
CS481: Bioinformatics
Algorithms

Can Alkan
EA509
calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/

CS481
■ Class hours:

❑ Online-only weeks:
■ Tue 9:00-10:00 - Thu 15:30-17:20

❑ Hybrid weeks:
■ Tue 9:30-10:20 (in class) - Thu 17:30-19:20 (online)

■ Class room: EB104 / Zoom
■ Office hour: Wed 14:00-15:00
❑ meet.google.com/nhm-ieor-qke

■ TA: Ricardo Román Brenes: ricardo@bilkent.edu.tr
■ Grading:

❑ 1 midterm: 25%
❑ 1 final: 35%
❑ Homeworks (programming): 40% (n=7-8)

CS481

■ Recommended Textbooks
❑ Genome Scale Algorithm Design, Veli Makinen, et al., Cambridge University

Press, 2015
❑ An Introduction to Bioinformatics Algorithms (Computational Molecular Biology),

Neil Jones and Pavel Pevzner, MIT Press, 2004
❑ https://www.bioinformaticsalgorithms.org/

■ Additional:
❑ Algorithms on Strings, Trees, and Sequences: Computer Science and

Computational Biology, Dan Gusfield, Cambridge University Press
❑ Biological Sequence Analysis: Probabilistic Models of Proteins and

Nucleic Acids, Richard Durbin, Sean R. Eddy, Anders Krogh, Graeme
Mitchison, Cambridge University Press

❑ Bioinformatics: The Machine Learning Approach, Second Edition, Pierre
Baldi, Soren Brunak, MIT Press

❑ ROSALIND problem sets: http://rosalind.info/problems/locations/

CS481

■ This course is about algorithms in the field
of bioinformatics:
❑ What are the problems?
❑ What algorithms are developed for what problem?
❑ Algorithm design techniques

■ This course is not about how to analyze
biological data using available tools:
❑ Recommended course: MBG 326: Introduction to

Bioinformatics

CS481 and other courses

■ Includes elements from:
❑ CS201/202: data structures -- implicit prerequisite
❑ CS473: algorithms, dynamic programming, greedy

algorithms, branch-and-bound, etc.
❑ CS476: complexity, context-free grammars,

DFA/NFA
❑ CS464: hidden Markov models (not covered in

CS481, but related topic)

CS481: Assumptions

■ You are assumed to know/understand
❑ Computer science basics (CS101/102 or CS111/112)

■ CS201/202 would be better
■ CS473 would be even better

❑ Data structures (trees, linked lists, queues, etc.)
❑ Elementary algorithms (sorting, hashing, etc.)
❑ Programming: C, C++ (preferred); Python, Java

■ Note: we will give bonus points for the “fastest” code in some
homeworks

■ You don’t have to be a “biology expert” and we will not
teach any biology in this course: MBG 110 would be
sufficient

Bioinformatics Algorithms

■ Development of methods based on computer science for
problems in biology and medicine
❑ Sequence analysis (combinatorial and statistical/probabilistic

methods)
❑ Graph theory
❑ Data mining
❑ Database
❑ Statistics
❑ Image processing
❑ Visualization
❑ …..

CS 481

Bioinformatics: Applications

■ Human disease
❑ Personalized Medicine

■ Genomics: Genome analysis, gene discovery, regulatory
elements, etc.

■ Population genomics
■ Evolutionary biology
■ Proteomics: analysis of proteins, protein pathways,

interactions
■ Transcriptomics: analysis of the transcriptome (RNA

sequences)
■ …

Why would you learn these
algorithms?
■ Most developed for research within other

fields that include string processing,
clustering, text-pattern search, etc.

■ Bioinformatics (non-academic) jobs on the
rise:
❑ Genomics England, Genome Asia, etc.: 100,000

genome projects
❑ DNAnexus, SevenBridges, LifeBit: genome

analysis on the cloud.

Genomics and healthcare

Stark et al., AJHG 2019

(VERY) BRIEF
INTRODUCTION TO
COMPLEXITY

Tractable vs intractable

■ Tractable problems: there exists a solution with
O(f(n)) run time, where f(n) is polynomial

■ P is the set of problems that are known to be
solvable in polynomial time

■ NP is the set of problems that are verifiable in
polynomial time (or, solvable by a
non-deterministic Turing Machine in polynomial
time)
❑ NP: “non-deterministically polynomial”

NP-hard

■ NP-hard: non-deterministically polynomial -
hard
❑ Set of problems that are “at least as hard as the

hardest problems in NP”
❑ There are no known polynomial time optimal

solutions
❑ There may be polynomial-time approximate

solutions

NP-Complete

■ A decision problem C is in NPC if :
❑ C is in NP
❑ Every problem in NP is reducible to C in

polynomial time

That means: if you could solve any NPC problem in
polynomial time, then you can solve all of them in
polynomial time

 Decision problems: outputs “yes” or “no”

NP-intermediate

■ Problems that are in NP; but not in either
NPC or NP-hard (as far as we know)

P vs. NP

■ We do not know whether P=NP or P≠NP
❑ Principal unsolved problem in computer science
❑ Most likely P≠NP

P vs. NP vs. NPC vs. NP-hard

Examples

■ P:
❑ Sorting numbers, searching numbers, pairwise

sequence alignment, etc.
■ NP-complete:
❑ Subset-sum, traveling salesman, etc.

■ NP-intermediate:
❑ Factorization, graph isomorphism, etc.

Historical reference

■ The notion of NP-Completeness: Stephen
Cook and Leonid Levin independently in
1971
❑ First NP-Complete problem to be identified:

Boolean satisfiability problem (SAT)
■ Cook-Levin theorem

■ More NPC problems: Richard Karp, 1972
❑ “21 NPC Problems”

■ Now there are thousands….

ALGORITHM DESIGN
TECHNIQUES

Sample problem: Change

■ Input: An amount of money M, in cents
■ Output: Smallest number of coins that adds

up to M
❑ Quarters (25c): q
❑ Dimes (10c): d
❑ Nickels (5c): n
❑ Pennies (1c): p
❑ Or, in general, c1, c2, …, cd (d possible

denominations)

Algorithm design techniques

■ Exhaustive search / brute force
❑ Examine every possible alternative to find a

solution

Algorithm design techniques

■ Greedy algorithms:
❑ Choose the “most attractive” alternative at each

iteration

Algorithm design techniques

■ Dynamic Programming:
❑ Break problems into subproblems; solve

subproblems; merge solutions of subproblems to
solve the real problem

❑ Keep track of computations to avoid recomputing
values that you already solved
■ Dynamic programming table

DP example: Rocks game

■ Two players
■ Two piles of rocks with p1 rocks in pile 1, and

p2 rocks in pile 2
■ In turn, each player picks:
❑ One rock from either pile 1 or pile 2; OR
❑ One rock from pile 1 and one rock from pile2

■ The player that picks the last rock wins

DP algorithm for Player 1

■ Problem: p1 = p2 = 10
■ Solve more general problem of p1 = n and

p2 = m
■ It’s hard to directly calculate for n=5 and m=6;

we need to solve smaller problems

DP algorithm for Player 1

Initialize; obvious win for Player 1 for 1,0; 0,1 and 1,1

pile2

pile1

DP algorithm for Player 1

Player 1 cannot win for 2,0 and 0,2

pile2

pile1

DP algorithm for Player 1

Player 1 can win for 2,1 if he picks one from pile2

Player 1 can win for 1,2 if he picks one from pile1

pile2

pile1

DP algorithm for Player 1

Player 1 can win for 2,1 if he picks one from pile2

Player 1 can win for 1,2 if he picks one from pile1

pile2

pile1

DP algorithm for Player 1

Player 1 cannot win for 2,2

Any move causes his opponent to go to W state

pile2

pile1

DP “moves”
When you are at position (i,j)

Go to:

Pick from pile 1:

Pick from pile 2:

Pick from both piles 1 and 2:

(i-1, j)

(i, j-1)

(i-1, j-1)

DP final table

Also keep track of the choices you need to make to achieve W
and L states: traceback table

Algorithm design techniques: CS473

■ Branch and bound:
❑ Omit a large number of alternatives when performing brute force

■ Divide and conquer:
❑ Split, solve, merge

■ Mergesort

■ Machine learning (CS 464):
❑ Analyze previously available solutions, calculate statistics, apply

most likely solution
■ Randomized algorithms:

❑ Pick a solution randomly, test if it works. If not, pick another
random solution

