
CS481: Bioinformatics
Algorithms

Can Alkan

EA509

calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/

CS481

 Class hours:
 Mon 10:40 - 12:30; Thu 9:40 - 10:30

 Class room: EB201
 Office hour: Tue + Thu 11:00-12:00
 TA: Fatma Kahveci (fatmaba@gmail.com)
 Grading:

 1 midterm: 25%
 1 final: 35%
 Homeworks (theoretical & programming [C/C++]): 20%
 Quizzes: 20%

CS481

 Textbook: An Introduction to Bioinformatics Algorithms
(Computational Molecular Biology), Neil Jones and Pavel Pevzner,
MIT Press, 2004

 Recommended Material
 Biological Sequence Analysis: Probabilistic Models of Proteins and

Nucleic Acids, Richard Durbin, Sean R. Eddy, Anders Krogh, Graeme
Mitchison, Cambridge University Press

 Bioinformatics: The Machine Learning Approach, Second Edition, Pierre
Baldi, Soren Brunak, MIT Press

 Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology, Dan Gusfield, Cambridge University Press

 (Most) of the course material is publicly
available at: www.bioalgorithms.info

CS481

 This course is about algorithms in the field
of bioinformatics:
 What are the problems?
 What algorithms are developed for what problem?
 Algorithm design techniques

 This course is not about how to analyze
biological data using available tools:
 Recommended course: MBG 326: Introduction to

Bioinformatics

CS481 and other courses

 Includes elements from:
 CS201/202: data structures
 CS473: algorithms, dynamic programming,

greedy algorithms, branch-and-bound, etc.
 CS476: complexity, context-free grammars,

DFA/NFA
 CS464: hidden Markov models

CS481: Assumptions

 You are assumed to know/understand
 Computer science basics (CS101/102 or CS111/112)

 CS201/202 would be better
 CS473 would be even better

 Data structures (trees, linked lists, queues, etc.)
 Elementary algorithms (sorting, hashing, etc.)
 Programming: C, C++

 You don’t have to be a “biology expert”: MBG 110 would
be sufficient

Bioinformatics

 Development of methods based on computer science for
problems in biology and medicine
 Sequence analysis (combinatorial and statistical/probabilistic

methods)
 Graph theory
 Data mining
 Database
 Statistics
 Image processing
 Visualization
 …..

CS 481

Bioinformatics: Applications

 Human disease
 Personalized Medicine

 Genomics: Genome analysis, gene discovery, regulatory
elements, etc.

 Population genomics
 Evolutionary biology
 Proteomics: analysis of proteins, protein pathways,

interactions
 Transcriptomics: analysis of the transcriptome (RNA

sequences)
 …

Why would you learn these
algorithms?
 Most developed for research within other fields

that include string processing, clustering, text-
pattern search, etc.

 Bioinformatics (non-academic) jobs on the
rise:
 Genomics England, Genome Asia, etc.: 100,000

genome projects
 DNAnexus, SevenBridges: genome analysis on the

cloud.
 SevenBridges has Ankara and Istanbul offices

(VERY) BRIEF
INTRODUCTION TO
COMPLEXITY

Tractable vs intractable

 Tractable algorithms: there exists a solution
with O(f(n)) run time, where f(n) is polynomial

 P is the set of problems that are known to be
solvable in polynomial time

 NP is the set of problems that are verifiable in
polynomial time
 NP: “non-deterministic polynomial”

NPP 

NP-hard

 NP-hard: non-deterministic polynomial hard
 Set of problems that are “at least as hard as the

hardest problems in NP”
 There are no known polynomial time optimal

solutions
 There may be polynomial-time approximate

solutions

NP-Complete

 A decision problem C is in NPC if :
 C is in NP
 Every problem in NP is reducible to C in

polynomial time

That means: if you could solve any NPC problem in
polynomial time, then you can solve all of them in
polynomial time

 Decision problems: outputs “yes” or “no”

NP-intermediate

 Problems that are in NP; but not in either
NPC or NP-hard

P vs. NP

 We do not know whether P=NP or P≠NP
 Principal unsolved problem in computer science
 It is believed that P≠NP

P vs. NP vs. NPC vs. NP-hard

Examples

 P:
 Sorting numbers, searching numbers, pairwise

sequence alignment, etc.

 NP-complete:
 Subset-sum, traveling salesman, etc.

 NP-intermediate:
 Factorization, graph isomorphism, etc.

Historical reference

 The notion of NP-Completeness: Stephen
Cook and Leonid Levin independently in
1971
 First NP-Complete problem to be identified:

Boolean satisfiability problem (SAT)
 Cook-Levin theorem

 More NPC problems: Richard Karp, 1972
 “21 NPC Problems”

 Now there are thousands….

ALGORITHM DESIGN
TECHNIQUES

Sample problem: Change

 Input: An amount of money M, in cents
 Output: Smallest number of coins that adds

up to M
 Quarters (25c): q
 Dimes (10c): d
 Nickels (5c): n
 Pennies (1c): p
 Or, in general, c1, c2, …, cd (d possible

denominations)

Algorithm design techniques

 Exhaustive search / brute force
 Examine every possible alternative to find a

solution

Algorithm design techniques

 Greedy algorithms:
 Choose the “most attractive” alternative at each

iteration

Algorithm design techniques

 Dynamic Programming:
 Break problems into subproblems; solve

subproblems; merge solutions of subproblems to
solve the real problem

 Keep track of computations to avoid recomputing
values that you already solved

 Dynamic programming table

DP example: Rocks game

 Two players
 Two piles of rocks with p1 rocks in pile 1, and

p2 rocks in pile 2
 In turn, each player picks:

 One rock from either pile 1 or pile 2; OR
 One rock from pile 1 and one rock from pile2

 The player that picks the last rock wins

DP algorithm for Player 1

 Problem: p1 = p2 = 10
 Solve more general problem of p1 = n and p2

= m
 It’s hard to directly calculate for n=5 and m=6;

we need to solve smaller problems

DP algorithm for Player 1

Initialize; obvious win for Player 1 for 1,0; 0,1 and 1,1

pile2

pile1

DP algorithm for Player 1

Player 1 cannot win for 2,0 and 0,2

pile2

pile1

DP algorithm for Player 1

Player 1 can win for 2,1 if he picks one from pile2

Player 1 can win for 1,2 if he picks one from pile1

pile2

pile1

DP algorithm for Player 1

Player 1 can win for 2,1 if he picks one from pile2

Player 1 can win for 1,2 if he picks one from pile1

pile2

pile1

DP algorithm for Player 1

Player 1 cannot win for 2,2

Any move causes his opponent to go to W state

pile2

pile1

DP “moves”
When you are at position (i,j)

Go to:

Pick from pile 1:

Pick from pile 2:

Pick from both piles 1 and 2:

(i-1, j)

(i, j-1)

(i-1, j-1)

DP final table

Also keep track of the choices you need to make to achieve W
and L states: traceback table

Algorithm design techniques

 Divide and conquer:
 Split, solve, merge

 Mergesort

 Machine learning:
 Analyze previously available solutions, calculate

statistics, apply most likely solution

 Randomized algorithms:
 Pick a solution randomly, test if it works. If not,

pick another random solution

	CS481: Bioinformatics Algorithms
	CS481
	Slide 3
	Slide 4
	CS481 and other courses
	CS481: Assumptions
	Bioinformatics
	Bioinformatics: Applications
	Why would you learn these algorithms?
	(Very) brief introduction to complexity
	Tractable vs intractable
	NP-hard
	NP-Complete
	NP-intermediate
	P vs. NP
	P vs. NP vs. NPC vs. NP-hard
	Examples
	Historical reference
	Algorithm design techniques
	Sample problem: Change
	Slide 21
	Slide 22
	Slide 23
	DP example: Rocks game
	DP algorithm for Player 1
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	DP “moves”
	DP final table
	Slide 33

