum elevation) and light green (maximum

elevation). The result is shown in Figure 4.1.

Figure 4.1: Visualization of elevation matrix

4.2.2. Displaying Slope Magnitudes and Directions

When the elevation matrix is loaded, slope magnitudes and directions are

calculated automatically, which is described in Section 3.2.1.3. The slope

magnitudes are values between 0 and 100, so the color of a voxel is calculated

using a linear interpolation between the dark green (0) and light green (100). A

sample slope magnitude map is shown in Figure 4.2.

 30

Figure 4.2: Visualization of slope magnitude matrix

The slope directions are values between 0 and 360, but we cannot use a simple

linear interpolation this time because the values near to 0 and 360 are similar

directions and must be colorized with similar colors. So the value-color matching

is white for 0 degree and black for 180 degree. The color turns to white again as

the degree increases to 360. The result of colorizing the directions is illustrated in

Figure 4.3.

 31

Figure 4.3: Visualization of slope direction matrix

4.2.3. Displaying Texture

Texture is the easiest information to display because of the data format used. The

matrix of texture stores the red, green and blue values for each voxel. So no

conversion is needed at all. A sample satellite texture is shown in Figure 4.4.

 32

Figure 4.4: Visualization of texture matrix

4.2.4. Displaying Mixed Information

In some cases, we may need to see a mixture of the environment information

such as elevation and slope direction values in a mixed form. In this case, two

colors must be mixed in a weighted manner called alpha blending. For example,

when we want to merge the elevation matrix to slope direction matrix using 70%

transparency, the color of each image pixel is calculated using the following

formula:

MergedColorRed = (0.7) ElevationColorred + (0.3) DirectionColorred

MergedColorGreen = (0.7) ElevationColorGreen + (0.3) DirectionColorGreen

MergedColorBlue = (0.7) ElevationColorBlue + (0.3) DirectionColorBlue

So the general formula of alpha blending an image A over an image B for an

transparency value, α (between 0 and 1) is:

 33

BlendedColorRed = (α) Ared + (1-α) Bred

BlendedColorGreen = (α) AGreen + (1-α) BGreen

BlendedColorBlue = (α) ABlue + (1-α) BBlue

This technique is used for displaying elevation-slope matrix, surface materials

and weather conditions. The blending of elevation and slope direction matrix is

shown in Figure 4.5.

Figure 4.5: Visualization of elevation and slope direction matrix using alpha

blending

 34

4.2.5. Displaying Surface Materials

We have 12 different surface material types that are described in Section 3.2.1.5.

For each type, a specific color is assigned and the information is displayed by

merging the result to the slope direction matrix using alpha blending technique. A

sample snapshot is shown in Figure 4.6.

Figure 4.6: Visualization of surface materials blended on slope direction matrix

4.2.6. Displaying Weather Conditions

The weather condition of an area is determined by the weather objects added to

the environment. Each voxel takes the properties of the nearest weather object on

the area. So, the visualization of the weather condition depends on the number of

weather objects added to the scene, which changes from 1 to 255. If we use

similar color values for different weather objects (such as 1, 2, and so on), it may

 35

be impossible to see the color difference. In practice there are at most several

weather objects in an environment. So it is better to assign color values

dynamically using the number of objects in the environment, covering the whole

color spectrum. For example, when we have 3 weather objects in the

environment, the color of first object will be 0, the second object will be 127, and

the third one will be 255, which is the upper bound of the color. The result of

coloring the weather distribution of 6 weather objects is shown in Figure 4.7.

Figure 4.7: Visualization of weather condition distribution blended on slope

direction matrix

4.3. 3D Rendering

In order to visualize the environment in details, 3D rendering by perspective

projection is also supported in the system developed. The common techniques for

 36

rendering a landscape are polygonal and voxel based rendering, which are

discussed in Section 3.2.1.1. In this study, both techniques are implemented, but

the polygonal based rendering is mainly used because of the efficiency increase

by the help of hardware support. But, voxel based rendering enables some

features that cannot be managed by using just polygons. For example, the plant

cover density of an area can be rendered using the technique. The information is

the average plant height and density of the area, and the output is the probability

of seeing for each voxel and the air above. The result of rendering is shown in

4.8.

Figure 4.8: 3D Visualization of the plant-cover density. On the image, the plant

cover density of the dark colored regions is low, and density of the light colored

regions is high.

 37

If we don’t need the additional capability of voxel based rendering techniques,

the polygonal rendering is commonly preferred because of hardware support. An

area rendered by both polygons and voxels using different textures is shown in

Figure 4.9.

Figure 4.9: Polygonal and voxel rendering: The image on the left is rendered

using polygons and the one on the right is rendered using voxels. Note that the

textures, the camera positions, and the resolutions are not the same.

 38

CHAPTER V

AGENTS

5. Hidden

5.1. Introduction

This thesis involves modeling and representing actions for virtual human

agents that should accomplish a given tactical mission in a virtual battlefield,

which is a part of a sensor simulation system. The objective of developed

software is to test a sensor optimization algorithm using scenarios that are

executed by the intelligent human agents. The main goal of the agents is to

accomplish the given mission without being detected or caught by a sensor

platform.

5.2. Goal Description (Mission)

In the proposed approach, the goal belongs to the group, not the individuals.

Every group has its own goal plan (group mission) and moves with its

commander’s orders. The group commander gives decisions to accomplish the

mission and subordinates follow their commander under normal conditions. All

the group missions form the higher-level mission of the assault forces altogether.

Goal description is given as a set of tactical control points and a list of actions to

be achieved at each point. Path control points are categorized into five group,

which are starting point, target point, home point, pass through points and

tactical points. To reach these control points, commander generates a path

 39

considering the terrain and currently detected threat information. Then, the

commander follows that path. A screen snapshot of a sample scenario is shown in

Figure 5.1.

Figure 5.1: Scenario control points for two agent groups. Before planning a real

path, the connections between control points are just straight lines.

The objective of a group is to pass through each given tactical point, but all the

points do not have the same priority. For example, the group must pass through

the target point. However it is not obligatory for a group to go through the points

whose types are pass through.

The group can accomplish some tasks/actions at control points. Actions define

the activities to be done such as wait 5 minutes, put bomb, etc. Synchronization

among groups is also handled using a special action type called the radio

messages.

 40

5.3. Perceptions

5.3.1. How Perceptions Work

Agents gather information from the environment by seeing and hearing based on

probabilistic computations. Actually, the sensor perceptions do not work

stochastically, but the notification of a sensor perception by an agent is based on

probability. That means; the sensors percept every thing around, but the agent

may not notice it depending on the probability of detection. The sensor

perceptions are sent to agent even the probability is very low. Then the agent

checks the probability. If the perception is owned by an unknown entity, which

means the attention is low; a probability test is done before accepting it. If the

agent decides to notice the entity, then the entity is always seen or heard without

calculating the probability until it is away from the agent’s point of view. That

can be described by the following example. A person always looks around. Eyes

capture everything that is possible to be seen, but human may not notice them

because of his low attention. Once an entity is noticed, seeing and following it

becomes continuous by the help of high attention. Hearing can also be considered

similarly. The difference is that hearing doesn’t depend on being in viewing

angle.

5.3.2. Seeing

The detection probability of image gathering perceptions, seeing, is related to the

optical capabilities. Therefore, the probability of detection by seeing depends on

the following parameters:

• Being in line of sight

• Being in viewing angle

• Volume of the target

• Range to the target

• Movement of the target

 41

• Plant cover

• Weather condition

The being in viewing frustum and in line of sight means; the agent looks in the

direction of the target and there is no other object between them to prevent seeing

each other. The volume of target also affects the probability, because if an object

is big, it is easy to see, but if small, then it is hard to see. The increase in the

range between the agent and the target reduces the probability, and the movement

of target increases the probability. Plant cover is also an important property

affecting the probability. For example, if the target or the agent is in a forest, the

probability of detection decreases sharply. Bad weather condition such as fog,

rain, snow also reduces the probability.

5.3.3. Being in Line of Sight

If a location p1 is visible from another location p2, we say that p1 is in line of

sight (LOS) of p2, and the line of sight test of two coordinates; p1 and p2 results

in true. To do the test, we check the existence of any other objects intersecting the

line connecting p1 and p2. If so, that means p1 is not visible from p2, and the line

of sight test returns false.

In the system, LOS is only tested using landscape, but not the objects on the

terrain. LOS test for landscape is illustrated in Figure 5.2 and 5.3.

 42

Figure 5.2: Two points are in line of sight of each other.

Figure 5.3: Two points are not in line of sight of each other.

The voxel base line of sight tests are much more efficient than polygonal

intersection tests. In polygonal models, we don’t have a systematic polygon

distribution. For that reason many polygonal grouping techniques such as oc-

trees, are used to increase efficiency, but voxels are already in that systematic

format. Thus, intersection test are very efficient. Our implemented line of sight

algorithm uses an incremental technique that works on voxels, which is

commonly used in ray tracing for increasing efficiency of polygonal intersection

tests. The algorithm finds the boundary intersection points of the voxels and the

ray sent, which is illustrated in Figure 5.4. For each intersection point, the height

of the ray and the landscape elevation at the point is compared. If ray is under the

terrain in any point, it means; a hit is found and the two points are not in line of

sight of each other.

 43

Figure 5.4: Line of sight test: The boundary intersection points of the voxels and

the line are founded.

The line of sight algorithm or similar algorithms are applicable to many

problems. For example, the algorithm is used for the computation of sensor

coverage, agents’ visibility tests, radio communication availability tests, direct

path availability tests between two coordinates, voxel rendering, ray tracing, etc.

5.3.4. Being in Viewing Frustum

To see a target, being in line of sight is not enough alone, but also the agent must

be looking nearly at the direction of the target. The eyes of an agent have a

vertical and horizontal angle limit that bounds the seeing capabilities at a given

time. This limited volume depending on the viewing direction, and vertical and

horizontal angle limits is called viewing frustum which is illustrated in Figure

5.5.

 44

Figure 5.5: Viewing frustum of an agent

If the angle difference between the viewing direction and the direction of the line

passing through the agent and the target coordinates is less than the angle limits

of the eyes, the target is in viewing frustum and it can be seen by the agent. That

is illustrated from top view in Figure 5.6.

 45

Figure 5.6: Testing viewing frustum: Angle A is the horizontal angle of the eye.

Angle B is the angle between the viewing direction and the direction of the line

passing through the agent and the target coordinates.

5.3.5. Stochastic Detection

5.3.5.1. Introduction

The detection process of an agent depends on the probability of detection. A

probability test is done for each new perception received from the sensors, which

is described in Section 5.3.1. The important question is how to compute the

probability in a given situation. Being in line of sight and viewing frustum is a

must, but they don’t affect the probability. The main property that affects the

probability of detecting a target is the distance between the target and the agent.

Theoretically, there is a maximum detection range, which has a probability of

detection above zero percent. Up to this range, an agent may notice the target

depending on the probability. A probability curve can be given in this maximum

range. But, in this study it is usually accepted as a linear graph decreasing from

 46

100% probability to 0% probability for zero and maximum detection range in

meters.

5.3.5.2. Detection Range

Detection range is the maximum distance between a specific type of target and an

agent such that agent can detect the target by its visual perception. The detection

range is not a static value and mostly depends on the weather condition. So we

get the range values for ideal conditions and dynamically compute the new

detection ranges for current state using a set of parameters defining the amount of

possible changes. For example, if there is fog or rain, the detection range of a

DayTV decreases by some rate. In the study, we usually get these parameters

from the domain experts.

5.3.5.3. Weather Condition

5.3.5.3.1. Ideal Conditions

The weather condition that maximizes the maximum detection range of a sensor

is called the ideal weather condition. Although the conditions are ideal, there is a

limit on detection range because of many effects such as the volume of the target

(type of the target), and the capabilities of the sensor. For example, the detection

range of a tank is much more than a human because of the volume. A DayTV

cannot detect far at night; in contrast an infra-red works fine in dark.

The ideal detection ranges can be found by real-life experiments. In our system,

these values are taken from the experts for specific kinds of sensors and target

types. Than a curve is constructed using linear interpolation. A sample

probability curve is shown in Figure 5.7.

 47

Figure 5.7: A probability graph, which is constructed from a set of sample points

5.3.5.3.2. Deviate From Ideal Conditions

After getting the maximum detection range of the ideal condition, derivations

from ideals are calculated from the current weather condition and a set of

parameters and graphs defining multipliers. These parameters and graphs are as

follows:

• Temperature:

multipliers as a graph constructed from a set of sample temperatures

• Light:

multipliers as a graph constructed from a set of sample light levels

• Wind:

multipliers for very low, low, mean, high and very high wind levels

• Rain:

multipliers for very low, low, mean, high and very high rain levels

• Wind:

multipliers for very low, low, mean, high and very high wind levels

Probability

1.0

Distance

Maximum Detection range

A sample point

 48

• Snow:

multipliers for very low, low, mean, high and very high snow levels

• Hull:

multipliers for very low, low, mean, high and very high hull levels

• Fog:

multipliers for very low, low, mean, high and very high fog levels

• Humidity:

multipliers for very low, low, mean, high and very high humidity levels

For example, to generate the temperature graph, a set of sample temperatures and

their multiplier values are given such as 0.9 for 23 degree, 0.6 for 10 degree.

Than a graph is constructed from the given values using interpolation. This

process is also applied to light level graph. We don’t construct a graph for wind,

snow, hull, fog and humidity multipliers, because these conditions are discritized

as very low, low, mean, high and ver high. From these parameters and graphs, a

merged multiplier is computed. Than the maximum detection range is multiplied

by this multiplier to find the deviated range. This operation is sampled in Figure

5.8.

Figure 5.8: The graph on the left is probability distribution for ideal condition and

the one on the right is a scaled graph multiplied by 0.7.

Probability

1.0

Distance

1000 m

Probability

1.0

Distance

700 m

multiplier = 0.7

 49

It is possible to visualize the probability values using sensor coverage (visible

areas from a sensor). The results are shown in Figure 5.9.

Figure 5.9: The image on the left is the coverage of a DayTV while there is no

rain and the one on the left is while there is heavy rain. The change from light

gray to dark green shows the probability reduces.

5.3.5.4. Plant Cover

The plant cover density also reduces the probability of detection by a multiplier

between 0 and 1. To find this multiplier, all the voxels along the ray connecting

the agent and the target must be traversed. This traversal is performed by the LOS

algorithm, which is described in Section 5.3.3. Initially the multiplier is 1. While

going along the ray, if the ray passes near to the ground (below the average height

of the plant cover), the plant cover densities are used to update the multiplier.

This process is illustrated in Figure 5.10.

 50

Figure 5.10: The effect of plant cover density and viewing angle

The density is a value that shows how the probability will reduce for passing a

distance of 1 meter along the ray. For example, if a target is in 25 meters away in

a forest, this 25 m travel may reduce the probability of detection by a multiplier

0.1, which actually depends on the plant cover density of the forest. The hard

thing to do is to find out the densities in real world.

5.3.6. Hearing

There is no chance of detecting by seeing the objects that are neither in the line of

sight nor viewing angle. However the objects can be sensed using audio cues.

Hearing is modeled as a probability function depending on the range and the

speed of the movement of the object that causes noise. The noise from a truck is

because of its engine while the noise of a human is caused because of his steps. If

the object is not in the line of sight (e.g., the target is behind a wall), the

probability of hearing is also decreased using reasonable multiplier.

Detection by hearing is very important for an agent. For example, for a

commander, being aware of his subordinates is important, but it is not possible to

walk all the time by looking at every one in the group. However, the commander

can hear and detect the average position of a person by its food steps. This

enables the commander to aware of his subordinates without looking at them.

 51

5.4. Classifying and Storing Perceptions

The gathered information from seeing and hearing is classified into three

categories by using range and type of the target. These are detection, recognition

and identification. Classification criteria are shown in Figure 5.11.

Figure 5.11: Perception is classified into three categories: detection, recognition

and identification.

If a new perception occurs, it is added to the knowledge base of the agent. The

knowledge base is stored in a dynamic link list. The problem is to decide whether

the perception is a new object or an update of a previous detected object.

Although we are in a computer-generated world and have the information of all

the objects in the environment, the ID of detected object is not sent to the agent

unless it is identified. The agents have to find the similarities themselves and

update the knowledge base. The similarity is found out using estimated positions

Perception

Else The object is not seen

If object is in line of sight and

viewing frustum, and nearer

If in identification range The object is

If in recognition range by
seeing or hearing

The object is
recognized

Else

The object is detected

If the object is moving and
nearer than maximum hearing

distance

If in recognition range and
the object type is

recognizable by hearing

The object is
recognized by hearing

Else The object is detected
by hearing

 52

of previous detected objects and the positions of new detected objects. If a similar

perception is searched for the previous detected object information in the

knowledge base, an estimate of position is calculated using previous movement

direction. If the range between the estimated position and the new detected object

position is smaller than a threshold that is calculated considering the previous

speed, we may accept that they are similar. If a similar perception is found, the

previous knowledge base is updated using new detected perception; otherwise the

perception is added to the knowledge base as a new item. The algorithm, which

controls the agents, is shown in Table 5.1.

Figure 5.12: A sample scenario for similarity detection

The similarity detection is sampled in Figure 5.12. In the figure, an agent detects

an object walking in the south east direction and adds it to its knowledge base. It

also stores its detection type (detected, recognized, identified), object type (if

known), last seen position, and average speed. After some time, the object is not

seen any more because of a wall, but the agent has the previous object

information and it starts to make estimation of the object position. Time passes

 53

and the object is again seen in some other position. This time it is a new

perception because it is not recognized yet. It starts to search the new perception

in the knowledge base. The previous object positions were update in the previous

simulation frame, so if the estimated position and the new perception position are

similar, that is near than a similarity threshold which is also dynamically

calculated using previous average speed (error tolerance of speed), than the new

perception is said to be the same object detected before. In that situation, the

previous knowledge base is just updated, else if no similar perception is found;

the new perception is added to the knowledge base.

 54

Table 5.1: The algorithm, which controls the agents

Main loop

For each group

For each agent
If the agent is a red team member (intelligent agent)

Construct the sensor perception list for the agent; (A)
Analyse the perception list and update the knowledge base; (B)
Execute behavior module; (C)
Update the physical appearance in virtual environment;

A) Construct the sensor perception list for the agent

Backup the previous perception list and create a new list;
For each group

For each agent except himself
Calculate the seeing and hearing statistics between the agent and the target; (D)

B) Analyze the detected list and update the knowledge base

For each member of perception list

If the perception exists in the previous list and unsensed because of the probability test and no probability change
occurred after that time

Mark the member of new detected list as “not-sensed” again;
For each sensed member (not checked as “not-sensed”) of new perception list

Do a comparison to knowledge base, find the similarities;
If similarity found

Update the knowledge base and check the member of perception list as “similarity-found”;
For each member of new detected list which is not checked as “similarity-found”

Do a probability test and if it passes the test
Add the list member to the knowledge base as a new perception;

Else
Check the member of perception list as “not-sensed”;

C) Execute behavior module

Find who the commander is;
Find the status of the mission plan by using previous actions and radio messages;
If the agent is a commander

Wait or Update the path and follow the path depending on the mission status;
Else

If the commander position is known
Follow the commander;

Else
Stop and search for the commander;

D) Calculate the seeing and hearing statistics between the agent and the target

Compute the statistics between the agent and the target (line of sight, viewing angle, range, etc.);
If there is any possibility of detection, add the perception to the perception list;

 55

5.5. Decision and Reaction

Agents give decisions and react to various events using only their knowledge

base. In addition to object positions, knowledge base also contains the

information of who the commander is and the radio and face-to-face messages.

By using this information, agents find out their commander and the status of the

mission plan. If an agent is a commander, it executes the mission otherwise it

follows the commander. If an agent doesn’t know the position of his commander,

it stops and tries to find out the commander by looking around.

Route between control points is generated using “Off-line Path Planning

Module”. Unless an abnormal situation occurs, the commander follows that path.

Otherwise, the path is updated considering the objective, not to be seen by any

sensor platform. The off-line path planning and the path update algorithm will be

described in Section 6.

5.6. Group Formation

The group formation is concerned with the distribution of members within a

group. A group formation is necessary for a systematic achievement of tasks. The

position of a member in the group is defined by (dx,dy) coordinates relative to the

commander, which is shown in Figure 5.13.

The member coordinates are calculated using the current position and direction of

the commander and this calculated position is given to the member as a target

position to be reached. If a subordinate is too far from its expected position, it

runs for a while to take the right position else it only walks until arriving at the

target position. A snapshot from a group formation is shown in Figure 5.14.

In our study, the user gives the group formation to the group. In fact, changing

formations using military rules is also possible while executing the mission. This

can be a future work.

 56

Figure 5.13: Group formation of a group with a commander and the three

subordinates.

Figure 5.14: A group of agents walking in a formation: The commander is in

front of five subordinates and a helicopter is about to capture them.

The commander

Subordinates

y

x

dy

dx

Group

 57

5.7. Group Synchronization by Radio Communication

Every group has a mission, which is a part of a high level mission. The mission is

a set of control points and a list of goals to be achieved at these points. Some of

these goal pieces contain radio messages to be sent at these points. Radio

messages are used for coordinating the groups allowing a coordinated mission.

These radio messages are:

• arriving at a control point,

• becoming ready to leave a control point,

• continuing the mission (leaving a control point),

• canceling the mission,

• sending a keyword,

• an enemy identified,

• being in danger (I am in danger),

Sending a radio message is managed using a message string carrying the

information to be sent. A message string includes the following fields:

• Radio message type,

• The sender group,

• The receiver group,

• The sender group member,

• The receiver group member,

• Where the message is sent from,

• A keyword string.

Although the message may contain who the message is for, it is heard by all the

agents having a radio message receiver, so all the agents know the status of the

groups and the mission. A set of radio communications occurred while

performing a mission is shown in Table 5.2.

 58

Table 5.2: The list shows a set of radio communications occurred on a mission.

At specific coordinates (1.4, 2.3, 3.3), all the groups are rendezvoused and

synchronized, than continued the mission at the same time.

group (2 and 3) is waiting for keyword “First step go” from group (1).

♦ Radio Msg. From group (1) to all : we are leaving point 1.1 to continue mission
♦ Radio Msg. From group (1) to all : send keyword >> “First step go”

 Radio Msg. From group (2) to all : we are ready to continue from point 2.1
♦ Radio Msg. From group (3) to all : we are ready to continue from point 2.1

 Radio Msg. From group (2) to all : we are leaving point 2.1 to continue mission
♦ Radio Msg. From group (3) to all : we are leaving point 2.1 to continue mission

 Radio Msg. From group (2) to all : we arrived at point 2.2
 Radio Msg. From group (2) to all : we are ready to continue from point 2.2
 Radio Msg. From group (2) to all : we are leaving point 2.2 to continue mission

♦ Radio Msg. From group (1) to all : we arrived at point 1.2
♦ Radio Msg. From group (1) to all : we are ready to continue from point 1.2
♦ Radio Msg. From group (1) to all : we are leaving point 1.2 to continue mission
⇒ Radio Msg. From group (3) to all : we arrived at point 3.2
⇒ Radio Msg. From group (3) to all : we are ready to continue from point 3.2
⇒ Radio Msg. From group (3) to all : we are leaving point 3.2 to continue mission
♦ Radio Msg. From group (2) to all : we arrived at point 2.3

group (2) is waiting at point 2.3 for message “arrival at point 1.4” from group (1).
⇒ Radio Msg. From group (3) to all : we arrived at point 3.3

group (3) is waiting at point 3.3 for message “leaving point 2.3” from group (2).
♦ Radio Msg. From group (1) to all : we arrived at point 1.3
♦ Radio Msg. From group (1) to all : we are ready to continue from point 1.3
♦ Radio Msg. From group (1) to all : we are leaving point 1.3 to continue mission
♦ Radio Msg. From group (1) to all : we arrived at point 1.4

group (1) is waiting at point 1.4 for keyword “Ready for Mission” from group (2).
 Radio Msg. From group (2) to all : we are ready to continue from point 2.3
 Radio Msg. From group (2) to all : send keyword >> “Ready for Mission”

group (2) is waiting at point 2.3 for keyword “Target is Kartal Gozu” from group (1).
♦ Radio Msg. From group (1) to all : we are ready to continue from point 1.4
♦ Radio Msg. From group (1) to all : send keyword >> “Target is Kartal Gozu”

 Radio Msg. From group (2) to all : we are leaving point 2.3 to continue mission
⇒ Radio Msg. From group (3) to all : we are ready to continue from point 3.3
♦ Radio Msg. From group (1) to all : we are leaving point 1.4 to continue mission
⇒ Radio Msg. From group (3) to all : we are leaving point 3.3 to continue mission

5.8. Location Availability

If an agent can pass through a specified voxel, that voxel is said to be an available

location for the agent. For the agents, a matrix storing the available and not-

available locations is allocated. The size of location availability matrix is equal to

the terrain elevation matrix. The matrix is filled by the user in design phase. For

the process, a set of tools is supported. These are setting elevation limit, slope

limit, and surface material limit.

 59

The elevation limit culls the voxels being above, below or equal to an elevation

value. The result of culling the voxels above 1500 m is shown in Figure 5.15.

The slope limit similarly culls the voxels being above, below or equal to a slope

magnitude value. The result of culling the voxels having slope magnitude more

than 30 degree is shown in Figure 5.16.

The surface material limit culls the voxels being equal to a selected material type.

For example, culling fresh water means setting rivers not-available places.

All these culling operations can be applied any number of times and in any order

resulting a location availability map mixed of different operators shown in Figure

5.17.

Figure 5.15: Location availability matrix after culling voxels above 1500 m (light

colored regions are available locations)

 60

Figure 5.16: Location availability matrix after culling voxels having slope

magnitude more than 30 degree (light colored regions are available locations)

Figure 5.17: Location availability matrix after culling voxels above 1500 m,

having slope magnitude more than 30 degree and having material water, rock or

forest (light colored regions are available locations)

 61

5.9. Physical Modeling

A 3D model is generated for the agents in order to be sensed by the platform

sensors. A sample model is shown in Figure 5.18. For the physical appearance of

the agents in the environment, only the coordinates are used and body motions

are ignored. The motion kinematics or motion capture may be used to generate

their body movements, but this may be a future work.

Figure 5.18: The 3D human model used for agents

 62

CHAPTER VI

PATH PLANNING

6.1. The Objective

The group mission is given by a set of tactical control points. So we need to plan

a path connecting these points in order to complete the mission. If a path is

generated, the commander may follow the path to complete the given task.

Off-line path planning is not suitable for real time mission execution. It serves a

static path that is only available for short period of time, but agents are in a

dynamic environment and unknown threats may appear in any time, so a new

path has to be generated under abnormal conditions. Generating an off-line path

for every frame is an inefficient way of mission planning. Indeed, only a partial

update is enough in many situations.

In this study, two different approaches are proposed for real-time mission

planning. First one is an off-line path planning followed by a real-time path

update algorithm, which partially update the path during the simulation cycle.

And the alternative is a real-time goal directed path search algorithm that does

not need any off-line path-planning phase.

Both approaches have some advantages and drawbacks. Planning of an off-line

path is a natural way of deciding a mission plan before going out to field. You

generate a plan on the map, and want to keep it same as much as possible.

However, during the mission execution, many abnormal events may happen and

the previous plan can be completely unfeasible. Partially updating the path may

 63

not be enough and off-line path planning may be inevitable. The second

approach, an efficient real-time path search algorithm, can lead to a solution, but

this is the way that ignores a fact. In our problem, we assume that the map is

completely known, so ignoring that information is not a good way of planning.

6.2. Off-line Path Planning

In this study, an off-line path-planning algorithm that finds a path connecting two

points on a large landscape is proposed. The algorithm doesn’t guarantee the

shortest path, but finds an acceptable short path that does not contain any loops.

A sample result is shown in Figure 6.1.

Figure 6.1: The image shows an off-line path search result between two given

points. The dark regions are not available for passing through.

 64

The main advantage of the algorithm is its efficiency as it runs in linear time and

prevents loops. It is similar to the breath-first search algorithm, which uses

heuristics aiming to the goal point. It searches block regions, checks where it has

gone before and never comes back again. Thus, the complexity of the algorithm

is O(nm), where n and m are the number of cells in horizontal and vertical axes.

Thus, n times m gives the total number of voxels.

The second advantage is its possibility to be integrated to real-time applications

by doing simple modifications. The off-line search steps can be distributed over

simulation frames, which allow the algorithm to search a path in real-time. This

approach is used in our proposed real-time path search algorithm. Another

advantage is that it allows finding random paths by changing the parameters of

heuristic function randomly during the search.

Although it has the advantage of being efficient, it has also disadvantages. The

main drawback of the algorithm is its generated paths, which are not the shortest

paths in general. The result is usually near to the shortest path, but not the

shortest one. Also the generated path usually contains sharp edges, which is

illustrated in Figure 6.1 and Figure 6.2. These sharp edges can be fixed using the

proposed path update algorithm, which usually aims to minimize the curvature.

 65

Figure 6.2: A set of tactical control points and generated paths between these

points.

We assume that the landscape is defined as a 2 dimensional matrix of elevations,

which forms a grid. Each grid member (voxel) of the landscape is marked as

available or not available for passing through by considering slope magnitudes,

surface materials, etc. The planning starts from the initial position (sx,sy) called

the starting point and ends at the position (tx,ty) called the target point.

First, we horizontally move left from the point (sx,sy) until a not available voxel

is reached. Then, the same search is done to the right direction. Thus, the left and

right boundaries (a1 and a2) of the point (sx,sy) are found. The points, a1 and a2

are x coordinates of two voxels that are on the same row of starting point (sx,sy).

Indeed, the found boundaries form a 1-dimensional horizontal line (the y

 66

coordinate of the line is ly) and it splits the local area into north and south part,

which is illustrated in Figure 6.3.

Figure 6.3: The initial state of the algorithm

Next step is to call a recursive function, “boundary”, by sending the current

parameters ly, gx, a1, a2, where ly is the current y coordinate of the line and gx is

the x coordinate of entry point to the line that are initially the sx and sy

coordinates, a1 is the left bound of (gx,ly) and a2 is the right bound of (gx,ly).

Each recursive function checks the north and south neighbor voxels of the

bounded line (ly,a1,a2) for available exits. If one or more new neighbor exits are

found, one of them is chosen using a heuristic function and “boundary” function

is called again for the new exit line. After entering each recursive function the

bounded line (ly,a1,a2) is filled with a sign for the sake of preventing loops,

which means “gone before”. The process steps are illustrated on a sample in

Figure 6.4.

Starting point (sx,sy)

First step: a horizontal line passing
through starting point is found. This
line splits the local region into north
and south.

Target point (tx,ty)

Left boundary (a1) Right boundary (a2)

 67

Figure 6.4: The recursive search process continues until reaching the line that the

target point is on.

When a path is found as a result of the search, the result usually contains too

many control points. So, it needs to be optimized. The result is optimized while

going out of the recursive functions. Thus, the process occurs from target point to

starting point, which is actually the reverse order. While each point is added to

the list, a linear connection test is done with the previous added control points. If

any linear connection is available among the points am and an, all the interval

control points in the range of am+1 and an-1 are deleted. The C-like pseudo code

of the basic path-planning algorithm is shown in Table 6.1 and an optimized path

is illustrated in Figure 6.5.

found path

 68

Figure 6.5: An off-line generated path (left) and an optimized version of the same

path (right)

The optimization decreases the number of path points significantly, but the

drawback is the time spent while checking the availability of linear path between

two points. The LOS algorithm described in Section 5.3.3 is used for this

purpose.

 69

Table 6.1: The basic algorithm for the off-line path planning

short tx;

short ty;

short found;

void boundary(short ly, short gx, short a1, short a2)

{

 short tar;

 short goinfrom;

 char xyon, yyon;

 if ((ly == ty) && (tx>=a1) && (tx<=a2))

 {

 found = true;

 return; // path is found, generate the path now

 }

check the voxels on line (ly,a1,a2) as “gone before”

// if target is at north, search north first else search south first.

 if (ly<ty) yyon = 1; else yyon = -1;

// if target is near to a1, start search from west else start search from east.

 if (abs(a1-tx)<abs(a2-tx)) xyon = 1; else xyon = -1;

search the north and south sides considering the priority determined

by xyon and yyon, find all the available neighbor regions (ly±yyon,n1,n2) and

their suitable entry points (goinfrom)

call boundary(y±yyon,n1,n2,goinfrom);

 if (found)

{

// path is already found, continue generating the path

 return;

}

 }

char Search_Path(short sx, short sy, short targetx, short targety)

{

 short a1,a2;

 tx = targetx;

 yy = targety;

 a1 = left boundary of sx,sy

 a2 = right boundary of sx,sy

 found = false;

 boundary(sy, sx, a1, a2);

 return found;

 }

 70

6.3. Real-Time Path Refinement and Update

6.3.1. Energy Minimization

After having generated an off-line path, the commander follows the path under

normal conditions. When a threat is detected, this path needs to be updated

considering the new situation. For that purpose, a path update algorithm is

developed based an energy minimization of path points, which is a commonly

used algorithm in image processing called the snakes.

The algorithm assumes that every tactical control point has a potential energy,

which is harmful such as radioactive energy. The objective is to get rid of or

minimize this harmful energy. The energy sources are in two forms: internal or

external. Internal energies are the curvature of path on the control point and

deviation of initial distances between the neighbor control points. The external

energy sources are the elevation, slope, and the threats.

6.3.2. Internal Energies

The two neighbors of a control point form a curvature, which is illustrated in

Figure 6.6. Having high curvature on a path point is an unwanted effect, because

this may cause the path become longer. So the curvature increase also increases

the negative energy on a control point.

In the Figure 6.6, the curvature of point 2 is computed using the following

formula:

Curvature = sqrt (cx2 + cy2) / (d1 + d2) ,

where cx = x1 – 2x2 +x3 , cy = y1 – 2y2 + y3

 71

Figure 6.6: Illustration of a high and low curvature. Moving a control point where

causes a low curvature shortens a path.

Another internal energy is the continuity. In ideal conditions, the distances

between the neighbor points (edge distances) must be equal to each other and also

the average of edge distances. The deviation from the average distance causes to

increase the energy, which is shown in Figure 6.7.

Figure 6.7: Illustration of a balanced (left) and not balanced path (right)

A low curvature

A control point

A high curvature

d1 d2

1 3

2

A balanced node having low
continuity

A non-balanced node having high
continuity

d2
d1

 72

In Figure 6.7, the continuity of the left node is computed using the following

formula:

Continuity = (r1
2 + r2

2) / 2 ,

where r1 = abs (d1 - average distance) / average distance ,

r2 = abs (d2 - average distance) / average distance

6.3.3. External Energies

Slope magnitude is one of the external energy functions to be minimized. If slope

magnitude increases, the negative energy also increases. The slope magnitude is a

value between 0 and 90, so the Slope function is as follows:

Slope Energy = slope magnitude / 90

Another introduced energy source is the elevation. The objective is to minimize

the control point elevations. So the function is as follows:

Elevation Energy = elevation / maximum elevation on the terrain

The last external energy function is for the threats. We assume that the threats are

energy sources, and being near to a threat increases the collected negative energy

on a control point. So the aim of the control points is to escape from threats,

which is illustrated in Figure 6.8. Every threat has a limited visual capability and

the agents has some believes about these capabilities. Using these believes, they

find the maximum detection range (maximum range) for a specific type of threat.

If a threat is detected and it is near to a control point, the energy on the point

starts to increase depending on the maximum range. The function is as follows:

If (distance to threat>maximum range) then Threat Energy = 0 else

 Threat Energy = (maximum range – distance to threat) / maximum range

 73

Figure 6.8: Threat energy causes the path points go far away from the threats.

A total energy is computed from the energy functions using suitable weights, and

all the control points are updated each frame. To update a control point, the

energy of each voxel, which is near to the control point and has an available

linear connection to the next point, is calculated. Then the control point jumps to

the voxel, which has the minimum energy. The result of this process is shown in

Figure 6.9.

Using the minimization algorithm, the path refinement can be done to a limit, but

the result is not satisfactory all the time, because this process cannot modify a

path radically. For example, the path cannot pass over an obstacle, which is

illustrated in Figure 6.10.

Points can be moved using local energy minima on the fly

Target point

Starting point

a threat

 74

Figure 6.9: A path update sample: Left figure shows the initial paths of three

agent groups. Their target, which is a non-deformable control point, is at middle

of the area. Right image shows the updated paths after some time.

Figure 6.10: The path on the left aims to flow right, but an obstacle prevents this

movement.

An obstacle

A threat

 75

6.4. Real-Time Path Search: Real-time Horizontal A*

If the agent doesn’t have a complete map or an off-line generated path, it has to

decide on the fly while executing the mission. Thus, you don’t plan an off-line

path, but you search a path that will make you reach the goal state. Our proposed

real-time goal directed search algorithm is based on off-line path planning

algorithm introduced in Section 6.2. This is a modified version of the algorithm

integrated with real-time A* [MY96]. In the algorithm, linear regions (horizontal

lines) and real-time A* approach are used to direct the search, so we call it Real-

Time Horizontal A* (RTHA*).

In the off-line path planning, the search is started from the bounded horizontal

line passing through the starting point (sx,sy). Then the search goes on by

jumping available neighbors of the current line. Similar to off-line path planning,

RTHA* search the area horizontally, but the process is done on the fly distributed

to the whole simulation period.

Real-Time A* is a greedy search algorithm that uses heuristics to direct the

search. It evaluates the costs of the neighbor voxels at the current position and

jumps to the voxel having minimum cost. While jumping to the next voxel, the

algorithm writes 1 plus the cost of the second best neighbor to the previous voxel.

This is illustrated in 6.11.

Figure 6.11: State transition of Real-Time A*

5 8 3

1 7

9 6 7

The best

The second best

5 8 3

1 7

9 6 7

4

The second best + 1

 76

The algorithm is effective for maze environments, but if the terrain is large and

there are many semi-closed regions having large open areas inside, the agent may

be stuck in the regions for a long time, because the search strategy is too local,

only the neighbor voxels are evaluated. This state is simulated in Figure 6.12.

Real-Time Horizontal A* is proposed to prevent that problem. RTHA* extends

the search space from single voxels to large linear regions, so making the

algorithm more useful in large environments having many open areas and semi-

closed areas.

Figure 6.12: The agent, directed by Real-Time A* may stuck in semi-closed

regions having large open areas inside for a long time searching the same voxels

hopelessly.

RTHA* uses the same cost update technique as real-time A*, but it evaluates the

costs of the neighbor linear regions instead of a single voxel and decides to reach

the region having the minimum cost. While going to the next region, the

algorithm writes 1 plus the cost of the second best neighbor to the previous

region. This is illustrated in Figure 6.13.

target

agent

The agent will stuck in that
semi-closed region for a
long time, because the
target is at nort-west and
the only out is at south-
east.

 77

Figure 6.13: State transition of Real-Time Horizontal A*

The algorithm almost gives the same results for maze environments, but if the

terrain is large and there are many semi-closed regions having large open areas

inside, the agent can go out of the region much more earlier than real-time A*

does, because the search strategy is not as local as real-time A*. This state is

simulated in Figure 6.14.

Figure 6.14: The agent, directed by Real-Time Horizontal A* can go out of semi-

closed regions quickly.

2 10 7

4 6

The best

The second best

2 10 7

4 6

5

The second best + 1

The agent will go to the end of
the corridore, and turn back
quickly at once leaving the
semi-closed region.

target

agent

 78

Table 6.2: The basic algorithm for Real-Time Horizontal A*

x = current x coordinate of the agent;

y = current y coordinate of the agent;

current_a1 = left bound of x,y , initially –1;

current_a2 = right bound of x,y , initially –1;

float GetCost(short a1, short a2, short ay)

{

return minimum distance of the target to the bounded horizontal line (a1,a2,ay);

}

aa1 = left bound of best region found;

aa2 = right bound of best region found;

yy1 = y coordinate of the best region found;

if (current_a1 == -1) // initially, current_a1 and current_a2 must be found

{

 current_a1 = left boundary of x,y;

 current_a2 = right boundary of x,y;

 };

if (abs(targetx-x)<1 && abs(targety-y)<1) the target is reached, stop search;

if (current_a1<=targetx && targetx<=current_a2 && y=targety) // at the row of the target

{

if (targetx<x) x-- else x++; // go horizontally to the direction of the target

}

 else

{

Search all the neighbor linear regions and

find the best and the second best regions by calling GetCost evaluation function

(the variables aa1, aa2 and yy1 is found)

// go to the best linear region if any found

if (aa1<=x && x<=aa2) // go one voxel up or down in the direction of the target

{

 current_a1 := aa1;

 current_a2 := aa2;

 y := yy1; // jump to the row of best region

if (x<targetx && x<aa2) x++ // go right voxel mean while

 else

if (x>targetx && x>aa1) x--; // go left voxel mean while

update the region cost of the previous region as the second best + 1;

}

 else

if (aa1<x) x-- // go left voxel

 else x++; // go right voxel

};

 79

The algorithm for RTHA* is given in Table 6.2. The path search function is

called at each frame in the simulation. When the function is called for the first

time, the left and right bounds of the initial agent coordinate (x,y) will be found.

Then, the current state is evaluated. If the agent is at the target point, it stops. If

the agent is at the same row as the target, then it just goes left or right, else it

searches for the best linear region to be targeted.

The main drawback of both RTA* and RTHA* is being not capable of handling

dynamic environments successfully. For example, if new threat information is

gathered, than it takes time to converge to a new direction, because the cost

function output for each region changes and the previously stored cost values

become partially invalid. While time passes, the costs are updated to new values,

but during this time period, the probability of been captured by the threat

increases significantly.

 80

CHAPTER VII

PERFORMANCE ANALYSIS

7. Hidden

7.1. Test Platform

In this study, off-line path planning and path update algorithms are implemented

by C++ programming language under both Windows and SGI IRIX platforms.

The test environment for Real-Time A* (RTA*) and Real-Time Horizontal A*

(RTHA*) are implemented by Borland Delphi programming language under

Windows platform, which is shown in Figure 7.1.

Figure 7.1: The test program for Real-Time A* and Real-Time Horizontal A*

 81

We used a high resolution mountainous terrain having 2251x2251 voxels and

split it into 6 regions to perform tests. These 6 regions are shown in Figure 7.2,

7.3, 7.4, 7.5, 7.6, and 7.7. White colored regions denote accessible regions and

dark colored ones denote not accessible.

Figure 7.2: Test region 1: A map having widely open area is north and south part,

but there is only one mountain pass between these regions.

 82

Figure 7.3: Test region 2: A map having widely open areas, which is the south

path of the one shown in Figure 7.2.

Figure 7.4: Test region 3: A mountainous area having many semi-closed regions.

 83

Figure 7.5: Test region 4: A map having widely open areas, which is the east path

of the map shown in Figure 7.3.

Figure 7.6: Test region 5: A mountainous area having many semi-closed regions.

The map is the west part of the one shown in Figure 7.4.

 84

Figure 7.7: Test region 6: A mountainous area having many semi-closed regions.

The west and east parts are separated by narrow mountain passes. The map is the

west part of the one in Figure 7.6.

7.2. Test Results of Real-Time Horizontal A*

In the tests, two agents are used, which are implemented by RTA* and RTHA*

algorithms. Various starting and target points are chosen on these maps

illustrating different initial states and region conditions. For each test, a target

point and a starting point are given, and the two agents start from the same

starting point and end at the same target point.

Agents using RTA* and RTHA* can move in 9 different ways: north, south, east,

west, north-east, north-west, south-east or south-west. There are only four states

that an agent cannot move diagonally although the voxel is available, which are

shown in Figure 7.8.

 85

Figure 7.8: Moves that are not allowed for both RTA* and RTHA*

Concerning the performance, we used one criterion that is the number of moves

performed by an agent before reaching the goal. In each test run, two outputs are

obtained (one from RTA* and one from RTHA*). Having lower values for

number of moves means spending less time and energy to reach the goal state.

For a chosen coordinate pair, tests are performed in both forward and backward

directions. The first test is done choosing the first coordinate as the starting and

the second as the target point. Second test swaps these points making the moving

direction reverse. The results are shown in Table 7.1.

In addition, we have done experiments to compare efficiency of both algorithms

on an Intel Celeron-466, 128 MB Ram without displaying the process on the

screen. RTA* performed 1000 moves in 0.135 seconds (7407 frames/second) and

RTHA* performed 1000 moves in 1.666 seconds (1666 frames/seconds). The

efficiency of RTA* is 4.444 times better than RTHA*, but both of them are

acceptable for real-time applications.

 86

Table 7.1: RTA* vs. RTHA*: the gray cells are the ones RTA* performs better.

The performance increase is usually slight in RTA*, but in RTHA* it is generally

very high.

Area RTA*

moves

(forward)

RTHA* moves

(forward)

RTLA/RTA

ratio

(forward)

RTA*

moves

(reverse)

RTHA* moves

(reverse)

RTLA/RTA

ratio

(backward)

Average

ratio

R1.1 133,351 7,560 17.639 4,280,827 2,575,641 >1.662 >9.650

R2.1 149,344 361,859 0.412 1,234 5,380 0.229 0.320

R2.2 727 1,240 0.586 3,535 2,177 1.623 1.19

R3.1 598 1.156 0.517 54,360 4,785 11.360 5.938

R3.2 148,382 2,012 73.748 519,759 50,814 10.228 41.988

R3.3 13,094 1,932 6.777 1,408 10,427 0.135 3.456

R4.1 832 4,882 0.170 982 1,348 0.728 0.449

R5.1 78,509 21,505 3.650 139,096 21,429 6.491 5.070

R5.2 49,976 10,395 4.807 98,060 4,080 24.034 14.420

R6.1 580 551 1.052 542 320 1.693 1.372

R6.2 >2,858,922 705,010 >4.055 >662,805 45,778 >14.478 >9.266

R6.3 1,721 1,799 0.956 1,074 1,346 0.797 0.876

R6.4 1,337 586 2.281 447 654 0.683 1.482

R6.5 13,404 5,173 2.591 893 1,009 0.885 1.738

Total 3,450,777 1,125,660 - 5,765,022 2,725,188 - -

Avg. 246,484 80,404 8.510 411,787 194,656 5.359 6.943

The tests on RTA* and RTHA*, shows that in many situations RTHA* is more

powerful than RTA*, but RTA* usually performs better in widely open areas

such as the ones in Figure 7.3, 7.5. RTHA* usually aims to move in east west

direction. So if the area is widely open, first, the agent goes in the direction east

west and centers the target in x coordinate, than moves north or south direction,

which is illustrated with one of the sample areas (Result R4.1) in Figure 7.9. In

the figure, the target is at north west and the agent is at south east. So the agent

moves west for a while to center the target in x-axis. Than, it moves north. This

causes the RTA* algorithm to reach the target slightly earlier than RTHA*, but

the difference is not so much in general.

Having large horizontal regions has another bad effect on RTHA*. RTHA*

search algorithm is based on horizontal lines and their neighbor linear regions. If

 87

the horizontal lines are wide, this causes the agent move a lot in the direction east

west making it spend so much effort and time while traveling around. This effect

is illustrated with one of the sample areas (Result R2.1) in Figure 7.10.

Figure 7.9: Performance of RTA* and RTHA* on a widely open area

If the area is complex, having semi-closed regions a lot as illustrated in Figure

7.4, 7.6 and 7.7, than RTA* becomes very ineffective and time consuming, in

contrast the RTHA* becomes a very good alternative. In that condition, the

performance of RTA* reduces significantly, whereas the performance of RTHA*

increases, because the semi-closed regions badly effect the RTA* algorithm and

make it get stuck inside these areas for a long time period.

General
behavior of

RTHA*

General

behavior of

RTA*

Target point

Starting point

 88

Figure 7.10: Having large horizontal regions has a bad effect on RTHA*.

Target point

Agent spends
much time
searching for
the mountain
pass on this
region

If the horizontal
lines are wide,
the agent moves
a lot in the
direction east
west making it
spend so much
effort and time
while traveling
around.

 89

CHAPTER VIII

CONCLUSION AND FUTURE WORK

In this thesis, we have studied the concept of computer-generated forces in order

to construct a real-time simulation system. We have formed defense and assault

forces against each other on a large mountainous landscape and tried to solve

real-time path planning problem for mission planning purposes.

We have developed a complete simulation architecture which consists of the

environment generation and analysis, geographic information systems,

environment displaying techniques, command and control systems, group and

command hierarchy, radio messaging, group formation, group synchronization,

stochastic perception gathering, physical modeling and real-time path planning.

A test environment is generated using high-resolution real data of a mountainous

area. Automatic and semi-automatic techniques are developed for analyzing

slope, defining surface materials. A user interface is provided to modify the

environment properties and to add features on the terrain.

The defense and assault forces are generated in a group manner and a set of

scenarios is generated to evaluate performance of developed algorithms: off-line

path planning, real-time path update and real-time path search. It has been

observed that planning an off-line path and updating real-time are a good choice

if the partial updates are not significant, but if the mission plan changes sharply

during the execution, real-time search algorithms serves more efficient solutions.

Tests on real-time path search algorithms show that the proposed algorithm, Real-

 90

Time Horizontal A*, makes remarkable improvements on time spent for reaching

the goal state.

As a result of mentioned observations, we state that the real-time path planning

techniques can be improved by increasing the visual depth, which helps a lot to

escape earlier from the local semi-closed regions. But we have also noticed that

there is much to do for better intelligent search strategies. More visual perception

and evaluation techniques are needed to go one step forward.

The techniques presented in this thesis mainly attempt to solve the problem

“where to go for reaching a goal state”, but there is also an important question

“how to behave while on the way”, which is a reactive behavior problem. For

example, you may decide to follow a generated path, but how an agent must

behave on the way (for example, running, walking or waiting) may not be known.

Future research on behavior concept will help much to increase the success of a

mission.

Another important future research area is group coordination and corporation

among the agents in order to complete a mission. Although this is a crucial need

in computer-generated forces and military applications, we have seen that there is

not much study in the area mainly because of its difficulty. So we have to focus

on the domain and come up with new approaches.

In this thesis, we have also studied briefly the group formation, which is a

coordination technique among the team members of a group. This study was only

aiming at moving a group according to a given group formation, but there can be

future research on how to decide and change a group formation on the fly.

 91

 REFERENCES

[A94] Anthony Stentz. Optimal and Efficient Path Planning for Partially-Known

Environments. Proceedings of the IEEE International Conference on Robotics

and Automation. May, 1994.

[A95] Anthony Stentz. The Focussed D* Algorithm for Real-Time Replanning.

Proceedings of the International Joint Conference on Artificial Intelligence.

August, 1995.

[A97] Alan Watt. 3D Computer Graphics. Addison Wesley Publishing Company

Inc. 1997.

[CM99] Charles E. Campbell and Michael A. Craft. Advancements in Synthetic

Natual Environment Representation. Proceedings of 8th conference on Computer

Gererated Forces and Behavioral Representation. Orlando, Florida, pp. 81-86,

May 1999.

[CVZ00] Cagatay Undeger, Veysi Isler and Ziya Ipekkan. An Intelligent Action

Algorithm for Virtual Human Agents. Proceedings of the 9th Conference on

Computer Generated Forces and Behavioral Representation, Orlando, Florida.

May 2000.

 92

[DEUV96] Daniel Cohen-Or, Eran Rich, Uri Lerner and Victor Shenkar. A Real-

Time Photo-Realistic Visual Flythrough. IEEE Transactions on Visualization and

Computer Graphics, Vol. 2, No. 3. September 1996.

[E98] Erol Gelenbe. Modelling CGF with Learning Stochastic Finite-State

Machines. Proceedings of 8th conference on Computer Gererated Forces and

Behavioral Representation. Orlando, Florida, pp. 113-115. May 1999.

[EA98] Emanuele Trucco and Alessandro Verri. Introductory Techniques for 3-D

Computer Vision. Prentice Hall, Inc. 1998.

[JG99] Jeremy W. Baxter and Graham S. Horn. A Model for Co-ordination and

Co-operation Between CGF Agents. Proceedings of 8th conference on Computer

Gererated Forces and Behavioral Representation. Orlando, Florida, pp. 101-111.

May 1999.

[JJ98] James J. Kuffner, Jr. and Jean-Claude Latombe. Goal-Directed Navigation

for Animated Characters Using Real-Time Path Planning and Control.

Proceedings of CAPTECH ‘98: Workshop on Modelling and Motion Capture

Techniques for Virtual Environments, Geneva, Switzerland, pp. 26-28, Nov

1998.

[JJ99] James J. Kuffner, Jr. and Jean-Claude Latombe. Fast Synthetic Vision,

Memory, and Learning Models for Virtual Humans. Proceedings of Computer

Animation, IEEE, pp. 118-127, May 1999.

[JP94] Jin Joe Lee and Paul A. Fishwick. Real-Time Simulation-Based Planning

for Computer Generated Force Simulation. Simulation, pp. 299-315, 1994.

[KJ97] Kazuo KJ97 and John K. Smith. Genetic Algorithms for Adaptive

Planning of Path and Trajectory of a Mobile Robot in 2D Terrains. Technical

 93

Report, number ICS-TR-97-04, University of Hawaii, Department of Information

and Computer Sciences, May 1997.

[M00] Mark A. DeLoura. Game Programming Gems. Charles River Media, Inc.

2000

[MY96] Makoto Yokoo (NTT Communication Science Laboratories) and

Yasuhiko Kitamura. Multiagent Real-Time-A* with Selection: Introducing

Competition in Cooperative Search. Proceedings of International Conference on

Multi-Agent Systems (ICMAS-96), 409-416. 1996.

[NIMA99] National Imagery and Mapping Agency (NIMA). Digital Terrain

Elevation Data (DTED). Standards and Specifications Publications: MIL-PRF-

89020A Amendment-1, 27 April 1999.

[OPBRMP98] Oliver Deussen, Pat Hanrahan, Bernd Lintermann, Radomír Mech,

Matt Pharr and Przemyslaw Prusinkiewicz. Realistic Modeling and Rendering of

Plant Ecosystems. Proceedings of SIGGRAPH '98, Orlando, FL, USA. 1998.

[PS99] Paul T. Barham and Shirley M. Pratt. The Development of High Level

Architecture (HLA) Human Starter Simulation Object Model (SOM). Proceedings

of 8th conference on Computer Gererated Forces and Behavioral Representation.

Orlando, Florida, pp. 145-151. May 1999.

[RA98] Richard W. Pew and Anne S. Mavor. Modeling Human and

Organizational Behavior: Application to Military Simulations. National Academy

Press. 1998.

[RJMP94] Randolph M. Jones, John E. Laird, Milind Tambe and Paul S.

Rosenbloom. Generating Behavior in Response to Interacting Goals. Proceedings

 94

of 4th conference on Computer Gererated Forces and Behavioral Representation.

Orlando, Florida. 1994.

[RM98] Rune M. Jensen and Manuela M. Veloso. Interleaving Deliberative and

Reactive Planning in Dynamic Multi-Agent Domains. In Proceedings of the

AAAI Fall Symposium on Integrated Planning for Autonomous Agent

Architectures, AAAI Press. October 1998.

[RMJP93] Randolph M. Jones, Milind Tambe, John E. Laird and Paul S.

Rosenbloom. Intelligent Automated Agents for Flight Training Simulator.

Proceedings of 3th conference on Computer Gererated Forces and Behavioral

Representation. Orlando, Florida, pp. 33-42. May 1993.

[SJ99] S.M. LaValle and J.J Kuffner. Randomized Kinodynamic Planning. In

Proceedings of IEEE International Conference on Robotics and Automation

(ICRA'99), Detroit, MI. May 1999.

[SP95] Stuart Russell and Peter Norving. Artificial Intelligence: a modern

approach. Prentice Hall, Inc. 1995.

[USGS98] USGS National Mapping Information. Digital Elevation Models.

Technical Instructions for Digital Elevation Model Standards, January 1998.

