
Real-Time Moving Target Search

Cagatay Undeger1 and Faruk Polat2

1 Savunma Teknolojileri Muhendislik ve Tic.A.S., 06510 Ankara, Turkey
2 Middle East Technical University, 06531 Ankara, Turkey

cundeger@stm.com.tr,polat@ceng.metu.edu.tr

Abstract. In this paper, we propose a real-time moving target search
algorithm for dynamic and partially observable environments, modeled
as grid world. The proposed algorithm, Real-time Moving Target Evalu-
ation Search (MTES), is able to detect the closed directions around the
agent, and determine the best direction that avoids the nearby obstacles,
leading to a moving target which is assumed to be escaping almost op-
timally. We compared our proposal with Moving Target Search (MTS)
and observed a significant improvement in the solution paths. Further-
more, we also tested our algorithm against A* in order to report quality
of our solutions.

Key words: Path Planning, Real-Time Search, Moving Target Search

1 INTRODUCTION

Pursuing a moving target is one of the most challenging problems in areas such
as robotics, computer games, etc. Off-line and incremental path planning algo-
rithms are not able to handle moving targets in real-time, and most of the on-line
search algorithms are specifically designed for partially observable environments
with static targets. The most well known algorithm for moving targets is Mov-
ing Target Search (MTS) [2], which maintains a heuristic table that contains
estimated costs of paths between every pair of coordinates.

In this paper, we propose a new moving target search algorithm, Real-Time
Moving Target Evaluation Search (MTES), which is build on Real-Time Target
Evaluation Search [9] developed for partially observable environments with sta-
tic targets. MTES is able to estimate the distance to the target considering the
intervening obstacles and discard some non-promising alternative moving direc-
tions in real-time in order to guide the agent to a moving target. The method
sends virtual (non-physical) rays away from the agent in four directions, and
determines the obstacles that the rays hit. For each such obstacle, we extract its
border and determine the best direction that avoids the obstacle if the target is
blocked by the obstacle. Hence, we have a number of directions each avoiding an
obstacle hit by a ray. Then by using these directions and a resolution mechanism,
a single moving direction is determined. To show the performance of our algo-
rithm, we compared MTES with MTS-c, MTS-d and A*. For the experiments,
we randomly generated grids of different types, and developed a successful prey

2 Lecture Notes in Computer Science: Real-Time Moving Target Search

algorithm (Prey-A*) in order to challenge the algorithms used in the experi-
ments. The results showed that MTES produces near optimal solutions, and
outperforms MTS-c and MTS-d significantly.

The related work is given in Section 2. In section 3, MTES is described in
details. In Section 4, the performance analysis of MTES is presented. Finally
Section 5 is the conclusion.

2 RELATED WORK

Off-line path planning algorithms [6] are hard to use for large dynamic environ-
ments and for moving targets because of their time requirements. One way to
make these algorithms more efficient is to change them from off-line to incremen-
tal [7, 4] in order to avoid re-planning from scratch. Although these algorithms
work fine with partially observable environments, they are sometimes not effi-
cient enough and usually not capable of handling moving targets. There are also
a number of on-line approaches [5, 3, 8, 9, 2]. As a matter of fact, only few of
these on-line algorithms can be adapted against a moving target.

Moving Target Search (MTS) [2] is a well known real-time algorithm for pur-
suing a moving target, which is built on Learning Real-Time A*. The algorithm
maintains a table of heuristic values, presenting the function h(x, y) for all pairs
of locations x and y in the environment, where x is the location of the agent and
y is the location of the target. The original MTS is a poor algorithm in practice
because when the target moves, the learning process has to start all over again.
Therefore, two MTS extensions namely Commitment to Goal (MTS-c) and De-
liberation (MTS-d) [2] are proposed to improve the solution quality. In order to
use the learned table values more effectively, MTS-c ignores some of the target’s
moves, and MTS-d performs an off-line search while in a heuristic depression.

When we look at the prey algorithms, we usually cannot see very successful
studies. Mostly the focus is on the predators, and the prey algorithms commonly
use hybrid techniques mixing the reactive strategies [1, 2]. Since these strategies
are not challenging enough for our algorithms, we developed an off-line strategy,
which is slow but more powerful with respect to its escape capability.

3 MOVING TARGET SEARCH

3.1 Problem Description

In our study, the environment is a grid world, where any grid cell can either be
free or obstacle. There is a single agent (predator) that aims to reach a static
or moving target (prey). Both are randomly located far from each other in non-
obstacle grid cells. The predator is expected to reach the prey from a short path
avoiding obstacles in real-time. We assume that the predator knows the prey’s
location all the time, but has limited perception, and is only able to sense the
obstacles around him within a square region centered at the agent location. The
size of the square is (2v +1)x(2v +1), where v is the vision range. We used the

Lecture Notes in Computer Science: Real-Time Moving Target Search 3

term infinite vision to emphasize that the agent has unlimited sensing capability
and knows the entire grid world before the search starts. The unknown parts of
the grid world is assumed to be free of obstacle by the agent, until it is explored.
Therefore, when we say an obstacle, we refer to the known part of that obstacle.
The agent can only perform four actions in each step; moving to a free neighbor
cell in north, south, east or west direction. The prey has unlimited perception
and knows all the grid world and the location of the predator all the time. The
search continues until the predator reaches the prey.

3.2 MTES Algorithm

MTES makes use of a heuristic, Real-Time Target Evaluation (RTTE-h), which
analyzes obstacles and proposes a moving direction that avoids these obstacles
and leads to the target through shorter paths. To do this, RTTE-h geometrically
analyzes the obstacles nearby, tries to estimate the lengths of paths around the
obstacles to reach the target, and proposes a moving direction. RTTE-h works
in continuous space to identify the moving direction, which is then mapped to
one of the actual moving directions (north, south, east and west). MTES repeats
the steps in Algorithm 1 until reaching the target or detecting that the target is
inaccessible.

In the first step, MTES calls RTTE-h heuristic function, which returns a
moving direction and the utilities of neighbor cells according to that proposed
direction. Next, MTES selects one of the neighbor cells on open directions with
the minimum visit count, which stores the number of visits to the cell. If there
exists more than one cell having the minimum visit count, the one with the
maximum utility is selected. If utilities are also the same, then one of them is
selected randomly. After the move is performed, the visit count of the previous
cell is incremented and the cell is inserted into the history. The set of previously
visited cells forms the history of the agent. History cells are treated as obstacles.
Therefore, if the agent discovers a new obstacle during the exploration and re-
alizes that the target became inaccessible due to history cells, the agent clears
the history to be able to backtrack.

Algorithm 1 An Iteration of MTES Algorithm
1: Call RTTE-h to compute the proposed direction and the utilities of neighbor cells.
2: if a direction is proposed by RTTE-h then
3: Select the neighbor cell with the highest utility from the set of non-obstacle neighbors with

the smallest visit count.
4: Move to the selected direction.
5: Increment the visit count of previous cell by one.
6: Insert the previous cell into the history.
7: else
8: if History is not empty then
9: Clear all the History.

10: Jump to 1
11: else
12: Destination is unreachable, stop the search with failure.
13: end if
14: end if

4 Lecture Notes in Computer Science: Real-Time Moving Target Search

In moving target search problem, the target may sometimes pass through
the cells the agent previously walked through. In such a case, there is a risk that
the history blocks the agent to reach the target since history cells are assumed
to be obstacles and may close some gateways required to return back. If this
situation occurs at some point, the agent will surely be able to detect this at
the end, and clear the history, opening all the closed gateways. Therefore, the
algorithm is capable of searching moving targets without any additions. As a
matter of fact, the only drawback of the history is not the possibility that it can
block the way to the target entirely, but it can sometimes prevent the agent to
reach the target through shorter paths by just closing some of the shortcuts. To
reduce the performance problems of this side effect, the following procedure is
applied. Assuming that (x1, y1) and (x2, y2) are the previous and newly observed
locations of the target, respectively, and R is the set of cells the target could
have visited in going from (x1, y1) to (x2, y2), the algorithm clears the history
along with visit counts when any cell in set R appears in history or has non-zero
visit count. In the algorithm, R can be determined in several ways depending
on the required accuracy. The smallest set has to contain at least the newly
observed location of the target, (x2, y2). One can choose to ignore some of the
set members and only use (x2, y2) to keep the algorithm simple, or one may
compute a more accurate set, which has the cells fall into the ellipse whose foci
are (x1, y1) and (x2, y2), and the sum of the radii from the foci to a point on
the ellipse is constant m, where m is the maximum number of moves the target
could have made in going from (x1, y1) to (x2, y2).

Fig. 1. Sending rays to split moving directions

The RTTE-h heuristic method in Algorithm 2 propagates four diagonal rays
away from the agent location (line 2 in Algorithm 2) to split north, south, east
and west moving directions as shown in Fig 1. The rays move outwards from
the agent until they hit an obstacle or maximum ray distance is achieved. Four
rays split the area around the agent into four regions. A region is said to be
closed if the target is inaccessible from any cell in that region. If all the regions
are closed, the target is unreachable from the current location. To detect closed

Lecture Notes in Computer Science: Real-Time Moving Target Search 5

regions, the boundary of the obstacle is extracted (line 4) and analyzed (line 5).
Next, the obstacle border is re-traced from both left and right sides to determine
geometric features of the obstacle (line 6). These features are evaluated and a
moving direction to avoid the obstacle is identified (line 7). After all the obstacles
are evaluated, results are merged to propose a final moving direction (line 9).

Algorithm 2 RTTE-h Heuristic
1: Mark all the moving directions as open.
2: Propagate four diagonal rays.
3: for each ray hitting an obstacle do
4: Extract the border of the obstacle by tracing the edges from left side until making a complete

tour around the obstacle.
5: Detect closed directions.
6: Extract geometric features of the obstacle.
7: Evaluate the results and determine a direction to avoid the obstacle.
8: end for
9: Merge individual results, propose a direction to move, and compute utilities of neighbor cells.

The obstacle border extraction and closed direction detection phases of the
algorithm use the same methods presented in [8, 9]. The geometric features of an
obstacle are determined in two phases: left analysis and right analysis (line 6 in
Algorithm 2). In left/right analysis, the known border of the obstacle is traced
edge by edge towards the left/right sides starting from the hit point, making a
complete tour around the obstacle border. During this process, several geometric
features of the obstacle are extracted, which are described in Definitions 1 to 8
and illustrated in Fig. 2.

Definition 1 (Outer left most direction). Relative to the ray direction, the largest cumulative
angle is found during the left tour on the border vertices. In each step of the trace, we move from
one edge vertex to another on the border. The angle between the two lines (TWLNS) starting
from the agent location and passing through these two following vertices is added to the cumu-
lative angle computed so far. Note that the added amount can be positive or negative depending
on whether we move in counter-clockwise (ccw) or clockwise (cw) order, respectively. This trace
(including the trace for the other geometric features) continues until the sum of the largest cumu-
lative angle and the absolute value of smallest cumulative angle is greater than or equal to 360.
The largest cumulative angle before the last step of trace is used as the outer left most direction.

Definition 2 (Inner left most direction). The direction with the largest cumulative angle en-
countered during the left tour until reaching the first edge vertex where the angle increment is
negative and the target lies between TWLNS. If such a situation is not encountered, the direction
is assumed to be 0 + ε, where ε is a very small number (e.g., 0.01).

Definition 3 (Inside of left). True if the target is inside the polygon whose vertices starts at
agent’s location, jumps to outer left most point, follows the border of the obstacle to the right
and ends at the hit point of the ray.

Definition 4 (Inside of inner left). True if the target is inside the polygon that starts at agent’s
location, jumps to the inner left most point, follows the border of the obstacle to the right and
ends at the hit point of the ray.

Definition 5 (Behind of left). True if the target is in the region obtained by sweeping the angle
from the ray direction to the outer left most direction in ccw order and the target is not inside
of left.

Definition 6 (Outer-left-zero angle blocking). True if target is in the region obtained by
sweeping the angle from the ray direction to the outer left most direction in ccw order.

6 Lecture Notes in Computer Science: Real-Time Moving Target Search

Definition 7 (Inner-left-zero angle blocking). True if target is in the region obtained by sweep-
ing the angle from the ray direction to the inner left most direction in ccw order.

In right analysis, the border of the obstacle is traced towards the right side
and the same geometric properties listed above but now symmetric ones are
identified. In the right analysis, additionally the following feature is extracted:

Definition 8 (Left alternative point). The last vertex in the outer left most direction encoun-
tered during the right tour until the outer right most direction is determined (see Fig. 2).

Fig. 2. Geometric features of obstacles

In obstacle evaluation step (line 7 in Algorithm 2), if an obstacle blocks the
line of sight from the agent to the target, we determine a moving direction that
avoids the obstacle meanwhile reaching the target through a shorter path. The
method is given in Algorithm 3, which requires the path length estimations given
in Definitions 9 to 11.

Definition 9 (dleft). The approximated length of the path which starts from the agent location,
jumps to the outer left most point, and then follows the path determined by Algorithm 4 (see Fig.
3).

Lecture Notes in Computer Science: Real-Time Moving Target Search 7

Definition 10 (dleft.alter). The approximated length of the path which starts from the agent
location, jumps to the outer right most point, and then to the outer left most point, and finally
follows the path determined by Algorithm 4 (see Fig. 3).

Definition 11 (dleft.inner). The approximated length of the path passing through the agent lo-
cation, the inner left most point, and the target (see Fig. 3).

Fig. 3. Examples of dleft (left), dleft.alter (middle) and dleft.inner (right)

Algorithm 4 is internally used in computations of dleft and dleft.alter, and
the sub-function isoutwardsfacing is called for detecting if a border segment,
whose both ends touch the line passing through the outer left most point and
the target point, is outwards facing (see Fig. 4). The estimated target distances
over right side of the obstacle are similar to those over left side of the obstacle,
and computed symmetrically (the terms left and right are interchanged).

In the merging phase (line 9 in Algorithm 2), the evaluation results for all ob-
stacles are used to determine a single moving direction. This proposed direction
will be passed to MTES algorithm (Algorithm 1) for final decision. The details
of the merging algorithm can be found in [9].

The complexity of MTES is O(w.h) per step, where w is the width and
h is the height of the grid world. Since increasing the grid size decreases the
efficiency, a search depth (d) can be introduced in order to limit the worst
case complexity. A search depth is a rectangular area of size (2d + 1)x(2d + 1)
centered at agent location, which makes the algorithm treat the cells beyond the
rectangle as non-obstacle. With this limitation, the complexity becomes O(d2).

4 PERFORMANCE ANALYSIS

In this section, we present our experimental results on MTS-c, MTS-d, MTES
and A*. As being an off-line algorithm, we executed A* in each step from scratch.
For the test runs, we used 9 randomly generated sample grids of size 150x150. Six
of them were the maze grids, and three of them were the U-type grids (see Fig.
5). For each grid, we produced 15 different randomly generated predator-prey
location pairs, and made all the algorithms use the same pairs for fairness. Our
tests are performed with 10, 20, 40 and infinite vision ranges and search depths.
To test the algorithms, we developed a deliberative off-line prey algorithm (Prey-
A*), which is powerful but not very efficient. To prevent the side effects caused

8 Lecture Notes in Computer Science: Real-Time Moving Target Search

Algorithm 3 Evaluation Phase
1: if (behind of left and not inside of right) or (behind of right and not inside of left) then

2: if outer left most angle + outer right most angle ≥ 360 then

3: if distance from agent to outer left most point is smaller than distance from agent to left alternative point then

4: Assign estimated distance as min(dleft, dright.alter) and propose outer left most direction as moving
direction

5: else
6: Assign estimated distance as min(dleft.alter, dright) and propose outer right most direction as moving

direction
7: end if
8: else
9: if dleft < dright then

10: Assign estimated distance as dleft and propose outer left most direction as moving direction

11: else
12: Assign estimated distance as dright and propose outer right most direction as moving direction

13: end if
14: end if
15: Mark obstacle as blocking the target

16: else if behind of left then

17: if Target direction angle 6= 0 and outer-right-zero angle blocking then

18: Assign estimated distance as dleft and propose outer left most direction as moving direction

19: else
20: Assign estimated distance as dright.inner and propose inner right most direction as moving direction

21: end if
22: Mark obstacle as blocking the target

23: else if behind of right then

24: if Target direction angle 6= 0 and outer-left-zero angle blocking then

25: Assign estimated distance as dright and propose outer right most direction as moving direction

26: else
27: Assign estimated distance as dleft.inner and propose inner left most direction as moving direction

28: end if
29: Mark obstacle as blocking the target

30: else
31: if (inside of left and not inside of right) and (inner-left-zero angle blocking and not inside of inner left) then

32: Assign estimated distance as dleft.inner and propose inner left most direction as moving direction

33: Mark obstacle as blocking the target

34: else if (inside of right and not inside of left) and (inner-right-zero angle blocking and not inside of inner right) then

35: Assign estimated distance as dright.inner and propose inner right most direction as moving direction

36: Mark obstacle as blocking the target

37: end if

38: end if

Fig. 4. Exemplified path length estimation, and outwards/inwards facing segments

Lecture Notes in Computer Science: Real-Time Moving Target Search 9

Algorithm 4 Path length estimation
Require: t : target point
Require: s : outer left most point
Require: n : the nearest point to the target
Require: + : next border point (left of)
Require: − : previous border point (right of)
Require: insert(p) : inserts a point to the estimated path
Require: clasify(p1, p2, p3) : if the edge formed by the points p1, p2, p3 does a left turn then

returns true, else returns false
Require: isoutwardsfacing(side, p1, p2) : see Algorithm 5
1: let prev = s
2: let prevleft = true
3: insert(s)
4: for each border point v between s+ and n do
5: if v = n then
6: if isoutwardsfacing(prevleft, prev, t) then
7: insert(all border points between prev+ and v)
8: end if
9: insert(t)

10: return length of estimated path
11: end if
12: let vleft = not clasify(s, t, v)
13: if prevleft 6= vleft then
14: let z = intersection point of lines (s, t) and (v−, v)
15: if not isoutwardsfacing(prevleft, prev, z) and z is between prev and t then
16: insert(t)
17: return length of estimated path
18: end if
19: if isoutwardsfacing(prevleft, prev, z) then
20: insert(all border points between prev+ and v)
21: else
22: insert(v)
23: end if
24: let prev = v
25: let prevleft = vleft
26: end if
27: end for

Algorithm 5 The function isoutwardsfacing(side, p1, p2)
Require: t : target point
Require: s : outer left most point
Require: len(n1, n2) : returns distance between points n1 and n2
Require: positive(m) : if len(m, t) ≤ len(s, t) or len(m, t) ≤ len(s, m) then returns true, else

returns false
Require: slen(m) : if positive(m) then returns +len(s, m) else returns −len(s, m)
1: if (side and slen(p1) < slen(p2)) or (not side and slen(p1) > slen(p2)) then
2: return true
3: else
4: return false
5: end if

Fig. 5. A maze grid (left), a U-type grid (right)

10 Lecture Notes in Computer Science: Real-Time Moving Target Search

Fig. 6. Average of path length results of maze grids for increasing vision ranges

by the efficiency difference, the predator and the prey are executed alternately
in performance tests. We also assumed that the prey is slower than the predator,
and skips 1 move after each 7 moves.

Fig. 7. Average of path length results of maze grids for increasing search depths

With respect to vision ranges and search depths, the averages of path lengths
on maze grids are given in Figures 6 and 7, and the averages of path lengths
on U-type grids are given in Figures 8 and 9, respectively. In the charts, the
horizontal axis is either the vision range or the search depth, and the vertical
axis contains the path length of MTS-c divided by that of the compared algo-
rithm. The results showed that MTES performs significantly better than MTS-c
and MTS-d even with small search depths, and usually offers near optimal solu-
tions that are almost as good as the ones produced by A*. Especially in U-type
grids, MTES mostly outperforms A*. When we examined this interesting result
in details, we observed that they behave very differently in sparse parts of the
grid. MTES prefers performing diagonally shaped manoeuvres for approaching
targets located in diagonal directions, whereas A* prefers performing L-shaped

Lecture Notes in Computer Science: Real-Time Moving Target Search 11

manoeuvres in such cases. Since the agents are only permitted to move in hor-
izontal and vertical directions, these two manoeuvre patterns have equal path
distances to a static target, but for a moving target, the strategy difference sig-
nificantly affects the behavior of the prey in U-type grids and sometimes makes
A* worse than MTES.

Fig. 8. Average of path length results of U-type grids for increasing vision ranges

Fig. 9. Average of path length results of U-type grids for increasing search depths

We also examined the step execution times of the algorithms running on
an AMD Athlon 2500+ computer. In Table 1, the worst case and the average
number of moves executed per second are shown. The rows are for the compared
algorithms and the columns are for the search depths. We see that MTS-c and
MTS-d have low and almost constant step execution times whereas the efficiency
of MTES is tied to the search depth and obstacle ratio, and hence the appropriate
depth should be chosen according to the required efficiency. A* is the worst as
expected.

12 Lecture Notes in Computer Science: Real-Time Moving Target Search

Table 1. Worst case and average number of moves/second for increasing search depths

Maze grids
Depth 10-sd 20-sd 40-sd INF-sd
MTS-c 1063/2676 1063/2676 1063/2676 1063/2676
MTS-d 937/2412 937/2412 937/2412 937/2412
MTES 531/1101 212/692 82/413 23/283

A* 20/189 20/189 20/168 20/189
U-type grids

Depth 10-sd 20-sd 40-sd INF-sd
MTS-c 1063/2855 1063/2855 1063/2855 1063/2855
MTS-d 1062/2498 1062/2498 1062/2498 1062/2498
MTES 793/1257 400/747 133/348 57/233

A* 8/104 8/104 8/104 8/104

5 CONCLUSION

In this paper, we have examined the problem of pursuing a moving target in grid
worlds, introduced a moving target search algorithm, MTES, and presented the
comparison results of MTS-c, MTS-d, MTES and A* against a moving target
controlled by Prey-A*. With respect to path lengths, the experiments showed
that MTES performs significantly ahead of MTS-c and MTS-d, and competes
with A*. In the test runs, we have also observed that the two MTS versions are
significantly different from each other. Although, MTS-d performs acceptably
good, MTS-c almost never offers good solutions. In terms of step execution
times, we observed that MTS-c and MTS-d are the most efficient algorithms,
and almost spend constant time in each move. But their solution path lengths
are usually unacceptably long. MTES follows MTS, and its efficiency is inversely
proportional to the increase in obstacle density. Finally, A* is always the worst.

References

1. M. Goldenberg, A. Kovarsky, X. Wu, and J. Schaeffer. Multiple agents moving
target search. Int’l Joint Conf. on Artificial Intelligence, IJCAI, pages 1536–1538,
2003.

2. T. Ishida and R. Korf. Moving target search: A real-time search for changing goals.
IEEE Trans Pattern Analysis and Machine Intelligence, 17(6):97–109, 1995.

3. S. Koenig and M. Likhachev. Real-time adaptive a*. 5th Int’l Joint Conf. on
Autonomous Agents and Multiagent Systems, pages 281–288, 2006.

4. S. Koenig, M. Likhachev, and X. Sun. Speeding up moving-target search*. 6th Int’l
Joint Conf. on Autonomous Agents and Multiagent Systems, 2007.

5. R. Korf. Real-time heuristic search. Artificial Intelligence, 42(2-3):189–211, 1990.
6. S. Russell and P. Norving. Artificial Intelligence: a modern approach. Prentice Hall,

Inc., 1995.
7. A. Stentz. The focussed D* algorithm for real-time replanning. In Proceedings of

the Int’l Joint Conference on Artificial Intelligence, 1995.
8. C. Undeger and F. Polat. Real-time edge follow: A real-time path search approach.

IEEE Transaction on Systems, Man and Cybernetics, Part C, 37(5):860–872, 2007.
9. C. Undeger and F. Polat. Rttes: Real-time search in dynamic environments. Applied

Intelligence, 27:113–129, 2007.

