
Appl Intell (2007) 27:113–129

DOI 10.1007/s10489-006-0023-1

RTTES: Real-time search in dynamic environments
Cagatay Undeger · Faruk Polat

Published online: 13 November 2006
C© Springer Science + Business Media, LLC 2006

Abstract In this paper we propose a real-time search algo-

rithm called Real-Time Target Evaluation Search (RTTES)

for the problem of searching a route in grid worlds from

a starting point to a static or dynamic target point in real-

time. The algorithm makes use of a new effective heuristic

method which utilizes environmental information to success-

fully find solution paths to the target in dynamic and partially

observable environments. The method requires analysis of

nearby obstacles to determine closed directions and estimate

the goal relevance of open directions in order to identify the

most beneficial move. We compared RTTES with other com-

peting real-time search algorithms and observed a significant

improvement on solution quality.

Keywords Real-time search . Path planning

1 Introduction

Path planning can be described as finding a path from an

initial point to a target point if there exists one. Path plan-

ning algorithms are either off-line or on-line. Off-line al-

gorithms like A* [1, 2] find the whole solution in advance

before starting execution, and suffer from execution time

in dynamic or partially observable environments due to fre-

quent re-planning requirements. In on-line case, an agent

repeatedly plans its next move in limited time and executes

it. There are several real-time algorithms such as Real-Time

C. Undeger . F. Polat ()
Middle East Technical University, Ankara, Turkey
e-mail: polat@ceng.metu.edu.tr

C. Undeger
e-mail: cundeger@ceng.metu.edu.tr

A* (RTA*), Learning Real-Time A* (LRTA*) [3, 4], Mov-

ing Target Search [5], Bi-directional Real-Time Search [6],

Real-Time Horizontal A* [7]. They are not designed to be

optimal, and usually find poor solutions with respect to path

length. Furthermore, there exist some hybrid solutions such

as incremental heuristic search algorithms; D* [8,9], Focused

D*[10], D*Lite [11–13], which are optimal and more effi-

cient than off-line path planning algorithms. However, they

are still slow for some real-time applications, and are not

applicable to moving targets. A comparison of D*Lite and

LRTA* can be found in [14].

Recently we have developed a real-time search algorithm

called Real-Time Edge Follow (RTEF) [15, 16] that uses

a powerful heuristic function, RTEF-Alternative Reduction

Method (RTEF-ARM), to discard some non-promising alter-

native moving directions in real-time to guide the agent to a

static or dynamic target. Although RTEF is able to determine

the closed (non-promising) directions successfully, it is weak

in selecting the right move from the remaining alternatives as

it uses the poor Euclidian distance heuristic. Therefore, we

focused on a new method for better selection and improved

the performance of RTEF [17].

In this paper, we propose a real-time search algorithm

(Real-Time Target Evaluation Search—RTTES) capable of

estimating the distance to the target more accurately con-

sidering the intervening obstacles. The method sends rays

away from the agent in four directions, and determines the

obstacles that the rays hit. For each such obstacle, we extract

its border and determine the best direction that avoids the

obstacle if the target is blocked by the obstacle. Hence, we

have a number of directions each avoiding an obstacle hit by

a ray. Then by using these directions and a resolution mech-

anism that will be described later, a single moving direction

is determined.

Springer

114 Appl Intell (2007) 27:113–129

We randomly generated a number of grids of different

types (random, maze and U-type) and compared RTTES with

RTA* and RTEF algorithms on these sample grids in terms

of path length and execution time. We observed a significant

improvement in the path length over RTA* and RTEF in all

types of grids, and in the execution time over RTA* in most

of the grid types. Furthermore, we also observed that the

solution paths of RTTES nearly converged to optimal paths

on the average.

The organization of the paper is as follows: The related

work on path planning is given in Section 2. In Section 3,

RTTES is described in detail, the complexity analysis of

RTTES and its proof of correctness is given. Section 4

presents the performance analysis of the algorithm and fi-

nally, Section 5 is the conclusion.

2 Related work

Off-line path planning algorithms such as Dijkstra’s algo-

rithm [18] and A* [1, 2] are hard to use for large dynamic

environments because of their time requirements. One solu-

tion is to make off-line algorithms to be incremental [19] to

avoid re-planning from scratch. D* [8, 9], focused D* [10],

and D* Lite [11–13] are some of the well-known optimal

incremental heuristic search algorithms. They are efficient in

most cases, but sometimes a small change in the environment

may cause to re-plan almost a complete path from scratch.

There are also some probabilistic off-line algorithms that

use genetic algorithms [20–22], random trees [23–25] and

probabilistic road-maps [26,27]. Genetic algorithms encode

candidate solution paths as chromosomes and make use of

evolution meta-heuristics to find acceptable solutions. Ran-

dom tree based algorithms search the target in obstacle-free

space in randomly generated trees. Probabilistic road-map al-

gorithms generate connected graphs (road-maps) in obstacle-

free space randomly, and try to connect initial and target

points to the road-map to search paths.

Due to the efficiency problems of off-line techniques, a

number of on-line approaches such as Learning Real-Time

A* (LRTA*), Real-Time A* (RTA*) [4], LRTA*(k) [28],

weighted LRTA*, upper-bounded LRTA* [29], Real-Time

Horizontal A* (RTHA*) [7], Bug [30], Tangent-Bug [31],

Execution Extended Rapidly Exploring Random Trees [32],

Probabilistic Road-maps with Kinodynamic Motion Planner

[33], Navigation Among Movable Obstacles (NAMO) [34]

and Real-Time Adaptive A* [35] are proposed. LRTA* gen-

erates and updates a table containing admissible heuristic

estimates of the distance from any state to the fixed goal

state to reach the target. LRTA* is shown to be convergent

and optimal, but the algorithm is able to find poor solution in

the first run. Being a variation of LRTA*, RTA* gives better

performance in the first run, but is lack of learning optimal

table values. RTA* repeats the steps given in Algorithm 1

until reaching the goal [4].

Algorithm 1. An Iteration of RTA* Algorithm

1: Let x be the current state of the problem solver. Calculate

f (x ′) = h(x ′) + k(x, x ′) for each neighbor x ′ of the cur-

rent state, where h(x ′) is the current heuristic estimate of

the distance from x ′ to a goal state, and k(x, x ′) is the cost

of the move from x to x ′.
2: Move to a neighbor with the minimum f (x ′) value. Ties

are broken randomly.

3: Update the value of h(x) to the second best f (x ′) value.

In its original form, RTA* considers immediate successors

to determine the move and update the current estimate which

is poor to estimate the real cost. It can easily be extended

to have any arbitrary look-ahead depth. Although this im-

provement is shown to reduce the number of moves to reach

the goal significantly, it requires exponential time and is not

practical for large look-ahead depths [16].

Recently, Shimbo and Ishida introduced two LRTA* varia-

tions known as weighted LRTA* and upper-bounded LRTA*

[29] for controlling the amount of effort required to achieve

a short-term goal (to safely arrive at a location in the current

trial) and a long-term goal (to find better solutions through

repeated trials).

Since LRTA*, RTA* and their variations are all limited

to fixed goals, Ishida and Korf proposed another algorithm

called Moving Target Search (MTS) for moving targets [5].

Their algorithm maintains a table that consists of h(x, y) es-

timating the distance between x and y, where x and y are the

positions of the problem solver and the target, respectively.

MTS is a poor algorithm in practice because when the target

moves (i.e., y changes), the learning process has to start all

over again that causes a performance bottleneck.

Tangent-Bug [31], a similar approach to our proposed al-

gorithm, is based on the Bug algorithm [30], and uses vision

information to reach the target. It constructs a local tangent

graph (LTG), a limited visibility graph, in each step consid-

ering the obstacles in the visible set. The sensed obstacles

are modeled as thin walls and assumed to be the only ob-

stacles in the environment. The agent moves to the locally

optimal direction on the current LTG until reaching the target

or detecting a local minimum (when hit an obstacle bound-

ary). If a local minimum is detected, the agent switches to

the boundary following mode, and move along the bound-

ary until the distance to the target starts decreasing. After

leaving the boundary, the agent switches to the first mode

again. Although this approach seems to be similar to ours

in the sense that it moves to locally optimal directions to go

around the nearby obstacles and follows the obstacle bor-

ders, it only considers the obstacles in active visible set, and

Springer

Appl Intell (2007) 27:113–129 115

follows the boundaries while walking. But our approach that

will be described later on can also consider obstacles known

but not currently visible, and border following process is just

performed in the mind of the agent, not physically executed.

In [15, 16], a new on-line path search algorithm, Real-

Time Edge Follow (RTEF), is proposed for grid-type environ-

ments. RTEF uses a new heuristic, Real-Time Edge Follow

Alternative Reduction Method (RTEF-ARM), which effec-

tively makes use of global environmental information. With

this heuristic, the agent can detect closed directions (the di-

rections that cannot reach the target) using the perceptual

data and the tentative map he/she discovered, and determine

his/her next move from the open directions. In the follow-

ing section we give a compact description of RTEF as our

method proposed in this paper is build upon RTEF.

2.1 Real-time edge follow

RTEF aims to search a path from an initial location to a static

or dynamic target in real-time. The basic idea behind the

algorithm is to eliminate the closed directions that cannot

reach the target point. RTEF executes the steps shown in

Algorithm 2 until reaching the target or determining that

the target is unreachable. RTEF internally uses the heuristic

method, RTEF-ARM, to find out open and closed directions

and hence to eliminate non-beneficial movement alternatives.

To avoid infinite loops and re-visiting the same locations

redundantly, RTEF either uses visit count or history, or both.

The algorithm maintains the number of visits, visit count,
to the grid cells. The agent moves to one of the neighbor

cells in open directions with minimum visit count. If there

exists more than one cell having minimum visit count, the

one with the minimum Euclidian distance to the target is

selected. If Euclidian distances are also the same, then one

of them is selected randomly. The set of previously visited

cells forms the history of the agent. History cells are treated as

obstacles. If the agent discovers a new obstacle and realizes

that the target became inaccessible due to history cells, the

agent clears the history to be able to backtrack.

Algorithm 2. An Iteration of RTEF Algorithm

1: Call RTEF-ARM to determine the set of open

directions

2: if Number of open directions > 0 then
3: Select the best direction from open directions with

the smallest visit count using Euclidian distance.

4: Move to the selected direction.

5: Increment the visit count of previous cell by one.

6: Insert the previous cell into the history.

7: else
8: if The history is not empty then
9: Clear all the history

10: Jump to 1

11: else
12: Destination is unreachable, stop search with

failure.

13: endif
14: endif

Every obstacle either fully or partially known has a bound-

ary, which is actually a sequence of connected edges shaping

the obstacle [16]. RTEF-ARM sends four rays away from the

agent in diagonal directions. The region between two adja-

cent rays forms a possible moving direction for the agent.

Hence, the agent has four moving directions (north, south,

east and west). RTEF-ARM extracts the border of each ob-

stacle hit by any ray and then analyzes the so-called regions

to determine open and closed moving directions, as summa-

rized in Algorithm 3.

Algorithm 3. RTEF-ARM Algorithm

1: Mark all moving directions as open.

2: Propagate four diagonal rays.

3: for each ray hitting an obstacle do
4: Trace the edges of the obstacle starting from the

hit-point of the ray and moving to left, extract

the border of the obstacle, and find out an island

and an hit-point-island if exists.

5: Analyze the edges using the island, hit-point-island

and the target, and detect closed directions.

6: If number of open directions is zero, stop with

failure (target is unreachable).

7: end for

In RTEF-ARM, four diagonal rays splitting north, south,

east and west directions are propagated away from the agent

as shown in Fig. 1. The rays go away from the agent until

hitting an obstacle or maximum ray distance is achieved.

Fig. 1 Sending rays to split north, south, east and west directions

Springer

116 Appl Intell (2007) 27:113–129

Fig. 2 Identifying the obstacle boundary

Fig. 3 Island types: outwards facing (left), inwards facing (right)

Four rays split the area around the agent into four regions. A

region is said to be closed if the target is inaccessible from

any cell in that region. If all the regions are closed then the

target is unreachable from the current location. To detect

closed regions, the boundaries of obstacles that the rays hit

are analyzed. If the edges on the boundary of an obstacle are

traced by going towards left side starting from a hit-point,

we always return to the same point as illustrated in Fig. 2.

By following the edges of an obstacle hit by the ray to

the left and returning to the same starting point, a polygonal

area is formed as the boundary of the obstacle. We call this

polygonal area an island (stored as a list of vertices forming

the boundary of the obstacle). As shown in Fig. 3, there are

two kinds of islands: outwards-facing and inwards-facing
islands. The target is unreachable from agent location if it is

inside an outwards-facing island or outside an inwards-facing

island.

It is possible that more than one ray can hit the same

obstacle. As illustrated in Fig. 4, an augmented polygonal

area called hit-point-island is formed when we reach the hit-

point of another ray on the same obstacle while following the

edges. A hit-point-island borders one or more agent moving

directions. If the target point is not inside the hit-point-island,

all the directions that are bordered by the hit-point-island are

closed; otherwise (the target is inside the hit-point-island) all

the directions not bordered by the hit-point-island are closed;

this is illustrated in Fig. 5.

Fig. 4 Two rays hitting the same obstacle at two different points form
a hit-point island

Fig. 5 Analyzing hit-point islands and eliminating moving directions

Islands and hit-point-islands are stored as vertex lists and

passed to the closed direction determination step shown in

Algorithm 4. Note that function isInside(x,y,p) re-

turns true if coordinates (x, y) is inside polygon p and func-

tion isClockwise (p) returns true if the vertices of

polygon p is ordered in clockwise direction (i.e., if polygon

p is outwards facing with respect to the agent)

Algorithm 4. Determining Closed Directions

Require: (x, y) : coordinates of the target,

Require: i : the list of vertices forming the island border,

Require: h : the list of vertices forming the hit-point-island

border,

1: if isClockwise(i) = isInside(x, y, i) then
2: Close the entire directions (the target is

unreachable)

3: else if |h| > 0 then
4: if isInside(x, y, h) then
5: if isClockwise(h) then
6: Close the directions between 1st and 2nd

hit-points on i in counter clockwise

direction

7: else
8: Close the directions between 1st and 2nd

hit-points on i in clockwise direction

9: end if
10: else
11: if isClockwise(h) then
12: Close the directions between 1st and 2nd

hit-points on i in clockwise direction

13: else
14: Close the directions between 1st and 2nd

hit-points on i in counter clockwise

direction

15: end if
16: end if
17: end if

3 Real-time target evaluation search

Agents that use less informed heuristics such as Euclidian

distance cannot precisely evaluate the cost differences of

Springer

Appl Intell (2007) 27:113–129 117

Fig. 6 RTEF can detect which directions are open, but cannot evaluate
the cost differences successfully just using Euclidian distance heuristic

neighbor states and hence usually make wrong decisions in

selecting their next moves towards the target. Although RTEF

attempts to solve this problem to some extend by detecting

closed directions correctly, it is also poor in estimating real

cost because it uses Euclidian distance heuristic to select the

moving direction from open ones. Figure 6 shows the route

an agent follows guided by RTEF. Initially the agent has two

open (north and south) directions. Due to the Euclidian dis-

tance heuristic, the agent prefers the north direction leading

to a very long route to the target. If the agent had selected

to move south, the route would have been much shorter. The

problem of determining the right moving direction from open

alternatives is the motivation behind RTTES algorithm.

RTTES makes use of a heuristic (RTTE) which analyzes

obstacles and proposes a moving direction that avoids these

obstacles and leads to the target through shorter paths. To do

this, RTTE geometrically analyzes the obstacles nearby, tries

to estimate the lengths of paths around obstacles to reach the

target and proposes a moving direction. RTTE works in con-

tinuous space to identify the moving direction which is then

mapped to one of the actual moving directions (north, south,

east and west). The effectiveness of RTTES is illustrated on

the previous example in Fig. 7. Here, RTTE identifies three

Fig. 7 RTTES chooses inner right most direction because it seems to
be the shortest of all (not optimally computed)

possible moving directions, and evaluated that the middle

one (which we name as the inner right most direction) is

approximately the shortest.

We assume that the environment is a rectangular planar

grid which is partially known by the agent. The agent located

at a particular cell is required to reach a target cell avoiding

obstacles in real-time. The agent is able to move north, south,

east or west in each step. The agent has limited perception and

maintains a tentative map containing obstacles in its mem-

ory as he/she explores the environment. Therefore, when we

say an obstacle, we refer to the known part of that obstacle.

RTTES repeats the steps in Algorithm 5 until reaching the

target or detecting that the target is inaccessible. In the first

step, RTTES calls RTTE heuristic function given in Algo-

rithm 6 which returns a moving direction and the utilities

of neighbor cells according to that proposed direction. Next,

among the four possible cells RTTES selects the non-obstacle

cell with highest utility and lowest visit count, if there exists

one. If not, RTTES attempts to clear history similar to RTEF

algorithm.

Algorithm 5. RTTES Algorithm

1: Call RTTE to compute the proposed direction and the

utilities of neighbor cells.

2: if a direction is proposed by RTTE then
3: Select the neighbor cell with the highest utility

from the set of non-obstacle neighbors with the

smallest visit count.

4: Move to the selected direction.

5: Increment the visit count of previous cell by one.

6: Insert the previous cell into the history.

7: else
8: if History is not empty then
9: Clear all the History.

10: Jump to 1

11: else
12: Destination is unreachable, stop the search with

failure.

13: end if
14: end if

Although, Algorithm 5 can handle moving targets, we

can still have some improvements for better performance.

A moving target may sometimes come to points the agent

previously walked through, and the history or visit count

may prevent agent to aim the target through shortcuts. To

solve this side effect, the agent should clear all the history

and visit counts when he/she observes that the target moves

into a cell which appears in the history or into a cell with

none-zero visit count.

Springer

118 Appl Intell (2007) 27:113–129

Algorithm 6. RTTE Algorithm

1: Mark all the moving directions as open.

2: Propagate four diagonal rays.

3: for each ray hitting an obstacle do
4: Trace and extract the border of the obstacle.

5: Analyze the border by re-tracing it from left and

right sides.

6: Detect closed directions.

7: Evaluate results and determine a direction to avoid

obstacle.

8: end for
9: Merge individual results, propose a direction to move,

and compute utilities of neighbor cells.

RTTE propagates four diagonal rays away from the agent

location, and analyzes the obstacles these rays hit to find out

the best direction to move. If a ray hits an obstacle before

exceeding the maximum ray distance, the obstacle border

is extracted by tracing cells on the border starting from the

hit-point. Concurrently, we also find the point on the border

which is closest to the target. This point will be used in calcu-

lating the estimated path lengths. Next, the border is re-traced

from both left and right sides to determine the additional geo-

metric features that will be described in the next section. Then

the closed directions are determined. The obstacle features

are evaluated and a moving direction to avoid the obstacle

is identified. After all the obstacles are evaluated, the results

are merged in order to propose a final moving direction.

In RTTE, ray sending, border extraction and closed direc-

tion detection steps are the same as RTEF-ARM. Addition-

ally, RTTE performs three more steps shown in lines 5, 7 and

9 for extracting additional geometric features and estimating

the moving direction that minimizes the path to the target.

Details of these steps are given in the following sub-sections.

3.1 Analyzing an obstacle border

When a ray hits an obstacle, its border is extracted and

analyzed. Border analysis is done by tracing the border of

an obstacle from left and right. In left analysis, the known

border of the obstacle is traced edge by edge towards the left

starting from the hit point, making a complete tour around

the obstacle border. During the process, several geometric

features of the obstacle are extracted. These features are

described below (See Fig. 8 for illustrations):

Definition 1. Obstacle features� Outer left most direction: Relative to the ray direction, the

largest cumulative angle is found during the left tour on

the border vertices. In each step of the trace, we move

Fig. 8 Outer left most and inner left most directions (left-top), In-
side of left (right-top), Inside of inner left (left-middle), Behind of left
(right-middle), Outer-left-zero angle blocking and Inner-left-zero angle
blocking (bottom)

from one edge vertex to another on the border. The angle

between the two lines (TWLNS) starting from the agent

location and passing through these two following vertices

is added to the cumulative angle computed so far. Note that

the added amount can be positive or negative depending on

whether we move in counter-clockwise (ccw) or clockwise

(cw) order, respectively. This trace (including the trace for

the other geometric features) continues until the sum of the

largest cumulative angle and the absolute value of smallest

cumulative angle is greater than or equal to 360. The largest

cumulative angle before the last step of trace is used as the

outer left most direction.� Inner left most direction: The direction with the largest

cumulative angle encountered during the left tour until

reaching the first edge vertex where the angle increment

is negative and the target lies between TWLNS. If such a

situation is not encountered, the direction is assumed to be

0 + ε, where ε is a very small number (e.g., 0.01).� Inside of left: True if the target is inside the polygon whose

vertices starts at agent’s location, jumps to the outer left
most point, follows the border of the obstacle to the right

and ends at the hit point of the ray.� Inside of inner left: True if the target is inside the polygon

that starts at agent’s location, jumps to the inner left most

Springer

Appl Intell (2007) 27:113–129 119

Fig. 9 Left alternative point

point, follows the border of the obstacle to the right and

ends at the hit point of the ray.� Behind of left: True if the target is in the region obtained

by sweeping the angle from the ray direction to the outer
left most direction in ccw order and the target is not inside

of left.� Outer-left-zero angle blocking: True if target is in the re-

gion obtained by sweeping the angle from the ray direction

to the outer left most direction in ccw order.� Inner-left-zero angle blocking: True if target is in the region

obtained by sweeping the angle from the ray direction to

the inner left most direction in ccw order.

In right analysis, the border of the obstacle is traced to-

wards the right side and the same geometric properties listed

above but now symmetric ones are identified. In the right

analysis, additionally the following feature is extracted:� Left alternative point: The last vertex in the outer left most
direction encountered during the right tour until the outer
right most direction is determined (See Fig. 9).

3.2 Evaluating individual results

In this phase, if an obstacle blocks the line of sight from

the agent to the target, we determine a direction to move

avoiding the obstacle to reach the target through a shorter

path. In addition, the length of the path through the moving

direction to the target is estimated. In the evaluation phase,

the following features are used in addition to all the acquired

geometric obstacle features given in Definition 1.

Definition 2. Estimated Target Distances� dleft: The approximated distance, which is computed by

finding the length of the path which starts from the agent

location, jumps to the outer left most point, and then follows

the border of the obstacle from left side until reaching the

nearest point to the target on the border, and finally jumps

to the target (See Fig. 10).� dleft.alter: The approximated distance, which is computed by

finding the length of the path which starts from the agent

location, jumps to the outer right most point, and then to

the outer left most point, follows the border of the obstacle

from left side until reaching the nearest point to the target

on the border, and finally jumps to the target (See Fig. 11).� dleft.inner: The approximated distance, which is computed

by finding the length of the path which starts from the

agent location, continues with the inner left most point,
and finally jumps to the target (See Fig. 12).

Algorithm 7. Evaluation Phase

1: if (behind of left and not inside of right) or (behind of
right and not inside of left) then

2: {Case 1}
3: if outer left most angle + outer right most angle

≥ 360 then
4: {Case 1.1}
5: if distance from agent to outer left most point is

smaller than distance from agent to left
alternative point then

6: {Case 1.1.1} Assign estimated distance as

min(dleft, dright.alter) and propose outer
left most direction as moving direction

7: else
8: {Case 1.1.2} Assign estimated distance as

min(dleft.alter, dright) and propose outer
right most direction as moving direction

9: end if
10: else
11: {Case 1.2}
12: if dleft < dright then
13: {Case 1.2.1} Assign estimated distance as

dleft and propose outer left most direction
as moving direction

14: else
15: {Case 1.2.2} Assign estimated distance as

dright and propose outer right most
direction as moving direction

16: end if
17: end if
18: Mark obstacle as blocking the target

19: else if behind of left then
20: {Case 2}
21: if Target direction angle �= 0 and outer-right-zero

angle blocking then
22: {Case 2.1} Assign estimated distance as dleft

and propose outer left most direction as

moving direction

23: else
24: {Case 2.2} Assign estimated distance as

dright.inner and propose inner right most
direction as moving direction

25: end if

Springer

120 Appl Intell (2007) 27:113–129

26: Mark obstacle as blocking the target

27: else if behind of right then
28: {Case 3}
29: if Target direction angle �= 0 and outer-left-zero

angle blocking then
30: {Case 3.1} Assign estimated distance as dright

and propose outer right most direction as

moving direction

31: else
32: {Case 3.2} Assign estimated distance as

dleft.inner and propose inner left most
direction as moving direction

33: end if
34: Mark obstacle as blocking the target

35: else
36: {Case 4}
37: if (inside of left and not inside of right) and (inner-

left-zero angle blocking and not inside of inner
left) then

38: {Case 4.1} Assign estimated distance as

dleft.inner and propose inner left most
direction as moving direction

39: Mark obstacle as blocking the target

40: else if (inside of right and not inside of left) and

(inner-right-zero angle blocking and not inside
of inner right) then

41: {Case 4.2} Assign estimated distance as

dright.inner and propose inner right most
direction as moving direction

42: Mark obstacle as blocking the target

43: end if
44: end if

The estimated target distances over right side of the ob-

stacle are similar to those over left side of the obstacle, and

computed symmetrically (the terms left and right are inter-

changed in Definition 2). So, we have additional estimated

target distances dright , dright.alter and dright.inner .

The evaluation procedure given in Algorithm 7 is executed

for each obstacle (line 7 in Algorithm 6). The algorithm may

propose a single moving direction that avoids a single obsta-

cle, or may not propose any direction at all. In the algorithm,

Fig. 10 Exemplified distance estimation from agent to target over outer
left most point

Fig. 11 Exemplified distance estimation from agent to target over left
alternative point

Fig. 12 Exemplified distance estimation from agent to target over inner
left most point

Fig. 13 Case 1: Target is behind of left region and not inside of right
region (means not inside of the overlap area of behind of left and inside
of right regions)

lets consider four top-level if-conditions in lines 1, 20, 29

and 38, which correspond to Cases 1, 2, 3 and 4 respectively.

The algorithm enters Case 1 only if the target is certainly

behind the obstacle and the target can be reached by either

going around the obstacle through the outer left most point or

the outer right most point. The if-condition preceding Case
1 consists of two disjuncted sub-conditions. The first one,

“behind of left and not inside of right”, is satisfied when the

target is behind the left side of the obstacle and we are sure

that we cannot go to the target from the inner right region

since the target is not inside of right. Hence, we need to go

around the obstacle to reach the target. This case is exempli-

fied in Fig. 13. The second sub-condition is symmetric to the

first one.

Springer

Appl Intell (2007) 27:113–129 121

Fig. 14 Case 1.1.1: Since outer left most angle + outer right most
angle ≥ 360 and outer left most point is nearer to the agent than left
alternative point, the outer left most direction will be proposed

Fig. 15 Case 1.1.2: Since outer left most angle + outer right most
angle ≥ 360 and left alternative point is nearer to the agent than outer
left most point, the outer right most direction will be proposed

Case 1 has two second-level if-conditions in lines 2 and

10, which cover Case 1.1 and Case 1.2 respectively. The

if-condition preceding Case 1.1 checks if the sum of the outer
left most angle and the outer right most angle is greater or

equal to 360 degree. The condition is satisfied if the swept

angles from left and right to opposite orientations meet each

other and some angle overlap occurs. This means that the

agent is surrounded by the obstacle in all directions, the target

is outside, and the agent needs to go out from the nearest exit.

In this case, if the nearest exit is determined as the corner of

the outer left most edge, Case 1.1.1 otherwise Case 1.1.2 is

executed. The cases are illustrated in Figs. 14 and 15. If the

if-condition preceding Case 1.1 is not satisfied, Case 1.2 is

executed, which means there is no angle overlap and the agent

is only surrounded by the obstacle in some directions but not

all. In this case, the edge minimizing the route distance to the

target is determined, and either Case 1.2.1 or Case 1.2.2 is

executed depending on the value of dleft and dright . This case

is exemplified in Fig. 16.

The algorithm enters Case 2 only if the target is certainly

blocked by the obstacle, and the target can be reached by

going through either the corner of the outer left most edge
or the inner right most edge. In such a case, there are two

possible regions the target can be located in. The first one

handled in Case 2.1 is between the outer left most edge and

Fig. 16 Case 1.2.1: Since outer left most angle + outer right most angle
< 360 and the estimated path length to the target through the outer left
most point is shorter than the right one, the outer left most direction
will be proposed

Fig. 17 Case 2.1: Since the target is at the direction that falls into the
overlap angle, the outer left most direction will be proposed

Fig. 18 Case 2.2: Since the target is not at the direction that falls into
the overlap angle, the inner right most direction will be proposed

the outer right most edge (see Fig. 17), and the target inside

that region can be reached by going through the corner of the

outer left most edge. The second one handled in Case 2.2 lies

in the inner part of the obstacle (see Fig. 18), and the target

inside this region can be reached by going through the corner

of the inner right most edge. We will not go into the details

of Case 3 since it is symmetric to Case 2.

The algorithm enters Case 4 if none of the previous top-

level if-conditions are satisfied. Case 4 has two second-level

if-conditions in lines 39 and 43, which cover Case 4.1 and

Case 4.2 respectively. The if-condition preceding Case 4.1

Springer

122 Appl Intell (2007) 27:113–129

Fig. 19 Case 4.1: Since target is inside of left region, but not right, and
inner-left-zero angle blocking and not inside of inner left, the inner left
most direction will be proposed

consists of two conjuncted sub-conditions. The first one, “in-
side of left and not inside of right”, is satisfied when the target

is inside of the left but not right region, thus we are sure that

we need to enter the left region but we don’t know yet if

the flying direction is feasible. The second sub-condition,

“inner-left-zero angle blocking and not inside of inner left”,

is satisfied if the target is behind the inner left most edge,

thus the flying direction is not feasible. If both sub-conditions

hold, we known that the agent needs to enter the left region

through the corner of the inner left most edge. This case is

illustrated in Fig. 19. We will not examine Case 4.2 since it

is also symmetric to Case 4.1.

If none of the above conditions are satisfied, the algorithm

does not propose any moving direction meaning the flying

direction may still be a feasible choice to move.

3.3 Merging entire results

In the merging phase, the evaluation results (moving direc-

tion and estimated distance pairs) for all obstacles are used

to determine a final moving direction to reach the target. The

proposed direction will be passed to RTTES algorithm (Al-

gorithm 5) for final decision. The merging algorithm is given

in Algorithm 8.

Algorithm 8. Merging Phase

1: if all the directions to neighbor cells are closed then
2: propose no moving direction and halt with failure

3: end if
4: Select the obstacle (most constraining obstacle) that

is marked as blocking the target and maximize the

distance to the target, if there exists one

5: if most constraining obstacle exists then
6: identify a moving direction that gets around the

most constraining obstacle avoiding the

remaining obstacles

7: else

8: select the moving direction as the direct flying

direction to the target

9: end if
{Compute utility of each neighbor cell}

10: for each neighbor cell do
11: if direction of the neighbor cell is closed then
12: set utility to zero

13: else
14: set utility to (181 − di f)/181, where di f is

smallest angle between the proposed moving

direction and the direction of the neighbor cell

15: end if
16: end for

The most critical step of the algorithm is to compute the

moving direction to get around the most constraining ob-
stacle. The reason why we determine the moving direction

based on the most constraining obstacle is the fact that it

might be blocking the target the most. We aim to get around

the most constraining obstacle and to do this we have to reach

its border. In case there are some other obstacles on the way

to the most constraining obstacle, we need to avoid them and

determine the moving direction accordingly. Our algorithm

works even if we ignore the intervening obstacles but we

employ the following technique in order to improve solution

quality with respect to path length.

Let the final direction to be proposed by the algorithm

considering ray r be pdr . Initially pdr is set to the direction

dictated by the most constraining obstacle or hit by ray r .

Assume that pdr is computed in the left tour. Note that the

pdr was determined during the counter clockwise (ccw) tour

started from the hit point of ray r . If pdr is blocked by some

obstacles, pdr can be changed by sweeping pdr in clock-

wise direction until pdr is not blocked by any obstacle or

pdr becomes the direction of ray r . By definition, we know

that r is guaranteed to reach the border of obstacle or before

hitting any other obstacle. In order to determine intervening

obstacles, we check obstacles (not equal to or) hit by the

other rays fall into ccw angle between r and pdr . If an ob-

stacle os hit by ray s has outer left most direction outside

ccw angle between ray s and pdr , and has outer right most
direction inside ccw angle between r and s, then the obsta-

cle os blocks pdr and proposed direction should be swept

to outer left most direction of obstacle os . Using this infor-

mation we compute the direction nearest to pdr between r
and pdr and not blocked by the intervening obstacles. The

method is exemplified in Fig. 20. The similar mechanism

is also used to compute the proposed direction for pdr de-

tected in the right tour, but this time, left/right and ccw/cw are

interchanged.

Springer

Appl Intell (2007) 27:113–129 123

Fig. 20 An example of avoiding the intervening obstacles

3.4 Analysis of the algorithm

In this section we give the computational complexity of our

algorithm and its proof of correctness.

In each move, RTTE performs steps similar to RTEF. In

RTTE, the number of passes over obstacle borders is greater

than that of RTEF and in each pass more time is consumed. As

a result, at each step RTTES is slower than RTEF. Although

the RTEF seems to be more efficient than RTTE, its worst case

complexity is the same as that of RTEF, which is O(w.h) per

step, where w is the width and h is the height of the grid [16].

Since increasing the grid size decreases the efficiency, a

search depth (d) can be introduced similar to RTEF in order

to limit the worst case complexity of RTTE. A search depth is

a rectangular area of size (2d + 1)·(2d + 1) centered at agent

location, which makes the algorithm treat the cells beyond the

rectangle as non-obstacle. With this limitation, complexity of

RTTE becomes O(d2) per step [16].

A single iteration of RTTES given in Algorithm 5 is sim-

ilar to RTEF shown in Algorithm 2, which is proved to be

correct [16]. It uses visit count and history to prevent infi-

nite loops, which is the same as RTEF. The difference is in

the selection of moving directions. RTEF selects an open di-

rection minimizing the Euclidian distance to the target; on

the other hand RTTES selects an open direction maximizing

the utility computed by RTTE heuristic which measures the

actual distance to the target more precisely than Euclidian

distance. The algorithm is complete in the sense that if the

target is accessible, the agent will surely find his/her way to

the target without entering any infinite loop.

4 Performance analysis

In this section, we present the results of the comparisons

of RTTES, RTEF and RTA* on randomly generated sample

grids of size 200 × 200. We used RTTES and RTEF with two

variations: the first one uses visit count (VC), the second one

uses both visit count and history (VCH) to prevent infinite

Fig. 21 A random grid (left), a maze grid (middle), a U-type grid (right)

loops. Thus, we present performance of algorithms RTA*,

RTEF-VC, RTEF-VCH, RTTES-VC and RTTES-VCH.

We used grids of three different types: random, maze and

U-type (see Fig. 21). Three random grids were generated

randomly based on different obstacle ratios (30%, 35% and

40%). Nine maze grids were produced with the constraint that

every two non-obstacle cells are always connected through

a path, which is usually one. Two parameters, obstacle ratio

(30%, 50% and 70%) and corridor size (1, 2 and 4 cell cor-

ridors) were used to produce mazes. Four U-type grids were

created by randomly putting U-shaped obstacles of random

sizes on an empty grid. We took into consideration the num-

ber of U-type obstacles (30, 50, 70 and 90), minimum and

maximum sizes of U-shaped obstacles (between 5 and 50

cell sizes) to create U-type grids. For each grid, we produced

10 different randomly generated agent-target location pairs

taken on opposite sides of the grid, and made all the algo-

rithms use the same pairs for fairness.

In our experiments, we assumed that the agent perceives

the environment up to a limit, which is called vision range
(v). Being at its center, the agent can only sense cells within

the rectangular area of size (2v + 1)·(2v + 1). We used the

statement infinite vision to emphasize that the agent has un-

limited sensing capability and knows the entire grid world

before the search starts. Our tests are performed with the

vision ranges 10, 20, 40 and infinite cells and with search

depths 10, 20, 40, 80 and infinite cells to limit the worst case

complexity of RTEF and RTTES.

4.1 Analysis of path lengths

In order to compare the solution path lengths of algorithms

RTA*, RTEF and RTTES, we used 16 grid worlds with 4 dif-

ferent vision ranges (10, 20, 40, infinite) and with 5 different

search depths (10, 20, 40, 80, infinite), totally making 320

test configurations. For each configuration, we performed 10

runs per algorithm totally making 16000 runs. As a result,

we observed that RTTES-VCH performs significantly better

than the other algorithms. The average of path length results

of maze, random and U-type grids are given in Fig. 22.

Later on, we split the test runs into seven categories: maze

grids with 30%, 50% and 70% obstacles, random grids with

30%, 35% and 40% obstacles, and U-type grids, and evalu-

ated the results with respect to vision range and search depth.

Springer

124 Appl Intell (2007) 27:113–129

Fig. 22 Average of path length results of maze, random and U-type
grids for increasing visual ranges (top) and search depths (bottom)

In some of the charts shown in the following sections,

increasing the vision range or search depth does not always

improve the solution. This problem usually appears because

of the characteristic of the grid, the misleading changes in

the shape of the grid known by the agent or stopping the

search at an immature depth guiding a local optimal. When

the agent choices a wrong alternative on a critical decision

point, the rest of the search is significantly affected (for more

information, see [36] and [16]).

4.1.1 Effect of vision range

The charts in Figs. 23, 24, and 25 present the effect of vision

range on path lengths in maze, random and U-type grids,

respectively. The horizontal axis is the vision range (10, 20,

40 and infinite) and the vertical axis contains the ratio of im-

provement in the path length with respect to RTA* (the path

length of RTA* divided by that of the compared algorithm).

Note that the ratio is always 1 for RTA*.

According to the results, we observe that increasing vision

range improves the performance, which is not too steep. Es-

pecially, in random grids it is almost ineffective since ob-

stacles are not very large. When we order the algorithms

according to their performance, we see that RTTES-VCH is

the best, RTA* is the worst and RTEF-VC is the second worst

all the time. For RTTES-VC and RTEF-VCH, there is no ob-

vious ordering since results change depending on the grid

type. Although RTTES-VC is powered by a precise distance

estimation heuristic, it does not use the history and hence

its performance decreases in grids with very high obstacle

ratios. As a result RTTES-VC performs worse than RTEF-

VCH in maze grids with 50% obstacles and random grids

with 40% obstacles. But in other grid types, RTTES-VC is

either better than RTEF-VCH or head to head.

Fig. 23 Path length results of maze grids with 30% (top), 50% (middle)
and 70% (bottom) obstacle ratios for increasing vision ranges

Fig. 24 Path length results of random grids with 30% (top), 35% (mid-
dle) and 40% (bottom) obstacle ratios for increasing vision ranges

Springer

Appl Intell (2007) 27:113–129 125

Fig. 25 Path length results of U-Type grids for increasing vision ranges

Fig. 26 Path length results of maze grids with 30% (top), 50% (middle)
and 70% (bottom) obstacle ratios

4.1.2 Effect of search depth

The Figs. 26, 27, and 28 show the effect of search depth on

path lengths in maze, random and U-type grids, respectively.

The horizontal axis is the search depths (10, 20, 40, 80 and in-

finite) and the vertical axis contains the ratio of improvement

in the path length with respect to RTA* again.

The results show that RTEF and RTTES are more sensi-

tive to the search depth change than the vision range change,

especially the RTTES since limited search depth crops the

obstacle borders, which may mislead the distance estimation

procedure of RTTE heuristic. According to the outcomes,

the scene seems to be almost the same as the previous one.

RTTES-VCH is the best again, RTA* and RTEF-VC are

the worst, RTTES-VC and RTEF-VCH are competing each

other.

Fig. 27 Path length results of random grids with 30% (top), 35% (mid-
dle) and 40% (bottom) obstacle ratios

Fig. 28 Path length results of U-Type grids

There is one important conclusion that can be drawn from

the charts. The path length of RTTES-VCH with 80 and in-

finite search depths are almost the same. However, with 80

search depth, the number of moves executed per second is

about 2.18 times higher on maze grids, 2.02 times higher on

random grids and 1.58 times higher on U-type grids, which

is given next.

4.2 Analysis of execution times

To compare the execution times of the algorithms, we used

the same test configurations and runs mentioned before, and

evaluated the results of 16000 runs for different search depths

and grid types. We examined the results in two categories:

Springer

126 Appl Intell (2007) 27:113–129

Table 1 Average number of moves per second in maze
grids

Search depth 10-c 20-c 40-c 80-c INF-c

maze grids with 30% obstacles

RTA* 3048 3048 3048 3048 3048

RTEF-VC 2358 1945 1576 1296 1071

RTEF-VCH 1767 1140 609 280 158

RTTES-VC 1602 1135 886 745 567

RTTES-VCH 1009 550 285 137 79

maze grids with 50% obstacles

RTA* 3113 3113 3113 3113 3113

RTEF-VC 1991 1091 298 58 12

RTEF-VCH 1485 671 159 41 19

RTTES-VC 1085 450 132 27 6

RTTES-VCH 702 272 73 22 9

maze grids with 70% obstacles

RTA* 3134 3134 3134 3134 3134

RTEF-VC 2091 1277 403 85 17

RTEF-VCH 1631 834 238 59 27

RTTES-VC 1160 542 171 41 9

RTTES-VCH 781 331 102 33 14

step and total execution times. The results are presented in

the following sub-sections.

4.2.1 Number of moves per second

In this section, we present the step execution performance

of RTA*, RTEF and RTTES, which were run on a Centrino

1.5 GHz laptop. In Tables 1–3, the average number of moves

executed per second in maze, random and U-type grids can

be seen. The rows of the tables are representing the compared

algorithms and the columns are for the search depths.

RTA* is the most efficient algorithm, which performs

about 3046 moves/sec and has almost constant step execu-

tion time. The second place is for RTEF-VC, and it performs

about 613 moves/sec with infinite search depth and 2242

moves/sec with 10 search depth. The third place is shared

by RTEF-VCH and RTTES-VC. Using infinite search depth,

RTTES-VC shows better performance with 348 moves/sec

versus 115 moves/sec; and using 10 search depth, RTEF-VC

performs better with 1627 moves/sec versus 1405 moves/sec.

And finally, RTTES-VCH gets the last place since its com-

putational cost is high. RTTES-VCH executes 54 moves/sec

using infinite search depth and 845 moves/sec using 10 search

depth.

The execution time performances of RTEF and RTTES

with limited search depth relative to unlimited search depth

are given in Fig. 29. The horizontal axis is the search depths

(10, 20, 40 and 80), and the vertical axis is the execution time

performance (the number of moves per second with limited

Table 2 Average number of moves per second in random
grids

Search depth 10-c 20-c 40-c 80-c INF-c

random grids with 30% obstacles

RTA* 2857 2857 2857 2857 2857

RTEF-VC 2503 2380 2458 2281 1987

RTEF-VCH 1744 1250 854 514 355

RTTES-VC 1707 1585 1526 1434 1378

RTTES-VCH 950 605 379 229 158

random grids with 35% obstacles

RTA* 3005 3005 3005 3005 3005

RTEF-VC 2119 1648 1316 981 617

RTEF-VCH 1401 780 343 138 51

RTTES-VC 1319 874 670 517 285

RTTES-VCH 709 341 135 61 29

random grids with 40% obstacles

RTA* 3093 3093 3093 3093 3093

RTEF-VC 2026 1329 497 160 83

RTEF-VCH 1297 572 133 46 20

RTTES-VC 1108 616 194 71 25

RTTES-VCH 572 223 66 25 10

Table 3 Average number of moves per second in U-type
grids

Search depth 10-c 20-c 40-c 80-c INF-c

RTA* 3075 3075 3075 3075 3075

RTEF-VC 2611 1961 1067 601 507

RTEF-VCH 2068 1374 648 262 177

RTTES-VC 1854 1058 453 219 167

RTTES-VCH 1194 639 290 131 83

search depths divided by that with infinite search depths).

When we compare the effect of search depth on path lengths

and step execution times, we observe that increasing search

depth increases the step execution performance much more

than path lengths.

4.2.2 Total execution times

The total execution time is depended on the total number

of moves performed to reach the target and the time spent

per move. The results are shown in Fig. 30. The horizontal

axis is the search depths (10, 20, 40, 80 and infinite), and the

vertical axis is the ratio of improvement in the total execution

time with respect to RTA* (the total execution time of RTA*

divided by that of the compared algorithm).

The results show that although the step execution of RTEF

and RTTES is highly inefficient compared to RTA*, the total

time spent per run is less in maze and U-type grids since the

path lengths are significantly shorter. In random grids, the

performance of RTEF and RTTES drops much, especially

Springer

Appl Intell (2007) 27:113–129 127

Fig. 29 The step execution performance increase of limited search
depths over infinite search depths on maze (top), random (middle) and
U-Type (bottom) grids

Fig. 30 Total execution time results of maze (top), random (middle)
and U-type (bottom) grids

Table 4 Average ratios of algorithms’ path lengths over optimal path
lengths and their standard deviations

RTA* RTEF-VC RTEF-VCH RTTES-VC RTTES-VCH

maze grids

Avg 30.746 1.967 1.347 1.047 1.044

Std 45.312 2.744 1.219 0.091 0.078

random grids

Avg 10.532 3.577 1.432 1.216 1.197

Std 16.877 3.837 0.388 0.138 0.118

u-type grids

Avg 39.141 10.467 1.903 1.128 1.148

Std 52.222 14.776 0.961 0.178 0.186

all grids

Avg 26.806 5.337 1.561 1.130 1.129

Std 38.137 7.119 0.856 0.136 0.127

with high search depths because random grids are usually

easy for RTA*, thus path length improvements of RTEF and

RTTES are not very significant. The step execution of RTEF

is more efficient than RTTES, and path length reduction with

RTTES is not very large compared to step execution time

increase, therefore total execution times of RTEF usually

seem to be better than RTTES on the average.

4.3 Comparison with optimal solution paths

In the last experiment, we compared the path lengths

of RTEF-VC, RTEF-VCH, RTTES-VC, RTTES-VCH and

RTA* with the optimal ones. We used the off-line path plan-

ning algorithm A*, and generated the optimal paths assuming

that the grids are fully known (infinite vision). We present the

proximity of solutions to the optimal ones in Table 4 com-

puted as the ratio of the algorithms’ path lengths divided by

the optimal path lengths.

The results show that the path lengths of RTTES varia-

tions are only 1.13 times longer than the optimal ones on the

average, whereas those of RTEF-VC, RTEF-VCH and RTA*

are 5.33, 1.56 and 26.80 times longer, respectively. Also, the

standard deviations in path lengths obtained by RTTES algo-

rithms are significantly less than the others. Concerning the

types of grids, we see that the best improvement was obtained

in U-type grids, which was expected due to the weakness of

RTEF in these grids [16].

5 Conclusion

In this paper, we have focused on real-time search for grid-

type problems, and presented an effective heuristic method

(RTTE) and a real-time search algorithm (RTTES) based on

Springer

128 Appl Intell (2007) 27:113–129

Table 5 A breif comparison of RTA*, RTEF and RTTES

RTA* RTA* relies on a user specified heuristic function to

decide next move in each step. Since it is not able to in-

corporate environmental information into its decision, it

always finds longer paths compared to other algorithms.

However, time per move cost is very low (i.e., O(1)). By

using large look-ahead depths, the path lengths can be

made significantly shorter, but it requires exponential

time in the length of look-ahead depth.

RTEF In addition to the user specified heuristic function,

RTEF explores the environment and is able to detect

closed directions correctly. Path lengths are signifi-

cantly reduced compared to RTA*, but the time per

move increases because of additional computational

cost, namely O(w.h) where w and h are width and

height of environment, respectively. However, the com-

plexity of algorithm can be reduced and bounded with

the help of search depth.

RTTES In addition to its capability of identifying closed di-

rections, RTTES is able to analyze the extracted border

information in details to assess which direction to move

is the best. The path lengths are significantly reduced

compared to RTEF and they are very close to optimal

ones in all types of grids. Although the complexity of

the algorithm is the same as RTEF, the time spent per

move is almost doubled since more time consuming

computations are performed. However, in terms of to-

tal time spent, RTEF and RTTES are head to head.

RTTE. We have compared RTTES with RTA* and RTEF with

the help of more than 16000 test runs. A brief comparison of

RTA*, RTEF and RTTES can be found in Table 5.

With respect to path lengths, experimental results showed

that RTTES-VCH is able to make use of environmental in-

formation very successfully to improve the solutions, and

performs the best in all types of grids. The second and third

places are shared by RTTES-VC and RTEF-VCH, which

are usually going head to head. And finally, the forth and

fifth places are owned by RTEF-VC and RTA* respectively.

Concerning the total execution times, we have observed that

although the step execution time of RTA* is low, RTTES and

RTEF perform much better than RTA* in maze and U-type

grids. In random grids, the performance of RTEF and RTTES

drops much, especially with high search depths since effec-

tive usage of environmental information gains less.

We have also seen that RTTES is able to find almost op-

timal path to the target in fully known grids. The results are

only 1.13 times longer than the optimal on the average, and

have standard deviation less than 0.13. This ratio is a sig-

nificant success for a real-time algorithm, which leaves a

very little space for later improvements in all types of grids

with respect to path length. But we think that there are still

some improvements that could be done. In path length com-

putations of dleft, dleft.alter, dright and dright.alter, the algorithm

follows the border of the obstacle from left/right side until

reaching the nearest point to the target on the border. This

process may sometimes lead to over estimation in situations

where the obstacles are concave. Therefore, we are planning

to improve this heuristic as a future work.

References

1. Russell S, Norving P (1995) Artificial intelligence: A modern ap-
proach. Prentice Hall, Inc.

2. Gutmann J, Fukuchi M, Fujita M (2005) Real-time path planning
for humanoid robot navigation. International joint conferance on
artificial intelligence IJCAI-05, pp 1232–1237

3. Knight K (1993) Are many reactive agents better than a few deliber-
ative ones? In: Proceedings of the 10th int’l joint conf. on artificial
intelligence, pp 432–437

4. Korf R (1990) Real-time heuristic search. Artif Intell 42(2–3):189–
211

5. Ishida T, Korf R (1995) Moving target search: a real-time search
for changing goals. IEEE Trans Patt Anal Mach Intell 17(6):97–
109

6. Ishida T (1996) Real-time bidirectional search: coordinated prob-
lem solving in uncertain situations. IEEE Trans Patt Anal Mach
Intell 18(6)

7. Undeger C (2001) Real-time mission planning for virtual human
agents. M.Sc. Thesis in Computer Engineering Department of Mid-
dle East Technical University, 2001

8. Stentz A (1994) Optimal and efficient path planning for partially-
known environments. In: Proceedings of the IEEE international
conference on robotics and automation

9. Mudgal A, Tovey C, Greenberg S, Koenig S (2005) Bounds on
the travel cost of a mars rover prototype search heuristic. SIAM J
Discrete Math 19(2):431–447

10. Stentz A (1995) The focussed D* algorithm for real-time replan-
ning. In: Proceedings of the int’l joint conference on artificial in-
telligence

11. Koenig S, Likhachev M (2002) D* lite. In: Proceedings of the na-
tional conference on artificial intelligence, pp 476–483

12. Koenig S, Likhachev M (2002) Improved fast replanning for robot
navigation in unknown terrain. In: Proceedings of the international
conference on robotics and automation

13. Koenig S, Likhachev M (2005) Fast replanning for navigation in
unknown terrain. IEEE Trans Robo 21(3):354–363

14. Koenig S (2004) A comparison of fast search methods for real-time
situated agents. AAMAS 2004 pp 864–871

15. Undeger C, Polat F, Ipekkan Z (2001) Real-time edge follow: A new
paradigm to real-time path search. In: The proceedings of GAME-
ON

16. Undeger C, Polat F (2007) Real-time edge follow: a real-time path
search approach. IEEE Transaction on Systems, Man and Cyber-
netics, Part C

17. Undeger C, Polat F (2006) Real-time target evaluation search. In:
5th int’l joint conf on autonomous agents and multiagent systems,
pp 332–334

18. Tanenbaum A (1996) Computer networks. Prentice-Hall, Inc.
19. Koenig S, Likhachev M, Liu Y, Furcy D (2004) Incremental heuris-

tic search in artificial intelligence. Artif Intell Magazine
20. Konar A (2000) Artificial intelligence and soft computing: behav-

ioral and cognitive modeling of human brain. CRC Press LLC
21. Michalewicz Z (1986), Genetic algorithms + data structure = evo-

lution programs. Springer-Verlag, New York
22. Sugihara K, Smith J (1997) Genetic algorithms for adaptive plan-

ning of path and trajectory of a mobile robot in 2d terrains. Technical
Report, number ICS-TR-97-04, University of Hawaii, Department
of Information and Computer Sciences

Springer

Appl Intell (2007) 27:113–129 129

23. Cheng P, LaValle SM (2002) Resolution complete rapidly-
exploring random trees. In: Proceedings of IEEE int’l conf on
robotics and automation, pp 267–272

24. LaValle S, Kuffner J (1999) Randomized kinodynamic planning.
In: Proceedings of the IEEE international conference on robotics
and automation (ICRA’99)

25. LaValle SM, Kuffner JJ (2001) Rapidly-exploring random trees:
progress and prospects, ser. Algorithmic and Computational
Robotics: New Directions. A K Peters, Wellesley, MA, pp 293–
308

26. Kavraki L, Latombe J (1998) Probabilistic roadmaps for robot path
planning, ser. In Practical Motion Planning in Robotics: Current
and Future Directions. Addison-Wesley

27. Sanchez G, Ramos F, Frausto J (1999), Locally-optimal path plan-
ning by using probabilistic roadmaps and simulated annealing. In:
Proceedings IASTED robotics and applications international con-
ference

28. Hernndez C, Meseguer P (2005) Lrta*(k). Int’l joint conf on artifi-
cial intelligence IJCAI-05, pp 1238–1243

29. Shimbo M, Ishida T (2003) Controlling the learning process of
real-time heuristic search. Artif Intell 146(1):1–41

30. LVJ, Skewis T (1987) Path-planning strategies for a point mobile
automaton moving amidst unknown obstacles of arbitrary shape.
Algoritmica 2:403–430

31. Kamon I, Rivlin E, Rimon E (1996) A new range-sensor based glob-
ally convergent navigation algorithm for mobile robots. In: Proc of
the IEEE int’l conf on robotics and automation vol. 1, pp 429–
435

32. Bruce J, Veloso M (2002) Real-time randomized path planning for
robot navigation. In: Proceedings of int’l conf on intelligent robots
and systems, pp 2383–2388

33. Hsu D, Kindel R, Latombe J, Rock S (2002) Randomized kinody-
namic motion planning with moving obstacles. Int J Robotics Res
21(3):233–255

34. Stilman M, Kuffner J (2005) Navigation among movable obsta-
cles: Real-time reasoning in complex environments. Int J Humanoid
Robo 2(4):1–24

35. Koenig S, Likhachev M (2006) Real-time adaptive a*. In: 5th int’l
joint conference on autonomous agents and multiagent systems, pp
281–288

36. Hamidzadeh B, Shekhar S (2005) Dynoraii: A real-time path plan-
ning algorithm. Int J Artif Intell Tools 2(1):93–115

Springer

