

Finite-Horizon Simulations (Sample)

• Evaluation of a job process server:

- Initial state:
 - Idle
- Termination:
 - n jobs completed
- Objective:
 - Estimate mean time to complete n jobs,

5

• Estimate mean job waiting time.

CS-503

A t-distribution Table							
u = 0.2							u = 0.01
	df	• t _{0.1}	t0.05	t0.025	t _{0.01}	t0.005	
	2	1.89	2.92	4.3	6.96	9.92	
	4	1.64	2.55	2 70	2.75	1.6	
	5	1.48	2.02	2.57	3.36	4.03	
	6	1.44	1.94	2.45	3.14	3.71	
	7	1.41	1.89	2.36	3.	3.5	
	8	1.4	1.86	2.31	2.9	3.36	
dearees of freedom —	→ 9	1.38	1.83	2.26	2.82	3.25	
abgrood of hoodolin	10	1.37	1.81	2.23	2.76	3.17	
$(n_{-}1)$	11	1.36	1.8	2.2	2.72	3.11	
(11-1)	12	1.36	1.78	2.18	2.68	3.05	
	13	1.35	1.77	2.16	2.65	3.01	
	14	1.35	1.76	2.14	2.62	2.98	
	15	1.34	1.75	2.13	2.6	2.95	
	16	1.34	1.75	2.12	2.58	2.92	
	1/	1.33	1.74	2.11	2.57	2.9	
	10	1.33	1.73	2.1	2.55	2.86	
	20	1 33	1.72	2.09	2.53	2.85	
	21	1.32	1.72	2.08	2.52	2.83	
	22	1.32	1.72	2.07	2.51	2.82	
	23	1.32	1.71	2.07	2.5	2.81	
	24	1.32	1.71	2.06	2.49	2.8	
	25	1.32	1.71	2.06	2.49	2.79	
	26	1.31	1.71	2.06	2.48	2.78	
	27	1.31	1.7	2.05	2.47	2.77	
	28	1.31	1.7	2.05	2.47	2.76	
	29	1.31	1.7	2.05	2.46	2.76	
	30	1.31	1.7	2.04	2.46	2.75	
	35	1.31	1.69	2.03	2.44	2.72	
	40	1.3	1.68	2.02	2.42	2.7	
	50	1.3	1.68	2.01	2.4	2.68	
	70	1.29	1.67	1.99	2.39	2.65	
	80	1.29	1.66	1.99	2.37	2.64	
	90	1.29	1.66	1.99	2.37	2.63	
	100	1.29	1.66	1.98	2.36	2.63	
	200	1.29	1.65	1.97	2.35	2.6	
	300	1.28	1.65	1.97	2.34	2.59	
	400	1.28	1.65	1.97	2.34	2.59	
		7	Zalaz	Zalaar	Zolos	Zalaar	
		1.28	1.645	1.96	2.33	2.58	
00.500						2.20	
CS-503							23

Finite-Horizon Simulations (Mean and Variance)

CS-503

Steady-State Simulations (Classical Batch-Means Method) • Variance of entire run is $s_{k}^{2}(Y) = \frac{1}{k-1} \sum_{i=1}^{k} (Y_{i}(b) - \overline{Y}_{k})^{2}$ • Confidence interval of entire run is $\overline{Y}_{k} \pm t_{k-1,1-\alpha/2} \xrightarrow{S_{k}(Y)} \xrightarrow{\text{Standard deviation}} S_{k}(Y)$

CS-503

50

Steady-State Simulations (Classical Batch-Means Method)

- Drawbacks:
 - Choice of batch size b is not easy.
 - If b is small,
 - Batch means can be highly correlated,
 - Resulting confidence interval will frequently have coverage below 1-α.
 - If b is large,
 - There will be very few batches, and
 - Potential problems with application of central limit theorem.

51

CS-503

