

Introduction

- Simulation experiments are usually performed to compare some alternative solutions/designs.
- Method that is appropriate depends on the type of comparison (problem) and output data.

CS-503

Introduction (Assumptions)

- Normally distributed data can be secured by batching large number of outputs.
- Independence can be obtained by controlling random-number assignments.
- Multiple-stage sampling is feasible because a subsequent stage can be initialized simply;
 - By retaining the final random number seed from the preceding stage or

5

- By regenerating the entire sample.

CS-503

Comparison Problems (Background)

- Compare k different system (design points) via simulation.
- Let Y be a random variable that represents the output.
- Let Y_{ij} represents the *j*th simulation output (replication or batch) of *i*th system.
- Let *n_i* be the number of replications/batches from *i*th system.
- Simulations of design points are either independent or using common random numbers.

CS-503

CS-503

CADD.	E.S.1 59%	Critical V	interes of the	a ef the Si	indention	Barry Ba						1723	
					-				-	2.5.1			-
	3	4		0	•	*	5	15	:1	12	n	14	3
1	2.1	32.8	37.1	404	45.1	121	414	1.15	32.6	2020	25.2	\$1.3	512
2	8.25	1122	0.5	12.1	, 124	12.0	15.5	14,0	14.4	24.5	15	15.4	15.7
3	15.21	6.8.5	7.97	8.04	5.45	112	2.8	9.94	9.25	945	11.2	10.4	12.5
1	SON	\$35	\$ 29	12	7.45	1.15	167	7.55	34.6	\$ 21	8.27	\$.43	3.68
2	4.65	32	2.07	515	633 1.90	6.28	187	7.39	7.17	7.32	123	7.60	7.74
5	434	470	531			\$.12	5.32	6.29	0.00	5.13	0.50	7.00	2.14
ż	1.14	425	4.85	5.90 5.17	2.01	282	5.03	616	6.30	\$.43	6.75	5.56	5.76
5	3.95	4.42	4.35	CAS	5.54	2.45		3.82	6.05	6.1E	42	5.79	5.13
á .	1.58	4.43	415	4.50	5.12	5 31	3.5J 5.4i	5.34	5.57	1.55	6.09	5.9	1 25
1	2.82	4.35	157	452	5.0	2.01		2.90	5.75	2.84	5.94	5.25	6.11
1	1.37	120	401	4.15	4.25	512	3.35	5.49	5.61	5.71	5.31	5.93	2.54
	14	4.15	4.45	119	101	anda		3.40 5.52	5.01	2.62	5.71	5.93	155
	2.30	411	4.41	4.54	85	0.00	419				5.45	54	2.35
	3.57	3.8	4.57	151	4.18	4184	3.00	5.25	3.36 5.51	2.48	52.2 01.2	524	2.73
	2 85	NR.	4.2	4.55	4.34	1.90	5.05	3.13			5.44	557	2.00
	153		4.30	152	471	4,36	4.99	511	2.26	225	540	547	3.55
4	2.61	400	4.25	433	4.57	1.85	4.96	2.057	2.17	5.27	5.2	2.47	5.9
	2.59	3.0	4.2	112	4.65	4.75	4.95	1.04	5.14	5.53	18	5.93	5.4
0	3.55	2.96	425	4.45	4.52	4.75	4.90	2.01	5.0	5.33	53	5.75	3.43
	2.23	3.90	417	132	4.34	4.12	4.41	4.95	5.01	2.12	212	222	
1	3/4	2.85	1.0	4.23	4.45	1.00	4.13	4,81	4.50	5.00	5.00	515	3.21
2	8.54	2.79	414	4.33	1.0	4.52	4.54	4.74	4.53	451	2.05	5 35	24 C
0	2.40	× 3.54	2.58	4.16	4.21	in	4.7	4.62	4.72	4.51	428	4.94	3.00
n -	2.35	5.68	3.00.	4.10	131	- 35	447	4.54	1.64	1.21	4.78	1.34	1.41
-	1.44	2.55	3.46	4.05	4.13	4.29	1.30	445	4.22	4.52	4.2.1	4.14	14

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

TABL	E 8.3 %	ie nai	ad Value	a total a	the Mult	wartas r-l	Nuclearing State	o with C	
-							-		
	1	2	1	4	2	5	7	\$	4
1	6.51	7.21	11.28	13.10	24.23	15.23	1474	1675	17.2
2	2.5%	120	424	4.51	2.14	5.24	5.44	5.93	3.75
3	2.55	254	3.58	3.55	1.50	125	13/3	4.28	4.12
4	2.12	26.	2.55	3.06	3.55	3.54	2.64	3.52	19
S	2.02	2.11	218	2.85	2.98	3.08	2.16	3.24	1.71
6	1.91	2.14	2.55	2.71	2.5.7	2.02	3.00	3.06	2.12
1	7.84	2.27	248	2 63	2.73	2.52	2,59	2.95	5,00
	188	2.22	2.42	2.22	2.66	2.74	2.51	2.5.7	39.5
5	1.82	213	2.49	2.22	2.60	1.68	2.75	2.3.1	2.36
12	LEI	2.15	2.34	241	220	2.64	2.79	2.7%	2.51
11	1.83	2.13	2.9.	2.42	2.55	2,60	1.67	2.72	2.77
12	1 15	211	229	241	2.50	2.58	1.64	2.00	2.4
11	1.77	2.09	\$ 27	2.35	2.48	2.33	2.61	2,00	2.71
14	1.35	2,02	2.25	2.31	2.46	2.33	2.39	5,64	214
12	1.75	2017	2.34	2.15	2.44	2.52	2.57	2,42	2 27
13	1.35	2,06	1.23	214	2.47	2.50	2.55	2.41	2.53
17	1.34	2.05	2.22	2.11	2.42	2/9	2.54	2.97	2.54
15	1.13	5.04	1.21	2.12	2.41	2/8	2.57	2.55	2.62
-1	1.27	2.05	5.20	2.0	2.40	2.47	2.52	2.37	5.0
20	1.72	2.03	7.19	2.30	2.25	2,46	2.51	2.56	715
25	1.21	2.00	2.17	2.27	2.25	2.42	2,43	2,52	2.22
	1.20	1.99	2.15	3.25	2.24	2,40	2.45	5.91	224
35	1.09	128	2.15	2.34	232	2.58	5,44	2,41	252
45	1.42	1.97	2.13	2.23	231	2.57	2,42	2.47	2.51
.91	LAS	1.96	2.12	2.22	2.37	2.36	15.5	2,46	2.43
35	1.68	1.96	2.11	2.22	2.74	2.36	2/1	2.40	2.47
- 60	1.67	1.96	5.11	1.21	2.24	2.74	2.40	2,44	2.45
120	1.07	1.55	2.10	2.21	2.24	2.15	2,40	2.44	2.43
	146	152	2.06	2.18	2.25	2 12 2 23	237	2.41	2 45

14.11	E 83	Vilse .	ARIA	i rad by t	the Prove	dure Bli	an + 50	св			
_	1					3					
	-	2	2	4	,	•	7	*	5		
111		1.72	3.365	3.511	320	41.0	4.80	4.05	4.044	1.0	
	i.	5.173	2 571	55.30	Nes	5521	5.8.11	4 14	47.94	4.35	
	1	\$.107	2.755	\$125	1.581	5.585	1.344	16	45.00	4.102	
	3	2.055	2.987	4-111	22.6	1496	1.606	1.215	4545	2:41	
	3	2,024	28.4	2913	2.135	1235	2,442	2 5/3	25.0	4.8	
	12	15.8	255	2,374	3,002	1.25	3.221	2 500	2.596	3.45	
	1	13.50	15	2.542	2.085	5.2.2	134	3 413	2351	3.632	
	14	1.515	1511	2 517	5.077	\$ 165	1.914	101	6415	2.122	
	11	1.997	2,492	2.35	5.85	5.190	1.260	2.84	410-	1120	
	15	1.925	3,475	2.753	2.95	\$148	5.351	2.64	4.004	1-8	
	10	1.912	3,451	2.764	2.45	41.6	5.531	2.61	444	4-8	
	17	1912	2,456	4.45	2.61	417.	13.5	3.6.1	ALC: N	24.5	
	18	13(5	240	2.04	1.03	2003	-36	1.84	1.193	5,457	
	-	197	22.0	5.72	3215	200	2.194	1200	1278	141	
	5	156	2.167	2.6.26	2 3/5	2057	2110	234	1.244	1.1	
	43	LIST	2,365	1.641	2 527	2.965	3477	1.44	5.917	1015	
	5	1.844	2.24	1.623	3 517	2.45	1110	1.143	1255	131	
1110		3,177	7.85	12.8	4.724	3.05	- 7 A	2.331	2.525	1.757	
		2.454	3.865	1000	4.9+1	4.15	1.828	126-	2 335	9.139	
	ĩ	3.761	3.64	3241	41.	1255	1418	4.557	4 101	4.385	
	2	3,712	1.306	2,549	2.812	6.0%*	-22	412.0	410	4.31	
		2.811	3.228	2,590	2.778	2.89	2011	1103	4.33	GX	
	1	3,512	3.0.9	1.20	150	1.39	1518	6107	4121	47.11	
	12	3.456	5.052	3 575	3,475	3.73+	3.857	4952	4.05*	1.1.3	
	1.1	25.04	4400.	7.011	3,955	3.964	5.012	7815	41-11	-1:1	
	14	25.3	3.027	1003	-2.0	1.84	1.303	25.4	3558	2.84	
		2.492	2.83	2 265	2,473	2,525	5.40	-1576	1510	340	
	12	1.05	1352	5.3%	2422	1 %.	7 647	200	1.84.7	2.775	
	15	2,408	50.0	134	4414	1.00	350	3,757	-5-4	12.4	
	1.0	24.92	:54	1.110	2.30	3.529	2 412	5,814	3.00	2.4	
	7	2453	28.44	47.17	1.81	1.12-	3.511	1.7.7	1.005	1075	
		1.10	-22.74	2125	2.141	3434	1 211	1 10 1	18	2115	
		130	3.3	3.0%	3 242	3.002	3.4.4	1 645	1.04	1.917	

Selecting the Best (Proc. Rinott+MCB (Independent Sampling))

- For each system i,
 - Take $N_i n_0$ additional (or restart all) observations <u>independently of the first-stage</u>.
 - Compute overall sample mean:

$$\overline{\overline{Y}}_{i} = \frac{1}{N_{i}} \sum_{j=1}^{N_{i}} Y_{j}$$

- Select system with;
 - Largest $\overline{\overline{Y}}_i$ (greater is better) or
 - Smallest $\overline{\overline{Y}}_i$ (smaller is better) as the best.

CS-503

Multipomio	Drooo	Toble
Multinomia		

TABLE 8.4 Sample Size n for Multinomial Procedure BEM, and Truncation Numbers n_T for Procedure BC

			= 2	k = 3		k - 4		k = 5	
α	R		47		87	п	87	n	67
0.25	3.0	1	1	5	5	В	9	Ш	Ľ
	2.0	5	5	12	1.2	20	24	29	34
	1.8	5	7	17	18	29	35	41	50
the August	1.6	9	9	26	32	46	57	68	81
digaration -	1.4	17	19	52	21	92	124	137	184
	1.2	55	67	181	285	326	495	485	730
0.10	3.0	7	10	11	12	16	19	21	2
Contraction of the	2.0	15	15	29	34	43	53	58	7
	1.8	19	27	40	50	61	75	83	10
	1.6	31	41	64	83	98	126	134	17.
	1.4	59	79	126	170	196	274	271	37-
	1.3	199	267	437	670	692	1050	951	1460
0.05	3.0	9	11	17	20	23	26	29	34
	2.0	23	27	42	52	61	74	81	9:
	1.8	33	35	59	71	87	105	11.5	143
	1.6	49	59	94	125	139	180	185	240
State and	1.4	97	151	185	266	278	380	374	510
State of the	1.2	327	455	645	960	979	1500	1331	2000

Comparison With a Fixed Performance (Procedure BT)

- Takes observations in two stages:
 - First stage uses $n_0 \ge 2$ (10 recommended) independent observations from each system
 - To estimate marginal variance.
 - Second stage uses marginal variance
 - To compute number of observations required to meet the probability requirement.

CS-503

TABLE 8.5 Values of y (Top Entries) and h (Bottom Entries) for Provedure BT for Comparing Normal Trustments with a Standard with $1 - y = 1 - m - 1 - m$													
	*-2			x = .3		k=4		1-5					
50 1 ac	0.90	0.95	0.90	0.95	0.90	0.95	0.90	0.95					
2	4.775	7.175	4.415	6.011	4.262	5.582	4.197	5.34					
	2.743	4.075	2.648	3.551	2.620	3.340	2.615	3.20					
3	3.679	4.900	3.688	4.701	3.714	4.619	3.545	4.58					
	2,073	2,723	2.172	2.696	2.243	2.704	2.300	2.72					
4	3,401	1,406	3.187	4.357	3.554	4.356	3,600	4.359					
	1.905	2417	2.042	2.479	2.135	2.531	2,207	257					
1	5.270	1.181	3.594	4.201	3.478	4,238	2.514	4.25					
	1.829	2.285	1.952	2.381	2.085	2.451	2.152	2.53					
Ú	3.204	4.055	3,340	4.112	2.434	4.153	3,506	1.23					
	1.287	2.211	1.947	2.325	2.055	2.405	2.136	2.161					
8	3.126	3 (21)	3.281	1.014	3.384	9.085	3.463	4.143					
	1.740	2.132	1.909	2.263	2.022	2.334	2107	2,434					
10	3.684	3.848	3.248	3.951	3.358	1.043	3 440	4.10%					
	1.715	2.090	1.588	2.230	2.904	2.327	2,091	2,000					
12	3.058	3.804	3.227	3.928	3.341	4.015	3.426	4.054					
	1.699	2.064	1.875	2.2.10	1.993	2,300	2.081	2.345					
*:	2.945	3.615	3.139	3.786	3.266	3.900	3.361	3.985					
	1.632	1.955	1.816	2.121	1.943	2.234	2.037	2.315					

Comparison With a Fixed Performance (Procedure BT)

• For each system i,

- Take $N - n_0$ additional (or restart all) independent observations.

- Compute overall sample mean:

$$\overline{\overline{Y}}_{i} = \frac{1}{N} \sum_{j=1}^{N} Y_{ij}$$

CS-503

CS-503