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ABSTRACT 
 
Path searching and mission planning are challenging 
problems in many domains such as war games, robotics, 
military mission planning, computer-generated forces, etc. 
The objective of this study is to develop a real-time path-
planning algorithm to accomplish specified missions on 
large landscapes. For that purpose, a real-time goal-
directed path search algorithm, Real-Time Edge Follow 
(RTEF), which can work on fully known, partial known or 
completely unknown maze environments, is developed. 
RTEF aims to find a path from a staring point to a static or 
dynamic target point in real-time. The basic idea behind the 
RTEF is to let the agent eliminate closed directions (the 
directions that cannot reach the target point) by analyzing 
obstacle edges in order to decide on which way to go (open 
directions). For instance, if the agent has a chance to 
realize that moving to north and east won’t let him reach 
the goal state (although the target is at north-east), then he 
will prefer going to south or west. RTEF finds out these 
open and closed directions, so decreasing the number of 
choices the agent has and significantly shortening the path. 
The method is tested on large mazes and compared with 
Real-Time A*. We observed that RTEF always performs 
much better than RTA* when solution quality is considered 
and usually better when total time spent to reach the goal 
state is considered (especially on complicated mazes). 
RTEF frequently gives high solution quality, which is in 
most cases near to optimal solution, and never needs to 
return to a previously visited cell while on the way. 
 
INTRODUCTION 
 
Multi agent systems can be used to model computer-
generated environments where intelligent agents react 
suitably to various events. Many of the applications in this 
context need realistic environment generation, efficient 
search algorithms and heuristics suitable for real-time 
simulations. Multi agent systems are integrated into these 
simulations for supporting automatic and semi-automatic 

human and group behaviors to complete a given mission. 
Planning a mission usually means to plan a sequence of 
actions that lead to the goal-state.  
 
The problem of path planning can be described as finding a 
sequence of state transitions from some initial state 
(starting point) to a goal state (target point), or finding out 
that no such sequence exists. Path-planning algorithms can 
be off-line or on-line. Off-line path planning algorithms 
like A* [Russell and Norving 1994] find the whole solution 
before starting execution. They plan paths in advance and 
usually find optimal solutions. Their efficiency is not 
considered to be crucial and the agent just follows the 
generated path. Although this is a good solution for a static 
environment, it is completely infeasible for dynamic 
environments, because if the environment or the cost 
function changes, the remaining path may need to be re-
planned, which is not efficient for real-time applications. 
Real-time path planning algorithms such as Real-Time A* 
(RTA*), Learning Real-Time A* (LRTA*) [Knight 1993; 
Korf 1090], Moving Target Search [Ishida and Korf 1995], 
Bi-directional Real-Time Search [Ishida 1996], Real-Time 
Horizontal A* [Undeger 2001], D* [Stentz 1994], Focused 
D* [Stentz 1995] are on-line and offer more efficient 
solutions. Some of them produce optimal solutions for 
dynamic changes such as D* and Focused D*, and some 
only bring efficiency but not optimality such as Real-Time 
A*. 
 
In this paper, we have proposed a real-time path search 
algorithm, “Real-Time Edge Follow” (RTEF), which 
provides both efficiency and solution quality on maze 
environments. The algorithm is capable of searching a path 
in real-time to reach a static or dynamic target on a fully 
known, a partial known or a completely unknown mazes. It 
can also be used in real-life applications uncluding 
robotics. RTEF is tested on randomly generated mazes and 
large terrain data, and compared with RTA*. The results 
showed that RTEF performed better in both solution 
quality and execution time. 
 
In Section 2, a survey of related work on path planning is 
given. Our real-time path search algorithm, Real-Time 
Edge Follow is described in detail in Section 3. The 
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performance analysis of RTEF is given in Section 4. 
Finally, the conclusion is given in Section 5. 
 
RELATED WORK 
 
Multi-agent systems are used in many domains such as 
robotics, computer generated forces, games, training, 
RoboCup soccer and their simulators. In robotics [LaValle 
and Kuffner 1999] and RoboCup soccer [Jensen and 
Veloso 1998], intelligent planning aims to find out ways 
for interacting with the physical world, which makes the 
problem hard to solve. In contrast, intelligent planning for 
computer generated forces and games [Pew and Mavor 
1998; Undeger et al. 2000; Undeger 2001; Baxter and 
Horn 1999; Gelenbe 1998; DeLoura 2000] aim to generate 
behaviors similar to the real world in virtual environments. 
Simulating real world actions in a virtual environment is 
basically used to test some conditions that are not possible 
or hard to generate in the real world. For example, 
intelligent agents that behave much like real world entities 
are frequently used for pilot trainings in flight simulators 
[Jones et al. 1993, 1994]. In such simulators, realistic 
modeling of agent behaviors is very important for the 
realism of training. 
 
In multi agent simulations, evaluating the environment 
information, learning and reacting in time is essential. Erol 
Gelenbe proposed modeling computer-generated forces 
with learning stochastic finite-state machines whose state 
transitions are controlled by state and signal dependent 
random neural networks [Gelenbe 1998]. In Knuffner’s 
approach [Kuffner and Latombe 1999], rendering off-
screen from the character’s point of view and real-time 
path planning is used. His path-planning module aims to 
find a collision free path between a starting and ending 
point over the 3D terrain using the information gathered 
from vision based perceptions. In the study of Knuffner, 
the terrain is divided into embedded graph cells, which 
have vertical, horizontal and diagonal costs of walking 
through. Then, the suitable path is found using Dijkstra’s 
algorithm, which is actually an optimal off-line path-
planning algorithm integrated into a real-time application. 
Using an off-line path-planning algorithm in a real-time 
application is not suitable for large terrains. By the help of 
some guidance such as admissible heuristics can increase 
efficiency of off-line path planning algorithms. A* [Russell 
and Norving 1994] is one of best-known efficient path 
planning algorithms, which is guided by a heuristic 
function. A* always finds the optimal solution and uses 
linear distances between points for the heuristic function. 
Optimal path planning algorithms cannot be used for large 
and dynamic landscapes because of its complexity. To 
avoid this drawback, some partial path update algorithms 
are also proposed such as D* [Stentz 1994] and focused D* 
[Stentz 1995]. These algorithms plan an off-line path, let 
the agent follow the path, and if any new environment 
information is gathered, they partially re-plan the existing 
solution. But some times, a small change in the 
environment may cause to re-plan almost a complete path, 
which may take a long process time. 

 
A number of algorithms exist for supporting real-time 
simulations such as Real-time A* (RTA*) and Learning 
Real-Time A* (LRTA*) [Knight 1993; Korf 1990]. RTA* 
uses a greedy search strategy and a heuristic together to 
guide the search. It guarantees to find a solution if one 
exists, but the solution may not be optimal. In this paper, 
we have proposed a new Real-Time path search algorithm 
for maze environments. 
 
There are also some path-planning algorithms that use 
random search techniques such as genetic algorithms, 
random tree generators. In [Sugihara and Smith 1997], an 
adaptive path-planning algorithm based on genetic 
approach is proposed. In this study, they assumed that a 
valid path that is not optimal is initially found and they 
refine this given path by genetic algorithm. Considering 
this concept, our previously developed off-line path-
planning algorithm, Linear Search Path Finder [Undeger 
2001] seems to be applicable to this case successfully. In 
the study of LaValla and Knuffner [LaValle and Kuffner 
1999], a randomized planning technique based on a version 
of random tree generation called rapidly exploring random 
tree is presented. They generated two random trees starting 
from the goal and the target points, and try to catch an 
intersection among the points of distinct trees to find a 
path. 
 
REAL-TIME EDGE FOLLOW 
 
RTEF is developed for maze-type problems and aims to 
find a path from a staring point to a target point in real-
time. The basic idea behind the RTEF is to let the agent 
eliminate closed directions (the directions that cannot reach 
the target point) in order to decide on which way to go, 
(open directions). For instance, if the agent has a chance to 
realize that moving to north and east won’t let him reach 
the goal state, than he will prefer going to south or west. 
RTEF finds out these open and closed directions, so 
decreasing the number of choices the agent has. 
 
The environment is assumed to be a grid world with 
obstacles, where the cells having obstacles are marked with 
a non-zero value and the rest is filed with zero. Initially, the 
agent is at a starting point and the goal is to reach a static 
or dynamic target. At each move, RTEF algorithm is 
executed to eliminate closed directions from the current 
cell in order to select the next move from a set of open 
directions. The cost of moving to the next cell + the 
distance to the target is used for the heuristic function to 
select one of the open alternatives. After doing the move, 
the previous cell is marked as an obstacle; so loops are 
prevented. The set of previously marked cells are called the 
history of the agent. In exploration mode with an unknown 
maze, the history has to be cleared when a newly 
discovered obstacle blocks the way that was open before. 
 
The algorithm is constructed on the idea that every obstacle 
has a boundary, which is actually formed from a set of 
connected edges shaping the object. The obstacles are 
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defined as a set of merged cells in a grid world. RTEF 
splits the moving directions from each other by a set of 
rays sent away from the agent, and analyze each region to 
discover whether it is closed or open. 
 
Moving Directions and Sent-Rays 
 
RTEF accepts the possible moving directions as north, 
south, east and west. Although there are many interval 
values of these directions, a set of basic directions is 
chosen to partition the area for the sake of efficiency. The 
idea is not to find an exact direction, but to choose a 
general direction having a left and right angle limit. The 
algorithm splits the visual environment into four regions by 
sending 4 rays away from the agent. The rays are sent 

along 4 diagonal directions (the angle between two 
adjacent rays is 90 degree). The rays go away from the 
agent until hitting an obstacle and hence split the area into 
4 different regions. Some of these regions are on the way to 
the target point and some are not. This is illustrated in 
Figure 1. 
 
Each ray hits the boundary of one of the obstacles.  The 
cells on the way of a ray are followed until a blocked cell is 
detected. The boundary of the grid world is also marked as 
blocked in order to prevent infinitely going rays. The first 
ray is assumed to be on the northwest diagonal. This is 
illustrated in Figure 2. A ray is assumed to hit an obstacle, 
when any cell on the way is marked as blocked. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Sending rays until hitting an obstacle to split the basic directions
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Rays, Directions and hitting: Rays and directions are numbered from 0 to 3 in clockwise direction on the left. The 
figure on the right shows the cells on the way of 4 rays. 

 
Following Edges 
 
Four rays split the area around the agent into 4 regions. 
Some of these limited regions are closed and target point is 
inaccessible from any point located inside these regions. If 
all are closed, that means the target is inaccessible from the 
current state or location. To detect which ones are closed, 
the boundaries of obstacles that the rays hit must be 
analyzed. The edges on the boundaries are followed and if 

edges are followed clockwise or counter-clockwise 
directions starting from a hit-point, we always return to the 
same point. By following edges and returning to the same 
starting point on the boundary, a polygonal area is formed 
(the boundary of the obstacle is detected). We call this 
polygonal area an “island”. There are two kinds of islands: 
outwards facing and inwards facing, which are shown in 
Figure 3. If the target is inside an outwards facing island or 

North d. 

South d. 

East d. West d. 

The agent 

An obstacle 

A hit-point 

Target 

The best 
direction that 

could be chosen 
from 3 open 
alternatives 
(west, east, 

south) 
Moving directions 

Rays 

Legend 

90 degree 

North d. 

South d. 

East d. West d. 



 

© SCS 

outside an inwards facing island, that means the target is 
inaccessible from the current location. 
 
 
 
 
 
 
 

Figure 3: Island types: outwards facing (top), inwards 
facing (bottom) 

 
If we reach the hit-point of another ray while following 
edges (only the first one reached is considered), we have an  
additional polygonal area (the two rays are also included) 
called “hit-point-island”. This polygonal area is illustrated 
in Figure 4. 

 
 
 
 
 
 
 
 

Figure 4: Two rays hitting the same obstacle at two different 
points 

 
A hit-point-island borders one or more moving directions. If 
the target point is not inside the hit-point-island, it means 
that all the directions that are bordered by the hit-point-
island are closed. Otherwise all the directions that are not 
bordered by the hit-point-island are closed. This is 
illustrated in Figure 5. 

 
Figure 5: Analyzing hit-point islands and eliminating 

moving directions 
 

The edge following algorithm works on grid worlds and it is 
the most time consuming part of RTEF. There are two edge 
follow directions. One follows the edges from the left side 
of the hit-point and one follows from the right side. If we 
follow edges from the left, we have to choose the next edge, 
which is connected to the left side of the current edge and 
similar process is done for the right side. This is depicted in 
Figure 6. 

 
 
 
 
 

 
Figure 6: Edge detection: The figure illustrate next possible 

states when starting from south side of a cell. The 
possibilities are tested from smaller angles to larger angles. 
 
After finding the island and the hit-point-island, the target 
must be checked if it is located inside these polygonal areas 
or not. Implementing an inside test is not so complicated. 
For testing whether the coordinate (tx,ty) is inside a polygon 
P or not, we just need to count the number of edges in P 
that are on the left side of ty and intersecting the horizontal 
line passing on ty. If the edge count is an odd number, the 
point is inside the polygon else it is not. 
 
Detecting Closed/Open Regions 
 
To detect closed and open regions, “edge following 
process” and “inside polygon tests” are used together. To 
follow edges from only one direction is enough for the 
detection, but one direction has to be chosen and used for 
all the rays. The C-like pseudo code for left side edge 
following is shown in Figure 7. When open and closed 
directions are detected, one of the open directions is chosen 
and one-step move is performed. The simplest heuristic is 
the cost of moving to the next cell + the distance of next cell 
to the target. The direction, which minimizes the cost, is 
selected for the next move.  
 
Although the algorithm finds only the open directions, there 
is a high possibility of getting into loops, especially when 
there is more than one open direction at a time. For 
example, assume that the agent is at the same y coordinate 
as the target is, and there is one choice “moving north”. So, 
the agent moves north. Consider the next state has two open 
regions: north and south. South is the previous cell. If the 
agent selects the south, it is obvious that it will go into a 
loop. The agent selects the south, because being at the same 
y coordinate as the target is, has less cost than being at two 
cells up from the y coordinate of the target (the distance to 
the target is shorter). This is only one of many possibilities. 
The simplest solution to avoid the loops is to mark the 
previous point as an obstacle. So the agent never has a 
chance to visit the same point again. 
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For each ray-sent 
Find hit-point of the ray; 
Follow the edges from left side of the hit-point; 
Find out the island and hit-point-island; 
if (an hit-point-island is found) 
{ 

if (targetx,targety) is inside the hit-point-
island) 
{ 

if ((targetx,targety) is inside the island) 
{ 

if ((agentx,agenty) is not inside the 
island) 

                  close all the directions; // the 
target is 
inaccessible
;  

} 
else 
close the directions that are not bounded by 
hit-point-island. 

} 
else close the directions that are bounded by 
hit-point-island. 

  } 
  else 
  { 

if ((the island is outwards facing and 
(targetx,targety) is inside the hit-point-island) or 
(the island is inwards facing and (targetx,targety) 
is not inside the hit-point-island)) 

close all the directions; // the target is 
inaccessible;  

  } 
 
Figure 7: The C-like pseudo code for detecting closed and 

open regions 
 
Exploring and Adaptation to Dynamic Environments 
 
If the maze is not given in advance or just a part of the maze 
is known, the agent has to explore and learn the 
environment in real-time. The algorithm is applicable for 
real-time exploration. It will immediately adapt itself to the 
new condition, but there can be a problem because of 
marking the cells traveled with obstacle. Because the agent 
assumes that the rest of the way is opened, so it marks the 
previous cells as obstacle, but when it explores the area and 
notices that the region is closed, it may be stuck in a 
completely closed region. All we need to do is to clear the 
history when all the directions are closed.  
 
In real life, the targets, the obstacles and the threats usually 
have a dynamic nature. For RTEF having a dynamic 
environment is not a big problem in fact. The algorithm can 
also be adapted to a change in the cost function rapidly. The 
only problem that may occur is blocking. For example, 
while the target is moving, it may enter to a previously 
blocked region, but if the target is blocked, the agent rapidly 
detects that all the directions are closed and the history is 
cleared. 
 
One disadvantage of clearing history is forgetting previous 
experience and returning back to same regions again. While 
marking traveled cells as obstacles, one good thing is also 
done. The noise (small obstacles) on the maze is cleared by 
connecting them with history lines. So clearing the history 
causes noise to increase again. 
 
 
 
 

Complexity of RTEF 
 
The worst case complexity of RTEF for each move is O(w x 
h), where w is the width of maze and h is the height of 
maze. But almost never we have this complexity. In general, 
it is much more smaller than this. The efficiency of a move 
can be explained with total number of edges followed. 
Other operations are very efficient compared to edge 
following process. The observed worst-case frame rates for 
different sized mazes are shown in Table 1. As seen, the 
seconds per move increases almost proportional to the 
number of cells. 
 

Table 1: Worst-case performances on sample mazes:  
Sec/M = seconds per move, M/sec = moves per second, 

Increase = Increase compared to previous column 
 

 100x100 200x200 400x400 800x800 1600x1600 

Sec/m 0.005 0.024 0.110 0.462 1.935 

M/sec 200.000 41.666 9.090 2.164 0.516 

Increase - 4.800 4.583 4.200 4.188 

 
PERFORMANCE ANALYSIS 
 
The test environment is implemented in Borland Delphi 
programming language under Windows platform. The tests 
are run on an Intel Celeron-466 with 128 MB memory. Both 
RTEF and RTA* (described in subsection “Real-Time A*”) 
are implemented. We observed that the solution quality of 
RTEF is always better than RTA* in both simple and 
complicated mazes. The efficiency (seconds per move) of 
RTEF is satisfactory in most cases, but not better than 
RTA*. The efficiency of RTEF depends on the environment 
complexity, while the efficiency of RTA* is nearly constant. 
 
Three different versions of RTEF algorithm are realized and 
tested using randomly generated mazes, and compared to 
RTA*. The first RTEF algorithm knows the entire maze in 
advance, so has a chance of better planning. The second and 
third ones don’t know the maze. The agents can see the 
neighboring cells to a certain depth. They completely see a 
square region with size d x d, where d is twice of their 
visual depth plus one. For example, if the observation depth 
is 5, the agent knows a square of 11x11 cells (5 left, 5 right, 
5 up and 5 down). The agent can build the map with real 
data in time. 
 
Real-Time A* (RTA*) 
 
RTA*, which RTEF is compared to, is a greedy search 
algorithm that uses heuristics to direct the search. It 
evaluates the costs of the neighbor voxels at the current 
position and jumps to the voxel having minimum cost. 
While jumping to the next voxel, the algorithm writes 1 plus 
the cost of the second best neighbor to the previous voxel. 
This is illustrated in Figure 8. 
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Figure 8: State transition of Real-Time A* 
 
The algorithm is effective and complete for maze 
environments, but if the terrain is large and there are many 
semi-closed regions having large open areas inside, the 
agent may be stuck in the regions for a long time, because 
the search strategy is too local, only the neighbor voxels are 
evaluated. In addition RTA* uses much memory than 
RTEF, because it needs an additional array to store cost 
updates. And RTA is also not applicable to dynamic 
environments in practice. 
 
Test Results of RTEF 
 
The mazes with size 100x100 and 500x500 are randomly 
generated. The agents and the targets are positioned on 
upper-left, lower-right or upper-central, lower- central side 
of the mazes. Total time passed, average moves/sec and the 
number of moves to reach the target point are used to 
evaluate the results. We evaluated the efficiency and 
solution quality of RTEF. The average values of test results 
are shown in Table 2 and 3. 
 
As seen from the results, RTEF always gives better solution 
quality than RTA* on the average. The difference 
significantly increases if complicated mazes are used. The 
RTEF again has a good solution quality when unknown 
mazes are explored. The best solution quality over RTA* is 
995.741 times better than RTA* on the average. The worst 
solution quality of RTEF is again better than RTA*, which 
is 1.010 times better than RTA*. The average moves/sec 
(moves per seconds) of RTA* is 2395 (almost constant), 
where average moves/sec of RTEF is 371 (varies from 29 
moves/sec to 991 moves/sec). This moves/sec is much more 
smaller than RTA*, but acceptable for soft real-time 
systems. In robotics, doing unneeded physical actions is 
much more time consuming than thinking and doing good 
actions, so the moves/sec is not a disadvantage at all. In real 
world, the time to walk to the next state will usually take 
more time than thinking phase, and the next move can be 
calculated while walking to the next state. If we examine 
total time spent to reach the goal state, an interesting result 
is observed. In very simple mazes the efficiency ratio of 
RTA* is better than solution quality ratio of RTEF. But in 
simple mazes, they go head to head. And after simple 
mazes, the solution quality and efficiency generally seems 
to be better than RTA* and after average mazes, the RTEF 
is better both in efficiency and solution quality. Some 
sample snapshots are shown in Figure 9, 10. 

CONCLUSION 
 
In this paper, we have studied the concept of computer-
generated forces in order to construct a real-time simulation 
system. We have generated complicated landscapes similar 
to real ones and tried to solve real-time path planning 
problem for mission planning purposes. A test environment 
is generated and a set of scenarios is performed to evaluate 
performance of developed algorithm. We observed that 
RTEF performs better than RTA* in most cases. The 
algorithm is also applicable to robotics and real-time 
observation, and it frequently gives high solution quality, 
which is in most cases near to optimal solution.  
 
By introducing new heuristics, the solution quality can be 
increased, but these methods may reduce the efficiency of 
the algorithm. For example, some evaluation methods can 
be applied using edge follow information. 
 
As a result of our observations, we state that the real-time 
path planning techniques can be improved by increasing the 
visual search depth, which helps a lot to escape earlier from 
the local semi-closed regions. But we have also noticed that 
there is much to do for better intelligent search strategies. 
More human-like evaluation techniques are needed to go 
one step forward. 
 

 
 

 
 

Figure 9: A Maze with 5 cell corridors: RTA* performs  
226772 moves in 102.034 seconds (top), RTEF performs 

1664 moves in 46.474 seconds (bottom). Black regions are 
traveled cells. RTA* may travel a cell more than once. 
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Figure 10: A Simple Maze (left): RTA* performs 2163 moves in 0.890 seconds (top-left), RTEF performs 1325 moves in 
2.840 seconds (bottom-left). A Complicated Maze (Middle): RTA* performs 6157 moves in 27.024 seconds (top-middle), 

RTEF performs 1487 moves in 13.680 seconds (bottom-middle). A Very Complicated Maze (right): RTA* performs 76387 
moves in 34.105 seconds (top-right), RTEF performs 1670 moves in 20.870 seconds (bottom-right). 

 
   Table 2: Test results (mazes filled with randomly distributed noise) 

 
Average of Simple Mazes: 

500x500 cells 
Time in 
Seconds 

Average 
Moves/Sec 

Number of 
Moves 

Efficiency of RTEF, 
RTA* Time / Time 

S. Quality of RTEF,  
RTA* Moves / Moves 

RTA* 1.665 2408 3950 1.000 1.000 
RTEF (maze is fully known) 2.850 449 1282 0.584 3.081 
RTEF (observation depth 5) 3.490 507 1771 0.477 2.230 
RTEF (observation depth 10) 3.889 389 1513 0.428 2.610 

 

Average of Average Mazes: 
500x500 cells 

Time in 
Seconds 

Average 
Moves/Sec 

Number of 
Moves 

Efficiency of RTEF, 
RTA* Time / Time 

S. Quality of RTEF,  
RTA* Moves / Moves 

RTA* 4.058 2367 9718 1.000 1.000 
RTEF (maze is fully known) 4.695 218 1026 0.864 9.471 
RTEF (observation depth 5) 2.653 660 1753 1.529 5.543 
RTEF (observation depth 10) 3.018 404 1221 1.344 7.959 

 

Average of Complicated Mazes: 
500x500 cells 

Time in 
Seconds 

Average 
Moves/Sec 

Number of 
Moves 

Efficiency of RTEF, 
RTA* Time / Time 

S. Quality of RTEF,  
RTA* Moves / Moves 

RTA* 57.685 2468 94365 1.000 1.000 
RTEF (maze is fully known) 19.138 74 1428 3.014 66.081 
RTEF (observation depth 5) 29.094 285 8317 1.982 11.346 
RTEF (observation depth 10) 18.802 300 5652 3.068 16.695 

 

Average of Very Complicated 
Mazes: 500x500 cells 

Time in 
Seconds 

Average 
Moves/Sec 

Number of 
Moves 

Efficiency of RTEF, 
RTA* Time / Time 

S. Quality of RTEF,  
RTA* Moves / Moves 

RTA* 58.766 2415 142089 1.000 1.000 
RTEF (maze is fully known) 21.932 62 1373 2.679 103.487 
RTEF (observation depth 5) 21.897 422 9245 2.683 15.369 
RTEF (observation depth 10) 21.960 369 8123 2.676 17.492 
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   Table 3: Test results (5 and 1 cell corridors with sizes 500x500 and 100x100) 
 

Average of mazes with 5 cell 
corridors: 500x500 cells 

Time in 
Seconds 

Average 
Moves/Sec 

Number of 
Moves 

Efficiency of RTEF, 
RTA* Time / Time 

S. Quality of RTEF,  
RTA* Moves / Moves 

RTA* 843.917 2495 2176692 1.000 1.000 
RTEF (maze is fully known) 73.257 29 2186 11.519 995.741 
RTEF (observation depth 5) 581.190 122 71377 1.452 30.495 
RTEF (observation depth 10) 167.415 119 19983 5.040 108.927 

 
Average of mazes with 1 cell 

corridors: 100x100 cells 

Time in 
Seconds 

Average 
Moves/Sec 

Number of 
Moves 

Efficiency of RTEF, 
RTA* Time / Time 

S. Quality of RTEF,  
RTA* Moves / Moves 

RTA* 3.861 2434 9201 1.000 1.000 
RTEF (maze is fully known) 2.801 117 329 1.378 27.966 
RTEF (observation depth 5) 2.808 434 1220 1.375 7.541 
RTEF (observation depth 10) 2.385 295 704 1.618 13.069 
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