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ÇAĞATAY ÜNDEĞER
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Director

I certify that this thesis satisfies all the requirements as a thesis for the degree
of Doctor of Philosophy.

Prof. Dr. Ayşe Kiper
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ABSTRACT

SINGLE AND MULTI AGENT REAL-TIME PATH SEARCH IN DYNAMIC AND

PARTIALLY OBSERVABLE ENVIRONMENTS

Ündeğer, Çağatay

Ph.D., Department of Computer Engineering

Supervisor : Prof. Dr. Faruk Polat

January 2007, 121 pages

In this thesis, we address the problem of real-time path search in partially observ-

able grid worlds, and propose two single agent and one multi-agent search algorithm.

The first algorithm, Real-Time Edge Follow (RTEF), is capable of detecting the

closed directions around the agent by analyzing the nearby obstacles, thus avoiding

dead-ends in order to reach a static target more effectively. We compared RTEF

with a well-known algorithm, Real-Time A* (RTA*) proposed by Korf, and observed

significant improvement.

The second algorithm, Real-Time Moving Target Evaluation Search (MTES), is

also able to detect the closed directions similar to RTEF, but in addition, determines

the estimated best direction that leads to a static or moving target from a shorter

path. Employing this new algorithm, we obtain an impressive improvement over RTEF

with respect to path length, but at the cost of extra computation. We compared our

algorithms with Moving Target Search (MTS) developed by Ishida and the off-line

path planning algorithm A*, and observed that MTES performs significantly better

than MTS, and offers solutions very close to optimal ones produced by A*.

Finally, we present Multi-Agent Real-Time Pursuit (MAPS) for multiple predators

to capture a moving prey cooperatively. MAPS introduces two new coordination

strategies namely Blocking Escape Directions (BES) and Using Alternative Proposals

(UAL), which help the predators waylay the possible escape directions of the prey in
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coordination. We compared our coordination strategies with the uncoordinated one,

and observed an impressive reduction in the number of moves to catch the prey.

Keywords: Path Planning, Real-Time Search, Multi-Agent Pursuit
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ÖZ

DEĞİŞKEN VE KISMİ GÖZLEMLENEBİLİR ORTAMLARDA TEK VE ÇOKLU

ETMEN GERÇEK ZAMANLI YOL ARAMA

Ündeğer, Çağatay

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Faruk Polat

Ocak 2006, 121 sayfa

Bu tezde, kısmen gözlemlenebilir ızgara dünyalardaki gerçek zamanlı yol arama

problemi için iki farklı tek etmenli ve bir çoklu etmenli arama algoritması önerilmekte-

dir.

İlk algoritma olan Real-Time Edge Follow (RTEF), sabit bir hedefe daha etkin

şekilde ulaşabilmek için yakında bulunan engelleri analiz ederek etmenin çevresindeki

kapalı yönleri tespit edebilme, dolayısıyla çıkmaz sokaklardan sakınabilme kabiliyetine

sahiptir. RTEF’in performansını gösterebilmek için Korf tarafından önerilen Real-

Time A* (RTA*) dikkate alınmış olup, yapılan deneysel çalışma sonucunda dikkate

değer bir iyileşme gözlemlenmiştir.

İkinci algoritma olan Real-Time Moving Target Evaluation Search (MTES) de

RTEF gibi kapalı yönleri tespit edebilmekte, ancak ek olarak, sabit veya hareketli

bir hedefe en kısa yoldan giden rotayı daha doğru olarak tahmin edebilmektedir. Ek

hesaplama maliyeti olsa da, bu yeni algoritma ile RTEF’e karşı yol uzunluğu açısından

etkileyici bir iyileşme elde edilmiştir. Önerilen algoritmalar, Ishida tarafından geliştiri-

len Moving Target Search (MTS) ve çevrim dışı yol planlama algoritması A* ile test

edildi ve MTES’in MTS’den çok daha iyi performans gösterdiği ve A* tarafından

sağlanan en iyi çözümlere çok yakın sonuçlar sunduğu gözlemlendi.

Son olarak, birden fazla avcı ile hareketli bir hedefi kordineli şekilde kovalama ka-
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biliyetine sahip bir çoklu etmen yol arama algoritması olan Multi-Agent Real-Time

Pursuit (MAPS) geliştirilmiştir. MAPS, avın muhtemel kaçış yönlerini avcıların ko-

ordineli olarak kesebilmesine yardımcı olan Kaçış Yönlerini Kapama (BES) ve Alter-

natif Önerileri Kullanma (UAL) olarak isimlendirilen iki yeni koordinasyon stratejisi

kullanmaktadır. Önerilen bu stratejiler, koordinasyonsuz olanla mukayese edildi ve

avı yakalama adım sayılarında çarpıcı bir iyileşme gözlemlendi.

Anahtar Kelimeler: Yol Planlama, Gerçek Zamanlı Arama, Çoklu Etmen Kovalama
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CHAPTER 1

INTRODUCTION

Path planning can be described as finding a sequence of moves from an initial state

(starting point) to a goal state (target point), or as finding out that no such sequence

exists. Path-planning algorithms can be either off-line or on-line. Off-line algorithms

find the whole solution in advance before starting execution, and suffer from execution

time in dynamic or partially observable environments due to frequent re-planning

requirements. On the other hand, on-line algorithms require planning and execution

phases to be coupled in a way that the agent repeatedly plans its next move in limited

time and executes it. These algorithms are not designed to be optimal, and usually

find poor solutions with respect to path length. Furthermore, there exist some hybrid

solutions such as incremental heuristic search, which are optimal and more efficient

than off-line path planning algorithms. However, they are still slow for some real-time

applications.

In the path planning domain, it is very common to assume that the goal state

is static. When this assumption is relaxed for covering changing goals, the problem

becomes very complicated, which can only be handled by a few number of algorithms.

Off-line and incremental path planning algorithms are not able to deal with this prob-

lem since they require re-planning towards the changing goal from scratch in each

step, which takes a considerable time. Unfortunately, most of the on-line search al-

gorithms are not also able to solve the problem since they are usually designed for

partially observable environments, but not for changing goals, and store search in-

formation collected during the exploration, which is difficult to be updated when the

goal changes.

In this thesis, we first propose a real-time path planning algorithm, Real-Time

Edge Follow (RTEF) [50, 47], developed for searching a static target in partially
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observable planer grid worlds (e.g., mazes). RTEF uses a powerful heuristic function

called RTEF-Alternative Reduction Method (RTEF-ARM), which sends rays away

from the agent in four diagonal directions, and analyzes the obstacles that the rays

hit in order to discard some non-promising (closed) alternative moving directions

in real-time to successfully guide the agent to the target avoiding dead-ends. To

show the effectiveness of the algorithm, we randomly generated a number of grids of

different types (random, maze and U-type) and compared RTEF in these grids with

a well-known on-line search algorithm introduced by Korf [28] called Real-Time A*

(RTA*), and its extended version, RTA* with n-look-ahead depth. As a result of

the experiments, we obtained impressive improvements in the path lengths over both

RTA* versions.

Although RTEF is able to determine the closed directions successfully, it is weak in

selecting the right move from the remaining alternatives as it uses the poor Euclidian

distance heuristic. Therefore, we focused on a new method to be able to make better

use of environmental information available to the agent in order to select the best

moving direction avoiding nearby obstacles to capture a static or moving target (prey)

as soon as possible. With this intuition, we introduce our second real-time search

algorithm, Real-Time Moving Target Evaluation Search (MTES) [49, 48], capable

of estimating the distance to the target more accurately considering the intervening

obstacles. Similar to RTEF, the method sends rays away from the agent in four

directions, and determines the obstacles that the rays hit. For each such obstacle, we

extract its border and determine the best direction that avoids the obstacle if the target

is blocked by the obstacle. Hence, we have a number of directions each avoiding an

obstacle hit by a ray. Then by using these directions and a resolution mechanism that

will be described later, a single moving direction is determined. Since the methodology,

which makes our second algorithm handle the moving targets more successfully, is a

generic technique, we also employed it in our first algorithm, and extended RTEF to

handle moving targets better. In order to test our search algorithms, we also developed

a prey algorithm, Prey-A*. Since our objective is not to test the prey algorithms, Prey-

A* is developed to be an off-line algorithm, which is inefficient in terms of execution

time, but powerful with respect to its escape capability. The agent (predator) and

the prey algorithms are executed alternately in the experiments in order to prevent

side effects that could be caused by the efficiency difference. We compared RTEF
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and MTES with an on-line search algorithm, Moving Target Search (MTS) [15], and

an off-line path planning algorithm, A* [38]. The experiments showed that MTES

significantly over-performs RTEF and MTS, and competes with A*.

By increasing the number of predators involved in the environment, the single

agent path search problem can be extended to a search against a static or moving

prey with multiple coordinated agents. This problem introduces a recent research

area called multi-agent pursuit, on which there is not much successful study done

so far, especially against moving preys in environments with obstacles. Finally, we

propose our last algorithm called Multi-Agent Real-Time Pursuit (MAPS), which is

capable of pursuing a moving prey with multiple coordinated predators in partially

observable grid worlds with obstacles. MAPS is built on MTES and employs two

coordination strategies namely blocking escape directions (BES) and using alternative

proposals (UAL). The first strategy is executed before the path search for determining

the blocking location, which is an estimated point that the agent may possibly waylay

the prey at. The blocking location is fed as input to the path planner. And the latter

strategy is performed after the path search for selecting the best estimated direction

from the alternative moving directions, which are proposed by the path planner. We

compared our coordinated pursuit algorithm with uncoordinated one against a moving

prey guided by Prey-A*, and observed that the number of moves to catch the prey is

significantly reduced by multiple agents in coordination.

Concerning the organization of the thesis, in Chapter 2, we briefly review the

existing and related work on path planning, multi-agent pursuit and prey algorithms.

In Chapter 3, we describe our first real-time search algorithm, Real-Time Edge Follow

(RTEF) in details, and we introduce our second real-time search algorithm, Real-Time

Moving Target Evaluation Search (MTES) in Chapter 4. In Chapter 5, we present

our last algorithm, Multi-Agent Real-Time Pursuit (MAPS). And finally, we conclude

our study and discuss the possible future research directions in Chapter 6.
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CHAPTER 2

RELATED WORK

2.1 Off-Line Search Algorithms

In the context of navigation, path planning can be described as finding a path from

an initial point to a target point if there exists one. Path planning algorithms are

either off-line or on-line. Off-line algorithms find the whole solution in advance before

starting execution, and can be either informed or uninformed. Uninformed planning

algorithms do not use any domain specific information in order to guide the search.

Dijkstra’s algorithm [44] is a well-known uninformed algorithm, which is complete and

optimal. It works on general purpose weighted graphs, but commonly applied to path

planning problems. For instance, Knuffner [31, 32] embedded Dijkstra’s algorithm

into his simulation system, where the aim was to find a collision free path between

an initial and target point on a virtual 3D terrain. The terrain was divided into cells,

which have vertical, horizontal and diagonal costs of walking through, and a weighted

graph is constructed from the data in order to use Dijkstra’s algorithm. Contrary

to uninformed algorithms, informed ones use domain specific knowledge (heuristics)

to increase efficiency. A* [38, 9] is one of the best-known efficient path planning

algorithms, which is guided by an admissible heuristic function. In path planning

domain, it is common to use euclidian or manhattan distance for the heuristic function.

The pre-mentioned algorithms are all deterministic, and will always find the same

solution given the same input. But there are also some probabilistic off-line algo-

rithms such as genetic algorithms, random trees and probabilistic roadmaps. Genetic

algorithms [36, 43] encode candidate solution paths as chromosomes and make use

of evolution meta-heuristics to find acceptable solutions. Each chromosome of the

population is usually designed to be representing a single route, and may contain fea-

sible and infeasible solutions together. Crossover causes the parts of these solutions
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Figure 2.1: Random tree samples [2]

to be exchanged, and mutation causes the parts to be redefined and made smoother.

Random tree based algorithms [3, 33, 34] search the target in obstacle-free space in

randomly generated trees, which are illustrated in Figure 2.1. In the original method,

a single source (agent location) is used to grow the random tree in order to reach

the target point. Later on, the random tree approach is enhanced to use two source

random trees starting from the agent and the target points in parallel, and try to

catch an intersection among the points of distinct trees to find a path in between.

Probabilistic roadmap algorithms [18, 39] use a three phased approach. They gener-

ate a connected graph (roadmap) randomly in obstacle-free space, then try to connect

initial and target points to the roadmap, and finally search a path on the roadmap

between initial and target points.

2.2 Incremental Search Algorithms

Off-line path planning algorithms are hard to use for large dynamic environments

because of their time requirements. One solution is to make off-line algorithms to be

incremental [26], which is a continual planning technique that make use of information

from previous searches to find solutions to the problems potentially faster than are

possible by solving the problems from scratch. D* [41, 37], focused D* [42], and

D* Lite [22, 23, 24] are some of the well-known optimal incremental heuristic search

algorithms applied to path planning domain. In these algorithms, an initial optimal

path is generated off-line, and then the agent is allowed to follow the path. During

the navigation, the agent observes the environment, and if any environmental change

is detected, the agent partially re-plans the existing solution. These algorithms are

efficient in most cases, but sometimes a small change in the environment may cause

to re-plan almost a complete path from scratch, which requires exponential time and
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Figure 2.2: A path update sample: Initial paths of three agent groups (left), refined
paths after some time considering several threats (right) [46]

does not meet real-time constraints. That’s why these algorithms are considered as

efficient off-line path planning algorithms.

There are also some incremental algorithms that can continuously refine given

paths. Undeger’s energy based algorithm [46] is such an instance. In this study, an

off-line path is generated in the first step. Later on, the algorithm is let to continuously

refine the path considering the environmental changes. A path update method based

on energy minimization of path points commonly applied in image processing, called

the snakes, is used. It is supposed that there are a number of energy sources such

as threats that the agent should avoid. The basic idea is to escape from the energy

sources and in parallel to keep the path as smooth as possible considering the obstacles.

Figure 2.2 is an example run of the proposed algorithm. Although this approach is

an efficient way of updating a path, the result is not satisfactory all the time, because

this process can only modify a path locally, but not radically.

2.3 Single Agent Real-Time Search Algorithms

2.3.1 Static Target Algorithms

Due to the efficiency problems of off-line techniques, a number of on-line approaches

are proposed. Tangent-Bug [17] is one of the former heuristic search algorithms, which

has some similarities with our proposed algorithm that will be described later on. It

is based on the Bug algorithm [51], and uses vision information to reach the target.

It constructs a local tangent graph (LTG), a limited visibility graph, in each step

considering the obstacles in the visible set. The sensed obstacles are modeled as thin
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walls and assumed to be the only obstacles in the environment. The agent moves to

the locally optimal direction on the current LTG until reaching the target or detecting

a local minimum (when hit an obstacle border). If a local minimum is detected, the

agent switches to the border following mode, and move along the border until the

distance to the target starts decreasing. After leaving the border, the agent switches

to the first mode again. Although this approach seems to be similar to ours in the

sense that it moves to locally optimal directions to go around the nearby obstacles and

follows the obstacle borders, it only considers the obstacles in active visible set, and

follows the boundaries while walking. But our approach can also consider obstacles

known but not currently visible, and border following process is just performed in the

mind of the agent, not physically executed.

Learning Real-Time A* (LRTA*), introduced by Korf [28], is another former

generic heuristic search algorithm, which is applicable to real-time path search for

fixed goals. LRTA* builds and updates a table containing admissible heuristic esti-

mates of the distance from each state in the problem space to the fixed goal state.

The initial table values are set to zero and the agent is made to learn exact goal

distances in exploration time. In the early runs, the algorithm does not guarantee

optimality, but when the heuristic table is converged, the solutions generated become

optimal. Although LRTA* is convergent and optimal, the algorithm is able to find

poor solutions in the first run. To solve the problem, Korf also proposed a variation of

LRTA*, called Real-Time A* (RTA*) [28], which gives better performance in the first

run, but is lack of learning optimal table values. If you have only one chance to reach

the goal, RTA* is surely a better choice. RTA* repeats the steps given in Algorithm

1 until reaching the goal.

Algorithm 1 An Iteration of RTA* Algorithm
1: Let x be the current state of the problem solver. Calculate f(x′) = h(x′)+k(x, x′)

for each neighbor x′ of the current state, where h(x′) is the current heuristic

estimate of the distance from x′ to a goal state, and k(x, x′) is the cost of the

move from x to x′.

2: Move to a neighbor with the minimum f(x′) value. Ties are broken randomly.

3: Update the value of h(x) to the second best f(x′) value.

Since original RTA* only considers immediate successors to determine the next
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Figure 2.3: A heuristic depression sample: The agent, directed by RTA*, will be stuck
in the semi-closed region shown in the figure for a long time searching the same region
hopelessly until the heuristic depression is filled up completely.

move, it may be stuck in semi-closed regions for a long time because of the heuristic

depression. A heuristic depression [15] is a set of states, which does not contain the

goal state and has heuristic values less than or equal to those of a set of immediately

and completely surrounding states. Thus it is a local maximum, whose heuristic

values have to be filled up before the agent can escape from. The heuristic depression

is illustrated on an example in Figure 2.3.

To reduce the effect of heuristic depression, RTA* can easily be extended to have

any arbitrary look-ahead depth [28]. The structure of the algorithm is the same as

RTA* except the computation of h(x′). Instead of computing the h(x′) of a neighbor

cell x′ only from the cell itself, (n−1) level neighbors of x′ are used, therefore the search

space is expanded up to a predefined look-ahead depth (n). When the look-ahead

depth is set to 1, the algorithm is the same as RTA*. Although the experiments showed

that this improvement reduces the number of moves to reach the goal significantly,

it becomes exponential in the look-ahead depth. Therefore, n-look-ahead depth with

large n values is not preferred in practice.

Following the work of Korf, many variations of LRTA* and RTA* are proposed.

Real-Time Horizontal A* (RTHA*) [46] is such an instance, which is only applicable

to grid environments. Location and neighbor description of RTHA* is very different

from common style, and the agent locations are not defined by the cell the agent is

on, but defined as the row the agent is on. In addition, RTHA* does not accept the

neighbor set as the immediate neighbor cells of the cell the agent is on, but accepts

the neighbor set as the immediate neighbor rows of the row the agent is on. A row is
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Figure 2.4: Comparison of RTA* (top) and RTHA* (bottom): RTA* estimates the
costs of the neighboring cells of the agent whereas RTHA* estimates the costs of the
neighboring rows of the agent [46].

described as a one dimensional horizontal chain of free cells, which is bounded from

left and right sides by two obstacle cells. The difference between RTA* and RTHA*

is illustrated on a typical example in Figure 2.4. Experimental results showed that

RTHA* yielded better performance than RTA* with 1-look-ahead depth in complex

environments. But a drawback was observed. The strategy realized by the algorithm

was to usually move horizontally until coming almost the same column position as the

target is on, then to move vertically. This was because of the heuristic function used,

which underestimates the real-cost more in the horizontal axis than in the vertical

axis.

Later on, Shimbo and Ishida introduced two other LRTA* variations, weighted

LRTA* and upper bounded LRTA* [40], to control the amount of efforts to achieve a

short-term goal (e.g., to safely arrive at a location in the current trial) and a long-term

goal (to find better solutions through repeated trials). Weighted LRTA*, sacrifices

the optimality property of LRTA* to reduce the overall amount of exploration, and

to avoid intractability of large problem spaces. It has two versions, ε-admissible and

ε-additively admissible weighted LRTA*. In ε-admissible weighted LRTA*, a constant

ε ≥ 0 is selected such that hinitial(x) ≤ (1 + ε)h∗(x) for every state x in the problem

space. Therefore, the solution costs do not exceed the optimal cost by more than a

factor of (1 + ε). Similarly, in ε-additively admissible weighted LRTA*, a constant
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ε ≥ 0 is selected such that hinitial(x) ≤ h∗(x) + ε for every state x except the goal

state in the problem space. In this case, the solution costs do not exceed the optimal

cost by more than ε. On the other hand, upper bounded LRTA* provides an explicit

upper bound to limit the amount of exploration and to reduce the memory usage

in each trial meanwhile preserving the optimality and completeness. The algorithm

introduces another heuristic function u(x) along with h(x), where h(x) gives a lower

bound and u(x) gives an upper bound for exact cost h∗(x). Initially, u0(x) is set

to zero if x is a goal state, and infinite otherwise. As the initial upper bounds are

infinite, the first trial is executed exactly the same as LRTA*. But in later trials, the

upper bounds are learned and the amount of exploration is limited within the future

trials. For state x, the upper bound of a neighbor y of x is updated as minimum of

u(y) and k(x, y) + u(x), where k(x, y) is the cost of moving from x to y.

Recently, Koenig proposed a new version of LRTA* that uses look-ahead depth

more effectively to examine the local search space [21]. In each planning episode, the

algorithm performs an A* search from the current state towards the goal state until

either the goal state is about to be expanded or the number of states expanded reaches

the look-ahead depth. Next, the heuristic values of expanded states are updated using

Dijkstra’s algorithm, and the agent follows the path minimizing the heuristic values

until a point on the border of expanded states is reached or a previously unknown

obstacle that blocks the way is discovered. Koening compared this LRTA* variation

with D* Lite, which is an optimal incremental search algorithm. According to the

experimental results, the planning time of his LRTA* variation is larger than the one

of D* Lite for look-aheads of more than 45, and at that level, the path lengths are about

4.5 times longer than the ones produced by D* Lite. Therefore, it is only preferable if

selected look-ahead is less than or equal to 45. Most recently, Koenig and Likhachev

proposed a second version of this LRTA* variation called Real-Time Adaptive A*

(RTAA*) [25]. For the sake of efficiency and simplicity, RTAA* replaces Dijkstra’s

algorithm with another one, which updates the heuristic values of expanded states

more efficiently, but with less informed values. Although this modification reduces

the quality of solutions for equal look-ahead depths, it increases the solution quality

for equal planning times.

LRTA*(k) [13] is another recent version of LRTA*, which uses bounded propa-

gation to update the heuristic estimates of up to k states, at the cost of extra com-
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putation. Following the update of the heuristic value of the current state, LRTA*(k)

propagates the change to the neighbor states, and continues with this propagation in a

chain reaction until no change occurs in heuristics or k number of states are examined.

In terms of first trial, convergence and solution stability, LRTA*(k) is reported to show

a substantial performance improvement with respect to LRTA* and FALCONS [6],

which is an older LRTA* version. Some other versions of LRTA* could be found in

[45, 4, 7].

In the literature, there are also some probabilistic on-line search algorithms based

on genetic algorithms [27], random trees [2] and probabilistic roadmaps [14] since a

significant portion of the previous search data generated by these algorithms will be

still valid after an environmental change, and can be used for deciding on the next

move.

2.3.2 Moving Target Algorithms

Since LRTA*, RTA* and their variations are all limited to work on fixed goals, Ishida

and Korf proposed another algorithm called Moving Target Search (MTS) [15]. Their

algorithm is built on LRTA* and capable of pursuing a moving target. The algorithm

maintains a table of heuristic values, representing the function h(x, y) for all pairs of

locations x and y in the environment, where x is the location of the agent and y is

the location of the target. MTS is described in Algorithm 2.

Algorithm 2 MTS Algorithm
When the problem solver moves:

1: Calculate h(x′, y) for each neighbor x′ of x.

2: Update the value of h(x,y) with max{h(x, y), minx′{h(x′, y) + 1}}
3: Move to the neighbor x′ with the minimum h(x′, y), i.e., assign the value of x’ to

x. Ties are broken randomly.

When the target moves:

1: Calculate h(x, y′) for the target’s new position y′.

2: Update the value of h(x,y) with max{h(x, y), h(x, y′)− 1}
3: Reflect the target’s new position as the new goal of the problem solver, i.e., assign

the value of y’ to y.

The original MTS is a poor algorithm in practice because when the target moves
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(i.e., y changes), the learning process has to start all over again that causes a per-

formance bottleneck in heuristic depressions. Therefore, two MTS extensions called

Commitment to Goal (MTS-c) and Deliberation (MTS-d) are proposed to improve

the solution quality [15]. In order to use the learned table values more effectively,

MTS-c ignores some of the target’s moves while in a heuristic depression, and MTS-d

performs an off-line search (deliberation) to update the heuristic values if the agent

enters a heuristic depression.

2.4 Multi-Agent Real-Time Search Algorithms

The algorithms described so far are only applicable to the problem of reaching a static

or moving prey with single or multiple predators without coordination. Moving these

predators in coordination to pursuit a moving prey is a challenging problem, and most

of the studies done so far only focus on multi-agent coordination in environments that

are free of obstacles (non-hazy). The pursuit problem is originally proposed by Benda

et al [1], which was involving four coordinated predators pursuing a prey moving

randomly. The environment was a non-hazy grid world, and the agents were allowed

to move only in horizontal and vertical directions. According to the experiments,

the authors concluded that an organization with one controlling predator and three

communicating predators performs the best for solving the problem. Note that the

coordination is centralized in this case.

2.4.1 Machine Learning Algorithms

In the literature, there are two common ways for studying pursuit problem, which are

either hand-crafted coordination strategies or machine learning algorithms that let the

predators learn themselves how to cooperate in order to catch the prey. For instance,

in [5], a new reinforcement learning method, Two Level Reinforcement Learning with

Communication (2LRL), is used to provide cooperative action selection in a multi-

agent predator-prey environment. In 2LRL, the decision mechanism of the agents is

divided into two hierarchical levels, in which the agents learn to select their target in

the first level and to select the action directed to their target in the second level. The

agents communicate their perception to their neighbors and use the communication

information in their decision-making. As a result of the experiments, it was reported
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that a satisfactory cooperative behavior is observed by employing 2LRL method in

pursuit domain.

In [16], another reinforcement learning algorithm is employed to make four preda-

tors learn to pursue a moving prey in non-hazy environments. The authors assumed

that the sensor and communication ranges of predators are limited, and hence a preda-

tor does not know the location of other predators and the prey all the time. Therefore

they used Q-learning with partially observable Markov decision process and two kinds

of predictions. The first prediction is the location of the other predators and the prey,

and the second one is the possible moving direction of the prey in the next step. In

their model, a state is defined with the velocity of the predator, the existence of any

predators in communication range and/or observing the prey, and the relative coor-

dinates/angles of the prey and the center of gravity of other predators. As a result,

the authors observed that the predators can learn cooperative behavior and different

roles, and the way in which the predators organize themselves depends on the initial

locations of the predators, the style of the target movement, and the speed differences

of the predators and the prey.

In [52], a recent variation of reinforcement learning algorithm known as TD-

FALCON (A Temporal Difference Fusion Architecture for Learning, COgnition, and

Navigation) is used for developing a cooperative strategy to surround a prey in all

directions by four predators. TD-FALCON is an extension of predictive Adaptive

Resonance Theory (ART) networks for learning multi-model pattern mappings across

multiple input channels. TD-FALCON makes use of a 3-channel architecture repre-

senting the current state, the set of available actions and the values of the feedbacks

(rewards) received from the environment. The FALCON network is used to predict

the value of performing each available actions in the current state. Then the values

are processed to select an action, and the action is executed. After receiving a reward

(if any) from the environment based on the action taken, temporal difference formula

is used to estimate the value of the next state, and the association of the current

state and the chosen action is updated. The authors compared non-cooperative and

cooperative (TD-FALCON) predator teams in a 16x16 sized non-hazy grid world, and

observed about 15% success rate increase with the help of cooperation.

Another instance of learning algorithms for pursuit is introduced by Haynes and

Sen in [11, 12]. They employed strong typed genetic programming (STGP) to evolve
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pursuit algorithms represented as Lisp S-expressions for predators and preys moving

in a 30x30 sized non-hazy toroidal grid world, which has left-right and bottom-top

edges bend and connected to each other forming an infinite sized environment. They

reported that good building blocks or subprograms are being identified during the evo-

lution, and the performance of the best evolved program is comparable to a manually

derived greedy strategy proposed by Korf [29].

Different from the work of Haynes and Sen, the generic algorithm is used by Yong

and Miikkulainen [53] to evolve (and coevolve) neural network controllers, rather than

program controllers. Coevolution in this domain refers to maintaining and evolving

individuals for taking different roles in a pursuit task. In the study, Enforced Subpop-

ulations (ESP), a powerful and fast problem solver, is used to evolve three different

strategies, which are a single centralized neural network, multiple distributed commu-

nicating neural networks, and multiple distributed non-communicating (coevolved)

neural networks. Three predators were trained in a series of incrementally more chal-

lenging tasks obtained by starting with a static prey first, increasing the speed of prey

in later iterations, and ending with the same speed as the predators. A 100x100 sized

non-hazy toroidal grid world is used, in which the agents can move in horizontal and

vertical directions. As a result of experiments, the authors reported that evolving sev-

eral distinct autonomous, cooperating neural networks to control a team of predators

is more efficient and robust than evolving a single centralized controller. This claim

was contradictory to that reported by Benda et al. And very interestingly, they also

observed that non-communicating distributed neural networks perform better than

the communicating ones because of niching in coevolution, which obtains a set of

simpler subtasks, and optimizes each team member separately and in parallel for one

specialized subtask.

2.4.2 Hand-Crafted Algorithms

In [35], a hand-crafted coordination strategy that uses a game theoretic approach is

suggested to solve the pursuit problem in non-hazy grid worlds, where the predators

are coordinated implicitly by incorporating the global goal of a group of predators

into their local interests using a payoff function. In that model, a predator should

take into account the coalitions he may participate in along with their incomes, and

decide the best coalition for him. For every move reducing the manhattan distance
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to the prey, the predator is paid with a positive payment, and the reverse with a

negative one. Additionally, the amount of global utility is shared among the predators.

Therefore, the predators should also consider the global objective, which is to block

maximum number of prey’s escape directions that are north, south, east and west. In

this study, a predator is said to be blocking an escape direction d only if he moves

towards the direction opposite to direction d (e.g., moving west towards the prey if

the escape direction is to east), and dp is smaller than da, where dp is the distance

of the predator from the prey along a line perpendicular to direction d, and da is

the distance of predator from the prey along direction d. Our multi-agent pursuit

algorithm is similar to this work in the sense that it is based on the strategy of

blocking escape directions.

Another hand-crafted coordination strategy is proposed by Kitamura et al in [19].

Their coordination algorithm is build on a multi-agent version of RTA* called Multi-

Agent Real-Time A* (MARTA*) [20], which can work in hazy environments, but

is only for static goals. Kitamura et al introduced two organizational strategies to

MARTA* namely repulsion and attraction, where the repulsion strengths the discover-

ing effect by scattering agents in a wider search space, and in contrast, the attraction

strengths the learning effect by making agents update estimated costs in a smaller

search space more actively. They performed their experiments in 120x120 sized maze

grids with random obstacles with a ratio of 40%, and also in 15-puzzles. As a result,

the repulsion showed a good performance with mazes in which deep heuristic depres-

sions are spotted, and the attraction showed a good performance with 15-puzzles in

which shallow depressions are distributed all over.

In [8], a multi-agent pursuit algorithm is proposed for fully known grid worlds

with randomly placed obstacles. The authors proposed an application domain called

Multiple Agent Moving Target (MAMT), where the agents are permitted to see or

communicate with other agents only if they are in line of sight, and can move in

horizontal or vertical directions simultaneously. Different from the previous algorithms

described, the predators cannot see the prey all the time and need to explore a hazy

environment. But, one missing point in their approach is that the predators only use

coordination to search different parts of the environment when the prey is hiding, but

cannot chase the prey in coordination when they see the prey.

The last hand-crafted coordination strategy we will examine is the one proposed
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by Kota et al [30]. Their coordination approach is based on deflecting the predators

from the centroid of the group meanwhile attracting themselves towards the prey.

Although the environment they used is free of obstacle, they introduced an artificial

haze to their environment by making the predators lose track of the prey location from

time to time. In such cases, the predators use the last observed location of the prey

for deciding the next move. Their algorithm calculates the direction of the next move

using the weighted sum of the attraction vector towards the prey and the repulsion

vector away from the centroid. As a results of the experiments, the authors stated

that their algorithm shows moderate performance, and hence they are studying for

better strategies.

2.5 Prey Algorithms

When we look at the prey algorithms, we usually see hybrid techniques mixing a

number of reactive strategies. For instance, the strategy, moving randomly in any

possible direction not blocked by a predator, is commonly used in pursuit problems

[35, 16, 15, 8]. In the study of Ishida and Korf [15], the avoid strategy of the prey is

developed as to move towards a position as far from the predators as possible using

MTS algorithm. In [16, 30], the prey is let to escape from the predators along a

straight line or a circle. In [16], additionally a third method is also used as moving in

the opposite direction of the predator if the prey sees only one predator, and otherwise

moving in the direction that bisects the largest angle of its field of view in which

there are no predators. In [8], a weighted combination of four sub-strategies: moving

towards a direction that maximizes the distance from the predator’s location, moving

towards a direction that maximizes the mobility by preferring a move that leads to

more move choices, moving a position that is not in line of sight of the predators

and moving randomly, are used. There are also some studies focussing on evolving

behavioral strategies [11, 12]. Since these reactive algorithms are not good enough

to force our predator algorithms, we developed an off-line strategy, which is slow but

more powerful.
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CHAPTER 3

REAL-TIME EDGE FOLLOW

In this chapter, we introduce our first real-time path search algorithm, Real-Time Edge

Follow (RTEF) [50, 47]. In the following sections, we state the problem description,

and describe the algorithm in details. Later on, we examine the complexity of the

algorithm, and introduce the search depth concept for bounding the complexity. Next,

we prove the correctness of the algorithm, and finally present the experimental results.

3.1 Problem Description

In this section, we state the problem description in details. The objective is to search

a static target in real-time with a single agent in a grid world environment. The

assumptions of our domain are given as follows.

• The environment is a grid world, where any grid cell can either be free or ob-

stacle.

• There is a single agent that aims to reach a static target.

• The agent and the target are randomly located far from each other in non-

obstacle grid cells.

• The agent is expected to reach the target from a short path avoiding obstacles

in real-time. The target’s location is assumed to be known by the agent.

• The agent has limited perception, and is only able to sense the obstacles around

him within a square region centered at the agent location. The size of the square

is (2v + 1)x(2v + 1), where v is the vision range. We used the term infinite

vision to emphasize that the agent has unlimited sensing capability and knows

the entire grid world before the search starts.
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Figure 3.1: The problem description

• The unknown parts of the grid world is assumed to be free of obstacle by the

agent, until it is explored. The agent maintains a tentative map, which holds

the known part of the grid world, and updates it as he explores the environment.

When we say an obstacle, we refer to the known part of that obstacle (Figure

3.1).

• The agent can only perform four actions in each step; moving to a free neighbor

cell in north, south, east or west direction. The environment is deterministic

(that is, the effects of actions are all deterministic).

• The search continues until the agent reaches the target location.

An illustration of the problem description is shown in Figure 3.1.

3.2 The Search Algorithm

We developed Real-Time Edge Follow (RTEF) algorithm, which is able to search

a path from an initial location to a target location in real-time. Although RTEF

algorithm can be improved to handle moving targets, in this chapter, we assume that

the target is static. The basic idea behind RTEF is to eliminate the closed directions

not reaching the target point in order to determine which way to move. For instance,

if the agent is able to realize that moving to north and east will not lead to the target,

then he will prefer going to south or west. This sample case is illustrated in Figure

3.2.

In order to determine the closed directions and move accordingly, RTEF repeats

the steps shown in Algorithm 3 until reaching the target or determining that the

target is unreachable. RTEF internally uses the heuristic method, Real-Time Edge
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Figure 3.2: The problem description

Follow Alternative Reduction Method (RTEF-ARM), to find out open and closed

directions and hence to eliminate non-beneficial movement alternatives. To avoid

infinite loops and re-visiting the same locations redundantly, RTEF either uses visit

counts or history, or both.

Algorithm 3 An Iteration of RTEF Algorithm
1: Call RTEF-ARM to determine the set of open directions

2: if Number of open directions > 0 then

3: Select the best direction from open directions with the smallest visit count using

Euclidian distance.

4: Move to the selected direction.

5: Increment the visit count of previous cell by one.

6: Insert the previous cell into the history.

7: else

8: if The history is not empty then

9: Clear all the history

10: Jump to 1

11: else

12: Destination is unreachable, stop search with failure.

13: end if

14: end if

Definition 3.2.1 (Visit Counts) The algorithm maintains the number of visits, visit

count, to the grid cells. The agent moves to one of the neighbor cells in open direc-

tions with minimum visit count. If there exists more than one cell having minimum
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Figure 3.3: The obstacle samples

visit count, the one with the minimum Euclidian distance to the target is selected. If

Euclidian distances are also the same, the ties are broken randomly.

Definition 3.2.2 (History) The set of previously visited cells forms the history of

the agent. History cells are treated as obstacles. During the exploration, if the agent

discovers a new obstacle and realizes that the target became inaccessible due to history

cells, the agent clears the history to be able to backtrack.

Before describing the details of the algorithm, it is better to make clear what we

mean by saying an obstacle. An obstacle in the mind of an agent is a set of neighboring

grid cells (each either being marked as a real world obstacle cell or a history cell) that

shape an object that has a border. In that respect, a single cell might also form an

obstacle. Due the sensing limitation of the agent, sometimes just a part of a real

obstacle might be discovered, in that case the known part will be considered as an

obstacle, which may cause a single real world obstacle to be known as two different

obstacles because of the missing environmental information. Furthermore, sometimes

two or more real world obstacles can be merged and become a single obstacle because

of history cells that neighbor the real objects. These cases are illustrated in Figure

3.3.

3.2.1 Real-Time Edge Follow Alternative Reduction Method

Real-Time Edge Follow Alternative Reduction Method (RTEF-ARM) is a sub-function

of RTEF, which detects closed directions. The method sends four rays away from the

agent in diagonal directions. The region between two adjacent rays forms a possible

moving direction for the agent. Hence, the agent has four moving directions (north,
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south, east and west). RTEF-ARM extracts the border of each obstacle hit by any

ray and then analyzes the so-called regions to determine open and closed moving

directions, as summarized in Algorithm 4.

Algorithm 4 RTEF-ARM Algorithm
1: Mark all the moving directions as open.

2: Propagate four diagonal rays.

3: for each ray hitting an obstacle do

4: Extract the border of the obstacle by starting from the hit-point and tracing the

edges towards the left side until making a complete tour around the obstacle;

and find out an island and an hit-point-island if exists.

5: Detect closed directions by analyzing the edges using the island, hit-point-island

and the target.

6: If number of open directions is zero, stop with failure (target is unreachable).

7: end for

In RTEF-ARM, four diagonal rays splitting north, south, east and west directions

are propagated away from the agent as shown in Figure 3.4. The rays go away from

the agent until hitting an obstacle or maximum ray distance is achieved. The types

of ray-hitting are exemplified in Figure 3.5. Four rays split the area around the agent

into four regions. A region is said to be closed if the target is inaccessible from any

cell in that region. If all the regions are closed then the target is unreachable from

the current location. To detect closed regions, the borders of the obstacles that the

rays hit are analyzed.

Definition 3.2.3 (Island) If the edges on the border of an obstacle are traced by go-

ing towards left side starting from a hit-point (see Figure 3.6), we always return to the

same point as illustrated in Figure 3.7. When a tour around the obstacle is completed,

a polygonal area is formed as the border of the obstacle. We call this polygonal area

an island (stored as a list of vertices forming the border of the obstacle). As shown

in Figure 3.8, there are two kinds of islands: outwards-facing and inwards-facing

islands. The target is unreachable from the agent location if the target is inside an

outwards-facing island or outside an inwards-facing island.
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Figure 3.4: Propagating rays to split north, south, east and west directions

Figure 3.5: Ray propagation and hitting

Figure 3.6: Finding next left edge: The figure on the left shows 4 possible current
edges. The figures on the right illustrate all possible next states for a south current
edge.

Figure 3.7: Identifying the obstacle border
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Figure 3.8: Island types: outwards facing (left), inwards facing (right)

Figure 3.9: Two rays hitting the same obstacle at two different points form a hit-point
island

Definition 3.2.4 (Hit-Point Island) It is possible that more than one ray hit the

same obstacle. As illustrated in Figure 3.9, an augmented polygonal area called hit-

point-island is formed when we reach the hit-point of another ray on the same obstacle

while following the edges. A hit-point-island borders one or more agent moving di-

rections. If the target point is not inside the hit-point-island, all the directions that

are bordered by the hit-point-island are closed; otherwise (the target is inside the hit-

point-island) all the directions not bordered by the hit-point-island are closed. This is

illustrated in Figure 3.10.

Islands and hit-point-islands are stored as vertex lists and passed to the closed

direction determination step shown in Algorithm 5. Note that function isInside(x,y,p)

Figure 3.10: Analyzing hit-point islands and eliminating moving directions
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returns true if coordinates (x, y) is inside polygon p and function isClockwise(p) returns

true if the vertices of polygon p is ordered in clockwise direction (i.e., if polygon p is

outwards facing with respect to the agent).

Algorithm 5 Determining Closed Directions
Require: (x, y) : coordinates of the target,

Require: i : the list of vertices forming the island border,

Require: h : the list of vertices forming the hit-point-island border,

1: if isClockwise(i) = isInside(x, y, i) then

2: Case 1: Close the entire directions (the target is unreachable)

3: else if |h| > 0 then

4: if isInside(x, y, h) then

5: if isClockwise(h) then

6: Case 2: Close the directions between 1st and 2nd hit-points on i in counter

clockwise direction

7: else

8: Case 3: Close the directions between 1st and 2nd hit-points on i in clock-

wise direction

9: end if

10: else

11: if isClockwise(h) then

12: Case 4: Close the directions between 1st and 2nd hit-points on i in clock-

wise direction

13: else

14: Case 5: Close the directions between 1st and 2nd hit-points on i in counter

clockwise direction

15: end if

16: end if

17: end if

In order to reduce the work load of closed direction determination step, unnecessary

vertices are not inserted into the vertex lists of island and hit-point island during edge-

tracing. Unnecessary vertices eliminated (exemplified in Figure 3.11) are the ones

whose removal do not change the shape of the island or hit-point-island polygons.
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Figure 3.11: Eliminating the unnecessary vertices

3.2.2 Variations of Real-Time Edge Follow

The original RTEF algorithm uses visit counts and history together in order to guide

the search, but there can be several other alternatives. In general, RTEF uses RTEF-

ARM to find out open directions that possibly reach the target location. Later on,

one of the open directions is selected for the next move. After performing the move,

agent information is updated in order to prevent infinite loops. We developed several

variations of RTEF by changing the technique used to select from open directions and

update the agent information. These variations are described below:

1. RTEF-History (RT-H) : RTEF-History selects one of the open directions for

the next move using the euclidian distance heuristic function. After moving to

the next cell, the previous cell is inserted into the history. The history cells

are considered as obstacles in RTEF-ARM, therefore the visited cells are never

visited again unless the history is cleared. If the grid is fully known, the history

is never cleared during the search and the target is reached (if a solution exists)

without revisiting any previously visited cells. But if the grid is not fully known,

some of the newly discovered obstacles may block the way the agent is going, so

all or a part of the history is needed to be cleared in order to back track. The

RTEF-History is the RTEF version, which clears all the history when the agent

is completely blocked by a newly discovered obstacle.

2. RTEF-History-BC (RT-HBC) : RTEF-History-BC, where BC is an abbreviation

for ”Border Clear”, is the same as RTEF-History except the history clearing

method. When the agent is completely blocked by a newly discovered obsta-

cle, RTEF-History-BC only clears the history cells encountered during the last

edge-tracing phase. The reason behind this idea can be summarized as follows.

Although the algorithm finds no path reaching the target, this does not mean

the target is not reachable if the history is not empty yet, because the history

cells may be blocking the way. If this is the case, failing of the last search must

partially or completely be because of these history cells. Thus the algorithm
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goes over all the edges followed in the last edge-tracing phase, and clears all the

history cells on these edges. This edge-tracing and history-clearing loop must

continue until the last history edge blocking the agent is cleared or no history

cell could be found to clear.

3. RTEF-Visit Count (RT-VC) : This is a variation that does not use any history.

To prevent infinite loops, number of visits is stored for each cell. Thus the

algorithm selects the neighbor cell having the minimum visit count value. If

there are more than one minimum, the algorithm uses the euclidian distance

heuristic function. If they are also the same, one of them is selected randomly.

After moving to the next cell, the visit count of the previous cell is increased by

one.

4. RTEF-Visit Count-History (RT-VCH) : This is a mixture of RTEF-Visit Count

and RTEF-History. The algorithm uses both visit counts and history together

and clears all the history when the agent is completely blocked by a newly

discovered obstacle.

5. RTEF-Visit Count-History-BC (RT-VCHBC) : This is a mixture of RTEF-Visit

Count and RTEF-History-BC. The algorithm uses both visit counts and history

together and only clears the history cells found in the last edge-tracing phase

when the agent is completely blocked by a newly discovered obstacle.

6. RTEF-RTA* (RT-RTA*): This is the RTEF version, which performs RTA*

integrated with RTEF-ARM. The algorithm uses the heuristic estimation update

method of RTA* to guide the search and prevent infinite loops, and uses RTEF-

ARM to reduce the possible moving directions. The closed directions found are

considered as obstacles from the view point of the cell where the RTEF-ARM

is executed, therefore a cell might be evaluated differently from the neighbors

of that cell. This condition forces us to make a little change in the heuristic

estimation update of RTA*. RTA* sets the second best heuristic estimation of

the neighbors to the current cell before moving to another one. If there is just

one alternative to select, the second best estimation will be infinite. If this is the

case and there are some directions closed by RTEF-ARM, we should not set the

second best (infinite) to the current cell, but set the best one, because there is
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a two way communication with these closed cells. Although you may not move

to these neighbors from the current cell, you may go these neighbors from some

other cells and may need to move to the current cell in order to escape from the

closed area.

7. RTEF-RTA*-Penalty (RT-RTA*-p) : This one is similar to RTEF-RTA* except

a penalty extension. As mentioned before, the closed directions found are con-

sidered as obstacles from the view point of the cell where the RTEF-ARM is

executed. So a cell might be evaluated as an obstacle from the view point of

some of the neighbor cells but that may not be the case for some others. To

prevent these non-promising cells from being visited from some other neighbors

of the cell, the algorithm gives a penalty to the heuristic estimation of these

cells according to a pre-defined rule. The main motivation of the rule comes

from the fact that the heuristic estimation of a cell inside a closed region can-

not be better than the minimum heuristic estimation computed among all the

other neighbors, because the algorithm prefers the most-promising cell having

the minimum heuristic estimation rather than the cell inside the closed region.

Therefore the heuristic estimation of the neighbor cells inside the closed regions

can be set to the minimum heuristic estimation of the open ones if these closed

ones have smaller heuristic estimations. We call this technique as RTEF-RTA*-

penalty-0 (RT-RTA*-p0). If we add a penalty value (n) to the minimum heuristic

estimation, it is called RTEF-RTA*-penalty-n (RT-RTA*-pn).

3.3 Complexity Analysis

The most time consuming phases of RTEF are the edge-tracing and the border-

analyzing phases. In the edge-tracing phase, the edges of at most four obstacles are

traced in just one pass. For each edge point, the point is checked with the hit-points

of three other rays in order to detect any other hit to the same obstacle. This reduces

the efficiency in a constant manner. The point is than inserted into a list in constant

time. Therefore the worst case complexity of this phase is proportional to the number

of edges of the largest obstacle in the environment. In the border-analyzing phase,

the vertices on the islands and hit-point islands are analyzed in several passes. Since

the number of vertices of islands and hit-point-islands can be at most one plus the
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Figure 3.12: The worst case environment for a 17x9 sized grid: There is only one
obstacle and it has the maximum number of edges that is possible.

number of edges of the largest obstacle in the environment, the worst case complexity

of this phase is also proportional to the number of edges of the largest obstacle in the

environment. Thus we can formulate the complexity of RTEF in a formal way if we

can describe the number of edges of the largest obstacle in the environment. Having

the assumption that the environment has a rectangle-shaped area, the largest obstacle

could have at most (w − 1).(h − 1) edges (exemplified in Figure 3.12), where w and

h are the width and height of the rectangle respectively. Therefore the worst case

complexity of RTEF for each move becomes O(w.h).

The worst case environments are rarely possible in practice, and enlarging the area

will not drop the performance very sharply most of the time since the average obstacle

size does not strictly depend on the grid size. For instance, in an urban area, the sizes

of buildings are similar independent of how large the city is. Note that such worse

cases are possible in mazes.

Since increasing the grid size decreases the efficiency, a search depth (d) can be

introduced in order to limit the worst case complexity of RTEF. A search depth is

a rectangular area of size (2d + 1)x(2d + 1) centered at agent location, which makes

the algorithm treat the cells beyond the rectangle as non-obstacle. This extension can

easily be obtained by just adding a single constraint check. With this limitation, the

complexity of RTEF becomes O(d2).

RT-VC, RT-RTA* and RT-RTA*-p works fine with the search depth limit since

they do not use history so there is no risk of blocking the gateways, and cost matrix of

RTA* or the visit counts will never be cleared during the search. RT-VCH also works

with this extension because the agent inserts every cell it has visited into the history.

As a result, the free cells will be marked as history one by one, and at a particular

time, the agent will eventually be able to detect that it is blocked, and clear all the

history opening all the blocking cells.
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RT-H and RT-HBC that use only history to prevent loops can go into an infinite

loop with this extension. Without a depth limit, the history is only cleared when an

unknown obstacle is detected. Therefore in the worse case the history clearing will

continue until every unknown obstacle is learned. But when we include a depth limit,

the history may need to be cleared not just because of an unknown obstacle but also

because of a known large obstacle that does not fit into the depth limit rectangle as

a whole. Additionally, RT-VCHBC does not work with this extension, because the

algorithm may not be able to clear all the history-cells required to open a blocking

cell. The search depth may prevent extracting the entire border of a blocking obstacle,

thus the border-clear technique may not be able to detect that it is stuck in the area

due to that obstacle, or if it detects, it will not be able to clear all the history.

3.4 Proof of Correctness

To show that the algorithm is correct, it will be enough to prove that RTEF-ARM

only closes the directions not leading to the target. RTEF-ARM has four phases: ini-

tialization, ray-sending, edge-tracing and border-analyzing. In the initialization phase,

all the directions are set to open.

In the ray-sending phase, four rays are propagated in four diagonal directions

until hitting an obstacle or maximum ray distance is reached. If a ray does not hit

an obstacle, it will not be used in the rest of the phases, therefore it is not possible

to cause a direction to be closed. It is also valuable to show that whether the ray

hits something or not, the agent can follow the ray from both sides of the ray until

reaching the end of the ray (assuming that the environment does not change). In

Figure 3.13, the narrowest corridor that a ray can pass through is illustrated and the

routes reaching the end point of the ray are shown, which completes the proof that

if a ray can pass through a corridor, than an agent can also pass through the same

corridor from both sides of the ray.

In the edge-tracing phase, we must show that edge following is a finite process,

an island could always be found, and a hit-point island can be detected if it exists.

Indeed the proof is clear because every obstacle should have a finite size border even

it is partially known. If it is partially known, then we just use its known border.

Since every obstacle has a finite size border, if we trace the edges of the obstacle
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Figure 3.13: The narrowest corridor that a ray and an agent can pass through

in only left direction, we always reach the same point we started. Therefore, the

process is bounded and an island could always be found, which forms the border of

the obstacle. And if there exists a hit-point island (two or more rays hit the same

obstacle), we always detect it because the algorithm follows every edge of the obstacle

until returning to the same point and if another ray hits the same obstacle, the hit

point must be on one of the edges that are followed. If there exits more than one

hit-point island on the same obstacle, the algorithm will use only one of them. It does

not matter whether we use the first one or the last one detected, but only one of the

selection technique should be applied continuously in order not to miss some of the

available information.

In the border-analyzing phase, we must show that the algorithm could find all the

possible closed states and never decides to close a direction that should not be closed.

Revisiting the Algorithm 5, we observe five cases that could close a direction. The

rest of the cases that are not mentioned are all accepted as Case 0 meaning that no

conclusion is reached.

Case 1: If the ray hits the outer border of an obstacle, the agent must be outside

of the obstacle and the island must be outwards facing (clockwise oriented). If the

agent is outside the obstacle and the target is inside the obstacle, then it is clear that

target cannot be reached from any of the directions. If the ray hits the inner border

of an obstacle (counter clockwise oriented), the agent must be inside the obstacle. If

the agent is inside the obstacle and the target is outside the obstacle, then this is also

clear that target cannot be reached from any of the directions. These two cases are

illustrated in Figure 3.14.
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Figure 3.14: Case 1 - unreachable targets: Outwards-facing-island with a target inside
(left), inwards-facing-island with a target outside (right)

Figure 3.15: An illustration of Case 2 (left), an illustration seems to be Case 2 but
already covered by Case 1 (right)

Case 2: The algorithm could only enter here if Case 1 is not satisfied and there

is a hit-point island found. To reach Case 2, the target must be inside the hit-point

island and the hit-point-island must be clockwise oriented. Thus we find out that we

must go into the region where the hit-point-island is bordering, which is illustrated in

Figure 3.15. In this case, we must close the directions between the analyzed ray (ray of

the first hit-point) and the other ray (ray of the second hit-point) in counter clockwise

direction. Note that the case on the right of Figure 3.15 is not an example of this case

because it is already covered by Case 1. From the figure, it is clear that target cannot

be reached from any of the directions that are not inside the hit-point-island.

Case 3: The algorithm could only enter here if Case 1 is not satisfied and there is a

hit-point island found. To reach Case 3, the target must be inside the hit-point island

and the hit-point-island must be counter clockwise oriented. Thus we find out that

we must go into the region where the hit-point-island is bordering, which is illustrated

31



Figure 3.16: Illustrations of case 3

in Figure 3.16. In this case, we must close the directions between the analyzed ray

(ray of the first hit-point) and the other ray (ray of the second hit-point) in clockwise

direction. From the figure, it is clear that target cannot be reached from any of the

directions that are not inside the hit-point-island.

Case 4: The algorithm could only enter here if Case 1 is not satisfied and there

is a hit-point island found. To reach Case 4, the target must be outside the hit-point

island and the hit-point-island must be clockwise oriented. Thus, we find out that

we must leave the region where the hit-point-island is bordering, which is illustrated

in Figure 3.17. In this case, we must close the directions between the analyzed ray

(ray of the first hit-point) and the other ray (ray of the second hit-point) in clockwise

direction. From the figure, it is clear that target cannot be reached from any of the

directions that are inside the hit-point-island.

Case 5: The algorithm could only enter here if Case 1 is not satisfied and there

is a hit-point island found. To reach Case 5, the target must be outside the hit-point

island and the hit-point-island must be counter clockwise oriented. Thus, we find

out that we must leave the region where the hit-point-island is bordering, which is

illustrated in Figure 3.18. In this case, we must close the directions between the ana-

lyzed ray (ray of the first hit-point) and the other ray (ray of the second hit-point) in

counter clockwise direction. From the figure, it is clear that target cannot be reached

from any of the directions that are inside the hit-point-island. There are three other

cases that look like Case 5, but in fact covered by Case 1. These cases are illustrated
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Figure 3.17: An illustration of case 4

Figure 3.18: An illustration of case 5

in Figure 3.19.

In the above cases, we have shown that all directions that are closed by the al-

gorithm are feasible. But we must also show that the algorithm could find all the

possible closed directions. We enumerated all possible situations and determined the

case each fits into. For this we constructed two tables. Table 3.1 contains four sit-

uations where no hit-point-island is found. As a result we can either conclude that

the target is unreachable (Case 1) or say nothing (Case 0). Table 3.2 contains the

situations where a hit-point-island is found. Note that some situations in the table

have no real world interpretations (named ”impossible” in the table); hence they are

not considered by the algorithm. Thus the proof is completed.
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Figure 3.19: Illustrations seem to be case 5 but covered by case 1.

Table 3.1: The cases where no hit-point-island is found

Agent and Island Target Mapping
agent is outside the island, which outside island Case 0
means having an outwards-facing island inside island Case 1
agent is inside island, which outside island Case 1
means having an inwards-facing island inside island Case 0

Table 3.2: The cases where there is a hit-point-island

Agent & Island Hit-Point Target Target Mapping
Island

agent is outside clockwise outside hit- outside island Case 4
the island, which oriented point-island inside island impossible
also means inside hit- outside island Case 2
having an point-island inside island Case 1
outwards-facing counter outside hit- outside island Case 5
island clockwise point-island inside island Case 1

oriented inside hit- outside island Case 3
point-island inside island impossible

agent is inside clockwise outside hit- outside island impossible
the island, which oriented point-island inside island impossible
also means inside hit- outside island impossible
having an point-island inside island impossible
inwards-facing counter outside hit- outside island Case 1
island clockwise point-island inside island Case 5

oriented inside hit- outside island impossible
point-island inside island Case 3

34



Figure 3.20: Random grids with 30% (left), 35% (middle) and 40%(right)
obstacle ratios

3.5 Experimental Results

In this section, we report the comparison results of RTEF and RTA*. We used RTA*

as the basis and evaluated performance of various RTEF algorithms on 3 different

types of grid worlds (random, maze and U-type). We randomly generated 16 grids of

size 200x200, and tested the algorithms on a Centrino 1.5 GHz laptop.

Random grids are generated randomly based on a specified obstacle ratio (the

percentage of the obstacle cells). Figure 3.20 contains three random grids used in our

experiments, which are generated with obstacle ratios 30%, 35% and 40%.

Maze grids are the ones where every two non-obstacle cells are always connected

through a path (usually one path). Two parameters, obstacle ratio and corridor size

(the minimum corridor width in the maze), are used to produce mazes. The corridor

size effect is obtained by scaling small sized mazes (e.g., scaling a 50x50 maze by 4,

we obtained a 200x200 maze). 9 different maze grids shown in Figure 3.21 are used in

our experiments, which are generated using obstacle ratios 30%, 50% and 70%, and

corridor sizes 1, 2 and 4.

U-type grids are created by randomly putting U-shaped obstacles of random sizes.

Taking into consideration the number of U-type obstacles, minimum and maximum

width and height of U-shaped obstacles, we generated 4 different U-type grids shown in

Figure 3.22. The number of U-type obstacles 30, 50, 70 and 90, and minimum/maximum

U-type obstacle sizes 5 to 50 are used in our experiments.

Initial locations for the agent and target pairs are randomly generated for each grid

type such that the distance between them is at least half of the grid size. To ensure

this, the grid is divided into 4 columns, and the agent coordinates are selected from the
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Figure 3.21: Maze grids with 30% (left column), 50% (middle column) and 70%(right
column) obstacle ratios, and with 1 (top row), 2 (middle row) and 4 (bottom row)
sized corridors

Figure 3.22: U-type grids with the number of U-type obstacles 30, 50, 70 and 90,
respectively
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most left column and the target coordinates are chosen from the most right column.

These locations are kept the same in all the experiments with different configurations,

for fairness.

The agents can perceive the environment up to a limited vision range (v). There-

fore, being at its center, the agent can only sense the cells within a square area of size

(2v + 1)x(2v + 1). We also consider the cases that the agent has unlimited sensing

capability (infinite vision range), which means that the agent knows the entire envi-

ronment in advance. The vision ranges 10, 20, 40 and infinite are used throughout all

the experiments.

3.5.1 Comparison of RTA* and RTEF

We tested 12 different algorithms (11 RTEF variations + RTA*) in 16 grids with

4 different vision ranges (10, 20, 40, infinite). Thus, 768 test configurations were

generated, and 10 runs were performed for each configuration, making 7680 runs in

total. Original RTA* with 1 look-ahead depth was used in all the experiments. The

results demonstrate that RTEF finds much shorter paths in almost all the tested

configurations. In terms of total execution time, RTEF seems to be better than RTA*

in most of the tested configurations, although execution time per move is quite high.

With respect to path lengths, Figures 3.23 to 3.26 show the performance of RTEF

algorithms compared to RTA* considering all the grids, the grids of different types,

the agents with different vision ranges, and the maze grids with different corridor

sizes, respectively. In the charts, the horizontal axis is the RTEF algorithms, and

the vertical axis contains the ratio of improvement in the path length with respect to

RTA* (the path length of RTA* divided by that of the compared algorithm).

The experiments showed that RTEF algorithms perform better than RTA* in all

the grids. This was expected since RTEF is an improvement over RTA* without

any drawbacks. Furthermore, the most beneficial improvement is obtained in maze,

next in U-type and then in random grids. This is due to the fact that the difference

between the sub-optimal solutions of RTA* and the optimal ones is the maximal in

maze grids. Increasing the vision range yields better solutions (shorter paths) for

RTEF over RTA* because RTEF is able to make use of environmental information.

RTEF performs much better than RTA* when the corridor size increases since wider

corridors increase the average branching factor and the area of heuristic depression
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Figure 3.23: Ratio of improvement in the path length with respect to RTA* in all the
grids.

to be filled up. When the branching factor is high, RTA* has lots of alternatives to

pursue while the RTEF-ARM is able to classify the alternatives intelligently. RTEF

algorithms integrated with history performs the best because history cells are merged

with real obstacles yielding the larger obstacles that cause the agent to be more

explorative.

For the variation RT-RTA*-p, penalty value 3 seems to be the best. RT-VC, RT-

RTA* and RT-RTA*-p (penalty<2) perform the worst. The best improvement ratio

(81.63) was encountered in maze grids with 50% obstacles and corridor size 2, due to

the difficulty level of maze and the high branching factor. The worst improvement

(1.08) was encountered in maze grids with 30% obstacles and corridor size 1. The

second worst was 1.26 in random grids with 30% obstacles.

In terms of total execution times, Figures 3.27 to 3.30 show the speed-up obtained

by RTEF algorithms compared to RTA* considering all the grids, the grids of different

types, the agents with different vision ranges and the maze grids with different corridor

sizes, respectively. In the charts, the horizontal axis is again the RTEF algorithms,

and the vertical axis contains the ratio of improvement in the total execution time with

respect to RTA* (the total execution time of RTA* divided by that of the compared

algorithm).

According to the experiments, we can conclude that RTEF algorithms perform

much better than RTA* in U-type grids. This is due to the decrease in both path

lengths and the cost of RTEF-ARM (U-type grids have shorter obstacle borders).

38



Figure 3.24: Ratio of improvement in the path length with respect to RTA* in maze,
random and U-type grids.

Figure 3.25: Ratio of improvement in the path length with respect to RTA* using
vision ranges: 10, 20, 40 and infinite.

Figure 3.26: Ratio of improvement in the path length with respect to RTA* in grids
with corridor sizes: 1, 2 and 4. Note that c stands for cell in the legend.
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Figure 3.27: Ratio of improvement in the total execution time with respect to RTA*
in all the grids.

Increasing the vision range is beneficial up to a point; and having the complete grid

information (infinite vision) does not bring more efficiency because knowing the entire

obstacle borders, which may not be useful all the time, makes RTEF-ARM costly.

This can be easily seen in the experiments reported in Figure 3.29. When the corridor

size gets larger, the performance difference of RTEF over RTA* gets also larger since

RTEF-ARM becomes less costly, and the average branching factor increases making

RTA* worse. On the average, RTEF algorithms perform better than RTA* in maze

and U-type grids, which are the most difficult ones. Since random grids are the easiest

grids for RTA*, RTEF algorithms generally perform worse than RTA* with respect

to total execution time.

The variation RT-RTA*-p3 seems to be one of the most efficient RTEF variation

and also returns acceptably good solution paths. Penalties greater than 3 did not bring

any performance improvement, but even a reduction in some cases. Although history

computations are costly, RTEF algorithms with history take less execution time due

to their ability to return the shortest solution paths. The RT-VC, RT-RTA* and RT-

RTA*-p0 are the most inefficient algorithms. The best average speed-up (15.26) was

encountered in U-type grids with vision range 40. And the worst speedup (0.11) was

in random grids with infinite vision range since random grids were easy for RTA* and

knowing the entire obstacle borders due to infinite vision increases the RTEF-ARM

cost.
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Figure 3.28: Ratio of improvement in the total execution time with respect to RTA* in
random, maze and U-type grids. Note that the ones below 1 are not an improvement
for RTEF.

Figure 3.29: Ratio of improvement in the total execution time with respect to RTA*
with 10, 20, 40 and infinite vision ranges. Note that the ones below 1 are not an
improvement for RTEF.

Figure 3.30: Ratio of improvement in the total execution time with respect to RTA*
with 1, 2 and 4 cell corridor sizes in mazes. Note that the ones below 1 are not an
improvement for RTEF.
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Figure 3.31: The increase in step execution times using look-ahead depths: 3, 5, 7, 9,
11, with respect to RTA* using look-ahead depth 1. Note that L stands for look-ahead
depth, and lower values are better.

3.5.2 Analysis of Look-ahead Depth

In order to see the path length improvement of RTA* with higher look-ahead depths, a

number of experiments were conducted in 16 grids with 5 different look-ahead depths

(3, 5, 7, 9 and 11) and 4 different vision ranges (10, 20, 40 and infinite). Thus 320

test configurations were generated, and 10 runs were performed for each configuration,

making 3200 runs in total.

The results showed that the path length improvement of RTA* with reasonable

look-ahead depths is insignificant compared to the RTEF algorithms. The time per

move and total execution time of RTA* with large look-ahead depths are too high

because the time complexity is exponential in the size of the look-ahead depth. In

terms of step execution time, Figure 3.31 shows the decrease in performance with

higher look-ahead depths. In the chart, the horizontal axis contains RTA* variations

with look-ahead depths 1, 3, 5, 7, 9 and 11; and the vertical axis is the increase

in execution times of these RTA* variations with respect to RTA* using look-ahead

depth 1. The sharpness of increase in the execution time highly depends on the grid

type, which affects the average branching factor and the area of heuristic depression

needed to be filled up. The increase is too high in grids with wide corridors, and low

in grids with narrow corridors.

The average path length improvement of RTA* using higher look-ahead depths

with respect to original RTA* is shown in Figure 3.32, and the comparison of RTA*

with RT-VCH and RT-RTA*-p3 can be seen in Figure 3.33. We reduced the number
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Figure 3.32: The improvement in the path lengths of RTA* using look-ahead depths
3, 5, 7, 9, 11, with respect to RTA* using look-ahead depth 1

Figure 3.33: The improvement in the path lengths of RT-VCH, RT-RTA*-p3 and
RTA* (using look-ahead depth 3, 5, 7, 9, 11), with respect to RTA* using look-ahead
depth 1

of RTEF variations compared to 2, which includes RT-VCH and RT-RTA*-p3 since

these were the best ones in the previous experiments, and also methodologically the

most different variations.

As can be easily seen from Figure 3.32, increasing the look-ahead depth does not

always improve the solution, although we expect shorter paths. This case is observed

in the results of maze grids with 1-cell and 2-cell corridors. Since the results seem to

be strange at first, we examined the test runs in details, and find out the problem,

which was also mentioned in [10]. The reason was to choose a wrong alternative at

a very critical decision point because of stopping the search at an immature depth

guiding a local optimal. This is exemplified using one of our problematic runs shown
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Figure 3.34: Critical decision point of RTA* with look-ahead depth 9

Figure 3.35: The improvement in the total execution times of RTA* (using look-ahead
depth 3, 5, 7, 9, 11), RT-VCH and RT-RTA*-p3 with respect to RTA* using look-
ahead depth 1. Note that ratios below 1 means the compared algorithm is worse than
the original RTA*.

in Figure 3.34. In the example, although RTA* with look-ahead depth 7 could easily

reach the target, RTA* with look-ahead depth 9 selected a wrong direction at a very

early stage, and had to travel almost the entire maze meanwhile exploring. Therefore

instead of 576 moves, it took 11704 moves to reach the target.

With respect to total execution time, Figure 3.35 shows the improvement of RTA*

using higher look-ahead depths, and additionally the comparison with RT-VCH and

RT-RTA*-p3. According to the results, we can conclude that using higher look-ahead

depths is not sufficient for RTA* to over-perform RTEF in U-type grids and maze

grids having wide corridors. However, RTA* becomes better than RTEF with small

look-ahead depths in maze grids with 1-cell corridors, and in random grids.

3.5.3 Analysis of Search Depth

In order to see how search depth affects RTEF Algorithms, we performed a number of

experiments with 4 different search depths (10, 20, 40 and 80) and 4 different vision
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Figure 3.36: The improvement in the path lengths of RT-VCH and RT-RTA*-p3 using
10, 20, 40 and 80 search depths, with respect to RTA*. Note that SD stands for search
depth.

Figure 3.37: The improvement in the total execution times of RT-VCH and RT-RTA*-
p3 using 10, 20, 40 and 80 search depths, with respect to RTA*

ranges (10, 20, 40, infinite) in 16 grids, and used 2 RTEF variations (RT-VCH and

RT-RTA*-p3). 512 test configurations were generated, and 10 runs were performed

for each configuration, making 5120 runs in total. The results of path lengths and

total execution times with various search depths are shown in Figures 3.36 and 3.37.

The results showed that when a search depth is specified, the path lengths get

longer, but the time spent per move decreases significantly. Therefore, if a very small

depth is not used, the path lengths do not increase sharply, and the total execution

time usually decreases. In conclusion, if the execution time per move and total exe-

cution time are important, it is better to use a reasonably small search depth, but if

the path lengths are more important, it is better to use a large search depth to have

a bounded complexity, or even not to use any.
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3.5.4 Comparison with Optimal Solution Paths

Finally, we have conducted a number of experiments to compare the path lengths of

RTEF and RTA* with the optimal path lengths in 16 grids. We implemented the

off-line path planning algorithm A* [38] to compute the optimal path lengths. We

assumed that the mazes are fully known (infinite vision range) by the agents, and

computed the ratio of path lengths of each of these algorithms to that of optimal

solutions to clearly see the proximity of solutions to the optimals (see Figure 3.38).

We observed that the path lengths obtained by RTEF algorithms are very close

to the optimal ones. On the other hand, the solutions produced by RTA* are very far

away from the optimals. The best performance is obtained by RT-VCH. Its solutions

are only 1.501 times longer than the optimal ones on the average, and the standard

deviation is 1.068. The worst performance is obtained by RTA*. The solutions are

33.022 times longer than the optimal ones on the average, and the standard deviation

is 50.417, which is unacceptably high in practice. When we closely look at the results

from the view point of different types of grids, we see that RTEF algorithms and

RTA* show opposite behaviors most of the time. When the obstacle ratio increases

and grids become complicated, RTEF algorithms almost converge to the optimal (e.g.,

the results are exactly optimal in maze grids with 70% obstacles), on the contrary

RTA* gets far away from the optimal solutions (e.g., the results are 124 times longer

than the optimal ones in maze-grids with 2-cell corridors and 50% obstacles).
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Figure 3.38: The average ratio of RTEF algorithms and RTA* solution path lengths
over optimal path lengths, and their standard deviations.
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CHAPTER 4

REAL-TIME MOVING TARGET EVALUATION

SEARCH

In this chapter, we introduce our second real-time path search algorithm, Real-Time

Moving Target Evaluation Search (MTES) [49, 48]. First, we describe the details of

the algorithm. Then, we examine its complexity and correctness. We go on with the

introduction of our prey algorithm, Prey-A*, and finalize with the results of experi-

ments.

4.1 Problem Description

Agents that use less informed heuristics such as Euclidian distance cannot precisely

evaluate the cost differences of neighbor states and hence usually make wrong decisions

in selecting their next moves towards the target. Although RTEF attempts to solve

this problem to some extend by detecting closed directions correctly, it is poor in

estimating real cost because it uses Euclidian distance heuristic to select the moving

direction from open ones. Figure 4.1 shows the route an agent follows guided by

RTEF. Initially the agent has two open (north and south) directions. Due to the

Euclidian distance heuristic, the agent prefers the north direction leading to a very

long route to the target. If the agent had selected to move south, the route would

have been much shorter.

The problem of determining the right moving direction from the open alternatives

was one of the motivations behind our new algorithm, Real-Time Moving Target

Evaluation Search (MTES). The effectiveness of MTES is illustrated on the previous

example in Figure 4.2. Here, the algorithm identifies three possible moving directions,

and evaluated that the middle one (which we name as the inner right most direction)
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Figure 4.1: RTEF can detect which directions are open, but cannot evaluate the cost
differences successfully just using Euclidian distance heuristic

Figure 4.2: MTES chooses inner right most direction because it seems to be the
shortest in possible alternatives

is approximately the shortest. In this study, we also extend both of our path search

algorithms (RTEF and MTES) to handle moving targets. The assumptions of our

domain different from the previous chapter are summarized below.

• There is a single agent (predator) that aims to reach a static or moving target

(prey).

• The predator is expected to reach the prey from a short path avoiding obstacles

in real-time. The prey is either static or escaping from the predator, and its

location is assumed to be known by the predator all the time.

• The prey has unlimited perception and knows all the grid world and the location

of the predator all the time.

• The search continues until the predator reaches the prey.
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4.2 The Search Algorithm

MTES makes use of a heuristic, Real-Time Target Evaluation (RTTE-h), which ana-

lyzes obstacles and proposes a moving direction that avoids these obstacles and leads

to the target through shorter paths. To do this, RTTE-h geometrically analyzes the

obstacles nearby, tries to estimate the lengths of paths around the obstacles to reach

the target, and proposes a moving direction. RTTE-h works in continuous space to

identify the moving direction, which is then mapped to one of the actual moving di-

rections (north, south, east and west). MTES repeats the steps in Algorithm 6 until

reaching the target or detecting that the target is inaccessible. In the first step, MTES

calls RTTE-h heuristic function, which returns a moving direction and the utilities

of neighbor cells according to that proposed direction. Next, MTES selects one of

the neighbor cells on open directions with the minimum visit count (see Definition

3.2.1). If there exists more than one cell having the minimum visit count, the one

with the maximum utility is selected. If utilities are also the same, then one of them

is selected randomly. After the move is performed, the visit count of the previous cell

is incremented and the cell is inserted into the history (see Definition 3.2.2). If no

alternative could be determined to move and the history is not empty, MTES clears

the history to be able to backtrack. If the history is also empty, it is concluded that

the target is unreachable.

In moving target search problem, the target may sometimes pass through the cells

the agent previously walked through. In such a case, there is a risk that the history

blocks the agent to reach the target since history cells are assumed to be obstacles

and may close some gateways required to return back. If this situation occurs at some

point, the agent will surely be able to detect this at the end, and clear the history

opening all the closed gateways. Therefore, the algorithm is cable of searching moving

targets without any additions. As a matter of fact, the only drawback of the history is

not the possibility that it can block the way to the target entirely, but it can sometimes

prevent the agent to reach the target through shorter paths by just closing some of

the shortcuts. To reduce the performance problems of this side effect, the following

procedure is applied. Assuming that (x1, y1) and (x2, y2) are the previous and newly

observed locations of the target, respectively, and R is the set of cells the target could

have visited in going from (x1, y1) to (x2, y2), the algorithm clears the history along
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Algorithm 6 An Iteration of MTES Algorithm
1: Call RTTE-h to compute the proposed direction and the utilities of neighbor cells.

2: if a direction is proposed by RTTE-h then

3: Select the neighbor cell with the highest utility from the set of non-obstacle

neighbors with the smallest visit count.

4: Move to the selected direction.

5: Increment the visit count of previous cell by one.

6: Insert the previous cell into the history.

7: else

8: if History is not empty then

9: Clear all the History.

10: Jump to 1

11: else

12: Destination is unreachable, stop the search with failure.

13: end if

14: end if

with visit counts when any cell in set R appears in history or has non-zero visit count.

In the algorithm, R can be determined in several ways depending on the required

accuracy. The smallest set has to contain at least the newly observed location of

the target, (x2, y2). One can choose to ignore some of the set members and only use

(x2, y2) to keep the algorithm simple, or one may compute a more accurate set, which

has the cells fall into the ellipse whose foci are (x1, y1) and (x2, y2), and the sum of the

radii from the foci to a point on the ellipse is constant m, where m is the maximum

number of moves the target could have made in going from (x1, y1) to (x2, y2). In this

chapter, we have integrated this extension to both RTEF and MTES.

4.2.1 Real-Time Target Evaluation Heuristic

Real-Time Target Evaluation heuristic (RTTE-h) given in Algorithm 7 propagates

four diagonal rays away from the agent location, and analyzes the obstacles these rays

hit to find out the best direction to move. If a ray hits an obstacle before exceeding

the maximum ray distance, the obstacle border is extracted by tracing cells on the

border starting from the hit-point. Concurrently, we also find the point on the border
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which is closest to the target. This point will be used in calculating the estimated path

lengths. Next, the closed directions are determined. Then the border is re-traced from

both left and right sides to determine the geometric features that will be described in

the next section. The obstacle features are evaluated and a moving direction to avoid

the obstacle is identified. After all the obstacles are evaluated, the results are merged

in order to propose a final moving direction.

Algorithm 7 RTTE-h Algorithm
1: Mark all the moving directions as open.

2: Propagate four diagonal rays.

3: for each ray hitting an obstacle do

4: Extract the border of the obstacle by starting from the hit-point and tracing the

edges towards the left side until making a complete tour around the obstacle.

5: Detect closed directions.

6: Analyze the border to extract geometric features of the obstacle.

7: Evaluate results and determine the best direction to avoid the obstacle.

8: end for

9: Merge individual results, propose a direction to move, and compute the utilities

of the neighbor cells.

In RTTE-h, ray-sending, edge-tracing and closed direction detection steps are

almost the same as RTEF-ARM. There is only a small difference in edge-tracing

step. In order to reduce the work load of closed direction detection step, RTEF-

ARM does not insert unnecessary vertices (the ones that does not change the shape

of the obstacle) into the vertex lists of island and hit-point island during edge-tracing,

but RTTE-h does, because RTTE-h deals with the directions of these vertices, and

missing vertices will effect the process. Additionally, RTTE-h performs three more

steps shown in lines 6, 7 and 9 in Algorithm 7 for extracting additional geometric

features and estimating the moving direction that minimizes the path length to the

target. Details of these steps are given in the following sections.

4.2.2 Analyzing an Obstacle Border

When a ray hits an obstacle, its border is extracted and then analyzed. Border analysis

(line 6 in Algorithm 7) is done by tracing the border of an obstacle from left and right.
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In left analysis, the known border of the obstacle is traced edge by edge towards the

left starting from the hit point, making a complete tour around the obstacle border.

During the process, several geometric features of the obstacle are extracted. These

features are described in Definitions 4.2.1 to 4.2.8 (see Figure 4.3 for illustrations):

Definition 4.2.1 (Outer left most direction) Relative to the ray direction, the

largest cumulative angle is found during the left tour on the border vertices. In each

step of the trace, we move from one edge vertex to another on the border. The angle

between the two lines (TWLNS) starting from the agent location and passing through

these two following vertices is added to the cumulative angle computed so far. Note

that the added amount can be positive or negative depending on whether we move in

counter-clockwise (ccw) or clockwise (cw) order, respectively. This trace (including

the trace for the other geometric features) continues until the sum of the largest cu-

mulative angle and the absolute value of smallest cumulative angle is greater than or

equal to 360. The largest cumulative angle before the last step of trace is used as the

outer left most direction.

Definition 4.2.2 (Inner left most direction) The direction with the largest cu-

mulative angle encountered during the left tour until reaching the first edge vertex

where the angle increment is negative and the target lies between TWLNS. If such a

situation is not encountered, the direction is assumed to be 0 + ε, where ε is a very

small number (e.g., 0.01).

Definition 4.2.3 (Inside of left) True if the target is inside the polygon whose ver-

tices starts at agent’s location, jumps to the outer left most point, follows the border

of the obstacle to the right and ends at the hit point of the ray.

Definition 4.2.4 (Inside of inner left) True if the target is inside the polygon that

starts at agent’s location, jumps to the inner left most point, follows the border of the

obstacle to the right and ends at the hit point of the ray.

Definition 4.2.5 (Behind of left) True if the target is in the region obtained by

sweeping the angle from the ray direction to the outer left most direction in ccw order

and the target is not inside of left.
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Figure 4.3: Geometric features of an obstacle: Outer left most and inner left most
directions (left-top), Inside of left (right-top), Inside of inner left (left-middle), Behind
of left (right-middle), Outer-left-zero angle blocking and Inner-left-zero angle blocking
(bottom)
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Figure 4.4: Left alternative point

Definition 4.2.6 (Outer-left-zero angle blocking) True if target is in the region

obtained by sweeping the angle from the ray direction to the outer left most direction

in ccw order.

Definition 4.2.7 (Inner-left-zero angle blocking) True if target is in the region

obtained by sweeping the angle from the ray direction to the inner left most direction

in ccw order.

In right analysis, the border of the obstacle is traced towards the right side and

the same geometric properties listed above but now symmetric ones are identified. In

the right analysis, additionally the following feature is extracted:

Definition 4.2.8 (Left alternative point) The last vertex in the outer left most

direction encountered during the right tour until the outer right most direction is de-

termined (see Figure 4.4).

4.2.3 Evaluating Individual Obstacle Features

In individual obstacle evaluation step (line 7 in Algorithm 7), if an obstacle blocks the

line of sight from the agent to the target, we determine a direction to move avoiding

the obstacle to reach the target through a shorter path. In addition, the length of the

path through the moving direction to the target is estimated. The method is given in

Algorithm 8, which requires the path length estimations given in Definitions 4.2.9 to

4.2.11 in addition to the acquired geometric features of the obstacle:

Definition 4.2.9 (dleft) The approximated length of the path which starts from the

agent location, jumps to the outer left most point, and then follows the path determined

by Algorithm 9 (see Figure 4.5).
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Figure 4.5: Exemplified dleft estimation

Figure 4.6: Exemplified dleft.alter estimation

Definition 4.2.10 (dleft.alter) The approximated length of the path which starts from

the agent location, jumps to the outer right most point, and then to the outer left most

point, and finally follows the path determined by Algorithm 9 (see Figure 4.6).

Definition 4.2.11 (dleft.inner) The approximated length of the path passing through

the agent location, the inner left most point, and the target (see Figure 4.7).

Algorithm 9 is internally used in computations of dleft and dleft.alter, and the

sub-function isoutwardsfacing is called for detecting if a border segment, whose both

ends touch the line passing through the outer left most point and the target point, is

Figure 4.7: Exemplified dleft.inner estimation
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Algorithm 8 Individual Obstacle Evaluation Step
1: if (behind of left and not inside of right) or (behind of right and not inside of left) then

2: Case 1:

3: if outer left most angle + outer right most angle ≥ 360 then

4: Case 1.1:

5: if distance from agent to outer left most point < distance from agent to left alternative point then

6: Case 1.1.1: Let estimated distance be min(dleft, dright.alter), and propose outer left most direction as moving

direction

7: else

8: Case 1.1.2: Let estimated distance be min(dleft.alter, dright), and propose outer right most direction as moving

direction

9: end if

10: else

11: Case 1.2:

12: if dleft < dright then

13: Case 1.2.1: Let estimated distance be dleft, and propose outer left most direction as moving direction

14: else

15: Case 1.2.2: Let estimated distance as dright, and propose outer right most direction as moving direction

16: end if

17: end if

18: Mark obstacle as blocking the target

19: else if behind of left then

20: Case 2:

21: if Target direction angle 6= 0 and outer-right-zero angle blocking then

22: Case 2.1: Let estimated distance be dleft, and propose outer left most direction as moving direction

23: else

24: Case 2.2: Let estimated distance be dright.inner , and propose inner right most direction as moving direction

25: end if

26: Mark obstacle as blocking the target

27: else if behind of right then

28: Case 3:

29: if Target direction angle 6= 0 and outer-left-zero angle blocking then

30: Case 3.1: Let estimated distance be dright, and propose outer right most direction as moving direction

31: else

32: Case 3.2: Let estimated distance be dleft.inner , and propose inner left most direction as moving direction

33: end if

34: Mark obstacle as blocking the target

35: else

36: Case 4:

37: if (inside of left and not inside of right) and (inner-left-zero angle blocking and not inside of inner left) then

38: Case 4.1: Let estimated distance be dleft.inner , and propose inner left most direction as moving direction

39: Mark obstacle as blocking the target

40: else if (inside of right and not inside of left) and (inner-right-zero angle blocking and not inside of inner right) then

41: Case 4.2: Let estimated distance be dright.inner , and propose inner right most direction as moving direction

42: Mark obstacle as blocking the target

43: end if

44: end if
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Algorithm 9 Path length estimation used for dleft and dleft.alter

Require: t : target point

Require: s : outer left most point

Require: n : the nearest point to the target

Require: + : next border point (left of)

Require: − : previous border point (right of)

Require: insert(p) : inserts a point to the estimated path

Require: clasify(p1, p2, p3) : if the edge formed by the points p1, p2, p3 does a left turn then returns

true, else returns false

Require: isoutwardsfacing(side, p1, p2) : see Algorithm 10

1: let prev = s

2: let prevleft = true

3: insert(s)

4: for each border point v between s+ and n do

5: if v = n then

6: if isoutwardsfacing(prevleft, prev, t) then

7: insert(all border points between prev+ and v)

8: end if

9: insert(t)

10: return length of estimated path

11: end if

12: let vleft = not clasify(s, t, v)

13: if prevleft 6= vleft then

14: let z = intersection point of lines (s, t) and (v−, v)

15: if not isoutwardsfacing(prevleft, prev, z) and z is between prev and t then

16: insert(t)

17: return length of estimated path

18: end if

19: if isoutwardsfacing(prevleft, prev, z) then

20: insert(all border points between prev+ and v)

21: else

22: insert(v)

23: end if

24: let prev = v

25: let prevleft = vleft

26: end if

27: end for
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Algorithm 10 The function isoutwardsfacing(side, p1, p2)
Require: t : target point

Require: s : outer left most point

Require: len(n1, n2) : returns distance between points n1 and n2

Require: positive(m) : if len(m, t) ≤ len(s, t) or len(m, t) ≤ len(s,m) then returns

true, else returns false

Require: slen(m) : if positive(m) then returns +len(s,m) else returns −len(s,m)

1: if (side and slen(p1) < slen(p2)) or (not side and slen(p1) > slen(p2)) then

2: return true

3: else

4: return false

5: end if

Figure 4.8: Exemplified path length estimation

outwards facing ( see Figures 4.8 and 4.9 ). The estimated target distances over right

side of the obstacle are similar to those over left side of the obstacle, and computed

symmetrically (the terms left and right are interchanged in definitions). So, we have

additional estimated target distances dright, dright.alter and dright.inner.

In Algorithm 7, lets consider four top-level if-conditions in lines 1, 19, 27 and 35,

which correspond to Cases 1, 2, 3 and 4 respectively. The algorithm enters Case

1 only if the target is certainly behind the obstacle and the target can be reached

by either going around the obstacle through the outer left most point or the outer

right most point. The if-condition preceding Case 1 consists of two disjuncted sub-

conditions. The first one, “behind of left and not inside of right”, is satisfied when the
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Figure 4.9: Outwards and inwards facing segments

Figure 4.10: Case 1: Target is behind of left region and not inside of right region
(means not inside of the overlap area of behind of left and inside of right regions).

target is behind the left side of the obstacle and we are sure that we cannot go to the

target from the inner right region since the target is not inside of right. Hence, we

need to go around the obstacle to reach the target. This case is exemplified in Figure

4.10. The second sub-condition is symmetric to the first one.

Case 1 has two second-level if-conditions in lines 3 and 10, which cover Case 1.1

and Case 1.2 respectively. The if-condition preceding Case 1.1 checks if the sum of

the outer left most angle and the outer right most angle is greater than or equal to 360

degree. The condition is satisfied if the swept angles from left and right to opposite

orientations meet each other and some angle overlap occurs. This means that the agent

is surrounded by the obstacle in all directions, the target is outside, and the agent

needs to go out from the nearest exit. In this case, if the nearest exit is determined

as the corner of the outer left most edge, Case 1.1.1 otherwise Case 1.1.2 is executed.
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Figure 4.11: Case 1.1.1: Since outer left most angle + outer right most angle ≥ 360
and outer left most point is nearer to the agent than left alternative point, the outer
left most direction will be proposed.

Figure 4.12: Case 1.1.2: Since outer left most angle + outer right most angle ≥ 360
and left alternative point is nearer to the agent than outer left most point, the outer
right most direction will be proposed.

The cases are illustrated in Figures 4.11 and 4.12. If the if-condition preceding Case

1.1 is not satisfied, Case 1.2 is executed, which means there is no angle overlap and

the agent is only surrounded by the obstacle in some directions but not all. In this

case, the edge minimizing the route distance to the target is determined, and either

Case 1.2.1 or Case 1.2.2 is executed depending on the value of dleft and dright. This

case is exemplified in Figure 4.13.

The algorithm enters Case 2 only if the target is certainly blocked by the obstacle,

and the target can be reached by going through either the corner of the outer left most

edge or the inner right most edge. In such a case, there are two possible regions the

target can be located in. The first one handled in Case 2.1 is between the outer left
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Figure 4.13: Case 1.2.1: Since outer left most angle + outer right most angle < 360
and the estimated path length to the target through the outer left most point is shorter
than the right one, the outer left most direction will be proposed.

most edge and the outer right most edge (see Figure 4.14), and the target inside that

region can be reached by going through the corner of the outer left most edge. The

second one handled in Case 2.2 lies in the inner part of the obstacle (see Figure 4.15),

and the target inside this region can be reached by going through the corner of the

inner right most edge. We will not go into the details of Case 3 since it is symmetric

to Case 2.

The algorithm enters Case 4 if none of the previous top-level if-conditions are

satisfied. Case 4 has two second-level if-conditions in lines 37 and 40, which cover

Case 4.1 and Case 4.2 respectively. The if-condition preceding Case 4.1 consists of

two conjuncted sub-conditions. The first one, “inside of left and not inside of right”,

is satisfied when the target is inside of the left but not right region, thus we are sure

that we need to enter the left region but we don’t know yet if the flying direction to

target is feasible. The second sub-condition, “inner-left-zero angle blocking and not

inside of inner left”, is satisfied if the target is behind the inner left most edge, thus

the flying direction to target is not feasible. If both sub-conditions hold, we known

that the agent needs to enter the left region through the corner of the inner left most

edge. This case is illustrated in Figure 4.16. We will not examine Case 4.2 since it is

also symmetric to Case 4.1.

If none of the above conditions are satisfied, the algorithm does not propose any

moving direction meaning the flying direction to target may still be a feasible choice
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Figure 4.14: Case 2.1: Since the target is at the direction that falls into the overlap
angle, the outer left most direction will be proposed.

Figure 4.15: Case 2.2: Since the target is not at the direction that falls into the overlap
angle, the inner right most direction will be proposed.

Figure 4.16: Case 4.1: Since target is inside of left region, but not right, and inner-
left-zero angle blocking and not inside of inner left, the inner left most direction will
be proposed.
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to move.

4.2.4 Merging Entire Results

In the result merging step (line 9 in Algorithm 7), the evaluation results (moving

direction and estimated distance pairs) for all obstacles are used to determine a final

moving direction to reach the target. The proposed direction will be passed to MTES

algorithm (see Algorithm 6) for final decision. The merging algorithm is given in

Algorithm 11.

Algorithm 11 Merging Phase
1: if all the directions to neighbor cells are closed then

2: propose no moving direction and halt with failure

3: end if

4: Select the obstacle (most constraining obstacle) that is marked as blocking the

target and maximize the distance to the target, if there exists one

5: if most constraining obstacle exists then

6: identify a moving direction that gets around the most constraining obstacle

avoiding the remaining obstacles

7: else

8: select the moving direction as the direct flying direction to the target

9: end if

{Compute utility of each neighbor cell}
10: for each neighbor cell do

11: if direction of the neighbor cell is closed then

12: set utility to zero

13: else

14: set utility to (181 − dif)/181, where dif is smallest angle between the pro-

posed moving direction and the direction of the neighbor cell

15: end if

16: end for

The most critical step of the merging phase is to compute the moving direction to

get around the most constraining obstacle. The reason why we determine the moving

direction based on the most constraining obstacle is the fact that it might be blocking
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the target the most. We aim to get around the most constraining obstacle and to

do this we have to reach its border. In case there are some other obstacles on the

way to the most constraining obstacle, we need to avoid them and determine the

moving direction accordingly. Our algorithm works even if we ignore the intervening

obstacles but we employ the following technique in order to improve solution quality

with respect to path length.

Let the final direction to be proposed by the algorithm considering ray r be pdr.

Initially pdr is set to the direction dictated by the most constraining obstacle or hit

by ray r. Assume that pdr is computed in the left tour. Note that the pdr was

determined during the counter clockwise (ccw) tour started from the hit point of ray

r. If pdr is blocked by some obstacles, pdr can be changed by sweeping pdr in clockwise

direction until pdr is not blocked by any obstacle or pdr becomes the direction of ray

r. By definition, we know that r is guaranteed to reach the border of obstacle or

before hitting any other obstacle. In order to determine intervening obstacles, we

check obstacles (not equal to or) hit by the other rays fall into ccw angle between r

and pdr. If an obstacle os hit by ray s has outer left most direction outside ccw angle

between ray s and pdr, and has outer right most direction inside ccw angle between r

and s, then the obstacle os blocks pdr and proposed direction should be swept to outer

left most direction of obstacle os. Using this information we compute the direction

nearest to pdr between r and pdr and not blocked by the intervening obstacles. The

method is exemplified in Figure 4.17. The similar mechanism is also used to compute

the proposed direction for pdr detected in the right tour, but this time, left/right and

ccw/cw are interchanged.

A complete sample illustrating the entire process of RTTE-h heuristic can be

seen in Figure 4.18. In the sample, there exist three obstacles, two of which are

blocking the target (obstacle A and B). Therefore, the final proposed moving direction

is determined by examining these two obstacles.

4.3 Complexity Analysis

In each move, MTES performs steps similar to RTEF. In MTES, the number of

passes over obstacle borders is greater than that of RTEF and in each pass more time

is consumed. As a result, at each step MTES is slower than RTEF. Although MTES
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Figure 4.17: An example of avoiding the intervening obstacles

Figure 4.18: A sample illustrating the entire process of RTTE-h heuristic
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seems to be less efficient than RTEF, its worst case complexity is the same as that

of RTEF, which is O(w.h) per step, where w is the width and h is the height of the

grid. Since increasing the grid size decreases the efficiency, a search depth (d) can

be introduced similar to RTEF in order to limit the worst case complexity of MTES.

With this limitation, the complexity of MTES becomes O(d2).

4.4 Proof of Correctness

A single iteration of MTES given in Algorithm 6 is similar to RTEF shown in Algo-

rithm 3, which is proved to be correct. MTES uses visit counts and history to prevent

infinite loops, and eliminate closed directions in order not to enter dead-ends, which

are the same as RTEF. The difference is in selection of moving directions, which will

only effect the solution quality, but not the completeness. RTEF selects an open direc-

tion minimizing the Euclidian distance to the target; on the other hand MTES selects

an open direction maximizing the utility computed by RTTE-h heuristic which mea-

sures the actual distance to the target more precisely than Euclidian distance. The

algorithm is complete in the sense that if the target is accessible, the agent will surely

find its way to the target without entering any infinite loop.

4.5 Prey Algorithm

To test our predator algorithm, we developed a deliberative off-line prey algorithm,

Prey-A*, which is powerful but not very efficient. To prevent the side effects caused by

the efficiency difference, the predator and the prey algorithms are executed alternately

in performance tests. Prey-A* performs the steps given in Algorithm 12 in each

iteration. The algorithm generates two grids, costspredator and costsprey, whose sizes

are the same as the size of the environment, and have one to one mapping to the cells

of the grid world. Each cell of the costspredator contains the length of the optimal path

from the nearest predator to the cell, and similarly, each cell of the costsprey stores

the length of the optimal path from the prey to the cell. The objective is to find a

cell such that the number of moves from the nearest predator to the cell (the cost in

costspredator) is maximized, and the prey will not be caught by the predators during

the travel to the cell through the optimal path. This is checked by ensuring that each

cell on the optimal path satisfies costspredator[cell] − α.costsprey[cell] > 0, where α is
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computed by the formula speedpredator/speedprey. In order to find the best cell, the

algorithm examines each non-obstacle cell within a limited search window centered at

the prey location, and moves one step towards the selected one.

Algorithm 12 An Iteration of Prey-A* Algorithm
1: Generate costspredator, which is a grid, each cell of which maps to a cell of the

environment and contains the number of moves required for the nearest predator

to reach the cell.

2: Generate costsprey, which is a grid, each cell of which maps to a cell of the envi-

ronment and contains the number of moves required for prey to reach the cell.

3: Check all the nearby cells of the prey within a limited search window centered at

the prey location, and find out the cell (destination), which maximizes the number

of moves for the predators to reach (the cell maximizing the cost in costspredator)

meanwhile ensuring that the prey will not be caught by any predators during the

travel to the destination on the shortest path generated by A*. The safety of

the shortest path is guaranteed by checking all the cells on the shortest path.

If timecaught for all the cells on the way is greater than zero, we are sure the

predators will not catch the prey during its travel to the (destination). timecaught

for a cell is computed as:

costspredator[cell]− α.costsprey[cell]

where α is the speed ratio of the predator and the prey found by the formula

speedpredator/speedprey.

4: The move to the first cell that is on the way of the shortest path to the destination

is taken as the next step. Note that prey may choose not to move if destination

is the cell the prey is on.

4.6 Experimental Results

In this section, we present our experimental results on MTS-c, MTS-d, RTEF (RT-

VCH), MTES and A* (predators) against static and moving targets (preys). As being

an off-line algorithm, we executed A* in each step from scratch. For the test runs,

we used 9 randomly generated sample grids of size 150x150. Six of them were the

maze grids (see Figure 4.19), and three of them were the U-type grids (see Figure

4.20). The maze grids were produced with the constraint that every two non-obstacle
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Figure 4.19: Maze grids with 25% (left column), 30% (middle column) and 35%
obstacles (right column), and maze grids with 1-cell (top row) and 2-cell corridors
(bottom row).

cells are always connected through a path. Two parameters, obstacle ratio (25%, 30%

and 35%) and corridor size (1 and 2 cell corridors), were used to produce the mazes.

The U-type grids were created by randomly putting U-shaped obstacles of random

sizes (5 to 30 cells) on an empty grid limiting the number of U-type obstacles with

70, 90 or 120. For each grid, we produced 15 different randomly generated predator-

prey location pairs, and made all the algorithms use the same pairs for fairness. The

location of predators were randomly chosen from left or right sides of the grids, and

the prey locations were chosen randomly from middle part of the grids. This effect

is obtained by dividing the grids into 5 columns, and selecting the predator locations

from the most left and right columns, and the prey locations from the middle column.

To test the algorithms against a moving target, we used the deliberative off-line

prey algorithm, Prey-A* (see Algorithm 12) with 161x161 sized search window. In the

experiments, we assumed that the prey knows the entire grid world and the location of

the predator all the time, and the predator always knows the location of the prey, but

perceives the grid world up to a predefined vision range. Our tests were performed

with 10, 20, 40 and infinite vision ranges and search depths. Additionally, we assumed
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Figure 4.20: U-type grids with 70 (left), 90 (middle) and 120 (right) u-shaped obstacles

that the prey is slower than the predator, and skips 1 move after each 7 moves.

4.6.1 Analysis of Static Targets

In this section, we present the performance of MTS-c, MTS-d, RTEF, MTES and A*

against a static target. We conducted experiments with different vision ranges, search

depths and maze types. With respect to vision ranges and search depths, the averages

of path lengths on maze grids are given in Figures 4.21 and 4.22, and the averages

of path lengths on U-type grids are given in Figures 4.23 and 4.24, respectively. In

the charts, the horizontal axis is either the vision range or the search depth, and the

vertical axis contains the ratio of improvement in the path length with respect to

MTS-c (the path length of MTS-c divided by that of the compared algorithm).

According to the results, we can conclude that MTES performs significantly better

than MTS-c, MTS-d and RTEF, and usually offers solutions near to optimal ones

produced by A*. RTEF and MTS-d perform head to head, and MTS-c is the worst.

When we examine the results with respect to vision range, we see that vision range

does not effect the solutions significantly in maze grids with 25% and 30% obstacles

because the obstacle sizes are not very large. Similarly, search depth also does not

effect the solutions much in these grids for the same reason.

4.6.2 Analysis of Moving Targets

In this section, we present the performance of MTS-c, MTS-d, RTEF, MTES and A*

against a moving target guided by Prey-A*. We conducted experiments with different

vision ranges, search depths and maze types. With respect to vision ranges and search

depths, the averages of path lengths on maze grids are given in Figures 4.26 and 4.27,
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Figure 4.21: Average of path length results of maze grids (25% obstacles (top), 30%
obstacles (middle), 35% obstacles (bottom)) for increasing vision ranges against a
static target
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Figure 4.22: Average of path length results of maze grids (25% obstacles (top), 30%
obstacles (middle), 35% obstacles (bottom)) for increasing search depths against a
static target
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Figure 4.23: Average of path length results of U-type grids for increasing vision ranges
against a static target

Figure 4.24: Average of path length results of U-type grids for increasing search depths
against a static target
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Figure 4.25: MTES prefers performing diagonally shaped manoeuvres (left) and A*
prefers performing L-shaped manoeuvres (right) for approaching targets located in
diagonal directions.

and the averages of path lengths on U-type grids are given in Figures 4.28 and 4.29,

respectively. In the charts, the horizontal axis is either the vision range or the search

depth, and the vertical axis contains the ratio of improvement in the path length

with respect to MTS-c (the path length of MTS-c divided by that of the compared

algorithm).

The results showed that MTES performs significantly better than RTEF, MTS-d

and MTS-c, and usually offers near optimal solutions that are almost as good as the

ones produced by A*. Next, RTEF, MTS-d and MTS-c follow MTES. In U-type grids,

MTES mostly outperforms A*. When we examined this interesting result in details,

we observed that they behave very differently in sparse parts of the grid. MTES prefers

performing diagonally shaped manoeuvres for approaching targets located in diagonal

directions, whereas A* prefers performing L-shaped manoeuvres in such cases (see

Figure 4.25). Since the agents are only permitted to move in horizontal and vertical

directions, these two manoeuvre patterns have equal path distances to a fixed location.

Although, there is nothing wrong with these manoeuvres for fixed targets, this is

not the case for moving targets since the strategy difference significantly affects the

behavior of the prey in U-type grids, which sometimes makes A* worse than MTES.

When we examine the results in terms of vision range, we see that vision range

does not effect the solutions significantly except in U-type grids since the obstacle sizes

in these grids are the largest. Similarly, search depth also does not effect the results

much except in maze grids with 35% obstacles and U-type grids. Another important

fact we observed about the search depths is that even with very small depths, MTES

always performs better than MTS-c and MTS-d, and almost always performs better

than RTEF.
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Figure 4.26: Average of path length results of maze grids (25% obstacles (top), 30%
obstacles (middle), 35% obstacles (bottom)) for increasing vision ranges against a
moving target
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Figure 4.27: Average of path length results of maze grids (25% obstacles (top), 30%
obstacles (middle), 35% obstacles (bottom)) for increasing search depths against a
moving target

76



Figure 4.28: Average of path length results of U-type grids for increasing vision ranges
against a moving target

Figure 4.29: Average of path length results of U-type grids for increasing search depths
against a moving target
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4.6.3 Analysis of Step Execution Times

We examined the step execution times of the algorithms running on an AMD Athlon

2500+ desktop computer. In Table 4.1, the minimum and the average number of

moves executed per second in maze and U-type grids are shown. The rows are for the

compared algorithms and the columns are for the search depths. According to the

results, we can conclude that MTS-c and MTS-d have low and almost constant step

execution times whereas the efficiency of MTES and RTEF is tied to the search depth

and obstacle ratio, and hence the appropriate depth should be chosen according to

the required efficiency and grid type. With respect to worse case performance, A*

seems to be the worst as expected, but in terms of average case performance, there

is one exception. When an infinite search depth is used, A* outperforms MTES and

RTEF in mazes with 35% obstacle ratio. But when we use a search depth, MTES and

RTEF becomes better again almost without loosing any solution quality. This result

also indicates that a reasonable search depth gains more than it takes.
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Table 4.1: The minimum and average number of moves per second for increasing
search depths

maze grids with 25% obstacles
S.Depth 10 Depth 20 Depth 40 Depth INF Depth

Algorithm Min. Avg. Min. Avg. Min. Avg. Min. Avg.
MTS-c 1612 2456 1612 2456 1612 2456 1612 2456
MTS-d 1562 2324 1562 2324 1562 2324 1562 2324
RTEF 1096 1834 1063 1550 537 1282 110 1040
MTES 1063 1324 641 984 292 709 84 585

A* 17 203 17 203 17 203 17 203

maze grids with 30% obstacles
S.Depth 10 Depth 20 Depth 40 Depth INF Depth

Algorithm Min. Avg. Min. Avg. Min. Avg. Min. Avg.
MTS-c 1562 2698 1562 2698 1562 2698 1562 2698
MTS-d 1483 2445 1483 2445 1483 2445 1483 2445
RTEF 1483 1687 641 1212 188 679 71 377
MTES 793 1073 400 649 152 358 50 211

A* 13 198 13 198 13 198 13 198

maze grids with 35% obstacles
S.Depth 10 Depth 20 Depth 40 Depth INF Depth

Algorithm Min. Avg. Min. Avg. Min. Avg. Min. Avg.
MTS-c 1063 2874 1063 2874 1063 2874 1063 2874
MTS-d 937 2469 937 2469 937 2469 937 2469
RTEF 1000 1625 400 936 118 309 32 81
MTES 531 907 212 444 82 174 23 55

A* 20 168 20 168 20 168 20 168

U-type grids
S.Depth 10 Depth 20 Depth 40 Depth INF Depth

Algorithm Min. Avg. Min. Avg. Min. Avg. Min. Avg.
MTS-c 1063 2855 1063 2855 1063 2855 1063 2855
MTS-d 1063 2498 1063 2498 1063 2498 1063 2498
RTEF 1063 1955 641 1319 188 665 78 406
MTES 793 1257 400 747 133 348 57 233

A* 8 104 8 104 8 104 8 104
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CHAPTER 5

MULTI-AGENT REAL-TIME PURSUIT

In this chapter, we introduce our multi-agent coordinated path search algorithm,

Multi-Agent Real-Time Pursuit (MAPS), for catching a moving target. The details

of the algorithm is described in the following section. After the description of the

algorithm, we present its complexity analysis and the experimental results.

5.1 Problem Description

In this section, we present the problem description in details, which offers the envi-

ronment for testing our algorithm that can pursue a moving target in real-time with

multiple agents in coordination. The assumptions of our domain different from the

previous chapters are summarized below.

• There are multiple agents (predators) that aim to reach a static or moving target

(prey) in coordination.

• The predators and the prey are randomly located far from each other in non-

obstacle grid cells. The predators are positioned at different cells.

• The predators are expected to reach the prey in coordination as soon as possible

avoiding the obstacles in real-time. The prey is either static or escaping from

the predators using Prey-A* (see Algorithm 12), and its location is assumed to

be known by the predators all the time.

• The unknown parts of the grid world is assumed to be free of obstacle by each

predator, until it is explored. Each predator maintains its own tentative map,

which holds the known part of the grid world, and updates it as he explores the

environment.

80



• The prey has unlimited perception and knows all the grid world and the location

of the predators all the time.

• The predators and the prey can only perform nine actions in each step, which

are staying still or moving to a non-obstacle neighbor cell in horizontal (east,

west), vertical (north, south) or diagonal (north-east, north-west, south-east,

south-west) directions. The effects of actions are all deterministic.

• In order to decide on moving to a diagonal neighbor cell in north-east, north-

west, south-east or south-west direction, both the predators and the prey should

make sure that the common neighbors (see Definition 5.1.1) of the diagonal

neighbor cell and the current cell is also free (see Figure 5.1 for illustration).

• We assume that a cell cannot be shared by more than one predator. Therefore

the predators also should not move to a cell that is blocked by another predator.

• The size of the grid cells is assumed to be 1x1 unit, and the coordinates of the

agents are stored in continuous space (i.e., in floating numbers). All the moves

are performed as exactly 1 unit steps for fairness. Therefore, some diagonal

moves may not cause the cell coordinate of the agent to be changed if the step

size is not long enough to reach the next cell.

• And finally, the prey is assumed to be caught when the prey and any of the

predators are in the same cell.

Definition 5.1.1 (Common Neighbors) Common neighbors of two cells (source

cells) are defined as the cells that are neighboring both source cells at the same time.

For instance, if we select the first source cell as the one located in (X, Y ), and the

second source located in (X + 1, Y + 1), then the common neighbors of these source

cells will be the ones located in (X + 1, Y ) and (X,Y + 1).

5.2 The Pursuit Algorithm

Multi-Agent Real-Time Pursuit (MAPS) is a multi-agent real-time moving target

search algorithm, which offers two different coordination strategies: blocking escape

directions (BES) and using alternative proposals (UAL). The predators may selectively
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Figure 5.1: Common neighbors of the diagonal cell and the current cell

enable one or both of these strategies in order to increase the pursuit performance.

The first strategy, blocking escape directions, is executed before the path search, and

moves the target coordinate of path planner from the prey’s current location to the

prey’s possible future escape location in order to better waylay the prey. Therefore,

the path planner will determine a path for reaching the possible escape location instead

of the current location of the prey. This strategy is generic and can be integrated into

any moving target search algorithm. The second strategy, using alternative proposals,

is performed after the path search for selecting from the alternative moving directions

proposed by the path search algorithm. Since the alternative moving directions and

their estimated path lengths can be determined by our path search algorithm, Advance

Real-Time Target Evaluation (ARtte), the second strategy is not generic and only

applicable to our path planner. MAPS given in Algorithm 13 is executed by all the

predators independently in each step until one of the predators catch the prey. The

algorithm first determines a location, called the blocking location, for the predator to

move in order to waylay the prey considering all the other predators and the possible

escape directions of the prey (line 1 in Algorithm 13). The blocking location (see

Definition 5.2.1) is used as the target coordinate to be reached in the path search

algorithm.

Definition 5.2.1 (Blocking Location) The intersection point, which the predator

and the prey will possibly meet at the same time if they both insist on continuously

moving to that point at full speed, and there is no obstacles on the way. The blocking

location is computed based on the assumption that the prey will move to a fixed direction

called the escape direction (see Definition 5.2.2), which passes through that point.

Definition 5.2.2 (Escape Direction) A direction that the prey may move to in

order to escape from the predators. Escape directions are chosen heuristically, and

there is no guarantee that the prey will move that way.
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Algorithm 13 An Iteration of MAPS Algorithm
1: Call BES method in Algorithm 14 to determine the blocking location (tx, ty) this

predator will aim to

2: Call ARtte method in Algorithm 16 with the target (tx, ty) to acquire the set st

containing the closed directions, and the set pr containing the best and the second

best (if exists) proposals for the next move

3: if the set pr is empty then

4: if history is not empty then

5: Clear all the history.

6: Jump to 2.

7: else

8: Since the prey is unreachable, stop search with failure.

9: end if

10: end if

11: Call UAL method in Algorithm 19 with the parameter pr to compute the final

proposed moving direction dir

12: Call the method in Algorithm 20 with the parameters (st, dir) to determine the

set of utilities ut[8] for the neighbor cells

13: Select mov as the neighbor cell with the highest utility in ut from the set of

neighbors with non-zero utility and smallest visit count.

14: if mov is not empty then

15: Perform one step move to the selected neighbor cell mov.

16: if the cell location of this predator is changed after the move then

17: Increment the visit count of previous cell by one.

18: Insert the previous cell into the history.

19: end if

20: else

21: Clear all the history to be able to search for an alternative way.

22: Since the way is temporarily blocked by another predator, stop search and wait

for one iteration.

23: end if
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For performing path search, a modified version of RTTE-h algorithm, called Ad-

vance Real-Time Target Evaluation (ARtte), is used (lines 2-10 in Algorithm 13).

ARtte algorithm analyzes the current state, and produces a set of proposals for the

next move. There are three possible outcomes. ARtte may propose two alternative

moving directions (the best and the second best directions), or propose one moving

direction (the best direction), or may not propose anything at all if the target is un-

reachable. If any proposal is made by ARtte, the proposal is evaluated in order to

select a final moving direction (line 11). According to the final moving direction, the

utilities of the eight neighbor cells are computed next (line 12). Then, a move is

selected considering the utilities of the neighbor cells (line 13). Finally, the move (if

there exists one) is performed and the agent information is updated for the next step

(lines 14-23).

In order to avoid infinite loops and re-visiting the same locations redundantly,

MAPS uses visit counts and history together (see Definitions 3.2.1 and 3.2.2). The set

of previously visited cells forms the history of the agent. History cells are treated as

obstacles. If the agent discovers a new obstacle and realizes that the target becomes

inaccessible due to history cells, the agent clears the history to be able to backtrack.

The algorithm maintains the number of visits, visit count, to the grid cells, and the

agent moves to one of the neighbor cells with non-zero utility and minimum visit

count. If there exists more than one cell satisfying the condition, the one with the

maximum utility is selected. If they are also the same, then one of them is selected

randomly. In situations where there is no cell having non-zero utility (the way may

be temporarily blocked by another predator), the agent stays still for one step, and

clears the history to be able to search alternative ways in the next step.

If the agent selects a cell to move from the eight neighbors, he performs a one-step

move towards the direction of that cell. If a neighbor cell in horizontal or vertical

direction is selected, we move to that cell horizontally or vertically, and the step will

directly cause the cell of the agent to be changed, but if a neighbor cell in diagonal

direction is selected, we compute the direction from the agent location to the corner

of the diagonal cell, and move to that direction, which may not sometimes cause the

cell of the agent to be changed. Therefore, in addition to the cell coordinate of the

predator, we also keep and maintain its real coordinate in continuous space. In the

following sections, some of the phases mentioned above are described in more details.
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5.2.1 Determining the Blocking Location

In order to waylay the prey in its escape direction, a blocking location for the predator

to move is determined using Algorithm 14. This phase is optional and only executed

unless escape direction blocking is disabled (checked by line 1 in Algorithm 14). If it

is disabled or there is only one predator, the current location of the prey is returned

as the blocking location (line 2). To compute the blocking location of the predator,

the algorithm first needs to determine n possible escape directions (lines 8-9), where

n is the number of predators. The first escape direction is always chosen as the vector

directed from the location of the prey to the location of the nearest predator to the

prey. Other escape directions are distributed balanced based on the first escape direc-

tion, and computed as vectors, which are originated from the prey location, and angle

differences of which from its two neighbor vectors are all equal (see Figure 5.2 for

illustration). Thus, we share 360 degrees to escape directions such that we get equal

angle differences. After selecting the escape directions, the algorithm assigns escape

directions to predators optimally (see Figure 5.3) such that the total distance from

predators to blocking locations waylaying their assigned escape directions is minimized

(line 10). In this assignment procedure, the first escape direction should always be

matched to the nearest predator to the prey and the nearest predator should always

aim to reach the prey location as its blocking location. When the assignment is com-

pleted, the blocking location of the predator is computed based on the escape direction

assigned to him (lines 11-12). And as the final step, the computed blocking location is

validated and corrected if required (lines 13-14). The validation is done by checking if

there is a path from the prey to the blocking location or not. If no path is determined,

then the nearest location to the blocking location is selected. To find this location,

RTA* algorithm is executed starting from the prey location until the blocking location

is reached or the number of moves executed by RTA* exceeds a threshold computed

proportional to the Manhattan distance from the prey to the blocking location.

In order to compute blocking location given the escape direction, we assume that

the speeds of the prey and the predator are known, but we have no constraint on

their speeds. The prey may be slower or faster than the predators. In case the prey is

faster, there is still hope for the predators to catch the prey since the environment is

complicated, and at the end the prey may have to wait somewhere or change direction
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Algorithm 14 Determining the Blocking Location
Require: n : the number of predators

Require: hx, hy : the coordinate of this predator

Require: β : path search limit multiplier (e.g., 2)

1: if (n=1) or (escape direction blocking is disabled) then

2: return the prey location as the blocking location

3: else

4: Select nearest as the nearest predator to the prey

5: if this predator is nearest then

6: return the prey location as the blocking location

7: else

8: Select escape 1st as the direction from the prey to nearest

9: Select escapes as the set of escape directions, which starts with escape 1st and

contains n directions whose angle differences from its two neighbor directions

are equal

10: Assign predators to escapes such that nearest is always assigned to the first

escape direction, and the total distance from predators to their blocking loca-

tions is minimized.

11: Select esc as the escape direction assigned to this predator

12: Call the method in Algorithm 15 to compute the blocking location (tx, ty) of

this predator such that esc is blocked

13: Execute RTA* to search a path from (hx,hy) to (tx,ty) until (tx,ty) is reached

or the number of moves executed exceeds β.(abs(hx− tx) + abs(hy − ty))

14: Return the coordinate nearest to (tx,ty), which is found during the path

search

15: end if

16: end if
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Figure 5.2: Determining the escape directions

Figure 5.3: Assigning escape directions to predators minimizing the total walking cost
to the blocking locations
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Figure 5.4: Determining the blocking location

Figure 5.5: Sinus theorem

for avoiding obstacles and dead-ends. The blocking location is chosen as the coordinate

on the way of the prey’s escape direction, which the predator can reach the prey at if

the prey decides to follow the escape direction in the next step and keeps his decision

until reaching that point. This is illustrated in Figure 5.4.

To compute θ given in Figure 5.4, we base our formula on sinus theorem shown in

Figure 5.5, and according to the sinus theorem we get the following formula:

θ = arcsin(sin(α).Vp/Vh)

The θ formula is feasible only if the input to arcsin is in the range [−1,+1],

therefore we need to examine the input and act accordingly using Algorithm 15.

If α is close to 0 or 180 degrees (line 1 in Algorithm 15), we select the blocking

location as the location of the prey (line 18) since this will make the predator direction

(see Figure 5.4) aim to the prey location and be almost parallel to the escape direction

causing errors in floating point computations. Otherwise, we additionally check if

sin(α).(1 + ε).Vp/Vh is less than or equal to 1 (line 2) since arc sinus of numbers

greater than 1 is undefined. In the formula, ε is a very small number (e.g., 0.05),

which makes the formula over estimate the prey speed in order to let the predator

reach the blocking location a little bit earlier than the prey. If this conditional check

is also satisfied, then we can compute θ using the formula arcsin(sin(α).(1+ ε).Vp/Vh)

(line 3). And last, we have to do a test to see if θ is less than 180 − α − ε (line 4)

since sinus theorem is unreliable and may give incorrect results if α is greater than

90 degrees. Here, ε is a small number (e.g., 0.5) preventing the floating point errors.
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Algorithm 15 Computing the Blocking Location
Require: α : the small angle between the escape direction and the direction from the

prey to the predator

Require: Vh : the velocity of the predator

Require: Vp : the velocity of the prey

Require: ε : a small number (e.g., 0.5)

Require: ε : a very small number (e.g., 0.05)

Require: dmax : the maximum permitted distance between the blocking location and

the prey (e.g., 100)

1: if ε < α < 180− ε then

2: if sin(α).(1 + ε).Vp/Vh ≤ 1 then

3: Let θ be arcsin(sin(α).(1 + ε).Vp/Vh)

4: if θ < 180− α− ε then

5: Let bl be the intersection point of lines passing through the escape direction

and the predator direction computed using θ (see Figure 5.4)

6: if distance from the prey to bl ≤ dmax then

7: Return blocking location as bl

8: else

9: Return blocking location as the point with distance dmax from the prey

in the escape direction

10: end if

11: else

12: Return blocking location as a far point with distance dmax from the prey

in the escape direction since it is not possible to catch the prey

13: end if

14: else

15: Return blocking location as a far point with distance dmax from the prey in

the escape direction since it is not possible to catch the prey

16: end if

17: else

18: Return blocking location as the location of the prey since the direction to the

prey is almost parallel to the escape direction

19: end if
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Satisfying this final test means it is possible for predator to catch the prey, and the

algorithm returns the blocking location as the intersection point of two lines passing

through the escape direction and the predator direction (lines 5-10). But we limit the

distance of the blocking location to the prey with distance dmax in order to reduce

the computational cost of the blocking location validation (see line 13 in Algorithm

14). In all the other conditions, the predator is not able to catch the prey, and the

best way to act is to move parallel to the escape direction. But, since we cannot give

a direction as an output, we need to select the blocking location as a far point with

distance dmax from the prey in the escape direction (lines 12 and 15).

5.2.2 Searching For a Path

For determining the next move to reach the blocking location of the predator, we use

a modified version of RTTE-h (see Algorithm 7) called Advanced Real-Time Target

Evaluation (ARtte) given in Algorithm 16. In ARtte, all the phases are the same as

RTTE-h except evaluating individual obstacle features (line 7 in Algorithm 16) and

merging entire results (line 9).

Algorithm 16 The algorithm ARtte

1: Mark all the moving directions as open.

2: Propagate four diagonal rays.

3: for each ray hitting an obstacle do

4: Extract the border of the obstacle by starting from the hit-point and tracing the

edges towards the left side until making a complete tour around the obstacle.

5: Detect closed directions.

6: Analyze the border to extract geometric features of the obstacle.

7: Evaluate the results and determine the best and the second best (if exists)

directions to avoid the obstacle.

8: end for

9: Merge individual results, compute the best and the second best (if exists) direc-

tions to move, and their estimated path lengths

10: Return the closed directions, and the best and the second best proposals for the

next move

We have modified the method in evaluating individual obstacle features phase (see
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Figure 5.6: The best and second best proposed moving directions

Algorithm 8) to determine both the best and the second best proposals for individual

obstacles (see Figure 5.6 for an illustration). First, we have assumed that all the

previous proposals in Algorithm 8 were pointing to the best direction and its estimated

path length. Next we have modified Case 1.2 as shown in Algorithm 17 in order to

propose two alternatives, the best and the second best directions and their estimated

path lengths.

Algorithm 17 Modified Case 1.2 of Individual Obstacle Evaluation Phase
1: Case 1.2:

2: if dleft < dright then

3: Case 1.2.1:

4: Propose outer left most direction as the best direction and let dleft be its esti-

mated path length

5: Propose outer right most direction as the second best direction and let dright be

its estimated path length

6: else

7: Case 1.2.2:

8: Propose outer right most direction as the best direction and let dright be its

estimated path length

9: Propose outer left most direction as the second best direction and let dleft be

its estimated path length

10: end if

We have also modified the method in merging entire results phase (see Algorithm

11) to determine the best and the second best proposals considering all the obstacles.

The new method given in Algorithm 18 is similar to the previous one. But, instead

of only determining the best moving direction, both the best and the second best (if

exists) moving directions are determined, and the utility computations are removed

since they are performed in Algorithm 20 from now on. The details of the moving
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direction determination for getting around the most constraining obstacle is the same

as the previous algorithm.

Algorithm 18 Modified Merging Phase
1: if all the directions to neighbor cells are closed then

2: propose no moving direction and halt with failure

3: end if

4: Select the obstacle (most constraining obstacle) that is marked as blocking the

target and maximize the distance to the target, if there exists one

5: if most constraining obstacle exists then

6: Determine and propose the best and the second best (if exists) moving directions

that gets around the most constraining obstacle from left and/or right sides

avoiding the remaining obstacles.

7: else

8: Propose flying direction and distance to the target as the best direction and its

estimated path length, respectively.

9: end if

5.2.3 Selecting the Final Moving Direction

Following the selection of proposals, the best and the second best (if exists) moving

directions, the algorithm needs to decide on a final proposed moving direction. If there

is only one predator or there exists only one direction proposed or using alternative

proposals is disabled (checked by line 1 in Algorithm 19), then we just return the

best direction as the final direction. Otherwise we require analyzing the proposals

furthermore keeping in mind the locations of all the other predators and the prey.

To compute the final proposed moving direction, the algorithm first determines

n possible escape directions (lines 8-9), where n is the number of predators. The

method used to select these directions is the same as the one used in determining

the blocking location (see Section 5.2.1). The first escape direction is chosen as the

vector directed from the prey to the nearest predator to the prey, and the others are

determined based on the first one. The final proposed moving direction of the nearest

predator to the prey is always selected as the best direction (lines 4-6) since we would

like to have someone following the prey from a short path, but the others may decide
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Algorithm 19 Selecting the Final Moving Direction
Require: n : the number of predators

Require: pr : the set containing the best and the second best (if exists) proposals for the next move

1: if (n=1) or (using alternative proposals is disabled) or (there is no second best proposal in pr)

then

2: return the best direction proposed in pr

3: else

4: Select nearest as the nearest predator to the prey

5: if this predator is nearest then

6: return the best direction proposed in pr

7: else

8: Select escape 1st as the direction from the prey to nearest

9: Select escapes as the set of escape directions, which starts with escape 1st and contains n

directions whose angle differences from its two neighbor directions are equal

10: Assign predators to escapes such that nearest is always assigned to the first escape direc-

tion, and the total angle difference from predators (prey-predator vectors) to their escape

directions is minimized.

11: Select edir as the escape direction assigned to this predator

12: Let dif as the smallest angle between edir and prey-predator vector.

13: Compute attraction factor afactor as 0.5 + dif/360

14: if the clockwise angle from prey-predator vector to edir is smaller than the counter clockwise

one then

15: Compute attraction direction adirection as 90 degree left of predator-prey vector

16: else

17: Compute attraction direction adirection as 90 degree right of predator-prey vector

18: end if

19: Let angle1 be the small angle between adirection and the best direction proposed in pr

20: Let angle2 be the small angle between adirection and the second best direction proposed

in pr

21: Let distance1 be the estimated path length of the best direction in pr

22: Let distance2 be the estimated path length of the second best direction in pr

23: Compute angle factor as (angle1/180 + 1)/(angle2/180 + 1)

24: Compute utility factor as afactor.angle factor

25: Compute utility of alternative as utility factor.(distance1/distance2)

26: if utility of alternative ≥ 1 then

27: return the second best direction proposed in pr

28: else

29: return the best direction proposed in pr

30: end if

31: end if

32: end if
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Figure 5.7: Assigning escape directions to predators minimizing the total angle differ-
ence

Figure 5.8: Computing attraction direction

going from longer routes for the sake of better coordination. After selecting the escape

directions, the algorithm assigns escape directions to predators optimally (see Figure

5.7 for illustration) such that the total angle difference between the directions from

the prey to the predators and their assigned escape directions is minimized and the

first escape direction is assigned to the nearest predator to the prey (line 10). Then

we compute the attraction factor and the attraction direction as given in lines through

11 to 18. Attraction factor is a number between 0.5 and 1.0, and proportional to the

angle difference between the direction from the prey to the predator and the escape

direction. Attraction direction is the direction the predator should move in order to

get closer to the escape direction (see Figure 5.8 for illustration). Finally we compute

the utility of the second best alternative (lines 19-25), and if the utility is greater

than or equal to 1, we select the second best direction, otherwise we select the best

direction as the final proposed moving direction (lines 26-30). The utility formula is

determined such that it selects the second best alternative routes that are at most two

times longer than the best one.
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Figure 5.9: Neighbor cells of the predator

5.2.4 Computing the Utilities of Neighbor Cells

After determining the final proposed moving direction, we compute the utilities of eight

neighbor cells (see Algorithm 20) considering the proposed direction. The utility is a

rating value indicating the availability of the neighbor cell (unavailable cells have zero

utility), and the angle difference between the proposed direction and the direction of

the neighbor cell (smaller difference is better).

First of all, we set the utilities of all the neighbor cells, which are obstacle or

temporarily blocked by another predator, to zero. Otherwise we branch according to

whether the neighbor cell is a diagonal (north-east, north-west, south-east or south-

west) one, or not. If the cell is a diagonal one, then we determine the two common

neighbors (see Definition 5.1.1) of the diagonal cell and the cell the predator is on

(see Figure 5.9 for illustration). If common neighbors are both not obstacles, and at

least one of the directions to these cells are not closed by the ARtte algorithm, then

we set the utility of the diagonal cell to (181 − dif)/181, where dif is the smallest

angle between the final proposed moving direction and the direction of the diagonal

neighbor cell. Otherwise, we set the utility of the diagonal cell to zero. If the neighbor

cell is a horizontal or vertical one, then we set the utility to (181 − dif)/181 if the

direction to that cell is not closed, else we set the utility to zero.

A complete sample illustrating the entire process of MAPS is given in Figure 5.10.

In the sample, we assume that all the computations are performed from the view point

of the first predator. The escape directions are computed first and next the blocking

locations are determined (BES). Since the blocking location of the first predator falls

in to an obstacle, it is corrected before used by the path search algorithm. Later on,

the best and the second best moving directions are determined (ARtte). Finally, these

proposals are examined by the algorithm (UAL) in order to decide on a final moving

direction.
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Algorithm 20 Computing the Utilities of Neighbor Cells
Require: st : the set containing the closed directions, which may be north, south,

east or west

Require: dir : the final proposed direction

1: for each neighbor cell do

2: if the neighbor cell is not an obstacle and not blocked by another predator

then

3: if this is a diagonal neighbor cell then

4: Determine the set com, which contains two common neighbors of the current

neighbor cell and the cell this predator is on

5: if (the cells in com are not obstacles) and (at least one of the directions

of cells in com is not marked as closed in st) then

6: set utility of the neighbor cell to (181−dif)/181, where dif is the smallest

angle between dir and the direction of the neighbor cell

7: else

8: set utility of neighbor cell to zero

9: end if

10: else

11: if the direction of the neighbor cell is not marked as closed in st then

12: set utility of the neighbor cell to (181−dif)/181, where dif is the smallest

angle between dir and the direction of the neighbor cell

13: else

14: set utility of the neighbor cell to zero

15: end if

16: end if

17: else

18: set utility of the neighbor cell to zero

19: end if

20: end for

21: return utilities of the neighbor cells
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Figure 5.10: A complete sample illustrating the entire process of MAPS

5.3 Complexity Analysis

In each move of a predator, MAPS performs three time consuming phases, which

are path search with ARtte, validation of the blocking location with RTA*, and the

optimal assignments of escape directions to predators. The complexity of the path

search is the same as MTES, which is O(w.h) per step, where w is the width and h

is the height of the grid. Since increasing the grid size decreases the efficiency, we

usually use a search depth (d) in order to limit the worst case complexity with O(d2).

The validation of the blocking location takes time proportional to dmax, where dmax

is the maximum permitted distance between the blocking location and the prey. Thus

the complexity of this phase is O(dmax). And finally, the complexity of the optimal

assignment is O((n − 1)!), where n is the number of predators. Therefore the total

complexity becomes O(d2 + dmax + (n − 1)!), but n and dmax will most probably be

taken not very high in practice, so we may assume the complexity be O(d2) since path

search will be the most time consuming part. Additionally, if one needs to have many

predators, then the optimal assignment requirement can be relaxed by using a greedy

algorithm.

5.4 Experimental Results

In this section, we present the experimental results of our coordinated pursuit algo-

rithm against static and moving preys guided by Prey-A* (see Algorithm 12). For
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coordination, we used four strategies: without coordination (None), with blocking es-

cape directions (BES), with using alternative proposals (UAL) and with both BES

and UAL (BES+UAL). In Prey-A*, we used 161x161 sized search window. In each

iteration, the predators and the prey are executed alternately in order to prevent the

side effects caused by the difference in efficiency of the algorithms.

For the test runs, we used 9 randomly generated sample grids of size 150x150. Six

of them were the maze grids (see Figure 5.11), and three of them were the U-type

grids (see Figure 5.12). The maze grids were produced with the constraint that every

two non-obstacle cells are always connected through a path. For each obstacle ratio

(25%, 30% and 35%), two test mazes were randomly generated. The obstacle ratio is

chosen not to be more than 35% in order to make enough room for prey to escape.

The U-type grids were created by randomly putting U-shaped obstacles of random

sizes (5 to 30 cells) on an empty grid limiting the number of U-type obstacles with 70,

90 or 120. For each grid, three different strategies (one corner, one side and all sides)

were used to select the initial predator locations, and for each strategy, 15 different

predator-prey location sets were generated and kept the same for all different test

configurations. To get random locations, the grid world was divided into 5 columns

and 5 rows, which formed 25 regions. With the one corner strategy, the predators

were randomly located together in one of the four corner regions of the grid world, and

with the one side strategy, the predators were randomly located together in one of the

four side regions. Finally, using the all sides strategy, the predators were randomly

located in any of the side regions of the grid world. The prey was always randomly

located in the center region.

In the experiments, we assumed that the prey knows the entire grid world and the

location of the predators all the time, and the predators always know the location of

the prey, but perceive the grid world up to predefined vision range. Our tests were

performed with 10, 20 and infinite vision ranges and 40 search depth. Additionally,

we assumed that the prey is slightly slower than the predators, and skips 1 move after

each 24 moves.

5.4.1 Analysis of Static Targets

In this section, we examine the effect of coordination against static targets, and present

the results of experiments conducted with different configurations. In Figure 5.15, the
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Figure 5.11: Maze grids with %25 (left), %30 (middle) and 35% (right) obstacles

Figure 5.12: U-type grids with 70 (left), 90 (middle) and 120 (right) u-type obstacles

results for various team sizes, vision ranges and initial locations of the predators are

seen, and in Figure 5.14, the results in terms of maze and U-type grids are given. In

the charts, the horizontal axis is the team size, the vision range or the initial locations

of the predators, and the vertical axis is the number of moves to reach the target.

According to the experimental results, the coordination does not seem to offer

any performance increase against a static target, even it sometimes makes the results

slightly worse since the path lengths of the predators get longer for the sake of coordi-

nation, as easily seen in Figure 5.15. The predators using coordination strategies try

to surround the prey in all directions assuming that the prey may start escaping in

any time. But, since the prey will not escape till the end and the nearest predator to

the prey directly aims to the current location of the prey without taking into consid-

eration the locations of the other predators, the number of moves to reach the prey is

usually determined by that nearest predator to the prey, whether the coordination is

enabled or not.

The results also showed that the number of predators involved in the search or the

vision range used do not effect the results very significantly. The average number of
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Figure 5.13: Average number of moves to reach a static prey for different number of
predators (top), vision ranges (middle) and initial locations of predators (bottom)
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Figure 5.14: Average number of moves to reach a static prey in maze (top) and U-type
(bottom) grids
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Figure 5.15: 2, 3, 4 and 5 predators (in rows) starting from left side against a static
prey: No coordination (first column), coordination with BES (second column), UAL
(third column) and BES+UAL (fourth column)
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moves to reach the target is 114 with 2 predators, and 97 with 5 predators. Similarly,

the average number of moves to reach the target is 110 with 10 vision range, and 99

with infinite vision range. This is not very surprising since with our strategy in locating

agents, the average euclidian distance between randomly located predators and preys

will be about 72 in a grid world with 150x150 size, and by increasing the number

of predators, we just increase the probability to have a shorter distance between the

prey and the nearest predator to the prey, but not more than that. And since our

grid worlds are no very complicated (obstacle percentage is less than or equal to 35),

increasing the vision range does not gain much.

And finally, when we examine the effect of the strategy in selecting the initial

locations of the predators, we observe that locating the predators in one of the corners

of the grid world increase the number of moves to reach the prey since the corners are

farthest from the target.

5.4.2 Analysis of Moving Targets

In this section, we examine multi-agent coordination against moving preys guided by

Prey-A*. In Figures 5.16, we present the experimental results with respect to team

size, vision range and initial locations of the predators, and in Figure 5.17, we present

the results in terms of grid types. In the charts, the horizontal axis is the team size,

the vision range or the initial locations of the predators, and the vertical axis is the

number of moves to reach the target.

When we examine the results, we see that increasing the number of predators in-

volved in the coordinated search significantly reduces the number of moves to catch

the prey, and the solutions with coordination are clearly better than the ones without

coordination. The coordination strategies, BES and BES+UAL, are very competi-

tive to each other, and usually perform much better than UAL. With more than 2

predators, BES is slightly ahead of BES+UAL, but with 2 predators, BES usually

becomes worse than BES+UAL. Examining the reasons, we observe that when two

predators exist, the two escape directions are selected in exactly the opposite direc-

tions (180 degrees between them), therefore the first blocking location is selected as

the location of the prey, and the second one is selected usually as a far point in front

of the preys moving direction. When the predators using BES are following the prey

behind, blocking the second escape direction (laying in front of the prey) is a hard
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Figure 5.16: Average number of moves to reach a moving prey for different number
of predators (top), vision ranges (middle) and initial locations of predators (bottom)
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Figure 5.17: Average number of moves to reach a moving prey in maze (top) and
U-type (bottom) grids
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Figure 5.18: 2 predators against a moving prey: No coordination (top-left), coordina-
tion with BES (top-right), UAL (bottom-left) and BES+UAL (bottom-right)

task for the second predator, thus it decides to follow the prey in a direction parallel

to the escape direction, which is also almost parallel to the moving direction of the

prey. This behavior sometimes makes the second predator follow the similar path as

the first one, which can be better avoided if integrated with UAL. In Figures 5.18

to 5.21, we exemplify routes of four different strategies in a maze grid with 30% ob-

stacles followed by 2, 3, 4 and 5 predators, respectively. In the example, the initial

locations of the predators were selected from the bottom-right corner. The general

aim of the prey is moving to the top-left corner first, waiting there until the preda-

tors get nearer, and performing a quick manoeuvre last in order to escape from the

predators and move to the bottom-right corner. From the figures, we see that without

coordination, the predators usually move together on a line, and in coordination, the

predators spread to the environment in order to surround the prey better. We also

observe that BES+UAL strategy spread the predators the most.

With respect to vision range, we see similar results that are observed in static

targets. Increasing the range does not effect the performance much since the grids

have low obstacle ratio, therefore they are not very challenging. But in contrast with
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Figure 5.19: 3 predators against a moving prey: No coordination (top-left), coordina-
tion with BES (top-right), UAL (bottom-left) and BES+UAL (bottom-right)

Figure 5.20: 4 predators against a moving prey: No coordination (top-left), coordina-
tion with BES (top-right), UAL (bottom-left) and BES+UAL (bottom-right)
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Figure 5.21: 5 predators against a moving prey: No coordination (top-left), coordina-
tion with BES (top-right), UAL (bottom-left) and BES+UAL (bottom-right)

the static targets, the initial locations of the predators are also insignificant, and

slightly changes the results.

We also examined the average and the standard deviations of the number of moves

to catch the prey for various grid types and coordination strategies. The results given

in Table 5.1 show that the standard deviations of the strategy with no coordination are

the highest and tend to decrease slightly with the increase in the number of predators

involved in the search. The strategies, BES and BES+UAL, are again the best and

have standard deviations close to each other. With 2 predators, BES+UAL has the

lowest standard deviation, and with more than 2 predators, BES becomes the best.

UAL follows BES and BES+UAL in the third place, and has significantly higher

standard deviations, but better than having no coordination for sure.

With respect to grid types, we observe that the maze grids with 35% obstacles are

the most difficult ones for the predators, and the U-types grids are the easiest. One

interesting result was that mazes with 25% obstacles were more difficult for predators

than mazes with 30% obstacles although this was not the case for static targets. This

shows that the obstacle ratio is not strictly the determining factor for the difficulty
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of the maze when pursuing a moving prey. Although there is more obstacles, a prey

may not sometimes be able to escape easily if there are many dead-ends.

5.4.3 Analysis of Step Execution Times

We examined the step execution times of MAPS with different coordination strategies

and predator team sizes running on a laptop computer with 1.66 GHz Solo processor.

In Table 5.2, the average number of moves executed per second per predator in maze

and U-type grids are shown. The rows are for the compared coordination strategies

and the columns are for the predator team sizes from 2 to 5.

The results showed that increasing the number of predators does not reduce the

efficiency much, and the most efficient algorithms are MAPS with no coordination

and MAPS with UAL, which perform almost the same speed. MAPS with BES and

MAPS with BES+UAL perform slightly slower since computation and validation of

blocking locations take time. We also see that the step execution times are the lowest

in maze grids with 25% obstacles, and the highest in maze grids with 35% obstacles

since the worse case complexity of MAPS depends on both the search depth, which

is 40 in our experiments, and the sizes of the obstacles in the environment, which are

the largest in maze grids with 35% obstacles.
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Table 5.1: The average number of moves and their standard deviations to reach a
moving prey using different coordination strategies with 2, 3, 4 and 5 predators

All grids
Number of None BES UAL BES+UAL
Predators Avg. Stdev. Avg. Stdev. Avg. Stdev. Avg. Stdev.

2 1262 1460 979 867 1081 866 878 626
3 1200 1111 503 340 883 807 546 369
4 1162 1253 409 265 721 695 435 267
5 1006 1136 326 169 675 711 343 172

maze grids with 25% obstacles
Number of None BES UAL BES+UAL
Predators Avg. Stdev. Avg. Stdev. Avg. Stdev. Avg. Stdev.

2 1151 947 921 886 1095 821 913 646
3 1020 805 544 461 819 773 585 455
4 1128 1219 426 321 761 931 511 354
5 909 874 320 191 778 920 375 237

maze grids with 30% obstacles
Number of None BES UAL BES+UAL
Predators Avg. Stdev. Avg. Stdev. Avg. Stdev. Avg. Stdev.

2 871 635 811 622 966 738 914 669
3 812 712 522 400 797 687 606 484
4 727 596 430 330 655 619 466 309
5 733 674 326 179 608 663 340 159

maze grids with 35% obstacles
Number of None BES UAL BES+UAL
Predators Avg. Stdev. Avg. Stdev. Avg. Stdev. Avg. Stdev.

2 2398 4322 1538 1716 1619 1706 1124 977
3 2504 2874 556 363 1396 1596 585 386
4 2421 3244 443 266 1060 1129 446 254
5 1994 3035 371 167 909 1153 386 188

U-type grids
Number of None BES UAL BES+UAL
Predators Avg. Stdev. Avg. Stdev. Avg. Stdev. Avg. Stdev.

2 839 442 757 450 791 419 667 350
3 709 405 427 202 640 382 452 222
4 636 385 360 184 512 297 355 187
5 596 350 298 146 494 309 296 125
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Table 5.2: The average number of moves per second per predator for different coordi-
nation strategies and predator team sizes

maze grids with 25% obstacles
Algorithm 2 Predators 3 Predators 4 Predators 5 Predators

None 765 772 775 774
BES 558 537 531 523
UAL 763 738 735 685

BES+UAL 557 519 519 517

maze grids with 30% obstacles
Algorithm 2 Predators 3 Predators 4 Predators 5 Predators

None 491 495 450 441
BES 380 347 329 328
UAL 453 444 435 413

BES+UAL 355 326 322 317

maze grids with 35% obstacles
Algorithm 2 Predators 3 Predators 4 Predators 5 Predators

None 216 210 206 207
BES 191 180 169 169
UAL 211 210 199 198

BES+UAL 187 177 166 166

U-type grids
Algorithm 2 Predators 3 Predators 4 Predators 5 Predators

None 547 534 507 492
BES 408 388 376 375
UAL 550 522 504 447

BES+UAL 418 389 377 376
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, we have focused on real-time search in partially observable grid worlds,

and realized three algorithms namely Real-Time Edge Follow (RTEF), Real-Time

Moving Target Evaluation Search (MTES) and Multi-Agent Real-Time Pursuit (MAPS).

First, we have described RTEF in details, stated its complexity analysis and proof

of correctness clearly, and presented the results of the experiments. The experiments

showed that RTEF is able to make use of environmental information acquired during

the search successfully, and brings significant performance improvement over RTA*

with respect to path length in all types of grids. Especially, the improvement is the

highest in grids with wide corridors (e.g., U-type grids and maze grids with corridor

size greater than 1) since these grids are difficult for RTA* because of their high

branching factor and large heuristic depression area to be filled up. The tests also

showed that the path length improvement of RTA* with reasonable look-ahead depths

is still insignificant compared to RTEF. With respect to execution time, we observed

that the total time to reach the goal for RTEF is usually better than RTA* in maze

and U-type grids although the time per move of RTEF is very high compared to RTA*.

This improvement is due to much shorter paths found by RTEF. But in random grids,

the total execution time of RTEF is worse than RTA* because random grids are not

very challenging for both RTEF and RTA*. We also observed that small look-ahead

depths (e.g., 2-5) do not improve the execution time of RTA* significantly, and large

look-ahead depths make the execution times unreasonably high. Finally, we have

introduced a search depth to RTEF guaranteeing a constant complexity. The test

results clearly demonstrated that search depth significantly decreases the execution

time per step, but this advantage is balanced with longer paths, and therefore the

total execution time generally becomes more or less the same on the average.
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Later on, we have examined the problem of pursuing a moving target in grid worlds,

and introduced our single agent real-time search (predator) algorithm, MTES, and our

off-line moving target (prey) algorithm, Prey-A*. We have presented the comparison

results of RTEF, MTES, MTS-c, MTS-d and A* against a moving target controlled

by Prey-A*. Since Prey-A* is an off-line algorithm, it was very successful in escaping

from the predators. As a matter of fact, it is not easy to use Prey-A* in practice

because the execution time per move is very high as being an off-line algorithm.

With respect to path lengths, the experimental results showed that MTES performs

significantly ahead of RTEF, MTS-c and MTS-d, and competes with A*, especially

in U-type grids. In the test runs, we have also observed that the two MTS versions

are significantly different from each other. Although, MTS-d performs acceptably

good and competes with RTEF, MTS-c almost never offers good solutions. In terms

of step execution times, we observed that MTS-c and MTS-d are the most efficient

algorithms, and almost spend constant time in each move. But their solution path

lengths are usually very long. RTEF and MTES follow MTS respectively, and their

efficiency is inversely proportional to the increase in the obstacle density. Finally, A*

is always the worst except in highly dense grids. In such grids, the efficiency of MTES

and RTEF sometimes drops below A* unless a limited search depth is used, which

seems to be worth since, with reasonable search depths, we significantly gain efficiency

almost without loosing solution quality.

Finally, we have presented our multi-agent real-time pursuit algorithm, MAPS,

which employs two coordination strategies called blocking escape directions (BES) and

using alternative proposals (UAL). We compared four coordination configurations: no

coordination, coordination with BES, coordination with UAL and coordination with

BES+UAL, and observed that coordination offers no improvement against a static

target, but significantly reduces the number of moves to reach a moving target. We

also observed that coordination with BES and BES+UAL performs the best.

As a future work, we think there is still much to do on multi-agent pursuit domain

from the view point of both predators and preys, especially in environments with

obstacles. In this thesis, we have proposed a pursuit algorithm, which estimates the

escape directions of the prey analytically without considering the environment, but it

would be very valuable if the topography of the environment is taken into account for

determining where the prey may move to. We have also assumed that the location of
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the prey is always known by the predators. This assumption can be relaxed, and the

coordination algorithms can be extended to be able to estimate the location of the prey

and search the environment in situations where the prey is not seen. Additionally,

we have developed a deliberative prey algorithm in order to place a powerful rival

against the predators. Although this algorithm is strong enough most of the time, it

is slow, and we think the algorithm can be improved furthermore in terms of both

escape capability and execution time efficiency.
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