A Sample Application: Modeling Command and Control Centers (Part 11)

Dr. Çağatay ÜNDEĞER

Öğretim Görevlisi
Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü

e-mail: cagatay@undege.com
cagatay@cs.bilkent.edu.tr

Modeling Command and Control Centers (Outline)

• Introduction
• Generic Simulation Engine
• C4AT (C4 Analysis Tool)
 – Communication Devices
 – Environment Design
• Agent Architecture
• Conclusion & Future Work
Objective

• Developing a simulation toolkit for analyzing activities of command and control centers
• Simulation of peace time activities of the strategic and operational level command and control centers.
• In order to analyze efficiency of the organisational structure.

Modeling Complex Systems

• Complex systems that have many actors and their interactions often becomes too complex for a mathematical model.
• Therefore, agent-based modeling is a tool to study these kind of systems.
Properties of Software Agents

- Capable of acting and modifying their environment.
- Communicate with other agents in the environment.
- Have intentions.
- Control some local resources.
- Capable of perceiving their environment.
- Have only a partial representation of their environment.
- Possess skills and offers services.

Modeling Command & Control Centers

- Command and control centers are complex systems
- It is too hard to model with conventional modeling and simulation techniques
- Therefore, agent-based approach has been employed to study command and control centers
- A generic agent-based simulation engine
Generic Simulation Engine

- First, a generic simulation engine independent of the tool was developed.
- The generic simulation engine is actually a single software class (*TBtnEngine*), which is used as a base class and inherited in order to create the analysis tool, *C4AT*.

The Functions of *TBtnEngine*

- Enabling creation and modification of the project environment and the scenario.
- Managing environment and scenario files.
- Defining scenario agents including their behavioral characteristics and tasks.
- Accepting insertion of any project specific resources.
- Allowing agents to access all the resources of the project through a C-like run-time interpreter.
- Running scenario with a selected time management mode.
C4AT Simulation Engine

- With the customized engine (C4AT):
 - The geographical location of the scenario can be set.
 - The buildings of command and control centers including their interior can be designed.
 - The communication devices can be introduced.
 - The agents can access all the resources of C4AT (buildings and communication devices).

C4AT Architecture
Communication Devices

- The communication devices can be categorized as:
 - phone, radio, fax, computer, and multimedia
 (television, radio, newspaper, etc.).
- Phone is the most preferred communication device in peace time operations.
- Consequently, we started the development of communication devices with the phone.
- Phone States: available, waiting for dial tone, ready to dial, calling, connected, busy, disconnected or ringing.

The Environment Design

- The simulation environment consists of a set of buildings and their interior.
- A building editor is developed.
- Buildings are designed by creating each floor and their connections with other floors.
- Floors contain nodes, arcs, regions and connections.
Agent Architecture

• The behaviors of the agents are modeled using:
 – Behavioral Transition Networks (BTN)
 – A sub-feature defined within BTN structure called High Level Task Management Script (HLTMS).

• BTNs are just a specialized approach based on State Transition Diagrams.
General Architecture of a BTN

- Nodes have type definitions, parameters, properties, methods, events, transitions and HLTMS.

- BTN node parallel executable sub-BTN set

- Sub-BTN node transition arc

Modeling Agent Behaviors

- Each agent has a behavior assigned to him, which is defined in a single BTN node called root BTN.
- First level BTNs, the ones directly owned by root BTN, are generally used for action modeling such as calling by phone, going to a location, etc.
- Action BTNs are fired by HLTMS.
A Root BTN Sample

Call By Phone Action

transitions of “Try To Pick Up The Phone”
High Level Task Management Script (HLTMS)

- HLTMS is a hierarchically defined script
- The statements of HLTMS can be executed sequentially or in parallel.
- Some of the statements:
 - STARTPAR: Starts a parallel execution
 - ADDINFORM: Inserts an information message into a parallel execution
 - ADDTASK: Inserts a task into a parallel execution
 - I SAY: Sends a voice message to an agent or object (phone)
 - I DO: Triggers an action
 - DO RESULT: Captures the result of an action
 - LISTEN: Starts listening for perception messages, information messages and tasks
 - I HEAR: Enables receiving voice perception messages
 - I INFORMED: Enables receiving information messages
 - I SELECT: Enables selecting from tasks. The task with highest priority is always selected
 - LOUT: Backtracks to the start of a specified LISTEN statement

A Sample HLTMS for Responding a Phone Call
Task Distribution

- A simple but effective model, which reflects the nature of command and control hierarchy.
- An agent informed of a task (event, request, order) generates a set of sub-tasks to meet the requirements of the main-task.
- Following the task decomposition, additional sub-tasks for task distribution management are inserted.

Running the Scenario

- The TBtnEngine allows selection of time management methodology:
 - Event based
 - Real-time
 - Unlimited time steps
 - Constant time steps
 - Upper bounded time steps
 - Constant time interval
Conclusion & Future Work

• Proposed a simulation framework and a simulation tool for modeling command and control centers.
• Realized a generic simulation engine and a customized engine for C4AT.
• Developed an agent-based system, which uses:
 – Behavioral Transition Networks,
 – A proposed approach called High Level Task Management Script.
• The first version of our implementation has given promising results.
• Currently studying on the tool for defining agent behaviors and tasks to improve the system.