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Technical Correspondence

Real-Time Moving Target Evaluation Search

Cagatay Undeger and Faruk Polat

Abstract—In this correspondence, we address the problem of real-time
moving target search in dynamic and partially observable environments,
and propose an algorithm called real-time moving target evaluation search
(MTES). MTES is able to detect the closed directions around the agent and
determines the estimated best direction to capture a moving target avoiding
the obstacles nearby. We have also developed a new prey algorithm (Prey-
A*) to test the existing and our predator algorithms in our experiments.
We have obtained an impressive improvement over moving target search,
real-time target evaluation search, and real-time edge follow with respect
to path length. Furthermore, we have also tested our algorithm against A*.

Index Terms—Moving target search, real-time path planning.

I. INTRODUCTION

Pursuing a moving target is a challenging task in areas such as
robotics, computer games, military simulations, etc. Offline and incre-
mental path planning algorithms are not able to handle moving targets
in real-time, and most of the on-line search algorithms are specifically
designed for partially observable environments with static targets. The
most well-known real-time algorithm for moving targets is moving tar-
get search (MTS) [1], which maintains a heuristic table that contains
estimated costs of paths between every pair of coordinates. Conver-
gence of the estimated costs takes considerable time making MTS a
poor algorithm to be used in practice. Upon seeing such inefficiency,
the authors developed two extensions, which are Commitment to Goal
(MTS-c) and Deliberation (MTS-d).

In this correspondence, we propose a new moving target search algo-
rithm, real-time moving target evaluation search (MTES), which is built
on real-time edge follow (RTEF) [2] and real-time target evaluation
search (RTTES) [3] developed for partially observable environments
with static targets. MTES is able to estimate the distance to the target
considering the intervening obstacles and discards some nonpromising
alternative moving directions in real-time. First, it propagates virtual
rays (in the mind of the agent) away from the agent location in four
directions, and determines the obstacles that the rays hit. For each such
obstacle, we extract its border, estimate the alternative paths to the
target, which go around the obstacle, and determine the best direction
considering the estimated paths. Then, by using these directions and
a resolution mechanism that will be described later, a single moving
direction is determined.

To show the performance of our algorithm, we compared MTES
with RTTES, RTEF, MTS-c, MTS-d, and A*. We extended RTTES
and RTEF to handle moving targets using the method used in MTES.
For the experiments, we randomly generated grids of different types,
and developed a successful prey algorithm (Prey-A*) in order to chal-
lenge the algorithms used in the experiments. The results showed
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that MTES produces near-optimal solutions, and outperforms RTTES,
RTEF, MTS-c, and MTS-d significantly with the help of its new path
estimation methodology.

Section II provides the related work on path planning. In Sections III
and IV, MTES and Prey-A* algorithms are described in detail, respec-
tively. Section V presents the performance analysis, and Section VI is
the conclusion.

II. RELATED WORK

Path planning can be described as finding a path from an initial
point to a target point if there exists one. Path planning algorithms
are either offline or on-line. Offline algorithms such as A* [4] find the
whole solution in advance before starting execution, and they are hard
to use for large dynamic environments because of their time require-
ments. One solution is to make offline algorithms to be incremental,
which is a continual planning technique that makes use of information
from previous searches to find solutions to the problems potentially
faster than are possible by solving the problems from scratch. Focused
D* [5], D* Lite [6] and MT-adaptive A* [7] are some of the well-
known incremental heuristic search algorithms. Due to the efficiency
problems of offline techniques, a number of on-line approaches such
as tangent-bug [8], learning real-time A* (LRTA*) [9], real-time adap-
tive A* (RTAA*) [10], free flight 3-D [11], random trees [12], and
probabilistic road maps [13] are also presented. However, most of such
on-line search algorithms cannot be used against a moving target since
they are usually developed for fixed goals. MTS [1] is one of the algo-
rithms capable of pursuing a moving target. The algorithm maintains a
table of heuristic values, representing the function h(x, y) for all pairs
of locations x and y in the environment, where x is the location of the
agent and y is the location of the target. The original MTS is a poor
algorithm in practice because when the target moves (i.e., y changes),
the learning process has to start all over again causing a performance
bottleneck. Therefore, two MTS extensions called MTS-c and MTS-d
are proposed to improve the solution quality [1]. In order to use the
learned table values more effectively, MTS-c ignores some of the tar-
get’s moves while in a heuristic depression, and MTS-d performs an
offline search (deliberation) to update the heuristic values if the agent
enters a heuristic depression.

Very recently, two real-time search algorithms, RTEF [2] and RTTES
[3] are proposed for partially observable environments, on which our
algorithm is built. Although these algorithms are developed for static
targets, they have the potential to handle moving targets with little
modification, which is presented in this correspondence.

When we look at the prey algorithms, we usually see hybrid tech-
niques, which mix a number of reactive strategies such as moving
randomly in any possible direction that is not blocked by a preda-
tor [1], [14], [15]; escaping from the predators along a straight line or
a circle [14], [16]; moving in the opposite direction of the predator if
the prey sees only one predator, and otherwise moving in the direction
that bisects the largest angle of its field of view in which there are
no predators [14]; moving toward a direction that maximizes the dis-
tance from the predator’s location [1], [15]; moving toward a direction
that maximizes the mobility by preferring a move that leads to more
move choices, and moving a position that is not in line of sight of the
predators [15]. Since these reactive algorithms are not good enough to
challenge our predator algorithm, we developed an offline strategy that
is slow but more powerful.
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III. MTES ALGORITHM

In this section, we describe our moving target search algorithm
namely MTES. The environment is a partially observable planar grid
world, where any grid cell can either be free or obstacle. There is a
single predator agent that aims to reach a static or moving prey through
a short path avoiding obstacles in real-time. Prey and predator can move
in the direction of north, south, east, or west in each step. Initially, they
are randomly located far from each other in free grid cells. All agents
use Euclidian distance metric for heuristic estimations. We assume that
the predator knows the location of the prey all the time, but perceives
the obstacles around him within a square region centered at the agent
location. The size of the square is (2v + 1)x(2v + 1), where v is the
vision range. Unknown parts of the grid world are assumed to be free
of obstacles, until they are explored. By an obstacle, we refer to known
part of that obstacle. We used the term infinite vision to emphasize the
setting where the agent has unlimited sensing capability and knows
the entire grid world before the search starts. The prey has unlimited
perception and knows all the grid world and the location of predator
all the time. The predator and prey move alternately at each step, and
the first step is always taken by the prey. To make the prey slower than
the predator, the prey skips one move after each m moves, where m is
chosen as 7 in our experiments. The search continues until the predator
reaches the prey.

MTES makes use of an improved version of the heuristic in [3],
RTTE evaluatio (RTTE-h), which analyzes obstacles and proposes a
moving direction that avoids these obstacles and leads to the target by
shorter paths. To do this, RTTE-h geometrically analyzes the obstacles
nearby, tries to estimate the lengths of paths around the obstacles to
reach the target, and proposes a moving direction. RTTE-h works in
continuous space to determine the moving direction, which is then
mapped to one of the actual moving directions (north, south, east, and
west).

MTES repeats the steps in Algorithm 1 until reaching the target or
detecting that the target is inaccessible. In the first step, MTES calls
RTTE-h heuristic function, which returns a moving direction and the
utilities of neighbor cells according to that proposed direction. Next,
MTES selects one of the neighbor cells on open directions with the
minimum visit count, which stores the number of visits to the cell. If
there is more than one cell, which has the minimum visit count, the
one with the maximum utility (see [3] for details) is selected. If utilities
are also the same, then one of them is selected randomly. After the
move is performed, the visit count of the previous cell is incremented
by one and the cell is inserted into the history. The set of previously
visited cells forms the history of the agent. History cells are treated as

obstacles. Therefore, if the agent discovers a new obstacle during the
exploration and realizes that the target has become inaccessible due to
history cells, the agent clears the history to be able to backtrack.

In moving target search problem, the prey may sometimes pass
through the cells which the predator previously walked through. In such
a case, there is a risk that the history blocks the agent to reach the target
since history cells are assumed to be obstacles and may close some
gateways that are required to return back. If such a case occurs at some
point, the agent will surely be able to detect this at the end, and clear
the history, opening all the closed gateways. Therefore, the algorithm is
capable of searching moving targets without any additions. As a matter
of fact, the only drawback of the history is not the possibility that it can
block the way to the target entirely, but it can sometimes prevent the
agent to reach the target through shorter paths just by closing some of
the shortcuts. To reduce the performance problems of this side effect
encountered in RTTES and RTEF, the following procedure is applied
in MTES. Assuming that (x1 , y1 ) and (x2 , y2 ) are the previous and
newly observed locations of the target, respectively, and that R is the
set of cells the target could have visited in going from (x1 , y1 ) to
(x2 , y2 ), the algorithm clears the history along with visit counts when
any cell in set R appears in history or has a nonzero visit count. In
the algorithm, R can be determined in several ways depending on the
required accuracy. The smallest set has to contain at least the newly
observed location of the target, (x2 , y2 ). One can choose to ignore
some of the set members and only use (x2 , y2 ) to keep the algorithm
simple, or one may compute a more accurate set, which has the cells
fall into ellipse whose foci are (x1 , y1 ) and (x2 , y2 ), and the sum of
radii from the foci to a point on the ellipse is constant m, where m is
the maximum number of moves the target could have made in going
from (x1 , y1 ) to (x2 , y2 ).

RTTE heuristric method (RTTE-h) given in Algorithm 2 propagates
four diagonal virtual rays (propagated in the mind of agent) away
from the agent location (line 2 in Algorithm 2) to split north, south,
east, and west directions as shown in Fig. 1. The rays move outward
from the agent until they hit an obstacle or maximum ray distance is
achieved. Four rays split the area around the agent into four regions.
A region is said to be closed if the target is inaccessible from any cell
in that region. If all the regions are closed, the target is unreachable
from the current location. To detect closed regions, the boundary of the
obstacle is extracted (line 4) and analyzed (line 5). Next, the obstacle
border is retraced from both left and right sides to determine geometric
features of the obstacle (line 6). These features are evaluated and a
moving direction to avoid the obstacle is identified (line 7). After all
the obstacles have been evaluated, the results are merged in order to
propose a final moving direction (line 9). Details of these steps are
given in the following subsections.
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Fig. 1. Sending rays to split moving directions [2].

Fig. 2. (Left) Outward facing island, (middle) inward facing island, (right)
hit-point island [2].

A. Detecting Closed Directions

The extracted border of an obstacle is represented as a polygonal
area called island, which is stored as a list of vertices. As illustrated in
Fig. 2, there are two kinds of islands: outward-facing and inward-facing
islands. The target is unreachable from agent location if it is inside an
outward-facing island or outside an inward-facing island. It is possible
that more than one ray hit the same obstacle. As shown in Fig. 2, an
augmented polygonal area called hit-point-island is formed when we
reach the hit-point of another ray on the same obstacle while tracing the
edges. A hit-point-island borders one or more agent moving directions.
If the target point is not inside the hit-point-island, all the directions
that are bordered by the hit-point-island are closed; otherwise all the
directions not bordered by the hit-point-island are closed. The details
and proof of completeness of the method (line 5 in Algorithm 2) can
be found in [2].

B. Analyzing an Obstacle Border

After detecting the closed directions, the extracted border of the
obstacle is analyzed furthermore in order to determine the geometric
features of the obstacle. Border analysis (line 6 in Algorithm 2) is done
by tracing the border of an obstacle from left and right. In left/right
analysis, the known border of the obstacle is traced, starting from the hit
point, edge by edge toward the left/right until a complete tour around
the obstacle border is made. During the process, several geometric
features of the obstacle, some of which are illustrated in Fig. 3, are
extracted (see [3] for details).

C. Evaluating Individual Obstacle Features

In individual obstacle evaluation step (line 7 in Algorithm 2), if
an obstacle blocks the line of sight from the agent to the target, we
determine a direction to move that avoids the obstacle and reaches
the target by a shorter path (see [3] for details and proof of correct-
ness). This algorithm requires several path length estimations given in

Fig. 3. Geometric features of an obstacle [3].

Fig. 4. Exemplified dle ft estimation.

Definitions III.1–III.3 in addition to the acquired geometric features of
the obstacle. The path length estimation algorithm used in MTES is dif-
ferent from that in RTTES, which makes MTES perform significantly
better than RTTES.

Definition 3.1 (dle ft ): The approximated length of the path that starts
from the agent location, jumps to the outer leftmost point, and then
follows the path determined by Algorithm 3 (see Fig. 4).

Definition 3.2 (dle ft .alter ): The approximated length of the path that
starts from the agent location, jumps to the outer rightmost point, and
then to the outer leftmost point, and finally follows the path determined
by Algorithm 3 (see Fig. 5).

Definition 3.3 (dle ft . inner ): The approximated length of the path
passing through the agent location, the inner leftmost point, and the
target (see Fig. 6).
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Fig. 5. Exemplified dle ft .alter estimation [3].

Fig. 6. Exemplified dle ft . inner estimation [3].

Algorithm 3 is internally used in computations of dle ft and dle ft .alter ,
and the subfunction isoutwardsfacing is called for detecting if a border
segment, whose both ends touch the line passing through the outer
leftmost point and the target point, is outward facing (see Fig. 7). The
estimated target distances over the right side of the obstacle are similar
to those over the left side, and computed symmetrically.

Fig. 7. Outward and inward facing segments.

D. Merging Entire Results

In the result merging step (line 9 in Algorithm 2), the evaluation re-
sults (moving direction and estimated distance pairs) for all obstacles
are used to determine a final moving direction to reach the target. The
proposed direction will be passed to the MTES algorithm (see Algo-
rithm 1) for final decision. The most critical step of the merging phase
is to compute the moving direction to get around the most constraining
obstacle (the obstacle that is marked as blocking the target and which
maximizes the distance to the target). The reason why we determine
the moving direction based on the most constraining obstacle is the fact
that it might be blocking the target the most. We aim to get around the
most constraining obstacle and to do this we have to reach its border. In
case there are some other obstacles on the way to the most constraining
obstacle, we need to avoid them and determine an appropriate moving
direction by sweeping the angle of direction (see [3] for details).

E. Analysis of the Algorithm

In each move, MTES performs steps similar to RTTES, but consumes
a little more time in path length estimation, which does not change the
theoretical complexity of the algorithm. The moving target extension
does not also change the complexity since the algorithm only checks
a few number of cells in each iteration, and rarely clears the visit
counts and history. As a result, the worst case complexity of MTES
is the same as that of RTTES, which is O(w.h) per step, where w
is the width and h is the height of the grid representing the length
of the longest obstacle border that is possible in a grid world. Since
increasing grid size decreases efficiency, a search depth (d) can be used
similar to RTTES in order to limit the worst case complexity. A search
depth is a rectangular area of size(2d + 1) × (2d + 1) centered at the
agent location, which makes the algorithm treat the cells beyond the
rectangle as nonobstacle. With this limitation, the complexity becomes
O(d2 ) (see [2] for details). Proof of completeness [2] does not also
change since it is based on the methodology used for detecting close
directions. In this correspondence, we have improved the path length
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estimation, which only affects the performance of the algorithm, but
not the completeness.

IV. PREY ALGORITHM

To challenge our predator algorithm, we developed a deliberative
offline prey algorithm, Prey-A* (see Algorithm 5), which is powerful
but not very efficient. To prevent the side effects caused by the efficiency
difference, the predator and the prey algorithms are executed alternately
in performance tests. The algorithm generates two grids, costspredator

and costsprey , whose sizes are the same as the size of the environment,
and have one-to-one mapping to the cells of the grid world. Each cell
of the costspredator contains the length of the optimal path from the
nearest predator to the cell, and similarly, each cell of the costsprey

stores the length of the optimal path from the prey to the cell. The
objective is to find a cell such that the number of moves from the
nearest predator to the cell (the cost in costspredator ) is maximized,
and the prey will not be caught by the predators during the travel to the
cell by the optimal path. This is checked by ensuring that each cell on
the optimal path satisfies costspredator [cell] − α.costsprey [cell] > 0,
where α is computed by the formula speedpredator/speedprey . In
order to find the best cell, the algorithm examines each nonobstacle
cell within a limited search window centered at the prey location, and
moves one step toward the selected one.

V. EXPERIMENTAL RESULTS

In this section, we present our experimental results on MTS-c,
MTS-d, RTEF, RTTES, MTES, and A* (predators) against a moving
target (prey). As being an offline algorithm, we executed A* in each
step from scratch. Euclidian distance heuristic function is employed for
all the compared algorithms. For the test runs, we used nine randomly
generated sample grids of size 150× 150. Six of them were the maze
grids, and three of them were the U-type grids (see [3] for definitions).
For each grid, we produced 15 different randomly generated predator–
prey location pairs, and made all the algorithms use the same pairs for
fairness. For predators, we used 10, 20, 40, and infinite vision ranges
and search depths. To test the algorithms against a moving target, we
used the deliberative offline prey algorithm, Prey-A* with 161× 161
sized search window.

Fig. 8. Average of path length results of maze grids [(top) 25% obstacles,
(middle) 30% obstacles, (bottom) 35% obstacles] for increasing vision ranges
against a moving target.

First, we present the path length performance of the predator algo-
rithms. With respect to vision ranges and search depths, the averages of
path lengths on maze grids are given in Figs. 8 and 9, and the averages
of path lengths on U-type grids are given in Figs. 10 and 11, respec-
tively. In the charts, the vertical axis contains the ratio of improvement
with respect to MTS-c (the path length of MTS-c divided by that of
the compared algorithm). The results showed that MTES performs sig-
nificantly better than RTTES, RTEF, MTS-d, and MTS-c, and usually
offers near-optimal solutions that are almost as good as those produced
by A*, and even better in some cases. Next, RTTES, RTEF, MTS-d, and
MTS-c follow MTES, respectively. In U-type grids, MTES mostly out-
performs A*. When we have examined this interesting result, we have
observed that they behave differently in sparse parts of the grid. MTES
prefers performing diagonally shaped manoeuvers for approaching tar-
gets located in diagonal directions, whereas A* prefers performing
L-shaped manoeuvres in such cases. Since agents are only permitted
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Fig. 9. Average of path length results of maze grids [(top) 25% obstacles,
(middle) 30% obstacles, (bottom) 35% obstacles] for increasing search depths
against a moving target.

Fig. 10. Average of path length results of U-type grids for increasing vision
ranges against a moving target.

Fig. 11. Average of path length results of U-type grids for increasing search
depths against a moving target.

TABLE I
MINIMUM AND AVERAGE NUMBER OF MOVES PER

SECOND FOR INCREASING SEARCH DEPTHS

to move in horizontal and vertical directions, these two manoeuver
patterns have equal path distances to a fixed location. Although there
is nothing wrong with these for fixed targets, this is not the case for
moving targets since the strategy difference significantly affects the be-
havior of the prey in U-type grids. To be more effective, diagonal moves
are required, and to continuously move diagonally, agents should take
horizontal and vertical moves alternately. That is what MTES does,
but A* does not. When we examine the results furthermore, we see
that vision range does not affect the solutions significantly, except in
U-type grids since the obstacle sizes in these grids are the largest. Sim-
ilarly, search depth does not also affect the results much except in maze
grids with 35% obstacles and U-type grids. Another important fact we
observed about the search depths is that even with very small depths,
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MTES always performs better than MTS, and almost always performs
better than RTTES and RTEF.

We also examined the step execution times of the algorithms running
on an AMD Athlon 2500+. In Table I, the minimum and average number
of moves/second in maze and U-type grids are shown. According to
the results, we conclude that MTS-c and MTS-d have low and almost
constant step execution times whereas the efficiency of MTES, RTTES,
and RTEF is tied to the search depth and obstacle ratio, and hence
appropriate depth should be chosen according to the required efficiency
and grid type. With respect to worse case performance, A* seems to be
the worst as expected.

VI. CONCLUSION

In this correspondence, we have focused on real-time moving target
search in partially observable grid worlds, and proposed a predator al-
gorithm and a prey algorithm. The experiments have shown that MTES
is able to make use of environmental information acquired during the
search successfully, and brings significant performance improvement
over RTTES, RTEF, and MTS, and competes with A* with respect to
path length. During the test runs, we have also observed that the two
MTS versions are significantly different from each other. Although,
MTS-d performs acceptably good, MTS-c almost never offers good
solutions. In terms of step execution times, MTS-c and MTS-d seem to
be the most efficient algorithms, and almost spend constant time in each
move. However, their solution path lengths are usually unacceptably
long. RTEF, MTES, and RTTES follow MTS, respectively, and their
efficiency is inversely proportional to the increase in obstacle density.
Finally, A* is almost always the worst.
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