

© SCS

REAL-TIME EDGE FOLLOW:
A NEW PARADIGM TO REAL-TIME PATH SEARCH

Cagatay Undeger

Modeling and Simulation Section
Defense Technologies Enginering Inc.

35. Sok. No.28 Balgat
06520 Ankara,

Turkey
E-mail: cundeger@ceng.metu.edu.tr

Faruk Polat
Department of Computer Engineering

Middle East Technical University
06531 Ankara,

Turkey
E-mail: polat@ceng.metu.edu.tr

Ziya Ipekkan
Scientific Decision Support Center

Turkish General Staff (TGS)
Bakanliklar

06100 Ankara,
Turkey

E-mail: zipekkan@tsk.mil.tr

KEYWORDS
Computer-generated forces, real-time path search, maze
problems.

ABSTRACT

Path searching and mission planning are challenging
problems in many domains such as war games, robotics,
military mission planning, computer-generated forces, etc.
The objective of this study is to develop a real-time path-
planning algorithm to accomplish specified missions on
large landscapes. For that purpose, a real-time goal-
directed path search algorithm, Real-Time Edge Follow
(RTEF), which can work on fully known, partial known or
completely unknown maze environments, is developed.
RTEF aims to find a path from a staring point to a static or
dynamic target point in real-time. The basic idea behind the
RTEF is to let the agent eliminate closed directions (the
directions that cannot reach the target point) by analyzing
obstacle edges in order to decide on which way to go (open
directions). For instance, if the agent has a chance to
realize that moving to north and east won’t let him reach
the goal state (although the target is at north-east), then he
will prefer going to south or west. RTEF finds out these
open and closed directions, so decreasing the number of
choices the agent has and significantly shortening the path.
The method is tested on large mazes and compared with
Real-Time A*. We observed that RTEF always performs
much better than RTA* when solution quality is considered
and usually better when total time spent to reach the goal
state is considered (especially on complicated mazes).
RTEF frequently gives high solution quality, which is in
most cases near to optimal solution, and never needs to
return to a previously visited cell while on the way.

INTRODUCTION

Multi agent systems can be used to model computer-
generated environments where intelligent agents react
suitably to various events. Many of the applications in this
context need realistic environment generation, efficient
search algorithms and heuristics suitable for real-time
simulations. Multi agent systems are integrated into these
simulations for supporting automatic and semi-automatic

human and group behaviors to complete a given mission.
Planning a mission usually means to plan a sequence of
actions that lead to the goal-state.

The problem of path planning can be described as finding a
sequence of state transitions from some initial state
(starting point) to a goal state (target point), or finding out
that no such sequence exists. Path-planning algorithms can
be off-line or on-line. Off-line path planning algorithms
like A* [Russell and Norving 1994] find the whole solution
before starting execution. They plan paths in advance and
usually find optimal solutions. Their efficiency is not
considered to be crucial and the agent just follows the
generated path. Although this is a good solution for a static
environment, it is completely infeasible for dynamic
environments, because if the environment or the cost
function changes, the remaining path may need to be re-
planned, which is not efficient for real-time applications.
Real-time path planning algorithms such as Real-Time A*
(RTA*), Learning Real-Time A* (LRTA*) [Knight 1993;
Korf 1090], Moving Target Search [Ishida and Korf 1995],
Bi-directional Real-Time Search [Ishida 1996], Real-Time
Horizontal A* [Undeger 2001], D* [Stentz 1994], Focused
D* [Stentz 1995] are on-line and offer more efficient
solutions. Some of them produce optimal solutions for
dynamic changes such as D* and Focused D*, and some
only bring efficiency but not optimality such as Real-Time
A*.

In this paper, we have proposed a real-time path search
algorithm, “Real-Time Edge Follow” (RTEF), which
provides both efficiency and solution quality on maze
environments. The algorithm is capable of searching a path
in real-time to reach a static or dynamic target on a fully
known, a partial known or a completely unknown mazes. It
can also be used in real-life applications uncluding
robotics. RTEF is tested on randomly generated mazes and
large terrain data, and compared with RTA*. The results
showed that RTEF performed better in both solution
quality and execution time.

In Section 2, a survey of related work on path planning is
given. Our real-time path search algorithm, Real-Time
Edge Follow is described in detail in Section 3. The

© SCS

performance analysis of RTEF is given in Section 4.
Finally, the conclusion is given in Section 5.

RELATED WORK

Multi-agent systems are used in many domains such as
robotics, computer generated forces, games, training,
RoboCup soccer and their simulators. In robotics [LaValle
and Kuffner 1999] and RoboCup soccer [Jensen and
Veloso 1998], intelligent planning aims to find out ways
for interacting with the physical world, which makes the
problem hard to solve. In contrast, intelligent planning for
computer generated forces and games [Pew and Mavor
1998; Undeger et al. 2000; Undeger 2001; Baxter and
Horn 1999; Gelenbe 1998; DeLoura 2000] aim to generate
behaviors similar to the real world in virtual environments.
Simulating real world actions in a virtual environment is
basically used to test some conditions that are not possible
or hard to generate in the real world. For example,
intelligent agents that behave much like real world entities
are frequently used for pilot trainings in flight simulators
[Jones et al. 1993, 1994]. In such simulators, realistic
modeling of agent behaviors is very important for the
realism of training.

In multi agent simulations, evaluating the environment
information, learning and reacting in time is essential. Erol
Gelenbe proposed modeling computer-generated forces
with learning stochastic finite-state machines whose state
transitions are controlled by state and signal dependent
random neural networks [Gelenbe 1998]. In Knuffner’s
approach [Kuffner and Latombe 1999], rendering off-
screen from the character’s point of view and real-time
path planning is used. His path-planning module aims to
find a collision free path between a starting and ending
point over the 3D terrain using the information gathered
from vision based perceptions. In the study of Knuffner,
the terrain is divided into embedded graph cells, which
have vertical, horizontal and diagonal costs of walking
through. Then, the suitable path is found using Dijkstra’s
algorithm, which is actually an optimal off-line path-
planning algorithm integrated into a real-time application.
Using an off-line path-planning algorithm in a real-time
application is not suitable for large terrains. By the help of
some guidance such as admissible heuristics can increase
efficiency of off-line path planning algorithms. A* [Russell
and Norving 1994] is one of best-known efficient path
planning algorithms, which is guided by a heuristic
function. A* always finds the optimal solution and uses
linear distances between points for the heuristic function.
Optimal path planning algorithms cannot be used for large
and dynamic landscapes because of its complexity. To
avoid this drawback, some partial path update algorithms
are also proposed such as D* [Stentz 1994] and focused D*
[Stentz 1995]. These algorithms plan an off-line path, let
the agent follow the path, and if any new environment
information is gathered, they partially re-plan the existing
solution. But some times, a small change in the
environment may cause to re-plan almost a complete path,
which may take a long process time.

A number of algorithms exist for supporting real-time
simulations such as Real-time A* (RTA*) and Learning
Real-Time A* (LRTA*) [Knight 1993; Korf 1990]. RTA*
uses a greedy search strategy and a heuristic together to
guide the search. It guarantees to find a solution if one
exists, but the solution may not be optimal. In this paper,
we have proposed a new Real-Time path search algorithm
for maze environments.

There are also some path-planning algorithms that use
random search techniques such as genetic algorithms,
random tree generators. In [Sugihara and Smith 1997], an
adaptive path-planning algorithm based on genetic
approach is proposed. In this study, they assumed that a
valid path that is not optimal is initially found and they
refine this given path by genetic algorithm. Considering
this concept, our previously developed off-line path-
planning algorithm, Linear Search Path Finder [Undeger
2001] seems to be applicable to this case successfully. In
the study of LaValla and Knuffner [LaValle and Kuffner
1999], a randomized planning technique based on a version
of random tree generation called rapidly exploring random
tree is presented. They generated two random trees starting
from the goal and the target points, and try to catch an
intersection among the points of distinct trees to find a
path.

REAL-TIME EDGE FOLLOW

RTEF is developed for maze-type problems and aims to
find a path from a staring point to a target point in real-
time. The basic idea behind the RTEF is to let the agent
eliminate closed directions (the directions that cannot reach
the target point) in order to decide on which way to go,
(open directions). For instance, if the agent has a chance to
realize that moving to north and east won’t let him reach
the goal state, than he will prefer going to south or west.
RTEF finds out these open and closed directions, so
decreasing the number of choices the agent has.

The environment is assumed to be a grid world with
obstacles, where the cells having obstacles are marked with
a non-zero value and the rest is filed with zero. Initially, the
agent is at a starting point and the goal is to reach a static
or dynamic target. At each move, RTEF algorithm is
executed to eliminate closed directions from the current
cell in order to select the next move from a set of open
directions. The cost of moving to the next cell + the
distance to the target is used for the heuristic function to
select one of the open alternatives. After doing the move,
the previous cell is marked as an obstacle; so loops are
prevented. The set of previously marked cells are called the
history of the agent. In exploration mode with an unknown
maze, the history has to be cleared when a newly
discovered obstacle blocks the way that was open before.

The algorithm is constructed on the idea that every obstacle
has a boundary, which is actually formed from a set of
connected edges shaping the object. The obstacles are

© SCS

defined as a set of merged cells in a grid world. RTEF
splits the moving directions from each other by a set of
rays sent away from the agent, and analyze each region to
discover whether it is closed or open.

Moving Directions and Sent-Rays

RTEF accepts the possible moving directions as north,
south, east and west. Although there are many interval
values of these directions, a set of basic directions is
chosen to partition the area for the sake of efficiency. The
idea is not to find an exact direction, but to choose a
general direction having a left and right angle limit. The
algorithm splits the visual environment into four regions by
sending 4 rays away from the agent. The rays are sent

along 4 diagonal directions (the angle between two
adjacent rays is 90 degree). The rays go away from the
agent until hitting an obstacle and hence split the area into
4 different regions. Some of these regions are on the way to
the target point and some are not. This is illustrated in
Figure 1.

Each ray hits the boundary of one of the obstacles. The
cells on the way of a ray are followed until a blocked cell is
detected. The boundary of the grid world is also marked as
blocked in order to prevent infinitely going rays. The first
ray is assumed to be on the northwest diagonal. This is
illustrated in Figure 2. A ray is assumed to hit an obstacle,
when any cell on the way is marked as blocked.

Figure 1: Sending rays until hitting an obstacle to split the basic directions

Figure 2: Rays, Directions and hitting: Rays and directions are numbered from 0 to 3 in clockwise direction on the left. The
figure on the right shows the cells on the way of 4 rays.

Following Edges

Four rays split the area around the agent into 4 regions.
Some of these limited regions are closed and target point is
inaccessible from any point located inside these regions. If
all are closed, that means the target is inaccessible from the
current state or location. To detect which ones are closed,
the boundaries of obstacles that the rays hit must be
analyzed. The edges on the boundaries are followed and if

edges are followed clockwise or counter-clockwise
directions starting from a hit-point, we always return to the
same point. By following edges and returning to the same
starting point on the boundary, a polygonal area is formed
(the boundary of the obstacle is detected). We call this
polygonal area an “island”. There are two kinds of islands:
outwards facing and inwards facing, which are shown in
Figure 3. If the target is inside an outwards facing island or

North d.

South d.

East d. West d.

The agent

An obstacle

A hit-point

Target

The best
direction that

could be chosen
from 3 open
alternatives
(west, east,

south)
Moving directions

Rays

Legend

90 degree

North d.

South d.

East d. West d.

© SCS

outside an inwards facing island, that means the target is
inaccessible from the current location.

Figure 3: Island types: outwards facing (top), inwards
facing (bottom)

If we reach the hit-point of another ray while following
edges (only the first one reached is considered), we have an
additional polygonal area (the two rays are also included)
called “hit-point-island”. This polygonal area is illustrated
in Figure 4.

Figure 4: Two rays hitting the same obstacle at two different
points

A hit-point-island borders one or more moving directions. If
the target point is not inside the hit-point-island, it means
that all the directions that are bordered by the hit-point-
island are closed. Otherwise all the directions that are not
bordered by the hit-point-island are closed. This is
illustrated in Figure 5.

Figure 5: Analyzing hit-point islands and eliminating

moving directions

The edge following algorithm works on grid worlds and it is
the most time consuming part of RTEF. There are two edge
follow directions. One follows the edges from the left side
of the hit-point and one follows from the right side. If we
follow edges from the left, we have to choose the next edge,
which is connected to the left side of the current edge and
similar process is done for the right side. This is depicted in
Figure 6.

Figure 6: Edge detection: The figure illustrate next possible

states when starting from south side of a cell. The
possibilities are tested from smaller angles to larger angles.

After finding the island and the hit-point-island, the target
must be checked if it is located inside these polygonal areas
or not. Implementing an inside test is not so complicated.
For testing whether the coordinate (tx,ty) is inside a polygon
P or not, we just need to count the number of edges in P
that are on the left side of ty and intersecting the horizontal
line passing on ty. If the edge count is an odd number, the
point is inside the polygon else it is not.

Detecting Closed/Open Regions

To detect closed and open regions, “edge following
process” and “inside polygon tests” are used together. To
follow edges from only one direction is enough for the
detection, but one direction has to be chosen and used for
all the rays. The C-like pseudo code for left side edge
following is shown in Figure 7. When open and closed
directions are detected, one of the open directions is chosen
and one-step move is performed. The simplest heuristic is
the cost of moving to the next cell + the distance of next cell
to the target. The direction, which minimizes the cost, is
selected for the next move.

Although the algorithm finds only the open directions, there
is a high possibility of getting into loops, especially when
there is more than one open direction at a time. For
example, assume that the agent is at the same y coordinate
as the target is, and there is one choice “moving north”. So,
the agent moves north. Consider the next state has two open
regions: north and south. South is the previous cell. If the
agent selects the south, it is obvious that it will go into a
loop. The agent selects the south, because being at the same
y coordinate as the target is, has less cost than being at two
cells up from the y coordinate of the target (the distance to
the target is shorter). This is only one of many possibilities.
The simplest solution to avoid the loops is to mark the
previous point as an obstacle. So the agent never has a
chance to visit the same point again.

An outwards facing

An inwards facing
island

A hit-point island

The first ray The second ray

Target

All the directions
that are bordered
by the hit-point-
island are closed

Target

All the directions that are not bordered
by the hit-point-island are closed

© SCS

For each ray-sent
Find hit-point of the ray;
Follow the edges from left side of the hit-point;
Find out the island and hit-point-island;
if (an hit-point-island is found)
{

if (targetx,targety) is inside the hit-point-
island)
{

if ((targetx,targety) is inside the island)
{

if ((agentx,agenty) is not inside the
island)

 close all the directions; // the
target is
inaccessible
;

}
else
close the directions that are not bounded by
hit-point-island.

}
else close the directions that are bounded by
hit-point-island.

 }
 else
 {

if ((the island is outwards facing and
(targetx,targety) is inside the hit-point-island) or
(the island is inwards facing and (targetx,targety)
is not inside the hit-point-island))

close all the directions; // the target is
inaccessible;

 }

Figure 7: The C-like pseudo code for detecting closed and

open regions

Exploring and Adaptation to Dynamic Environments

If the maze is not given in advance or just a part of the maze
is known, the agent has to explore and learn the
environment in real-time. The algorithm is applicable for
real-time exploration. It will immediately adapt itself to the
new condition, but there can be a problem because of
marking the cells traveled with obstacle. Because the agent
assumes that the rest of the way is opened, so it marks the
previous cells as obstacle, but when it explores the area and
notices that the region is closed, it may be stuck in a
completely closed region. All we need to do is to clear the
history when all the directions are closed.

In real life, the targets, the obstacles and the threats usually
have a dynamic nature. For RTEF having a dynamic
environment is not a big problem in fact. The algorithm can
also be adapted to a change in the cost function rapidly. The
only problem that may occur is blocking. For example,
while the target is moving, it may enter to a previously
blocked region, but if the target is blocked, the agent rapidly
detects that all the directions are closed and the history is
cleared.

One disadvantage of clearing history is forgetting previous
experience and returning back to same regions again. While
marking traveled cells as obstacles, one good thing is also
done. The noise (small obstacles) on the maze is cleared by
connecting them with history lines. So clearing the history
causes noise to increase again.

Complexity of RTEF

The worst case complexity of RTEF for each move is O(w x
h), where w is the width of maze and h is the height of
maze. But almost never we have this complexity. In general,
it is much more smaller than this. The efficiency of a move
can be explained with total number of edges followed.
Other operations are very efficient compared to edge
following process. The observed worst-case frame rates for
different sized mazes are shown in Table 1. As seen, the
seconds per move increases almost proportional to the
number of cells.

Table 1: Worst-case performances on sample mazes:
Sec/M = seconds per move, M/sec = moves per second,

Increase = Increase compared to previous column

 100x100 200x200 400x400 800x800 1600x1600

Sec/m 0.005 0.024 0.110 0.462 1.935

M/sec 200.000 41.666 9.090 2.164 0.516

Increase - 4.800 4.583 4.200 4.188

PERFORMANCE ANALYSIS

The test environment is implemented in Borland Delphi
programming language under Windows platform. The tests
are run on an Intel Celeron-466 with 128 MB memory. Both
RTEF and RTA* (described in subsection “Real-Time A*”)
are implemented. We observed that the solution quality of
RTEF is always better than RTA* in both simple and
complicated mazes. The efficiency (seconds per move) of
RTEF is satisfactory in most cases, but not better than
RTA*. The efficiency of RTEF depends on the environment
complexity, while the efficiency of RTA* is nearly constant.

Three different versions of RTEF algorithm are realized and
tested using randomly generated mazes, and compared to
RTA*. The first RTEF algorithm knows the entire maze in
advance, so has a chance of better planning. The second and
third ones don’t know the maze. The agents can see the
neighboring cells to a certain depth. They completely see a
square region with size d x d, where d is twice of their
visual depth plus one. For example, if the observation depth
is 5, the agent knows a square of 11x11 cells (5 left, 5 right,
5 up and 5 down). The agent can build the map with real
data in time.

Real-Time A* (RTA*)

RTA*, which RTEF is compared to, is a greedy search
algorithm that uses heuristics to direct the search. It
evaluates the costs of the neighbor voxels at the current
position and jumps to the voxel having minimum cost.
While jumping to the next voxel, the algorithm writes 1 plus
the cost of the second best neighbor to the previous voxel.
This is illustrated in Figure 8.

© SCS

5 8 3

1 7

9 6 7

The best

The second best

5 8 3

1 7

9 6 7

4

The second best + 1

Figure 8: State transition of Real-Time A*

The algorithm is effective and complete for maze
environments, but if the terrain is large and there are many
semi-closed regions having large open areas inside, the
agent may be stuck in the regions for a long time, because
the search strategy is too local, only the neighbor voxels are
evaluated. In addition RTA* uses much memory than
RTEF, because it needs an additional array to store cost
updates. And RTA is also not applicable to dynamic
environments in practice.

Test Results of RTEF

The mazes with size 100x100 and 500x500 are randomly
generated. The agents and the targets are positioned on
upper-left, lower-right or upper-central, lower- central side
of the mazes. Total time passed, average moves/sec and the
number of moves to reach the target point are used to
evaluate the results. We evaluated the efficiency and
solution quality of RTEF. The average values of test results
are shown in Table 2 and 3.

As seen from the results, RTEF always gives better solution
quality than RTA* on the average. The difference
significantly increases if complicated mazes are used. The
RTEF again has a good solution quality when unknown
mazes are explored. The best solution quality over RTA* is
995.741 times better than RTA* on the average. The worst
solution quality of RTEF is again better than RTA*, which
is 1.010 times better than RTA*. The average moves/sec
(moves per seconds) of RTA* is 2395 (almost constant),
where average moves/sec of RTEF is 371 (varies from 29
moves/sec to 991 moves/sec). This moves/sec is much more
smaller than RTA*, but acceptable for soft real-time
systems. In robotics, doing unneeded physical actions is
much more time consuming than thinking and doing good
actions, so the moves/sec is not a disadvantage at all. In real
world, the time to walk to the next state will usually take
more time than thinking phase, and the next move can be
calculated while walking to the next state. If we examine
total time spent to reach the goal state, an interesting result
is observed. In very simple mazes the efficiency ratio of
RTA* is better than solution quality ratio of RTEF. But in
simple mazes, they go head to head. And after simple
mazes, the solution quality and efficiency generally seems
to be better than RTA* and after average mazes, the RTEF
is better both in efficiency and solution quality. Some
sample snapshots are shown in Figure 9, 10.

CONCLUSION

In this paper, we have studied the concept of computer-
generated forces in order to construct a real-time simulation
system. We have generated complicated landscapes similar
to real ones and tried to solve real-time path planning
problem for mission planning purposes. A test environment
is generated and a set of scenarios is performed to evaluate
performance of developed algorithm. We observed that
RTEF performs better than RTA* in most cases. The
algorithm is also applicable to robotics and real-time
observation, and it frequently gives high solution quality,
which is in most cases near to optimal solution.

By introducing new heuristics, the solution quality can be
increased, but these methods may reduce the efficiency of
the algorithm. For example, some evaluation methods can
be applied using edge follow information.

As a result of our observations, we state that the real-time
path planning techniques can be improved by increasing the
visual search depth, which helps a lot to escape earlier from
the local semi-closed regions. But we have also noticed that
there is much to do for better intelligent search strategies.
More human-like evaluation techniques are needed to go
one step forward.

Figure 9: A Maze with 5 cell corridors: RTA* performs
226772 moves in 102.034 seconds (top), RTEF performs

1664 moves in 46.474 seconds (bottom). Black regions are
traveled cells. RTA* may travel a cell more than once.

© SCS

Figure 10: A Simple Maze (left): RTA* performs 2163 moves in 0.890 seconds (top-left), RTEF performs 1325 moves in
2.840 seconds (bottom-left). A Complicated Maze (Middle): RTA* performs 6157 moves in 27.024 seconds (top-middle),

RTEF performs 1487 moves in 13.680 seconds (bottom-middle). A Very Complicated Maze (right): RTA* performs 76387
moves in 34.105 seconds (top-right), RTEF performs 1670 moves in 20.870 seconds (bottom-right).

 Table 2: Test results (mazes filled with randomly distributed noise)

Average of Simple Mazes:

500x500 cells
Time in
Seconds

Average
Moves/Sec

Number of
Moves

Efficiency of RTEF,
RTA* Time / Time

S. Quality of RTEF,
RTA* Moves / Moves

RTA* 1.665 2408 3950 1.000 1.000
RTEF (maze is fully known) 2.850 449 1282 0.584 3.081
RTEF (observation depth 5) 3.490 507 1771 0.477 2.230
RTEF (observation depth 10) 3.889 389 1513 0.428 2.610

Average of Average Mazes:
500x500 cells

Time in
Seconds

Average
Moves/Sec

Number of
Moves

Efficiency of RTEF,
RTA* Time / Time

S. Quality of RTEF,
RTA* Moves / Moves

RTA* 4.058 2367 9718 1.000 1.000
RTEF (maze is fully known) 4.695 218 1026 0.864 9.471
RTEF (observation depth 5) 2.653 660 1753 1.529 5.543
RTEF (observation depth 10) 3.018 404 1221 1.344 7.959

Average of Complicated Mazes:
500x500 cells

Time in
Seconds

Average
Moves/Sec

Number of
Moves

Efficiency of RTEF,
RTA* Time / Time

S. Quality of RTEF,
RTA* Moves / Moves

RTA* 57.685 2468 94365 1.000 1.000
RTEF (maze is fully known) 19.138 74 1428 3.014 66.081
RTEF (observation depth 5) 29.094 285 8317 1.982 11.346
RTEF (observation depth 10) 18.802 300 5652 3.068 16.695

Average of Very Complicated
Mazes: 500x500 cells

Time in
Seconds

Average
Moves/Sec

Number of
Moves

Efficiency of RTEF,
RTA* Time / Time

S. Quality of RTEF,
RTA* Moves / Moves

RTA* 58.766 2415 142089 1.000 1.000
RTEF (maze is fully known) 21.932 62 1373 2.679 103.487
RTEF (observation depth 5) 21.897 422 9245 2.683 15.369
RTEF (observation depth 10) 21.960 369 8123 2.676 17.492

© SCS

 Table 3: Test results (5 and 1 cell corridors with sizes 500x500 and 100x100)

Average of mazes with 5 cell
corridors: 500x500 cells

Time in
Seconds

Average
Moves/Sec

Number of
Moves

Efficiency of RTEF,
RTA* Time / Time

S. Quality of RTEF,
RTA* Moves / Moves

RTA* 843.917 2495 2176692 1.000 1.000
RTEF (maze is fully known) 73.257 29 2186 11.519 995.741
RTEF (observation depth 5) 581.190 122 71377 1.452 30.495
RTEF (observation depth 10) 167.415 119 19983 5.040 108.927

Average of mazes with 1 cell

corridors: 100x100 cells

Time in
Seconds

Average
Moves/Sec

Number of
Moves

Efficiency of RTEF,
RTA* Time / Time

S. Quality of RTEF,
RTA* Moves / Moves

RTA* 3.861 2434 9201 1.000 1.000
RTEF (maze is fully known) 2.801 117 329 1.378 27.966
RTEF (observation depth 5) 2.808 434 1220 1.375 7.541
RTEF (observation depth 10) 2.385 295 704 1.618 13.069

REFERENCES

Baxter, J.W. and Horn, G.S. 1999. “A Model for Co-Ordination
and Co-Operation Between CGF Agents.” In Proceedings of
8th conference on Computer Gererated Forces and
Behavioral Representation, Orlando, Florida, 101-111.

DeLoura, M.A. 2000. Game Programming Gems. Charles River
Media.

Gelenbe, E. 1999. “Modelling CGF with Learning Stochastic
Finite-State Machines.” In Proceedings of 8th conference on
Computer Gererated Forces and Behavioral Representation,
Orlando, Florida, 113-115.

Ishida, T. and Korf, R.E. 1995. “A Moving Terget Search: A Real-
Time Search for Changing Goals.” IEEE Trans Pattern
Analysis and Machine Intelligence, Vol.17, No.6, 97-109.

Ishida, T. 1996. “Real-Time Bidirectional Search: Coordinated
Problem Solving in Uncertain Situations.” IEEE Trans
Pattern Analysis and Machine Intelligence, Vol.18, No.6.

Jensen, R.M. and Veloso, M.M. 1998. “Interleaving Deliberative
and Reactive Planning in Dynamic Multi-Agent Domains.” In
Proceedings of the AAAI Fall Symposium on Integrated
Planning for Autonomous Agent Architectures, AAAI Press.

Jones, R.M., Tambe, M., Laird, J.E. and Rosenbloom, P.S. 1993.
“Intelligent Automated Agents for Flight Training Simulator.”
In Proceedings of 3th conference on Computer Gererated
Forces and Behavioral Representation, Orlando, Florida, 33-
42.

Jones, R.M., Laird, J.E., Tambe, M. and Rosenbloom, P.S. 1994.
“Generating Behavior in Response to Interacting Goals.” In
Proceedings of 4th conference on Computer Gererated Forces
and Behavioral Representation, Orlando, Florida.

Knight, K. 1993. “Are Many Reactive Agents Better Than A Few
Deliberative Ones?” In Proceedings of The International
Joint Conference on Artificial Intelligence, 432-437.

Kuffner, J.J. and Latombe, J.C. 1999. “Fast Synthetic Vision,
Memory, and Learning Models for Virtual Humans.” In
Proceedings of Computer Animation, IEEE, 118-127.

Korf, R.E. 1990. “Real-Time Heuristic Search.” Artificial
Intelligence, Vol.42, No.2-3, 189-211.

LaValle, S.M. and Kuffner, J.J. 1999. “Randomized Kinodynamic
Planning.” In Proceedings of IEEE International Conference
on Robotics and Automation, ICRA'99, Detroit, MI.

Pew, R.W. and Mavor, A.S. 1998. Modeling Human and
Organizational Behavior: Application to Military
Simulations, National Academy Press.

Russell, S. and Norving, P. 1994. Artificial Intelligence: a
Modern Approach, Prentice Hall.

Stentz, A. 1994. “Optimal and Efficient Path Planning for
Partially-Known Environments.” In Proceedings of the IEEE
International Conference on Robotics and Automation, ICRA
'94, Vol.4, 3310–3317.

Stentz A. 1995. “The Focussed D* Algorithm for Real-Time
Replanning.” In Proceedings of the International Joint
Conference on Artificial Intelligence, IJCAI’95.

Sugihara K. and Smith, J.K. 1997. “Genetic Algorithms for
Adaptive Planning of Path and Trajectory of a Mobile Robot
in 2D Terrains.” Technical Report, number ICS-TR-97-04,
University of Hawaii, Department of Information and
Computer Sciences.

Undeger, C., Isler, V. and Ipekkan, Z. 2000. “An Intelligent
Action Algorithm for Virtual Human Agents.” In Proceedings
of the 9th Conference on Computer Generated Forces and
Behavioral Representation, Orlando, Florida, 25-33.

Undeger, C. 2001. Real-Time Mission Planning For Virtual
Human Agents. M.S. Thesis in Computer Engineering
Department of Middle East Technical University, Ankara,
Turkey.

AUTHOR BIOGRAPHY

CAGATAY UNDEGER received his B.Sc. degree from Kocaeli

University, Turkey in 1998 and went to the Department of
Computer Engineering, Middle East Technical University,
where he has worked as a research assistant and obtained his
M.S. degree in 2001. He is currently doing his Ph.D. in the
same university and studing on Modeling and Simulation
within Defense Technologies Engineering Inc.

FARUK POLAT is an associate professor in the Department of

Computer Engineering of Middle East Technical University,
Ankara, Turkey. He received his B.Sc. in computer
engineering from the Middle East Technical University,
Ankara, in 1987 and his M.S. and Ph.D. degrees in computer
engineering and information science from Bilkent University,
Ankara, in 1989 and 1993 respectively. He conducted research
as a visiting NATO science scholar at Computer Science
Department of University of Minnesota, Minneapolis in
1992-93. His research interests include artificial intelligence,
multi-agent systems and object oriented data models.

ZIYA IPEKKAN has been serving as an operations research

analyst at TGS for more than twelve years. Lt.Col.Ziya
øSHNNDQ LV FXUUHQWO\ WKH OHDGHU IRU)RUFH 6WUXFWXUH $QDO\VHV
Team at the position since August 2000. He is responsible for
conduct of studies and analysis of joint concepts, the
warfighting capabilities and plans, and force structures.

