Comparing Systems via Simulation (Part 5)

 Dr.Çağatay ÜNDEǦER

 Dr.Çağatay ÜNDEǦER}

Öğretim Görevlisi
Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü
e-mail : cagatay@undeger.com
cagatay@cs.bilkent.edu.tr

Comparing Systems via Simulation (Outline)

- Introduction
- Comparison Problems
- Comparing Two Systems
- Screening Problems
- Selecting the Best
- Comparison with a Fixed Performance

Introduction

- Simulation experiments are usually performed to compare some alternative solutions/designs.
- Method that is appropriate depends on the type of comparison (problem) and output data.

Introduction (Statistical Methods)

- Statistical methods are applicable to computer simulations
- Since the important assumptions of statistics can usually be satisfied approximately.

Introduction (Assumptions)

- Normally distributed data can be secured by batching large number of outputs.
- Independence can be obtained by controlling random-number assignments.
- Multiple-stage sampling is feasible because a subsequent stage can be initialized simply;
- By retaining the final random number seed from the preceding stage or
- By regenerating the entire sample.

Comparison Problems

- In this lesson, we will examine 4 classes of problems.
- Objective is to select the correct answer to the problem with a high probability.

Comparison Problems

- Comparing Two Systems:
- To compute the difference in expected performance of two systems.
- Screening problems:
- To compare substantial number of designs in order to eliminate clearly inferior (not successful) performers.
- Selecting the best:
- To find the system with the largest or smallest performance measure.
- Comparsion with a fixed performance:
- To find the best system, provided that its performance exceeds a known, fixed performance standard.
CS-503

Comparison Problems (Background)

- Compare k different system (design points) via simulation.
- Let Y be a random variable that represents the output.
- Let $Y_{i j}$ represents the $j^{i h}$ simulation output (replication or batch) of i ih system.
- Let n_{i} be the number of replications/batches from $i^{\text {ih }}$ system.
- Simulations of design points are either independent or using common random numbers.

Comparison Problems (Background)

- Let \bar{Y}_{i} be the sample mean of $i^{i h}$ system.

$$
\bar{Y}_{i}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} Y_{i j}
$$

- Let S_{i}^{2} be the sample variance of $i^{\text {ith }}$ system.

$$
S_{i}^{2}=\frac{1}{n_{i}-1} \sum_{j=1}^{n_{i}}\left(Y_{i j}-\bar{Y}_{i}\right)^{2}
$$

- Let S^{2} be the pooled sample variance of all systems.

$$
S^{2}=\frac{1}{k} \sum_{i=1}^{k} S_{i}^{2}
$$

Comparing Two Systems

- The goal is to compute the difference in expected performance of two systems
- In order to determine whether one is better or they are practically equivalent.

Comparing Two Systems

- If systems $1 \& 2$ are simulated with n replications/batches using independent random number streams then
- The difference between system 1 and 2 with (1- α) confidence interval is:

$$
\mu_{1}-\mu_{1} \text { range limits }=\left(\bar{Y}_{1}-\bar{Y}_{2}\right) \pm t^{*} \sqrt{\frac{S_{1}^{2}+\mathrm{S}_{2}^{2}}{\mathrm{n}}}
$$

$t^{*}=t_{2 n-2,1-\alpha / 2}=1-\alpha / 2$ probability value for t-distribution with $n-1$ degrees of freedom

Comparing Two Systems

- With ($1-\alpha$) confidence, If the range limits are;
- Both positive then (e.g. [3,9])
- Performance metric of system 1 is greater than system 2,
- Both negative then (e.g. [-9,-2])
- Performance metric of system 1 is smaller than system 2,
- In different sides of zero then (e.g. [-1,3])
- Systems are equivalent.

Screening Problems

- The goal is to compare substantial number of system designs in order to;
- Group those with similar performance, and
- Eliminate clearly inferior performers for examining high performers in more details.
- For instance,
- 20 potential system designs for a company is produced.
- Response time is the performance measure.
- You would like to reduce the number of potential designs using a plot study before a more detailed study is performed.

Screening Problems (Techniques)

- Multiple Comparison Approach
- Subset Selection Approach

Screening Problems (Multiple Comparison Approach)

- Approaches the screening problem by forming simultaneous confidence intervals on parameters $\mu_{i}-\mu$, for all $i \neq l$.
- $k(k-1) / 2$ confidence intervals will be formed.
- Indicate magnitude \& direction of the difference between each pair of alternatives.

Screening Problems (Multiple Comparison Approach)

- Simulate systems;
- With independent random number streams,
- Compute;
- Sample means (\bar{Y}_{i}), and
- Pooled sample variance (S2).

Screening Problems (Multiple Comparison Approach)

- Simultaneous confidence intervals of $\mu_{i}-\mu_{l}$ for all $i \neq$ I (Tukey's procedure) :
 $\left(\bar{Y}_{i}-\bar{Y}_{l}\right) \pm \frac{Q^{(\alpha)}{ }_{k, v}}{\sqrt{2}} S \sqrt{\frac{1}{n_{i}}+\frac{1}{n_{1}}}$
$\begin{gathered}\text { difference between } \\ \text { sample means }\end{gathered}$
pooled standard deviation

Studentized Range Distribution Table

Screening Problems (Multiple Comparison Approach)

- Suppose that:
- k = 4 system architectures.
$-\mathrm{n}=6$ replications are obtained for each.

$$
\begin{aligned}
& \left.\begin{array}{l}
\bar{Y}_{1}=72 \\
Y_{2}=85 \\
\bar{Y}_{3}=76
\end{array}\right\} \quad \bar{Y}_{i}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} Y_{i} \\
& \bar{Y}_{3}=76 \\
& \bar{Y}_{4}=62 \\
& S^{2}=100.9 \\
& \left\{\begin{array}{l}
S_{i}^{2}=\frac{1}{n_{i}-1} \sum_{j=1}^{n_{i}}\left(Y_{i j}-\bar{Y}_{i}\right)^{2} \longrightarrow \\
S^{2}=\frac{1}{k} \sum_{i=1}^{k} S_{i}^{2}
\end{array}\right.
\end{aligned}
$$

Screening Problems (Multiple Comparison Approach)

- Suppose that:
- Objective is to eliminate system architectures with low performance (high response time) with 0.95 confidence.
- So compare pairs:
- 1 and 2
- 1 and 3
- 1 and 4
- 2 and 3
- 2 and 4
- 3 and 4

Screening Problems (Multiple Comparison Approach)

- Suppose that:
- We compare system 2 and 4 :

$$
\begin{aligned}
& v=\sum_{i=1}^{4}\left(n_{i}-1\right)=(6-1)+(6-1)+(6-1)+(6-1)=20 \\
& \left(\bar{Y}_{i}-\bar{Y}_{l}\right) \pm \frac{Q^{(0.05)}}{4,20} s \sqrt{\frac{1}{n_{i}}+\frac{1}{n_{1}}} \\
& (85-62) \pm \frac{3.96}{\sqrt{2}} 10.04 \sqrt{\frac{1}{6}+\frac{1}{6}}=23 \pm 16=[7,39]
\end{aligned}
$$

Screening Problems

 (Subset Selection Approach)- Approaches the screening problem by producing a subset of designs that contains the best system with a probability $1-\alpha$.
- Applicable in cases when data from competing designs are;
- Independent (different random numbers),
- Balanced ($n_{1}=n_{2}=\ldots=n_{k}=n$), and
- Normally distributed with a common variance.

Screening Problems (Subset Selection Approach)

- Simulate systems;
- With independent random number streams,
- With equal number of replications/batches.
- Compute;
- Sample means (\bar{Y}_{i}), and
- Pooled sample variance (S^{2}).

Screening Problems (Subset Selection Approach)

- Include $\mathrm{i}^{\text {it }}$ design in the subset if;

Multivariate t－Distribution Table

	Lendetion $1: 2$									ren．
						\cdots				
	＊	－	2	：	4	2	\geq	\because	5	8
	1	R：I	： 11	$3: 1$	：315	－127	531	\％ 21	W：3	172
	？	2．／4	326	424	4：1	284	5.4	511	739	35
	3	2ss	254	3 3¢	3	2．0．	22：	12／3	03	4.
	2	2．1：	21	358	76	$3 \leq$	3	2.44	312	143
	－	20.	311	98	3 se	368	316	3.10	3.4	\％
	6	141	： 11	ver	271	58	309	16	供	2.12
	\％	－ 15	229	245	2 N	2．7．		2sp	30\％	\cdots
	，	： 12	$22!$	$24!$	23	2 m	1．7－	2.1	35%	－6
	\％	－8：	2.5	229	22：	204	1月10	2．35	2.1	231
	12	15.	2.3	2．4	24.	20	20－	2．：	2.76	281
	1	（1）	ㄷ．13	＊3．	24.	22\％	200	$2 N:$	2．ir	2%
	$?$	178	－11	\cdots	¢ 4.	220	－-8	$20-$	20	2.4
	1	17	2in	\％	A33	248	120	－61	4．／vo	27
	4	I．M	水	25	${ }^{*} 11$	245	3.8	¢ \％ 8	Sik	27
	）	1．：5	2r．	234	215	348	35	85	2 S	$2: 9$
	15	1．9	215	2．2；	211	341	27	25	201	25
	，	121	2 s	$\pm .22$	211	212	$3 \sim$	251	2．91	214
	13	11	浣	2.21	212	241	2． 5	251	2.55	2R
	3	1.7	203	S．${ }^{\text {a }}$	til	245	2－7	252	2．3：	38
	）	1.2	二in	810	2．3	225	$1 \cdot 6$	2．3t	25	$98:$
	3	1.11	280	2.17	\bigcirc	22	$2 川$	－4s	85	$2: 2$
	31	1．0	198	2.15	35	224	1．40	2.3	59	224
	＊	1．e	128	2．15：	298	2）2	238	S．44	S／4	23？
	3	1／2．	16.	2.15	229	A3	25	200	$2 \sim 7$	25
	15	1 N	19.	2．1．	2.22	9	236	811	2－6	－91
	51	1／8s	76．	2.11	2.22	297	336	3.1	2／	241
	\％	1．i）	250	2.11	2.21	231	376	2.11	2.2	245
	\％	1／in	－ 12	310	： 2	224	219	2 F	128	245
	13	$1 / 6$	－ 2	3 re	2.18	2.21	212	23%	$3<1$	215
	＊	$1 火$	85	2 F	2.10	2.2	223	224	31	212
CS－503										

Screening Problems （Subset Selection Approach）

－Suppose that：
$-k=4$ system architectures．
$-\mathrm{n}=6$ replications are obtained for each．

$$
\left.\begin{array}{rl}
\bar{Y}_{1} & =72 \\
\bar{Y}_{2} & =85 \\
\bar{Y}_{3} & =76 \\
\bar{Y}_{4} & =62 \\
S_{2}^{2} & =100.9 \\
\bar{Y}_{i}=\frac{1}{n} \sum_{j=1}^{n} Y_{i j} \\
S_{i}^{2}=\frac{1}{n-1} \sum_{j=1}^{n}\left(Y_{i j}-\bar{Y}_{i}\right)^{2} \\
S^{2}=\frac{1}{k} \sum_{i=1}^{k} S_{i}^{2} \\
\text { time is performance metric }
\end{array}\right\}
$$

Screening Problems (Subset Selection Approach)

- Suppose that:
- Objective is to produce a subset including the best system with 0.95 confidence.
- Smaller response time is preferred so we use:

$$
\begin{aligned}
& \bar{Y}_{i} \leq \min _{1 \leq j \leq k}\left(Y_{j}\right)+g S \sqrt{\frac{2}{n}} \\
& \bar{Y}_{i} \leq \min (72,85,76,62)+T^{(\alpha)}{ }_{k-1 \cdot k(n-1)} 10.04 \sqrt{\frac{2}{6}} \\
& \bar{Y}_{i} \leq 62+T^{(0.05)}{ }_{3,20} 5.8=62+2.195 .8=74.7
\end{aligned}
$$

- Select system 1 and 4 (72ธ74.7 and 62ธ74.7)

Selecting the Best

- The goal is to find the system with the largest or smallest performance measure.
- For instance,
- 20 potential system designs for a company is produced.
- Number of jobs processed per hour is the performance measure.
- Differences of less than about 5 jobs are considered practically equivalent.
- You reduced the number of alternatives to 4 with a plot study.
- Now you would like to determine the best one among 4 with a more detailed study.

Selecting the Best (Techniques)

- Multiple Comparison Approach
- Procedure Rinott + MCB
- Procedure NM + MCB
- Procedure Bonferroni + MCB
- Multinomial Selection Approach
- Procedure BEM
- Procedure BG

Selecting the Best (Multiple Comparison Approach)

- In stochastic simulations, correct selection can never be guaranteed with certainty.
- A solution offered by Multiple Comparison integrated with Indifference-zone selection is;
- To guarantee to select the best system with high probability,
- Whenever it is at least a user-specified amount better than others.
- This practically significant difference is called Indifference-zone ($\overline{\text {) }}$ (e.g. $\bar{\delta}=5$ jobs).

Selecting the Best (Multiple Comparison Approach)

- If some system happens to be within δ of the best,
- Then these are considered to be practically equivalent,
- And probability of selecting one of the good systems is at least 1-a,
- So any of them can be chosen considering other important metrics (e.g. cost).

Selecting the Best (Multiple Comparison Approach)

- Uses Indifference-zone.
- Approaches the screening problem by forming simultaneous confidence intervals on parameters;
- $\mu_{i}-\max _{l \neq i} \mu_{I}$ (greater is better) or $-\mu_{i}-\min _{l \neq i} \mu_{l}$ (smaller is better) for all i.
- Bound the difference between expected performance of each system and the best of the others, with probability $1-\alpha$.

Selecting the Best (Multiple Comparison Approach)

- Performs multiple comparisons with the best (MCB).
- Combines indifference-zone selection and MCB.
- Provides information about how close each of the inferior systems is to the best,
- Which is useful if secondary criteria such as cost, ease of installation are not reflected to the performance measure.
- e.g. $\bar{\delta}=5$ jobs difference is equivalent.

Selecting the Best
 (Proc. Rinott+MCB (Independent Sampling))

- Takes observations in two stages:
- First stage uses $n_{0} \geq 2$ (10 recomended) independent observations from each system
- To estimate marginal variance.
- Second stage uses marginal variance
- To compute additional number of observations required to meet the indifference-zone probability.

Selecting the Best
 (Proc. Rinott+MCB (Independent Sampling))

- Specify;
$-\delta$ (indifference-zone)
$-\alpha$ (confidence interval probability)
- n_{0} (first-stage sample size).
- Take n_{0} independent replications/batches from each of the k systems.

Selecting the Best

(Proc. Rinott+MCB (Independent Sampling))

- Compute marginal sample variance for all i:

$$
S_{i}^{2}=\frac{1}{n_{0}-1} \sum_{j=1}^{n_{0}}\left(Y_{i j}-\bar{Y}_{i}\right)^{2}
$$

- Compute final sample size for each system:

$$
N_{i}=\max \left(n_{0},\left\lceil\left(\frac{h_{\alpha,} n_{0} \mathrm{~S}_{\mathrm{i}}}{\delta}\right)^{2}\right\rceil\right)
$$

Find $h_{\alpha, n_{0}}$ from Procedure Rinott+MCB table.

Procedure Rinott+MCB Table

Selecting the Best
 (Proc. Rinott+MCB (Independent Sampling))

- For each system i,
- Take $N_{i}-n_{0}$ additional (or restart all)
observations independently of the first-stage.
- Compute overall sample mean:

$$
\overline{\bar{Y}}_{i}=\frac{1}{N_{i}} \sum_{j=1}^{N_{i}} Y_{i j}
$$

- Select system with;
- Largest $\overline{\mathrm{Y}}_{i}$ (greater is better) or
- Smallest $\overline{\mathrm{Y}}_{\mathrm{i}}$ (smaller is better) as the best.

Selecting the Best
 (Proc. Rinott+MCB (Independent Sampling))

- Simultanously form MCB confidence interval for each system i:
- If greater is better:

```
min(0, Yi - max i夫丷 }\mp@subsup{Y}{1}{}-\delta),\operatorname{max}(0,\mp@subsup{Y}{i}{}-\mp@subsup{\operatorname{max}}{i\not=1}{}\mp@subsup{Y}{1}{}+\delta
```

- If smaller is better:

$$
\min \left(0, Y_{i}-\min _{i \neq 1} Y_{1}-\delta\right), \max \left(0, Y_{i}-\min _{i \neq 1} Y_{1}+\delta\right)
$$

- If range of a system i is not on one side of the zero, it is an equivalent of best (within $\bar{\delta}$).

Selecting the Best
 (Proc. NM+MCB (Common Random Numbers))
 - In Rinott + MCB,
 - Systems are simulated independently.
 - However, under fairly conditions, assigning common random numbers (CRN) to simulation of each system decreases variances of estimates.
 - NM+MCB uses CRN.

Selecting the Best

(Proc. NM+MCB (Common Random Numbers))

- Similarly use δ, α and n_{0}.
- Take n_{0} replications/batches from each of the k systems using CRN across systems.

Selecting the Best
 (Proc. NM+MCB (Common Random Numbers))

- Compute approximate sample variance:

$$
S^{2}=\xrightarrow[(k-1)\left(n_{0}-1\right)]{2 \sum_{i=1}^{k} \sum_{j=1}^{n_{0}}\left(Y_{i j}-\bar{Y}_{i}-\bar{Y}_{\mathrm{j}}+\bar{Y}_{. .}\right)^{2}}{ }^{\text {"." }} \text { "." means average of all } i
$$

- Compute final sample size for all systems:

$$
N=\max \left(n_{0},\left[\left(\frac{g S}{\delta}\right)^{2}\right\rceil\right)
$$

Find $g=T^{(\alpha)}{ }_{k-1,(k-1)\left({ }^{n} 0-1\right)}$ from Multivariate t-distribution table.

Selecting the Best

(Proc. NM+MCB (Common Random Numbers))

- For each system i,
- Take $N-n_{0}$ additional (or restart all) observations using CRN across systems.
- Compute overall sample mean:

$$
\overline{\bar{Y}}_{i}=\frac{1}{N} \sum_{j=1}^{N} Y_{i j}
$$

- Select system with;
- Largest \bar{Y}_{i} (greater is better) or
- Smallest \bar{Y}_{i} (smaller is better) as the best.

Selecting the Best

(Proc. NM+MCB (Common Random Numbers))

- Simultaneously from MCB confidence intervals as in Rinott + MCB.

Selecting the Best (Proc. Bonferroni+MCB (CRN))

- NM + MCB works under a complex set of conditions.
- Conferroni + MCB works under more general conditions.
- But, tends to require more observations, especially when k is large.

Selecting the Best (Proc. Bonferroni+MCB (CRN))

- Similarly use δ, α and n_{0}.
- Take n_{0} replications/batches from each of the k systems using CRN across systems.

Selecting the Best (Proc. Bonferroni+MCB (CRN))

- Compute sample variances of differences for all $i \neq 1$:

$$
S_{i i}^{2}=\frac{1}{n_{0}-1} \sum_{j=1}^{n_{0}}\left[\left(Y_{i j}-Y_{i j}\right)-\left(\bar{Y}_{i}-\bar{Y}_{i}\right)\right]^{2}
$$

- Compute final sample size for all systems:

$$
N=\max \left(n_{0},\left[\max _{\mid \neq i}\left(\frac{t \mathrm{~S}_{\mathrm{i}}}{\delta}\right)^{2}\right\rceil\right)
$$

Find $t=t_{0-1,1-\alpha /(k-1),}$, from t-distribution table.

Selecting the Best (Proc. Bonferroni+MCB (CRN))

- For each system i,
- Take $N-n_{0}$ additional (or restart all) observations using CRN across systems.
- Compute overall sample mean:

$$
\overline{\bar{Y}}_{i}=\frac{1}{N} \sum_{j=1}^{N} Y_{i j}
$$

- Select system with
- Largest $\overline{\mathrm{Y}}_{i}$ (greater is better) or
- Smallest $\overline{\mathrm{Y}}_{\mathrm{i}}$ (smaller is better) as the best.

Selecting the Best (Proc. Bonferroni+MCB (CRN))

- Simultaneously from MCB confidence intervals as in Rinott + MCB.

Selecting the Best (Techniques)

- Multiple Comparison Approach
- Procedure Rinott + MCB
- Procedure NM + MCB
- Procedure Bonferroni + MCB
- Multinomial Selection Approach
- Procedure BEM
- Procedure BG

Selecting the Best (Multinomial Selection Approach)

- Solution offered by Multinomial Selection is;
- To select the best system with probability 1- α
- Whenever the ratio of selecting the best to the second best p_{i} is greater than a userspecified constant.
- This practically significant smallest ratio worth detecting is called Indifference-constant ($\theta>1$) (e.g. $\theta=1.2$).

$$
\theta=\min \frac{p_{\text {best }}}{p_{\text {second best }}} \text { required }
$$

Selecting the Best (Procedure BEM)

- Specify;
- θ (indifference-constant)
$-\alpha$ (confidence interval probability)
- Take a random sample of n independent multinomial observations from each of the k systems,
- Where n is found from Multinomial procedure table using α, θ and k.

Multinomial Procedure Table

		$\dot{k}-2$		$k-i$		$k-4$		$t=5$	
$\%$	8	\square	"\%	4	n	n	H_{γ}	A	47
0.25	3.0	1	1	5	5	S	9	11	12
	2.0	5	5	12	1.7	2.7	24	29	3.4
	1.8	5	7	17	18	29	1.5	4	S1
	1.6	4	9	26	32	46	57	68	86
	1.4	15	19	52	71	92	124	137	18.4
	1.2	55	67	181	285	326	495	4 E 5	730
0.00	2.0	7	16	11	12	16	19	21	24
	20	1.5	15	29	3.4	13	53	58	?1
	1.8	19	27	4.1	50	$6!$	75	83	10
	16	71	$\therefore 1$	cis	83	98	126	134	122
	1.4	59	39	12\%	120	196	274	271	374
	13	199	257	137	670	692	10.50	951	1460
Dự	30	9	11	17	29	23	26	29	34
	30	23	27	12	52	61	74	31	98
	/ 3	33	35	53	7]	87	105	115	142
	1.	49	59	9.	125	139	180	185	$2 \cdot 10$
	1 12	9?	151	185	266	278	380	374	510
	1.2	327	455	645	360	979	1560	1331	2093

Selecting the Best (Procedure BEM)

- A random sample is taken from each of the k systems for each replication.
- So we have a matrix;
$\left.\left[\begin{array}{c}\text { system designs } \\ Y_{11}, Y_{21}, Y_{31}, \ldots, Y_{k 1} \\ Y_{12}, Y_{22}, Y_{32}, \ldots, Y_{k 2} \\ Y_{12}, Y_{22}, Y_{32}, \ldots, Y_{k 2} \\ Y_{1 n}, Y_{2 n}, Y_{3 n}, \ldots, Y_{k n}\end{array}\right] \right\rvert\,$ replications

Selecting the Best (Procedure BEM)

- From Y, determine multinomial observations X.

On $j^{\text {th }}$ replication, if system i is best, set $X_{i j}=1$ else $X_{i j}=0$ Thus there will be only a single 1 on each row.

Selecting the Best (Procedure BEM)

- From X, determine W.

- Select the design having largest W_{i} as the best (one with highest probability).
- If there are equal $W_{s} s$, pick any of them

Selecting the Best (Procedure BG)

- Procedure BEM, uses a fixed number of replications to select the best.
- This may sometimes be inefficient.
- Procedure BG;
- Uses a more efficient but complex procedure, and
- Stops when one design is sufficiently ahead of the others.

Selecting the Best (Procedure BG)

- Specify;
- θ (indifference-constant)
$-\alpha$ (confidence interval probability)
- To select the best system among k systems.
- Uses incremental number of observations.
- Upper limit of observations, the truncation number $\left(\mathrm{n}_{\mathrm{T}}\right)$, is found from Multinomial procedure table using α, θ and k.

Selecting the Best (Procedure BG)

- The method advances stage by stage.
- A stage contains one observation from each system totally making k observations.

Selecting the Best (Procedure BG)

- At the $m^{\text {th }}$ stage of observations, - We determine X_{m} from Y :

$$
\begin{array}{r}
{\left[Y_{1 m}, Y_{2 m}, Y_{3 m}, \ldots, Y_{k m}\right] \longrightarrow X_{m}=\left[X_{1 m}, X_{2 m}, X_{3 m}, \ldots, X_{k m}\right]} \\
X_{i j}= \begin{cases}1 & \text { if } Y_{i j}>\max _{1 \neq \mathrm{i}} Y_{\mathrm{lj}} \\
0 & \text { otherwise }\end{cases}
\end{array}
$$

Selecting the Best (Procedure BG)

- Then compute W_{m} from X :

$$
\left[\begin{array}{l}
\left.X_{11}, X_{21}, \begin{array}{l}
X_{31}, \ldots, X_{k 1} \\
X_{11}, X_{21}, \\
X_{12}, X_{22}, \ldots, X_{k 1} \\
X_{32}, \ldots, X_{k 2} \\
\ldots \\
X_{1 m}, X_{2 m}, X_{3 m}, \ldots, X_{k m}
\end{array}\right] \\
\text { sum up column i }
\end{array} \rightarrow W_{m}=\left[W_{1 m}, W_{2 m}, W_{3 m}, \ldots, W_{k m}\right]\right.
$$

- And sort W_{m} ascending:

$$
W_{[1] m} \leq W_{[2] m} \leq W_{[3] m} \leq \ldots \leq W_{[k] m}
$$

Selecting the Best (Procedure BG)

- Compute Z_{m} :

$$
Z_{m}=\sum_{i=1}^{k-1}(1 / \theta)^{W_{[k]}-W_{[] \mid m}}
$$

- Stop sampling when any of the following occur:

$$
\begin{aligned}
& Z_{m} \leq \alpha /(1-\alpha) \\
& m=n_{T} \\
& \left(W_{[k] m}-W_{[k-1] m}\right) \geq\left(n_{T}-m\right)
\end{aligned}
$$

- Take system i with the largest W_{i} as the best.

Comparison With a Fixed Performance

- To find the best system, provided that its performance exceeds a known, fixed performance standard $\left(\mu_{0}\right)$.
- For instance,
- There are 4 potential risky investment strategies for a company.
- But it is also possible to get a known, fixed return if the money is deposited in a bank.
- Therefore, we would like to chose none of the strategies unless its expected return is larger than the fixed return.

Comparison With a Fixed Performance (Procedure BT)

- Takes observations in two stages:
- First stage uses $n_{0} \geq 2$ (10 recomended) independent observations from each system
- To estimate marginal variance.
- Second stage uses marginal variance
- To compute number of observations required to meet the probability requirement.

Comparison With a Fixed Performance (Procedure BT)

- Specify;
- μ_{0} (fixed performance standard)
- δ (indifference-zone)
$-\alpha$ (confidence interval probability)
- n_{0} (first-stage sample size).
- Take n_{0} independent replications/batches from each of the k systems.

Comparison With a Fixed Performance (Procedure BT)

- Compute estimated sample variance:

$$
S^{2}=\frac{\sum_{i=1}^{k} \sum_{j=1}^{n_{0}}\left(Y_{i j}-\bar{Y}_{i}\right)^{2}}{k\left(n_{0}-1\right)}
$$

- Compute final sample size for all systems:

$$
N=\max \left(n_{0},\left\lceil\left(\frac{g S}{\delta}\right)^{2}\right\rceil\right)
$$

Procedure BT Table

 \qquad

70	$r-2$			\%-:		i -4		4-5	
	1 -	4.93	C. 95	L. P /1	1895	c.ay	aus	6.45	355
2		4.75	7.17h	4415	6 c 11	4.2fer	< 58 >	4.15	5.242
		2.7-?	4.117^{5}	${ }^{3} \mathrm{f}=8$	3.351	2.830	F. 7.40	221:	3.831
3		7.60	4.580	3.685	1.701	1.114	- 819	3.44	4×8
		2.157	2,	$\pm .172$	2.695	2.24\%	2.74	2.200	271
-		3.40	Alib	3.8 ,	4.35:	A.ร5\%	4.85\%	2.500	4.351
		1307	24.7	2.012	2.4.9	2136	2.531	ง.入ข?	2546
:		5290	1.21	3.384	4.2111	3.478	4.355	2.514	-25\%
		1529	2242	1.232	2781	3.185	2×5 [2.153	29%
t		3.205	40 xs	8. 810	4112	3.43	4.153	3.506	1.2.6
		1. 2 :	$2: 11$	104%	2.325	2.655	2.409	2.130°	2 1.68
8		1.127	- 「31!	3 2 \%	1.014	3.384	4.955	3405	4. 42
		2.7418	:72	1505	2.25 s	2.022	2.351	2107	2.454
$1: 1$		1. 1 \%	1348	32.13	3.35.	3.368	C-13	: 4 0	$+1 \% i$
		2.315	2 COH	1538	2.2i0	2.94	\& 377	215:	200
12		2058	38104	: 127	3.72	3.3 .41	40.15	1.-26	1082
		1699	$2 \mathrm{~B}: 4$	1875	2.2 .0	1.553	23:\%	2.051	3.345
*:		2345	4815	: 139	3.936	32 ct	7. \%\%	3.261	1.2035
		103:	1935	1816	2.21	1943	2.2.4	2.37	2.115

Comparison With a Fixed Performance (Procedure BT)

- For each system i,
- Take $N-n_{0}$ additional (or restart all) independent observations.
- Compute overall sample mean:

$$
\overline{\bar{Y}}_{i}=\frac{1}{N} \sum_{j=1}^{N} Y_{i j}
$$

Comparison With a Fixed Performance (Procedure BT)

- If greatest performance measure is better:

If $\max ^{\bar{Y}_{i}}>\mu_{0}+h \delta / g$ then
Select the strategy i as best,
Otherwise retain the standard as best.

- If smallest performance measure is better:

If min $\bar{Y}_{i}<\mu_{0}-h \bar{\delta} / g$ then
Select the strategy i as best,
Otherwise retain the standard as best.

