Input Data Analysis
(Part 2)

Dr.Cagatay UNDEGER

Ogretim Gorevlisi
Bilkent Universitesi Bilgisayar Miihendisligi Boliimii
&

e-mail : cagatay@undeger.com

cagatay@cs.bilkent.edu.tr

Bilgisayar Miihendisligi Béliimii — Bilkent Universitesi — Fall 2008

Input Data Analysis
(Outline)

«  Simulation Input Modeling
* Input Data Collection
— Data Collection Problems
— Practical Suggestions
—  Effect of Period of Time
* Input Modeling Strategy
Histograms
Probability Distributions
Selecting a Probability Distribution
Evaluating Goodness of Fit




Input Data Analysis

A valid simulation model involves:
— Real-world system under consideration
Real-World System
— A theoretical model of the system
Simulation Model
— Computer-based representation of the model

Simulation Program
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Simulation Input Modeling

Real-World Process

Data Collection (Sampling)

Input Modeling Theory Sample Data Simulation

Input
Modeling Resources Modeling

Input Modeling Strategy

Random Input Model

Data Collection

* Most difficult aspect of simulation input
modeling is;
— Gathering data of sufficient;
* Quality,
 Quantity, and
* Variety
— In order to perform a reasonable analysis.




Data Collection Problems

« Sampled data may include:
— Randomness, and
— Annoyances.

Sources of Annoyance

Data recorded in an order rather than in
which it was observed.

Data recorded with insufficient precision or
rounded to the closest integer.

Data recorded with obviously erroneous
values.

Data recorded with insufficient information
(meta-data) about the data.

Data grouped into intervals (e.g. histograms).




Practical Suggestions

Collect between 100-200 observations.

— Less will have noticeable effects.

— More will not gain much.

For real values, record them with high precision.

When interested in interval times, record event
times and later calculate interval times.

If there is any suspicion that real-world process
depends on time of day or day of week, collect a
number of samples from different time periods.

Effect of Period of Time

* Many process related with human activities
are not stable even within small time periods.

For example, arrivals rates in airports,
restaurants, banks will be significantly effected
by time of day.

Period of time may not be important if we are
interested in a small portion of time period
(e.g. worst case scenario for times having
peak demans).




Effect of Period of Time

* If period of time is significant;
— Collect data from a whole range of different
time periods,
— Examine data collected, and
— Divide data into intervals for different time
periods if required.

frequency T4 5

time of day
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Input Modeling Strategy

Examine the available data in details
— Detect any problems in collected data
— Correct the problems if required
— Familier yourself with the shape of the data
* Divide data into time intervals if required
* Prepare histograms
* Prepare cummulative probability distributions

Determine alternative probability distributions that are
possible to fit the data

Fit alternative probability distribution to data
Evaluate goodness of fit
Select a probability distribution to represent data




Histograms

A graphical display of tabulated frequencies (a set
of data intervals & sample counts for them).

» Data samples are commonly represented as times
for occurance of some events or completion of a
process.

Failure times :
Repair times Interval width

count Arrival times (e.g. 2 minutes)
Service times

Detection times / Number of intervals
(e.g. 9 intervals)

Starting point

(e.g. 0 minute) End point_
(e.g. 9x2 = 18 minutes)

/

intervals

Histograms

* No definite rule to select correct histogram
parameters.

* lterate through;
— Adjusting starting point and interval width,

— And setting the number of intervals to
cover all the data.

» Select an appropriate histogram for
representing the data samples.




Histograms

« If interval widths are so large,
— Chart will be too coarse, and
— Details of the shape of the data will be lost.

intervals

Histograms

* If interval widths are so small,
— Chart will be too noisy, and
— Overview of the shape of the data will be lost.

intervals
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Histograms

* There is no best histogram.

» As a suggestion try to cover at least 3 to 5
samples in each interval.

intervals

Probability Distributions

» Describes the values and probabilities
associated with a random event

(probability distribution function,
probability density function).

Probability (density)

0.10—
0.08—
0.06—

0.02—
values




Cummulative Probability
Distributions

» Describes the values and cummulative
probabilities associated with a random event.

Sums up to 100% probability

cummulative probability l

values

Probability Distribution Types
(WRT Values)

» Types according to number of values:
— Discrete distributions:

* Finite or countable number of different
values

— Continuous distributions:
* Uncountable number of different values
» Types according to range of values:
— Nonnegative distributions
— Bounded distributions
— Unbounded distributions
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Probability Distribution Types
(WRT Representation Style)

» Following probability distributions are
commonly used in simulation input modeling:

— Standard distributions
— Emperical distributions

Standard Distributions

* Matematical parametric distributions that
typically have location and scale parameters,
and zero, one or two shape parameters.
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Common Standard Distributions

oma |

Gamma

Inverse gaussian
Inverted weibull
Log-laplace
Log-normal

Pearson type 6
Random walk
Rayleigh

Wald

Pearson type 5 _ Student’s t

Bernoulli Distributions

» A discrete bounded probability distribution,
which takes;

— Value 1 with success probability p, and
— Value 0 with failure probability g = 1 - p.

Probability
p—
q—

values




Uniform Distributions

* A bounded probability distribution, which
takes values between a and b, where a>b,
and probabilities of all the values are equal.

* Can be continuous or discrete.

Probability

0.20—
0.15—
0.10—

0.05—
values

Triangular Distributions

* A bounded contiuous probability distribution
with lower limit a, mode ¢, and upper limit b.

2a—a)

() fora<z<e
flzla,b,e) = (‘._E%?:lr) fore<az<b

0 for any other case

Probability density function Cumulative distribution function
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Symmetric Triangular
Distributions

A triangular distribution with ¢ located at the
center of a and b.

Probability

Two Points Triangular
Distributions

A triangular distribution with known a and b,
and c is equal to either a or b.

Probability Probability
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Normal (Gaussian) Distributions

* An important family of unbounded continuous

probability distributions, applicable in many
fields.

» Defined by two parameters:
— Location: y, mean (average)

— Scale : 0g?, variance (standard deviation
squared)

» Standard normal distribution:
— Normal distribution with
* A mean of 0, and a variance of 1.

Normal (Gaussian) Distributions

A bell-like shaped probability density function
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Normal (Gaussian) Distributions

Cummulative probability distribution

Ss8es

TE T
o
S 9 9 9
WoTe Ty 1y
o

|
o

Normal (Gaussian) Distributions

* |Importance:

— A model of quantitative phenomena in the natural and
behavioral sciences due in part to the central limit
theorem.

— Many measurements, ranging from psychological to
physical phenomena can be approximated, to varying
degrees, by the normal distribution.

— Most widely used family of distributions in statistics.

— Many statistical tests are based on the assumption of
normality.
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Normal (Gaussian) Distributions

Probability density function

o > 0 is standard deviation
U is mean (expected value)

Log-Normal Distributions

* A nonnegative continuous probability
distribution having single-tailed distribution of
any random variable whose logarithm is
normally distributed.

* Defined by two parameters:
—Mean : u
— Standard deviation : o
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Log-Normal Distributions

Probability density function (u = 0)

Log-Normal Distributions

Cummulative probability distribution (u = 0)
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Log-Normal Distributions

Probability density function for x > 0

o > 0 is standard deviation
U is mean

Exponential Distributions

* A nonnegative continuous distribution with
parameter A, which describes the times
between events in a Poisson process.

» Occurs naturally when describing the lengths
of the inter-arrival times of events in a
homogeneous Poisson process.
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Exponential Distributions

* Poisson process:

— A process in which events occur
continuously and independently of one
another at a constant average rate.

» Defined by one parameter:
A > 0 : often called the rate parameter.

Exponential Distributions

Probability density function
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Exponential Distributions

Cummulative probability distribution

Exponential Distributions

Probability density function

A > 0 is rate parameter

le—u:,v'fi T > D,

fz;8) = {"* 0

;< 0.

B > 0 is a scale parameter of the distribution, and
is the reciprocal (multiplicative inverse) of the rate parameter
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Weibull Distributions

» A nonnegative continuous probability
distribution used to describe the size
distribution of particles.

» Defined by two parameters:
— Shape : k
— Scale : A

Weibull Distributions

Probability density function
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Weibull Distributions

Cummulative probability distribution
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Weibull Distributions

Probability density function

k is shape
Ais scale

When k = 1, the Weibull distribution reduces to the exponential distribution.
When k = 3.4, the Weibull distribution appears similar to the normal distribution.
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Poisson Distributions

* A nonnegative discrete distribution.

» Expresses the probability of a number of
events occurring in a fixed period of time.

* Focuses on a number of discrete event
occurrences (sometimes called "arrivals") that
take place during a time-interval of given
length.

Defined by two parameters:
— Kk : number of occurrences of an event

— A > 0 : expected number of occurrences in
the fixed interval.

Poisson Distributions

Probability density function
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Poisson Distributions

Cummulative probability distribution

1.0

0.6 08

0.2 04

a.0

Poisson Distributions

Probability density function

The probability that there are exactly k
occurrences of event is equal to

k : number of occurrences of an event
A > 0 : expected number of occurrences in the fixed
interval.
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Emperical Distributions

* An alternative to standard distributions is
using emperical distributions.

» A cumulative probability distribution function,
which assigns a probability of 1/n to each
element of a sample set that contains n
number of samples.

Emperical Distributions

* In general form:

— Probability of a value less than or equal to x
(in other words cummulative probability of x)

n

if X; < x then 7 else 0
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Emperical Distributions

» General form is a step function that rises at
each unique observed sample value
proportional to the total number of such
values.

cummulative probability

values

Emperical Distributions

* An alternative formalization used for continuous
distributions replaces the step with a linear
interpolation between subsequent points.

cummulative probability
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Emperical Distributions

* Drawbacks:

— Can only represent bounded distributions
within the observed sample range.
* We may add an estimated tail for
beginning and end points.

— Quality of representation is completely
dependent on the quality of sample
available.

— The probability that history repeats itself
exactly is zero.

Selecting a Probability
Distribution

* Use knowledge of randomness to determine
any definite limits on the values it can
produce.

* Fit as many standard distributions to the data
as possible.

probability

/ Log-normal

Normal

intervals




Selecting a Probability
Distribution

» Use a set of criteria to rank goodness of fit of
the fitted distributions to the data.

« If any of the top-ranked models are terribly
inconsistent with the range of limits of value,
rule them out.

probability

/ Log-normal (1)

Norrnal (2)

intervals

Selecting a Probability
Distribution

* Use a reasonable set of criteria to determine
if the best of the fitted distributions is a
reasonable representation of data.

+ If best one provides a reasonable
representation of data,

— Use it in simulation,
e Otherwise,

— Use an emperical distribution to represent
data directly.
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Evaluating Goodness of Fit

» Consider a number of measures of goodness
of fit rather than a single one

— Since each will be unrealible in some cases.
Do not depend on goodness of fit measures

— That rely on overly clean data samples (e.g.
ignored problematic samples) or

— On user supplied parameters (e.g.
histogram configurations).

— Since they can provide inconsistent results.

Evaluating Goodness of Fit

* In the context of simulation input modeling,

— Classical goodness of fit methods in
statistics are not completely appropriate for
final assessment of quality of fit.

— Statistical methods have definite
assumptions that are sometimes not true for
simulation modeling.

— So, graphical heuristic methods should also
be used to assess which is best and which
is good enough.
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Evaluating Goodness of Fit

* For evaluation;
— Histograms, and

— Emperical cummulative probability
distribution function of sample data can be
used.

Evaluating Goodness of Fit
(Histograms)

* A histogram is an estimate of probability
density function of the event in real-world
system.

» So it is reasonable to plot and compare the
density functions of fitted models over the
histogram.
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Evaluating Goodness of Fit
(Histograms)

» Histograms represent sample counts, but they
can easily be converted to density units by
dividing to the total number of samples.

probability
Log-normal (good fit)

intervals

Evaluating Goodness of Fit
(Cummulative Dist. Func.)

« Emprical cummulative distribution functions of
sample data can be used to compare with the
fitted models.

cummulative probability

1.0—
0.8—
0.6—
(e
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Evaluating Goodness of Fit
(Cummulative Dist. Func.)

 Differences (errors) between emperical and
fitted model cummulative probabilities can be
plotted on to a graph.

cummulative probability Log—normal (good fit)

tresholds

values

Evaluating Goodness of Fit
(Test Statistics)

» Test statistic:
— An operational procedure of goodness of fit

— To calculate a function of the data observed
and the fitted model, and

— To compare the errors with a critical value
in order to accept or reject the hypothesis.

* Reject means there is sufficient evidence to
say that the two distributions are not the
same.

» Unless extreme errors, better not to reject, but
rank to find a best or good enough solution.
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Evaluating Goodness of Fit
(Test Statistics: Chi-Squared)

We divide the range of sample data into M
intervals (similar to histograms).

The first and last interval may be extended to
[+/-] infinite to cover the entire range of random
variable.

Compute differences between sample data and
fitted model (errors) in each interval.

Sum up errors of all the intervals to get total
error.

This test is universally applicable.

Evaluating Goodness of Fit
(Test Statistics: Chi-Squared)

M = Number of intervals

Ts = Number of samples

O, = Number of samples in ki interval

E, = Probability of ki interval in fitted model x Ts

M
(Ok'Ek)2 —— squared error

Total =Z
otal error Ek
k=1

weight that is inversely proportional to the number of expected points
(more weight is placed on rare events)
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Evaluating Goodness of Fit
(Test Statistics: Chi-Squared)

* By changing the interval configuration,
conflicting results can be produced.

* Therefore, results should not be trusted
standalone.
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