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Abstract 

 Modeling illumination of outdoor objects by natural 

light sources - the Sun, the Moon and the stars - is a very 

difficult  problem due to highly complex physics of light 

rays and the Earth’s atmosphere. Although there are many 

studies in the literature on modeling of astronomic and 

atmospheric phenomena, of emission, scattering and 

absorption of light rays through the atmosphere, and of the 

illumination of surfaces; it is very difficult to reach these 

algorithms, equations and their parameter values readily 

available in a single source. In this paper, we present an 

approach that collects available methodologies in the 

literature into one consistent model for direct (non-

scattered) illumination during daytime and at night, which is 

a part of an ongoing project that started in November 2002. 

 

1. INTRODUCTION 

 In many military simulation projects, realistic 

visualisation of the environment and modeling of human 

eye and optical sensors are important requirements to be 

satisfied. To develop such a realistic simulation, 

illumination of the surrounding environment (e.g. terrain, 

sea and atmosphere), the static terrain features (e.g. houses, 

bridges, railways) and the dynamic entities (e.g. soldiers, 

tanks, helicopters) should be determined in high fidelity. 

The illumination of these outdoor details (object surfaces) is 

mostly due to the Sun, the Moon and the stars. Therefore, 

the first step in our approach starts with representation of 

the date and time, and with determination of the 

astronomical state (location and/or phase) of the Sun and the 

Moon with respect to the objects to be illuminated. When 

we acquire the location of the Sun and the Moon, and the 

illuminated surface fraction of the Moon, we are then able to 

compute the amount of light emitted/reflected from these 

light sources and reached to the outer edge of the 

atmosphere. The effect of atmosphere is the most complex 

part of the problem to model since the distance travelled by 

the light through the atmosphere, the scattering and the 

absorption of the light due to the air molecules significantly 

affect the amount of illuminance received by the object 

surfaces. In this paper, we propose an approach to model the 

direct light that the object surfaces receive after the 

reduction of illuminance caused by scattering and 

absorption. And finally, we present the model to determine 

the amount of light reflected to the observer by these 

surfaces. This paper will not focus on modeling the light 

that a surface receives after one or multiple scattering in the 

atmosphere. 

 

The organization of the paper is as follows: In Section 2, we 

present the methodology used to define date and time 

accurately. In Section 3, the computation of the location and 

phase of the light sources - the Sun, the Moon and stars - are 

described. The light emitted/reflected from these light 

sources is examined in details in Section 4. In Section 5, the 

approach used to model the travel of the light through the 

atmosphere is presented, and in Section 6, illumination of 

object surfaces are examined. And finally, Section 7 is the 

conclusion. 

 

2. DATE AND TIME 

 The first step in our modeling is the representation of 

time. For an accurate determination of time, it is common to 

use the Julian date (JD), which is the interval of time in days 

and fractions of a day, since 4713 BC January 1, Greenwich 

noon (Julian proleptic calendar) [1]. JD is frequently used 

for precise representation of timescales such as Terrestrial 

Time (TT) (the astronomical standard for the passage of 

time on the surface of the Earth) or Universal Time (UT) (a 

timescale based on the rotation of the Earth). Almost 2.5 

million Julian days have elapsed since the initial time. JD 

2,400,000 was November 16, 1858, and JD 2,500,000 will 

be on August 31, 2132 at noon UT. JD is computed using 

Algorithm 1 [2]. In the algorithm, line 1 checks whether the 

month is January or February or not, and line 5 checks and 

braches for Gregorian (starts October 4, 1582) (line 6) or 

Julian calendar (line 8). Line 9 adds a fraction of hours, 

minutes and seconds to the days, and finally, line 10 returns 

the Julian Date. 

 

 

 



Algorithm 1.  Compute Julian Date (JD) 

1. If month < 3 then 

2.  Let year be year - 1 

3.  Let month be month + 12 

4. Let a be integer(year/100) 

5. If year>1582 or ( year=1582 and (month>10 or 

(month=10 and day≥4))) then 

6.  Let b be integer( 2 - a + a/4 ) 

7. Else 

8.  Let b be zero 

9. Let days be day + hour/24 + minute/1440.0 + 

second/86400.0 

10. Let JD be integer(365.25·(year+4716)) + 

integer(30.6001·(month+1)) + days + b - 1524.5 

  

3. LIGHT SOURCES 

3.1. Location of Target 
 For representing the state of the light sources with 

respect to the object to be seen (target), we should first 

define the location of the object, which is assumed to be 

given in geographic coordinates (longitude and latitude) and 

sea level elevation in meters. In the following two sections, 

the formulas for computing the coordinates of the Sun and 

the Moon relative to the target location will be presented. 

 

3.2. Location of Sun with Respect to Target 

 To compute the astronomical location of the Sun, we 

first determine the location with respect to the Earth in 

geocentric ecliptic coordinates (vertical axis of ecliptic 

coordinates is the normal to the ecliptic, the plane of the 

orbit of the Earth about the Sun) (see Figure 1) given in 

radians λ , β and distance τ in astronomical units, au (1 au = 

149,597,870,961 ± 6 m = 23,455 earth radii) using Equation 

1 [3]: 
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Next, we convert (λ, β, τ) to rectangular ecliptic coordinates 

(see Figure 1) in (x, y, z) using Equation 2 [3]: 
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And we convert (x, y, z) to rectangular equatorial 

coordinates (vertical axis of equatorial coordinates is the 

North Pole, thus the axis of rotation of the Earth) (see 

Figure 1) in (x’, y’, z’) using Equation 3 [3]: 
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Then we convert and (x’, y’, z’) to geocentric equatorial 

coordinates (see Figure 1) in (α, δ, υ) using Formula 4, 

where function f(v1(x, y, z), v2(x, y, z)) returns the counter-

clockwise (with respect to x/y plane) angle from first vector 

to second vector: 
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Finally, we convert (α, δ, υ) to local zenith coordinates (see 

Figure 1) given in azimuth (heading) and altitude (pitch) in 

degrees using Algorithm 2 [2], where function msd(x) 

returns mean sidereal time in radians given in Algorithm 3: 

 

Algorithm 2.  Convert geocentric equatorial coordinates to 

local zenith coordinates 

1. Let lon  and lat  be longitude and latitude of 
the target in radians respectively 

2. Let ra  and de  be α  and δ in radians 

respectively 

3. Let sidereal  be 24/2)( π⋅JDmsd  

4. Let h  be ralonsidereal −+  

5. Let a  be )()()()()( hCosdeCoslatCosdeSinlatSin ⋅⋅+⋅  

6. Let Altitude  be )(aArcSin  in degrees 

7. Let zs  be ))(( aArcCosSin  

8. If 
5−< ezs then 

9.  Let Azimuth  be π  in degrees 

10.  Exit 

11. Let ac  be 

szdeSinlatCoshCosdeCoslatSin /))()()()()(( ⋅−⋅⋅  

12. Let as  be szhSindeCos /)()( ⋅  

13. If 
5−< eas then 

14.  Let Azimuth  be π  in degrees 

15.  Exit 

16. Let at  be )/( acasArcTan  

17. If 0<at  then 

18.  Let at  be at+π2  

19. Let Azimuth  be π+at in [0,360) degrees 

 

 

 

 



Algorithm 3. Compute Mean Sidereal Time 

1. Let si  be 

)38710000/()000387933.0(

))2451545()99856473662.360(

46061837.280

32 TT

JD

−⋅+
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   { si  is in degrees } 
2. Map si  to [0,360) degrees  

3. Return mean sidereal time as 360/24⋅si  

 

 

 

 

 
Figure 1. The geocentric ecliptic (λ, β) and equatorial (α, δ) 

coordinates; and the rectangular ecliptic (x, y, z) and 

equatorial (x’, y’, z’) coordinates (left); the local zenith 

coordinates (right) [3]. 

 

3.3. Location/Phase of Moon with Respect to Target 
 For acquiring the location and the phase of the Moon, 

we first determine the moon location in geocentric ecliptic 

coordinates in (δ, β, τ) using Equation 5, where au (1 

astronomical unit) is 149597870 km, and radiiearth is 23455 

per au.  
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For the conversion of geocentric ecliptic coordinates to local 

zenith coordinates, the procedures employed for the Sun are 

similarly applied to the Moon to get its local zenith 

coordinates.  

 

For the Moon phase, we compute the selenocentric 

elongation of the Earth from the Sun in radians, Ø, which is 

the ratio of the illuminated surface area of the disk to the 

total area (the ratio of the illuminated length of the 

diameter), using Equation 6 [2]: 
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Then, the bright (illuminated) surface fraction of the Moon, 

p, between 0 (no moon) and 1 (full moon) is computed 

employing the Moon phase in Equation 7 [2]: 
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And finally to determine the side of the bright face of the 

Moon, in other words to determine whether the bright face 

is to the right or to the left side of the Moon, Equation 8 is 

developed. This information is used for visualisation of the 

Moon. 

 

=sunA azimuth of the Sun in [0,360) degrees 

=moonA azimuth of the Moon in [0,360) degrees 
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3.4. Stars 

 The position / distribution of stars and other planets are 

ignored in our model, and total illumination from all stars is 

used for star light approximation in later sections. For 

equal to (x, y, z) in ecliptic coordinates, and 

(x’, y’, z’) in equatorial coordinates 



further information about the stars see [3][4] and about the 

other planets see [2][5].  

 

4. ILLUMINATION OF LIGHT SOURCES 

 Up to now, we determined the location of the Sun and 

the location & phase of the Moon. Now we require to 

compute the light (illuminance) emitted or reflected from 

these sources and reaching just outside the earth 

atmosphere. Illuminance is defined as the total luminous 

flux incident on a surface per unit area [6], and usually 

measured in lux, which is equal to candela per square meter 

(cd/m
2
).  

 

4.1. Sun 

 The standard extraterrestrial solar illuminance just 

outside the atmosphere of the earth when the earth is at a 

mean distance from the sun on a plane normal to the sun, 

also called the solar illumination constant  (ESC) is taken as 

127,500 lux [7]. The extraterrestrial solar illuminance for a 

given day (EST) can be estimated employing ESC in Equation 

9 [8], where ε is the eccentricity of the earth’s orbit that is 

equal to 0.01672.  
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This formula can further be simplified and made more 

efficient by the approximation given in Equation 10 [9]. 
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4.2. Moon 

In order to compute the Moon illuminance, the light 

reflected from the surface of the Moon should be computed 

first. The illuminance reflected from the surface of the 

Moon is caused by two light sources; the direct illuminance 

from the sun and the indirect illuminance from the Sun 

reflected by the Earth (earthshine). The direct illuminance, 

(Esm) is approximately 1300 Watt/m
2
 and the indirect 

illuminance reflected from the earth (Eem) is approximately 

given in Equation 11, where 0.19 Watt/m
2
 is the full 

earthshine, and PE is the earth phase [3] [10]. Earth phase is 

(π – Ø), where Ø is the Moon phase computed by Equation 

6. For the extreme angles of Moon phase and the Earth 

phase, 0 and π, the algorithm becomes infeasible. Therefore, 

Ø should be check and corrected for these extreme cases 

before use (e.g. Let Ø be Maximum Of ( 0.0001, Minimum 

Of ( π – 0.0001, Ø) ). 
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Having Esm and Eem, now the extraterrestrial moon 

illuminance for a given day (EMT) can be computed using 

Equation 12 [3][10], where 683 stands for converting 

Watt/m
2
 to lux at a monochromatic light wavelength of 555 

nm, which is the wavelength human eye is most sensitive to 

[11][12], RM is the radius of the Moon (=1737.4 km), τmoon is 

the distance of the Moon to the Earth computed by Equation 

5, and Oef is the opposition effect [13][20] computed using 

our Equation 13, which is a linear approximation for the 

data in [13]. The opposition effect is the sudden increase in 

brightness when the Moon is at opposition (i.e. opposite the 

Sun) and moon phase is approaching to 0°. In that condition, 

the Moon is substantially brighter than one would expect 

due to the increase in the illuminated area (growing from a 

thin crescent to a full disk), and part to an increase in the 

intrinsic surface brightness of the part that is in sunlight. 

The additional brightness in going from 7° to 1° is about 

1.27 times according to [13] and 1.3 times according to [20]. 
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4.3. Stars 

 The total illuminance from all stars reaching the Earth’s 

surface in a clear sky is taken approximately 0.00022 lux 

[14]. Therefore, the illuminance of all stars just outside the 

atmosphere (ESTT) can be estimated using Equation 14 

derived from the inverse function of atmospheric extinction 

described in later sections. The constant 0.810584 (e
-0.21

) is 

the atmospheric extinction for a clear sky with moon at 90 

degrees altitude. 
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5. LIGHTING THROUGH ATMOSPHERE 

 In order to illuminate an object on Earth, the light 

reaching the outer edge of the Earth’s atmosphere should go 

through the atmosphere a long way about 8.4 km in the 

minimum (see Figure 2).  During that period, the light is 

both absorbed and scattered. By absorption, the power of 

direct light falling on to the objects are weakened; and by 

scattering, the power of indirect light falling on to the 

objects are strengthened. This indirect lighting makes the 

objects illuminated even in the shadow, thus it has a very 

important role in object illumination, but the focus of this 

paper is primarily the direct lighting. For further information 

on indirect lighting, see [8][19]. 

 

The light illuminance from the Sun and the Moon passing 

through the atmosphere is absorbed during the way, and 

finally reach to a point on the Earth’s surface after some 

atmospheric extinction. The illuminance reaching on a plane 

normal to the light ray (EDN) is computed by multiplying the 

extraterrestrial illuminance just outside the atmosphere for a 

given day with the light extinction through the atmosphere. 

EDN is computed using Equation 15 [9], where E is the 

incoming illuminance (EST, EMT or ESTT), C is the extinction 

coefficient of the Earth’s atmosphere, and m is the optical 

air mass, the relative distance travelled to the Earth’s 

surface through the atmosphere. The optical air mass is 

smaller if smaller distance is passed through the atmosphere, 

and greater vice versa (see Figure 2).  
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Figure 2. Optical length for different paths in the 

atmosphere [15] 

 

For a simple model, C is approximately given in Table 1, 

and m is approximately computed as the inverse of the sine 

function of the light source (the Sun or the Moon) altitude 

angle αs in radian as given in Equation 16. Note that m is 1 

when the altitude of the light source is π/2 (just above the 

sky). 

 

Table 1. The extinction coefficient of the Earth’s 

atmosphere (simple model) 

Sky condition C 

Clear 0.21 

Partly cloudy 0.80 
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For a more complicated but realistic model, the extinction 

coefficient of the Earth’s atmosphere at wavelength of 555 

nm can be computed using Equation 17, and optical air mass 

can be acquired using Equation 18 [15][16], where turbidity 

is a measure of fraction of scattering due to haze/fog; in 

other words, the ratio of the optical thickness of the haze/fog 

atmosphere to the optical thickness of the pure atmosphere.  
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This model is determined using the formulas in 

[15][16][17], and the effect of aerosol, rayleigh and ozone 

particles’ extinctions are taken into account, integrated with 

a dynamic computation of turbidity considering the 

meteorological range due to haze or fog. 

 

Turbidity can be estimated using the meteorological range 

(maximum visible horizontal distance), which is the 

distance in daytime at which the apparent contrast between a 

black target and its background at horizon becomes equal to 

the threshold contrast (0.02) of an observer. We developed 

Equation 19 by fitting a function to the curve given in [16] 

(see Figure 3) and by clipping turbidity to fit in range [1.75, 

267.81] to prevent extreme values. 
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Figure 3. Meteorological range vs. turbidity [16] 

 
6. SURFACE LIGHTING 

 Using the formulas given in the previous sections, the 

illuminance reaching on a plane normal to the light ray 

(EDN) is computed for each light source (the Sun or the 

Moon). The next step is the computation of the illumination 

on the surface of an object (EDV) by Equation 20  [9], which 

is proportional to the cosinus of the angle between the light 

ray and the surface normal (θs). 
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The final step in this paper is the determination of the 

amount of light reflected to the observer direction (Rlight). 

The reflection characteristics of a surface is usually 

represented as the composition of four approximating basis 

functions (see Figure 4) namely specular ray (e.g. for 

mirrors), normal lobe (e.g. for non-glossy surfaces), 

forescatter lobe (e.g. for glossy surfaces) and backscatter 

lobe (e.g. for particulate surfaces such as sand or dry soil; 

and sometimes termed the opposition effect) reflections.  

 

 
 

Figure 4. Basis functions of the surface reflection [8] 

 

In our model, we only consider normal lob (diffuse) 

reflection since it is simple to determine and much of the 

real-world surfaces in the nature have a high proportion of 

normal lobe reflection. Incident light reflected about the 

surface normal, independent of the incident direction, is 

contained within the normal lobe, and the earliest simplest 

normal lobe reflection model is that proposed by Lambert 

[8][18] as given in Equation 21, where Knorm is the material 

normal lobe contribution due to material type and 

absorption (tone). One may take Knorm close to 1 assuming 

that the surface is dull white. To get the total reflected light, 

we simply sum up the amount of reflected light received 

from the Sun, the Moon and the stars. 

 

π
1

⋅⋅= normDVlight KER       (21) 

 

7. CONCLUSION 

 In this paper, we have done a comprehensive survey 

and brought a number of methodologies from the literature 

all together to develop an approach for modeling the travel 

of the light all the way from the light sources, the Sun, the 

Moon and the stars, to the objects to be illuminated in order 

to correctly model illumination of outdoor surfaces such as 

terrain, buildings, bridges, soldiers, tanks, aircrafts, etc. We 

built a consistent model with appropriate algorithms, 

equations and parameter values that will lead one to 

implement an object illumination model without the need to 

refer to any other material. 
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