CS481: Bioinformatics
Algorithms

Can Alkan
EA509
calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/

(5431

Class hours:
a2 Online-only weeks:
Tue 9:00-10:00 - Thu 15:30-17:20
1 Hybrid weeks:
Tue 9:30-10:20 (in class) - Thu 17:30-19:20 (online)
Class room: EB104 / Zoom

Office hour: Wed 14:00-15:00

- meet.google.com/nhm-ieor-gke

TA: Ricardo Roman Brenes: ricardo@bilkent.edu.tr
Grading:

a1 midterm: 25%

o 1final: 35%
o Homeworks (programming): 40% (n=7-8)

(5431

Recommended Textbooks

a

a

4

Genome Scale Algorithm Design, Veli Makinen, et al., Cambridge University
Press, 2015

An Introduction to Bioinformatics Algorithms (Computational Molecular Biology),
Neil Jones and Pavel Pevzner, MIT Press, 2004

https://www.bioinformaticsalgorithms.org/

Additional:

Q

Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology, Dan Gusfield, Cambridge University Press

Biological Sequence Analysis: Probabilistic Models of Proteins and
Nucleic Acids, Richard Durbin, Sean R. Eddy, Anders Krogh, Graeme
Mitchison, Cambridge University Press

Bioinformatics: The Machine Learning Approach, Second Edition, Pierre
Baldi, Soren Brunak, MIT Press

ROSALIND problem sets: http://rosalind.info/problems/locations/

(5431

This course is about algorithms in the field
of bioinformatics:

2 What are the problems?

a2 What algorithms are developed for what problem?
a Algorithm design techniques

This course is not about how to analyze
biological data using available tools:

a2 Recommended course: MBG 326: Introduction to
Bioinformatics

(CS481 and other courses

Includes elements from:
o CS201/202: data structures -- implicit prerequisite

o CS473: algorithms, dynamic programming, greedy
algorithms, branch-and-bound, etc.

o CS476: complexity, context-free grammars,
DFA/NFA

2 CS464: hidden Markov models (not covered in
CS481, but related topic)

CS481: Assumptions

You are assumed to know/understand

o Computer science basics (CS101/102 or CS111/112)
CS201/202 would be better
CS473 would be even better

o Data structures (trees, linked lists, queues, etc.)
o Elementary algorithms (sorting, hashing, etc.)
2 Programming: C, C++ (preferred); Python, Java
Note: we will give bonus points for the “fastest” code in some
homeworks
You don’t have to be a “biology expert” and we will not
teach any biology in this course: MBG 110 would be
sufficient

Bioinformatics Algorithms

Development of methods based on computer science for
problems in biology and medicine

o Sequence analysis (combinatorial and statistical/probabilistic

methods)
Graph theory CS 451

Data mining
Database
Statistics

Image processing
Visualization

o 0o U 0 ol U

Bioinformatics: Applications

Human disease
o Personalized Medicine

Genomics: Genome analysis, gene discovery, regulatory
elements, etc.

Population genomics
Evolutionary biology

Proteomics: analysis of proteins, protein pathways,
Interactions

Transcriptomics: analysis of the transcriptome (RNA
sequences)

Why would you learn these

algorithms?

Most developed for research within other
fields that include string processing,
clustering, text-pattern search, etc.

Bioinformatics (non-academic) jobs on the

rise:

2 Genomics England, Genome Asia, etc.: 100,000
genome projects

2 DNAnexus, SevenBridges, LifeBit: genome
analysis on the cloud.

‘ Genomics and healthcare

United Kingdom

Genomics England 2012-

100,000 Genomes: rare disaase, CENCSr
E350M (USDS485M)

Scottish Genomes £6M (USDSEM)
Weish Genomics for Precision Medicine
£6.8M (USD3aM)

Northam lreland Genomic Medicine
Centre £3,3M (USD$4 8M)

United States of America

National Human Genome Research
Institute 2007~

Infrastructure and clinecal cohorts
USDS427M

All of Us 2016-2025

Populafion cohort

USDSS00M (first two years)

Switzerland
Swiss Personalizad Haalth Network 2017-2020
Infrastructiure

CHFEEM (USDESM)

Qatar

Netherlands

RADICON-NL 2016-2025

Rare disease

Health Research Infrastructure

Qatar Genome 2015-

Indrs

tructure, popuiation cohort

Japan

Japan Genomic Medicine Program, 2015-

struciure, clinical and populabon-b
cohorts, drug discovery
JPY10.28 (USDSS0.06M)

Estonia
Estonian Genome Project 2000 -
Inf dure and population-t

)17 €5M for 10

Finland

National Genome Strategy 2015-2020
Infrastructure

€50M ($USD 58M)

me Denmark 2012-
M (USD$13.5M)
FarGen 2011- 2017
DK 10M (USD$1.6M)
Infrast pulation-based
cohort, pat an project

Turkey
Turkish Genome Project 2017-2023
ire, cinical and population-

Australia

Australian Genomics 2016-2021
Infrastructure, rare diseasa and cances
AUDS125M (USDS95M)

Genomics Health Futures Mission 2018-2028
AUDSS00M (USDS372M)

Stark et al., AJHG 2019

(VERY) BRIEF
INTRODUCTION TO
COMPLEXITY

Tractable vs intractable

Tractable problems: there exists a solution with
O(f(n)) run time, where f(n) is polynomial

P is the set of problems that are known to be
solvable in polynomial time

NP is the set of problems that are verifiable in
polynomial time (or, solvable by a
non-deterministic Turing Machine in polynomial
time)

NP: “non-deterministically polynomial”
- yPOVIOMET P = NP

NP-hard

NP-hard: non-deterministically polynomial -
hard

o Set of problems that are “at least as hard as the
hardest problems in NP’

a2 There are no known polynomial time optimal
solutions

a2 There may be polynomial-time approximate
solutions

NP-Complete

A decision problem C is in NPC if :
a2 Cisin NP

a Every problem in NP is reducible to C in
polynomial time

That means: if you could solve any NPC problem in
polynomial time, then you can solve all of them in
polynomial time

Decision problems: outputs “yes” or “no”

NP-intermediate

Problems that are in NP; but not in either
NPC or NP-hard (as far as we know)

P vs. NP

We do not know whether P=NP or PZNP

2 Principal unsolved problem in computer science
2 Most likely PZNP

P vs. NP vs. NPC vs. NP-hard

A
NP-Hard
NP-Complete
NP

NP-Hard

P=NP=
NP-Complete

Examples

P:
2 Sorting numbers, searching numbers, pairwise
sequence alignment, etc.

NP-complete:
2 Subset-sum, traveling salesman, etc.

NP-intermediate:
o Factorization, graph isomorphism, etc.

Historical reference

The notion of NP-Completeness: Stephen
Cook and Leonid Levin independently in
1971

a First NP-Complete problem to be identified:
Boolean satisfiability problem (SAT)

Cook-Levin theorem

More NPC problems: Richard Karp, 1972
a 21 NPC Problems”

Now there are thousands....

ALGORITHM DESIGN
TECHNIQUES

Sample problem: Change

Input: An amount of money M, in cents

Output: Smallest number of coins that adds
up to M

Quarters (25c¢): g

Dimes (10c): d

Nickels (5¢): n

Pennies (1c): p

Or, in general, c,, c,, ..., c, (d possible
denominations)

0o O 0O O O

Algorithm design techniques

Exhaustive search / brute force

2 Examine every possible alternative to find a
solution

BRUTEFORCECHANGE(M, c, d)
smallest NumberO fCoins «— oc
for each (iq,..., iq) from (0, ..., 0)to (M/cy,...,M/cq)
valueO fCoins — ZZZI 1LCL
if valueOfCoins = M
numberQO fCoins «— Zzzl ik
if numberO fCoins < smallest NumberO fCoins
smallest NumberO fCoins «— numberO fCoins
bestChange — (i1, 12,..., id)
9 return (bestChange)

W N -

®© N o Ul

‘ Algorithm design techniques

= Greedy algorithms:
o Choose the “most attractive” alternative at each

iteration
USCHANGE(M)
1 P & J[
BETTERCHANGE(M, c, d) 2 q—r1/25
1 r—~M 3 r—r—25.q
2 for k—1tod 4 d—r/10
3 i —r/ck 5 r—r—-10-d
4 T —Ck- ik 6 n—r/5
5 return (iy,12,...,14) 7 pe—pr—5.n
8 p—r
9 return (¢.d.n,p)

Algorithm design techniques

Dynamic Programming:

o Break problems into subproblems; solve
subproblems; merge solutions of subproblems to
solve the real problem

a2 Keep track of computations to avoid recomputing
values that you already solved

Dynamic programming table

DP example: Rocks game

Two players

Two piles of rocks with p_ rocks in pile 1, and
p, rocks in pile 2

In turn, each player picks:

a2 One rock from either pile 1 or pile 2; OR
a2 One rock from pile 1 and one rock from pile2

The player that picks the last rock wins

DP algorithm for Player 1

Problem: p. =p, =10

Solve more general problem of p, =n and
P,=mMm

It's hard to directly calculate for n=5 and m=6;
we need to solve smaller problems

DP algorithm for Player 1

pile2

0 2 39 4 e 7 & 9 10

1
W
pile1 W W

NO O NI ON Ol WO N~ O

I
o

Initialize; obvious win for Player 1 for 1,0; 0,1 and 1,1

DP algorithm for Player 1

pile2
g 1 Z & 4 5 @ 7 & 9 10
0 W L
pile11WW

2 | L

2

4

D

6

7

8

9

10

Player 1 cannot win for 2,0 and 0,2

‘ DP algorithm for Player 1

pile2
0 1 2 3 4 5 6, 7 & 9 10
0 W L
pilet 1 | W W W
2 L W
S
4 Player 1 can win for 2,1 if he picks one from pile2
Z Player 1 can win for 1,2 if he picks one from pile1
7
8
9
10

DP algorithm for Player 1

pile2

pile1

Player 1 can win for 2,1 if he picks one from pile2

Player 1 can win for 1,2 if he picks one from pile1

‘ DP algorithm for Player 1

pile2
0 1 2 3 4 D 6 7 & 9 10
0 W L
pile1 1 | W W W
2 L W L
o
4 Player 1 cannot win for 2,2
5
6 Any move causes his opponent to go to W state
7
8
9
10

DP “moves”

When you are at position (i,j)

Go to:
Pick from pile 1: (i-1, j)
Pick from pile 2: (i, j-1)

Pick from both piles 1 and 2: (i-1, j-1)

"DP final table

10

o B], R gl] & el
SEREEEEREEE
i el = pal e] &l T
SIS FR 2 SEEE
e, B el = e B] S
<§-F- -0 g4 -3
) &l & A
<33 -<F-4-< -3 4§ -4 -
g & e B] S
<34 - -4 -

222 IZA2 A

O =AM HIDON®OS

Also keep track of the choices you need to make to achieve W

and L states:

traceback table

Algorithm design techniques: CS473

Branch and bound:
o Omit a large number of alternatives when performing brute force

Divide and conquer:
a Split, solve, merge
Mergesort

Machine learning (CS 464):

o Analyze previously available solutions, calculate statistics, apply
most likely solution

Randomized algorithms:

o Pick a solution randomly, test if it works. If not, pick another
random solution

