
1

1CS-503

Entity Behavior Modeling
(Part 9)

Bilgisayar Mühendisliği Bölümü – Bilkent Üniversitesi – Fall 2008

Dr.Çağatay ÜNDEĞER

Öğretim Görevlisi
Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü

e-mail : cagatay@undeger.com
cagatay@cs.bilkent.edu.tr

2CS-503

Entity Behavior Modeling
(Outline)

• Introduction to Artificial Intelligence (AI)
• AI Techniques & Architectures
• Some AI Algorithms/Techniques

– Finite State Machines
– Decision Trees
– Artificial Neural Networks
– Logic Programming
– Production Systems
– Genetic Algorithms
– Path Planning
– Script Programming

• Conclusion

2

3CS-503

Behavior Modeling

• Advance modeling and simulation systems

• Behavior Modeling = Artificial Intelligence

4CS-503

Artificial Intelligence (AI)

• Artificial intelligence deals with creating
synthetic characters (agents, animats) with
realistic behaviors.

• These are autonomous creatures with an
artificial body situated in a virtual world.

• Job of AI developers is to give them unique
skills and capabilities so that they can interact
with their environment intelligently and
realistically.

* Animats are artificial animals.
The term also includes physical robots and virtual simulations.

3

5CS-503

Artificial Intelligence

• AI is one of the most critical part of a
simulation.

• High quality graphics, sounds, etc. attract
viewers in the first sight.

• However, without a realistic AI, simulation will
not serve its real purpose.

6CS-503

Kinds of Behaviors
• Reactive behaviors:

– A simple decision is taken immediately
depending on the developing situation
(lying down when someone is shooting at
you,...).

• Deliberative behaviors:
– A complex decision is taken in a longer

time by reasoning deeply (evaluation,
planning, conflict resolution,...).

• Learning behaviors:
– Learning how to act by observation, try and

error.

4

7CS-503

Some AI Techniques
• Reactive behaviors:

– Finite state machines
– Fuzzy logic

• Learning (reactive) behaviors:
– Decision trees
– Neural networks
– Bayesian belief networks
– Support vector machines
– Instance base learning
– Reinforcement learning

• Deliberative behaviors:
– Logic programming systems
– Production systems
– Theorem Provers
– Semantic networks
– Genetic algorithms
– Path planning

8CS-503

An Example AI Architecture

Sensing Acting

Virtual Environment

Seeing
Hearing
Smelling
Tasting

Touching

Moving
Talking
Firing

...

Inference
Interpretation

Conflict resolution
Planning

...

Situation Awareness

Reactive Behaviours

Delibrative Behaviours

Action Selection

Reasoning

Short & Long Term Memory

Learning Rule Matching
...

5

9CS-503

Finite State Machines
(FSMs)

• Defined by a set of states and transitions
between them.

• Transition from a state to another state is
triggered by a change (event) in the
environment.

Wander

Attack
Enemy

Search
Enemy

Spawn

see enemy

initial state

not see
enemy

hear sound

not hear sound

see enemy

dead

reborn dead

dead

10CS-503

A Sample Navigation FSM

Initial state

Standing

Sitting

Walking

Running

Working

When the number
of states increases,

It becomes complicated
to define the FSMs !

6

11CS-503

Hierarchical FSMs

• Define some higher level states (e.g. BTNs).

• Refine the details of states hierarchically.

Start

Load weapon

Point at enemy

Fire

weapon
loaded

weapon
unloaded

weapon
unloaded

weapon
loaded

enemy
engaged

weapon
loaded

Sub-states

Wander

Attack
Enemy

Search
Enemy

Spawn

see enemy

not see
enemy

hear sound

not hear sound

see enemy

dead

reborn dead

dead

12CS-503

Advantages

• Very fast to execute.

• Expressive enough for simple behaviors.

• Can create tools for non-programmer to build
behaviors.

• Probabilistic transitions can be introduced to
make unpredictable behaviors.

7

13CS-503

Disadvantages

• Number of states and arcs can grow very
fast.

• Propositional representation:
– Difficult to put in “pick up the best weapon”,

“attack the closest enemy”

– Expensive to count:

• E.g. Wait until the third time I see the enemy,
then attack

• Need extra events: e.g. First time seen, second
time seen, and/or extra states to take care of
counting...

14CS-503

Decision Trees

• Rules are defined as a tree.

• Conditions are non-leaf nodes.

• Actions/decisions are leaf nodes.

• Decision trees can be learned (e.g. ID3).

8

15CS-503

Sample Inputs & Outputs

• Inputs (State variables)
– Safety (in danger, not safe, safe)
– See something (yes, no)
– Theat situation (firing at me, attacting me, escaping)

• Outputs (Actions)
– Fire at the threat
– Lay down rapidly
– Escape from threat
– Crouch and wait silently
– Walk around
– Sleep somewhere

16CS-503

Sample Instances For Learning
• If in danger, see something and threat firing at me

– then Fire at the threat (count = 2)

• If in danger, see something and threat firing at me

– then Lay down rapidly (count = 1)

• If in danger, see something and threat attacking me

– then Escape from threat (count = 1)

• If in danger, see something and threat attacking me

– then Fire at the threat (count = 1)

• If in danger, see something and threat escaping

– then Fire at the threat (count = 2)

• If not safe and see something

– then Crouch and wait silently (count = 1)

• If not safe and not see something

– then Walk around (count = 1)

• If safe

– then Sleep somewhere (count = 1)

9

17CS-503

A Sample Decision Tree

Inputs (state variables)

Outputs (actions)

18CS-503

Advantages

• A simple and compact representation.

• Easy to create and understand:

– Can also be represented as rules

• Decision trees can be learned.

10

19CS-503

Disadvantages

• Decision tree learning algorithm is complex
(hard to be coded).

• Need as many examples as possible.

• Sensitive to the errors in instances,

– Learned decision trees may contain errors.

20CS-503

Artificial Neural Networks
(NNets)

• Inspired by human brain.
• Fundamental functional units of brain are

called neurons or nerve cells.
• Neurons are connected each other by axons.
• Neural networks use a similar approach and

consist of neurons and arcs (axons)
connecting neurons.

• Neural networks can be learned.

11

21CS-503

Neural Network Architecture

i

i

i

h

h

h

h

h

h

o

o

h h

input layer hidden layers output layer

input 1

input 2

input 3

output 1

output 2

Arcs (storing weights) Neurons

22CS-503

A Sample Neural Network

• The inputs are state
variables that equal to
either 0 (no) or 1 (yes).

• Outputs are action
variables that are
between 0 and 1.

• The action with the
greatest output is
selected.

Enemy

Sound

Dead

Low Health

Attack

Retreat

Wander

Search

Spawn

12

23CS-503

Advantages

• Handle errors well.

• Graceful degradation.

• Can learn novel solutions.

24CS-503

Disadvantages

• Can’t understand how the learned network works,
therefore they are the second best way to do
something.

• Need as many examples as possible.

• Learning takes too much time / processing.

• Sometimes the network may not converge.

13

25CS-503

Logic Programming Systems

• Views the program and inputs as logical
statements about the world.

• Use backward chaining technique with depth
first search.

– Given a query, they search for the answer.

• Prolog is the most widely used logic
programming language.

26CS-503

Prolog Language

• Consists of a set of inference rules.

• Rules are separate “If...then...” sentences.

• If conditions of a rule (premise) holds,

– Its consequent can be inferred.

• In prolog,

– Rules are written as reverse if-then rules.

• Consequent is in the front, and

• Premise is at the back.

If father(X,Z) and mother(Y,Z) then parents_of(X,Y,Z)

Prolog parents_of(X,Y,Z) :- father(X,Z), mother(Y,Z)

14

27CS-503

A Sample Prolog Query
Rule:

sister_of(X,Y) :- female(X), parents(X,M,F), parents(Y,M,F), X<>Y

Facts:

female(ayse)

parents(ayse,mustafa,zeynep)

parents(ali,mustafa,zeynep)

Query:

?-sister_of(X,ali)

Answer:

X = ayse

28CS-503

Another Sample Prolog Query

Rules:
action(take_out_weapon) :- safety(not_safe), weapon(in_rucksack)
action(reload_weapon) :- safety(not_safe), weapon(in_hand), weaponloaded(no)
action(put_in_weapon) :- safety(safe), weapon(in_hand)
action(walk_around) :- safety(safe), weapon(in_rucksack), sleepy(no)
action(sleep) :- safety(safe), weapon(in_rucksack), sleepy(yes)

Facts:
safety(safe)

weapon(in_hand)

Action query:
?- action(X)

Answer:
X = put_in_weapon

15

29CS-503

Advantages

• Not need to explicitly define all the facts.

• Can infer unknown facts from known facts.

• High expressiveness.

30CS-503

Disadvantages

• Inefficient and complex.

• Difficult to define the rules.

• Cannot use probabilities.

16

31CS-503

Production Systems
(Rule-Based Systems)

• Logic programming systems use backward
chaining techniques.

– Given a query, they search for the answer.

• Production systems use the reverse (forward
chaining) techniques.

– Inference rules are applied to
knowledgebase for finding new assertions.

– The process is repeated forever, or until
some stopping criteria is met.

32CS-503

Rules

• A set of inference rules.

• Rules are separate “If...then...” statements.

• If condition (premise) of a rule holds,

– Its consequent can be asserted/executed.

17

33CS-503

A Cycle

• In each cycle,
– The knowledge base (short term or working

memory) is updated by the perception information.
– Then the forward chainer is run to select an action

to perform according to a set of condition-action
rules (long term or rule memory).

• Computes the subset of rules whose premise is
satisfied (match phase)

• Decides which of the satisfied rules are
executed (conflict resolution)

– Finally the selected actions are executed.
• May add or remove elements from working

memory.

34CS-503

Conflict Resolution

• Sometimes multiple rules may match at the same
time.

• We need to select one/some of the rules.

• We perform conflict resolution:

– Pick the first rule that matches.

– Pick the most specific rule.

– Pick the rule with the highest priority.

– Pick the rule whose working memory elements are
the most recent.

– Pick all the rules.

18

35CS-503

A Sample Rule Set
if (not feeling safe & not carrying my weapon in hand)

Take my weapon out from my rucksack

if (not feeling safe & carrying my weapon in hand & weapon is not loaded)
Reload weapon

if (feeling safe & carrying my weapon in hand)
Put my weapon back to my rucksack

if (feeling safe & not carrying my weapon in hand & not sleepy)
Walk around

if (feeling safe & not carrying my weapon in hand & sleepy)
Sleep

36CS-503

Soar

• Soar is one of the most well known
production systems (1987).

• It has been used in many applications such
as land force soldier modeling.

19

37CS-503

Advantages

• Not need to explicitly define all the facts.

• Can infer unknown facts from known facts.

• High expressiveness.

• Can solve problems.

38CS-503

Disadvantages

• Inefficient and complex.

• Difficult to define the rules.

• Cannot use probabilities.

20

39CS-503

Genetic Algorithms (GAs)

• An adaptive method which may be used to
solve search, planning and optimisation
problems.

• Based on genetic process of biological
organisms:
– Over many generations populations evolve.
– Natural selection by survival of the fitness

(Charles Darwin in the Origin of Species).
• Able to “evolve” solutions to real-world

problems.

40CS-503

Genetics in Nature

• In Nature, individuals of a population compete
with each other for:

– Food, water, shelter, mate...

• Which are most successful in surviving and
atracting mates will relatively have large
number of offsprings.

• Poor ones will produce low, even may have
no offsprings at all.

21

41CS-503

Genetics in Nature

• Genes from highly adapted “fit” individuals
will spread more in each generation.

• The combination of good characterictics can
produce “super-fit” offsprings whose fitness is
greater than their parents.

42CS-503

Properties of GA

• A class of stochastic search methods.
• Most stochastic search methods operator on

a single solution, but GA operates on a
polulation of solutions.

• Deals successfully with wide range of
problem areas, especially those which are
difficult for other methods to solve.

• Not guarantees to find the global optimum,
but good at finding “acceptably good”
solutions “acceptably quickly”.

22

43CS-503

Coding in GA

• In GA, a potential solution to a problem is
represented as a set of parameters.

• Each parameter is called a “gene”.

• These genes are joint together to form a
string of values called a “chromosome” or a
“genome” (a single potential solution to the problem).

• In general, each gene is a binary alphabet, a
set of 0s and 1s.

• Each binary value (0 or 1) is called an “allele”.

44CS-503

Coding in GA

Gene 1 Gene 2 Gene m..............................

0 1 1 0 1 0 0 1

Allele (bit)

a gene

A chromosome (a candidate solution for the problem)

23

45CS-503

A Population of
Chromosomes

• In GA, a set of chromosomes (a polulation)
is stored during the optimisation process.

1

2

3

n

n is the number of chromosomes

stored in the population which is

called “the population size”

46CS-503

Basic Algorithm

1) Initially a random population is generated.

2) The fitness of each chromosome is computed.

3) A set of genetic operator is applied to the current
population. (selection, crossover, mutation)

4) A new population is created.

5) The new polulation is replaced with the current
population (a new generation is formed).

6) The process is repeated until the population is
converged (jump to 2).

24

47CS-503

Reproduction

Population

(Parents)

selection crossover mutation

New generation

(Offsprings)

Good individuals will probably be selected several times

in a generation, poor ones may not be at all.

48CS-503

Advantages

• Can solve optimisation problems.

• Can offer sub-optimal solutions fast.

• Not domain specific.

• If a domain specific algorithm does not exist,
you can adapt GA to the problem in order to
have a solver.

25

49CS-503

Disadvantages

• A random search, so not guarantee good
solutions.

• If it is possible to write a domain specific
algorithm,

– They will be the second best way to solve the
problem.

50CS-503

Path Planning

• Path planning can be described as finding a
sequence of moves from an initial state to a
goal state.

• Path-planning algorithms:

– Off-line,

– On-line.

26

51CS-503

Off-Line and On-Line
Algorithms

• Off-line algorithms;

– Find the whole solution in advance,

– Suffer from execution time.

• On the other hand, on-line algorithms;

– Require planning and execution phases to
be coupled.

– Not designed to be optimal,

– Usually find poor solutions.

52CS-503

Incremental Heuristic
Search

• Hybrid solution:

– Incremental heuristic search.

• Optimal and more efficient than off-line path
planning algorithms.

• Still slow for some real-time applications.

• Considered as efficient off-line algorithms.

27

53CS-503

Changing Goals

• Common to assume that goal state is static.

• When relaxed for covering changing goals
(moving target search),

– The problem becomes very complicated.

54CS-503

Dealing with Changing
Goals

• Off-line and incremental path planning:

– Require re-planning towards the changing
goal from scratch in each step.

• On-line search:

– Usually designed for partially observable
environments, but not for changing goals,

– Store search information collected during
the exploration.

– There are few number of algorithms that
can handle moving targets.

28

55CS-503

Multi-Agent Pursuit

• By increasing the number of predators
involved in the environment,

– Problem can be extended to a search
against a static or moving prey with
multiple coordinated agents.

• A recent research area called multi-agent
pursuit,

• Not much study done so far.

56CS-503

Environment Representations

• Polygonal environments (e.g. Doom)

• Grid based environments (e.g. War Craft)

Initial point

Target point

Initial point

Target point

29

57CS-503

A*
• It is common to use A* if environment is not

very large.

• A* is optimal and efficient.

• The problem inputs are:

– A graph of waypoints,

– Initial point,

– Target point.

Initial point
Target point

Generated
Path

Way points

58CS-503

Efficiency Problems

• A* may be inefficient in very large graphs.

• Solutions:

– Non-optimal A * versions may be used.

– Random search algorithms (e.g. random
trees, genetic algorithms, probabilistic
roadmaps) may be used.

– Increamental heuristic search algorithms
(e.g. D*, D*-Lite) may be used.

– Real-time search algorithms (e.g. RTA*,
MTES, MAPS) may be used.

30

59CS-503

Real-Time A* (RTA*)

• Learning Real-Time A* (LRTA*) and

• Real-Time A* (RTA*)

– Proposed by Korf,

– Former generic heuristic search algorithms for
fixed goals.

– Build and update a table containing heuristic
estimates.

• LRTA* is able to learn optimal table values in single
or multiple runs.

• RTA* performs better than LRTA* in the first run,

• Lack of learning optimal table values.

60CS-503

Heuristic Depression

• The original RTA* only considers immediate
successors to determine the next move.

• Stuck in semi-closed regions for a long time.

• A heuristic depression is a local maximum,
whose heuristic values have to be filled up before
the agent can escape from it.

target

agent

The agent will be stuck
in that semi-closed
region for a long time,
because the target is at
north-west and the only
out is at south-east.

31

61CS-503

RTA* with n-Look-Ahead Depth

• RTA* can easily be extended to have any
arbitrary look-ahead depth.

• Instead of examining immediate neigbors of
the current state, n level neighbors are
used.

• Reduces the number of moves to reach the
goal significantly,

• Exponential in the look-ahead depth.

• Large n is not preferred in practice.

62CS-503

Moving Target Search (MTS)

• RTA* and many variations of these algorithms are
all limited to work on fixed goals,

• Ishida and Korf proposed Moving Target Search
(MTS).

– Built on LRTA*

– Capable of pursuing a moving target.

• MTS is a poor algorithm.

• When the target moves, the learning process has
to start all over again.

• A performance bottleneck in heuristic depressions.

32

63CS-503

MTS-c & MTS-d

• Since original MTS is a poor algorithm, two
MTS extensions:

– Commitment to Goal (MTS-c) and

– Deliberation (MTS-d) are proposed by
Ishida.

• To use the learned table values more
effectively,

– MTS-c ignores some of the target's
moves,

– MTS-d performs an off-line search to
update the heuristic values.

64CS-503

Script Programming

• In games, script programming is very
commonly used.

• Some high level special script languages may
be assumed as AI techniques.

33

65CS-503

A Sample High Level Script (HLTMS)

66CS-503

Conclusion

• There is no best algorithm.

• Solution depends on the style of game.

• Define the problem clearly.

• Develop an algorithm for the problem.

