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Output Data Analysis 
(Outline)

• Introduction
– Types of Simulation With Respect to Output Analysis
– Stochastic Process and Sample Path
– Sampling and Systematic Errors
– Mean, Standard Deviation and Confidence Interval

• Analysis of Finite-Horizon Simulations
– Single Run
– Independent Replications
– Sequential Estimation

• Analysis of Steady-State Simulations
– Removal of Initialization Bias (Warm-up Interval)
– Replication-Deletion Approach
– Batch-Means Method
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Types of Simulation WRT
Output Analysis

• Finite-Horizon Simulations

• Steady-State Simulations
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Finite-Horizon Simulations

• Simulation starts in a specific initial state 

(e.g. empty, idle), and

• Runs until some termination event occurs 
(e.g. n jobs finished, working hours over).

• Life-time of process simulated is finite,

• So no steady-state behavior exists.

• Any parameter estimated from output 
depends on the initial state.
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Finite-Horizon Simulations
(Sample)

• Evaluation of a job process server:

– Initial state: 

• Idle

– Termination: 

• n jobs completed

– Objective: 

• Estimate mean time to complete n jobs,

• Estimate mean job waiting time.
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Finite-Horizon Simulations
(Sample)

• Evaluation of a military plan effectiveness:

– Initial state: 

• Attact and defense are in their initial 
position, and operation is about to start.

– Termination: 

• At most 25% of soldier left from either 
attact or defense forces.

– Objective: 

• Estimate mean number of soldiers lost 
from attact and defense forces.
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Steady-State Simulations

• The study of the long-term behavior of system 
of interest.

• A performance measure of the system is 
called a steady-state parameter.
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Steady-State Simulations
(Sample)

• Evaluation of a continuously operating 
communication system:

– Objective: 

• Computation of the mean delay of a data 
packet.
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Steady-State Simulations
(Sample)

• Evaluation of a continuously operating 
military surveillance system:

– Objective: 

• Computation of the mean ratio of threats 
that are not detected.
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A Stochastic Process

• Counterpart to a deterministic process.

• Involves indeterminacy described by 
probability distributions. 

• This means that;

– Even if the initial condition is known, 

• There are many possibilities the process 
might go to, but some paths are more 
probable and others less. 
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A Stochastic Process

• Given a probability space , a stochastic 
process with state space X is a collection of 
X-valued random variables indexed by a set 
T (generally time). 

• Often denoted as {Xt, t∈T} or <Xt>, t∈T.
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A Sample Path

• A realisation of a stochastic process (one of 
the paths that can possibly occur).

• For instance, a sampled sequence of random 
variables, X1, X2,X3,...,Xn

• Each sample path has an associated 
probability to occur.

• In output data analysis, 

– State space X forms an output parameter 

• Whose sample paths are analyzed in 
order to reason about the process.



7

13CS-503

Sampling and 
Systematic Errors

• Every simulation experiment with random 
input generates random sample paths as 
output.

• Each path consists of a sequence of random 
observations.

• These sample paths include two kinds of 
errors that are:

– Sampling error, and

– Systematic error.
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Sampling &
Systematic Errors

• Sampling error:

– The error caused by observing a sample 
instead of the whole population.

• Systematic error:

– The error caused by biases (e.g. initial 
state of simulation) in measurement,

• Which lead to measured values being 
consistently too high or too low, 
compared to the actual value of the 
measured parameter. 
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The Mean

• Expected value of a random variable, which 
is also called the population mean. 

• For a data set, the mean is the sum of all the 
observations divided by the number of 
observations. 
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Standard Deviation

• A measure of the dispersion of a set of values 
sampled from a random variable. 

• The mean is often given along with the 
standard deviation.

• The mean describes the central location of 
the data, and

• Standard deviation describes the spread. 

A data set with a 
mean of 50 and a 
standard deviation 
(σ) of 20Entire population Sampled population
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Standard Deviation

• In practice, it is often assumed that the data 
are from an approximately normally 
distributed population. 

• This is ideally justified by the central limit 
theorem.

Dark blue is less than 
one standard 
deviation from the 
mean. 
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Central Limit Theorem

• Sum of a large number of independent and 
identically-distributed random variables will 
be approximately normally distributed.

Average proportion of heads in 
a fair coin toss, over a large 
number of sequences of coin 
tosses. 
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Confidence Interval
• A range of values centred on the sample 

mean x that is statistically known to contain 
the true mean µ with a given degree of 
confidence (usually taken as 95%).

• Used to indicate the reliability of an estimate.

• Top ends of the bars indicate 
observation means.

• The red line segments represent the 
confidence intervals surrounding 
them.

• The difference between the two 
populations on the left is significant. 
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Confidence Interval
• Specified by a pair (u,v), 

where P(u ≤ µ ≤ v) = 1-α

• 1-α = confidence level or confidence coefficient

where 0<α<1

• Confidence interval is computed by d
where P( x–d ≤ µ ≤ x+d ) = 1-α

• So the interval for sample data is x ± d
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Confidence Interval
(known σ)

• The confidence interval for sample size n is

x ± z* σ

√ n

z* = z1-α/2 = point where area under right-half standard normal distribution is (1-α)/2

0 z*-z*

area = α/2area = α/2

area = (1-α)/2

total area = 1

Standard normal distribution

area = 1-α

true standard deviation

z* = 1.96 for 95% confidence interval
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Confidence Interval
(unknown σ)

• In practice, true standard deviation for the 
population of interest is not known. 

• Standard deviation is replaced by the estimated 
standard deviation S, known as standard error.

• x* (std.normal.dis) is replaced with t* (t-dis.).

x ± t* S

√ n

t* = tn-1,1-α/2 = 1-α/2 probability value for t-distribution with n-1 degrees of freedom

estimated standard deviation
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A t-distribution Table
α = 0.2 α = 0.01

degrees of freedom
(n-1)
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Analysis of 
Finite-Horizon Simulations

• We would like to analyse the output of a 
simulation with the following properties:

– Simulation starts in a specific initial state.

– Runs until some termination event occurs.

– Life-time of process simulated is finite.
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Finite-Horizon Simulations
(Single Run)

• Suppose that;

– A simulation starts in a specific initial state, 

– Simulates a system until n output data 
X1, X2, X3, ..., Xn are collected.

– Objective is to estimate f(X1, X2, X3, ..., Xn), 
where f is a “nice” function of data.

• For instance, 

– Xi may be transit time of unit i through a 
network, and 

– f may be average transit time for n jobs (Xn).
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Finite-Horizon Simulations
(Independent Replications)

• Unfortunately Xn is a biased estimator for µ
and σ

• Since Xi’s are usually dependent random 
variables making estimation of variance a 
difficult problem.

• To overcome the problem, multiple 
replications are required.

• Variance = Var(X) , σ2
X or  σ2

• Estimated Variance = S2
X or  S2
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Finite-Horizon Simulations
(Independent Replications)

• Assume that k independent replications of the 
system are run.

• Each replication starts with the same initial state.

• Each replication uses a different non overlaping 
portion of random number stream.To do that; 

– Start the 1st replication with a random seed,

– Initialize the seed of next replication with the 
last random number produced by the previous 
replication 

(doing nothing will already satisfy that rule).
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Finite-Horizon Simulations
(Mean and Variance)

• Assume that replication i produces the output 
data Xi1, Xi2, ..., Xin then

Sample mean for ith replication will be

Sample mean will be

Sample variance will be

∑
j = 1

n

XijYi =
1

n

∑
i = 1

k

YiYk =
1

k

∑
i = 1

k

( Yi – Yk )
2S2

k(Y) =
1

k-1
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Finite-Horizon Simulations
(Confidence Interval)

• If n and k are sufficiently large, confidence 
interval for approximate 1-α will be

Yk ± tk-1,1-α/2
Sk(Y)

√ k

sample standard deviation
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Finite-Horizon Simulations
(Sequential Estimation)

• For fixed number of replications (k), we can not 
control the error in estimation of the mean.

• To limit the confidence interval for the mean 
within a tolerans ±d, 

– k could be determined incrementally.

– Run one replication at a time and stop at the 
first k* satisfying

tk-1,1-α/2
Sk(Y)

√ k
≤

k-1           k(k-1)

k             tk-1,1-α/2
d2√ tk-1,1-α/2

Sk(Y)

√ k
≤ d

Simplification with little lost
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Analysis of
Steady-State Simulations

• We would like to analyse;

– Long-term behavior of system of interest

– By examining its steady-state parameters.
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Steady-State Simulations
(Removal of Initialization Bias)

• For analysing any steady-state parameter,

– A simulation should first need to be converged 
to a steady-state.

• But since we start a simulation from an initial 
state (e.g. empty, idle), 

– Simulation will have a bias (warm-up interval),

– We will need to wait some time until it is 
converged to the steady-state.

• Therefore, our first problem will be to detect the 
point where convergence occurs.
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Steady-State Simulations
(Removal of Initialization Bias)

• Most commonly used method for reducing the 
bias of Xn is:

– To identify m (1≤m≤n-1), which is the index of 
point where convergence is about to occur, and

– Truncate the observations X1,...,Xm.

• Then the estimator for Xn will be

∑
i = m+1

n

XiXn,m =
1

n-m
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Steady-State Simulations
(Graphical Method of Welch)

• One of most popular graphical methods is 
proposed by Welch (1981, 1983).

• Suppose there is k replications, and n
observations for each replication.
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Steady-State Simulations
(Graphical Method of Welch)

• For the jth observation, the estimated mean is

• Method plots moving averages Xj(w) of 1 to n  
observations on a graph for a given time window w.

∑
i = 1

k

XijXj =
1

k

1

2w+1 ∑
b = -w

w

Xj+b

Moving average of jth obs. = Xj(w) =

1

2j-1 ∑
b = -j+1

j-1

Xj+b

w+1 ≤ j ≤ n-w

1 ≤ j ≤ w
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Steady-State Simulations
(Graphical Method of Welch)

• For instance, when w = 2

X1(2) = X1

X2(2) = 1/3 ( X1+X2+X3 )

X3(2) = 1/5 ( X1+X2+X3+X4+X5 )

X4(2) = 1/5 ( X2+X3+X4+X5+X6 )

...

Xn-2(2) = 1/5 ( Xn-4+Xn-3+Xn-2+Xn-1+Xn )
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Steady-State Simulations
(Graphical Method of Welch)

• If plot is reasonably smooth, 

– Cutoff m is chosen to be the value of j beyond 
which moving averages seems to be converged.

• Otherwise choose a different time window w and 
redraw the plot.
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Steady-State Simulations
(Graphical Method of Welch)
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Steady-State Simulations
(Graphical Method of Welch)
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Steady-State Simulations
(Graphical Method of Welch)
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Steady-State Simulations
(Replication-Deletion Approach)
• First determine initialization bias and cutoff m

using any method such as Welch’s.

• Run k independed replications each of length 
n observations, and

– If possible, make use of runs from previous 
bias determination phase.

• Discard m observations from each replication.
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Steady-State Simulations
(Replication-Deletion Approach)
• Compute average of each replication

• Compute mean of replications

• Compute confidence interval of replications

∑
j = m+1

n

XijYi =
1

n-m

∑
i = 1

k

YiYk =
1

k

Yk ± tk-1,1-α/2
Sk(Y)

√ k
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Steady-State Simulations
(Replication-Deletion Approach)
• Important characteristics:

– As m increases for fixed n,

• Systematic error due to initial conditions 
decreases.

• But sampling error due to insufficient 
number of observations increases since 
variance is proportional to 1/(n-m).

n1
m
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Steady-State Simulations
(Replication-Deletion Approach)
• Important characteristics:

– As n increases for fixed m,

• Systematic error and sampling error 
decreases.

• But runs take more time to finish.

n1
m
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Steady-State Simulations
(Replication-Deletion Approach)
• Important characteristics:

– As k increases for fixed n and m,

• Systematic error does not change.

• But sampling error decreases.

n1
m

k
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Steady-State Simulations
(Replication-Deletion Approach)
• Drawbacks:

– Care must be taken to find a good cutoff m, 
and sufficiently large n and k.

– Also there is potantially wasteful of data 
because of truncation from each 
replication.

n1
m

k

truncated 
data
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Steady-State Simulations
(Batch-Means Method)

• One of the approaches that tries to overcome 
drawbacks of replication-deletion method.

• Owes its popularity to its simplicity and 
effectiveness.
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Steady-State Simulations
(Classical Batch-Means Method)
• Classical method:

– Divides the output of a long simulation run 
with n observations into k number of 
batches with b number of observations in 
each batch (b = n/k), 

– Uses sample means of batches to produce 
point and interval estimators.

n
cutoff m a long runa batch

bb b b b b b b b b

k batches
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Steady-State Simulations
(Classical Batch-Means Method)
• ith batch consist of observations

X(i-1)b+1 , X(i-1)b+2 , ... , Xib for i = 1,2,...,k

• Mean of ith batch is

• Mean of entire run (grand batch mean) is

∑
j = 1

b

X(i-1)b+jYi(b) =
1

b

∑
i = 1

k

Yi(b)Yk =
1

k
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Steady-State Simulations
(Classical Batch-Means Method)
• Variance of entire run is

• Confidence interval of entire run is

Yk ± tk-1,1-α/2
Sk(Y)

√ k

∑
i = 1

k

( Yi(b) – Yk )
2S2

k(Y) =
1

k-1

Standard deviation
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Steady-State Simulations
(Classical Batch-Means Method)
• Drawbacks:

– Choice of batch size b is not easy.

– If b is small,

• Batch means can be highly correlated, 

• Resulting confidence interval will 
frequently have coverage below 1-α.

– If b is large,

• There will be very few batches, and 

• Potential problems with application of 
central limit theorem.
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Steady-State Simulations
(Classical Batch-Means Method)
• Selecting batch size & number:

– Schmeiser (1982) stated that number of 
batches between 10 and 30 should suffice 
for most simulation experiments.

– Chein (1989) showed that selecting b and k 
proportional to √ n  performs fine in some 
conditions (SQRT Rule).

– But in practice, SQRT rule tends to seriously 
underestimate variance for fixed n. 
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Steady-State Simulations
(Overlapping Batch-Means)

• A variation of classical batch-means method.

• For a given batch size b, method uses all n-b+1
overlapping batches.

• Therefore, ith batch consist of observations

Xi , Xi+1 , ... , Xi-1+b for i = 1,2,...,k

• Similar computations apply for mean and 
variance, but with different batch contents.

n
a batch

b

n-b+1 batches


