

Some AI Techniques • Reactive behaviors: - Finite state machines - Fuzzy logic Learning (reactive) behaviors: - Decision trees - Neural networks Bayesian belief networks - Support vector machines Instance base learning - Reinforcement learning • Deliberative behaviors: - Logic programming systems - Production systems - Theorem Provers Semantic networks Genetic algorithms Path planning CS-503

An Example Al Architecture Virtual Environment Sensing Reasoning Acting Short & Long Term Memory Moving Seeing Situation Awareness Talking Hearing Firing Smelling Tasting **Reactive Behaviours** Touching **Rule Matching** Learning Delibrative Behaviours Inference Interpretation Action Selection Conflict resolution Planning

CS-503

4

8

Sample Inputs & Outputs

- Inputs (State variables)
 - Safety (in danger, not safe, safe)
 - See something (yes, no)
 - Theat situation (firing at me, attacting me, escaping)
- Outputs (Actions)
 - Fire at the threat
 - Lay down rapidly
 - Escape from threat
 - Crouch and wait silently
 - Walk around
 - Sleep somewhere

CS-503

15

Genes from highly adapted "fit" individuals will spread more in each generation. The combination of good characterictics can produce "super-fit" offsprings whose fitness is greater than their parents.

CS-503

41

Coding in GA

- In GA, a potential solution to a problem is represented as a set of parameters.
- Each parameter is called a "gene".
- These genes are joint together to form a string of values called a "chromosome" or a "genome" (a single potential solution to the problem).
- In general, each gene is a binary alphabet, a set of 0s and 1s.
- Each binary value (0 or 1) is called an "allele".

43

CS-503

Off-Line and On-Line Algorithms

- Off-line algorithms;
 - Find the whole solution in advance,
 - Suffer from execution time.
- On the other hand, on-line algorithms;
 - Require planning and execution phases to be coupled.

51

- Not designed to be optimal,
- Usually find poor solutions.

CS-503

