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The problem of String 
Matching

Given a string ‘t’, the problem of string 
matching deals with finding whether a pattern 
‘p’ occurs in ‘t’ and if ‘p’ does occur then 
returning position in ‘t’ where ‘p’ occurs.



Brute force (O(mn))

n <- |t|
m <- |p|
i <= 1
while i < n
  if p == t[i, i+m-1]
     return i;
  else 
     i = i + 1;
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Straightforward string 
searching
 Worst case:

 Pattern string always matches completely except for last 
character

 Example: search for XXXXXXY in target string of 
XXXXXXXXXXXXXXXXXXXX

 Outer loop executed once for every character in target 
string

 Inner loop executed once for every character in pattern
 O(mn), where m = |p| and n = |t|

 OK if patterns are short, but better algorithms 
exist



Knuth-Morris-Pratt

 O(m+n)
 Key idea:

  if pattern fails to match, slide pattern to right by 
as many boxes as possible without permitting a 
match to go unnoticed



The KMP Algorithm - 
Motivation

 Knuth-Morris-Pratt’s algorithm 
compares the pattern to the 
text in left-to-right, but shifts 
the pattern more intelligently 
than the brute-force algorithm. 

 When a mismatch occurs, 
what is the most we can shift 
the pattern so as to avoid 
redundant comparisons?

 Answer: the largest prefix of 
P[0..j] that is a suffix of P[1..j]

x

j

. . a b a a b . . . . .

a b a a b a

a b a a b a

No need to
repeat these
comparisons

Resume
comparing
here



KMP Failure Function

 Knuth-Morris-Pratt’s 
algorithm preprocesses the 
pattern to find matches of 
prefixes of the pattern with 
the pattern itself

 The failure function F(j) is 
defined as the size of the 
largest prefix of P[0..j] that is 
also a suffix of P[1..j]

 Knuth-Morris-Pratt’s 
algorithm modifies the brute-
force algorithm so that if a 
mismatch occurs at P[j]T[i] 
we set  j  F(j  1)

j 0 1 2 3 4 
P[j] a b a a b a

F(j) 0 0 1 1 2 

x

j

. . a b a a b . . . . .

a b a a b a

F(j1)

a b a a b a



The KMP Algorithm

 The failure function can be 
represented by an array and 
can be computed in O(m) time

 At each iteration of the while-
loop, either
 i increases by one, or
 the shift amount i  j increases 

by at least one (observe that 
F(j  1) < j)

 Hence, there are no more 
than 2n iterations of the while-
loop

 Thus, KMP’s algorithm runs in 
optimal time O(m  n)

Algorithm KMPMatch(T, P)
F  failureFunction(P)
i  0
j  0
while i  n

if T[i]  P[j]
if  j  m  1

return  i  j { match }
else

i  i  1
j  j  1

else
if  j  0

j  F[j  1]
else

i  i  1
return  1 { no match }



Computing the Failure 
Function

 The failure function can be 
represented by an array and 
can be computed in O(m) time

 The construction is similar to 
the KMP algorithm itself

 At each iteration of the while-
loop, either
 i increases by one, or
 the shift amount i  j increases 

by at least one (observe that 
F(j  1) < j)

 Hence, there are no more 
than 2m iterations of the while-
loop

Algorithm failureFunction(P)
F[0]  0
i  1
j  0
m  length(P)
while i  m

if P[i]  P[j]
{we have matched j + 1 chars}

F[i]   j + 1
i  i  1
j  j  1

else if  j  0 then
{use failure function to shift P}

j  F[j  1]
else

F[i]  0 { no match }
i  i  1



Example

1

a b a c a a b a c a b a c a b a a b b

7

8

19181715

a b a c a b

1614

13

2 3 4 5 6

9

a b a c a b

a b a c a b

a b a c a b

a b a c a b

10 11 12

c

j 0 1 2 3 4 
P[j] a b a c a b

F(j) 0 0 1 0 1 



The Boyer-Moore Algorithm

 Similar to KMP in that:
 Pattern compared against target
 On mismatch, move as far to right as possible

 Different from KMP in that:
 Compare the patterns from right to left instead of 

left to right
 Does that make a difference?

 Yes – much faster on long targets; many 
characters in target string are never examined at 
all



Boyer-Moore example

t[0]       t[1]        t[2]       t[3]       t[4]       t[5]      t[6]       t[7]      t[8]       t[9]       t10]

A B C E F G A B C D E

 A B C D

p[0]       p[1]      p[2]      p[3]

 N

There is no E in the pattern : thus the pattern can’t match if any characters 
lie under t[3].  So, move four boxes to the right.



Boyer-Moore example

t[0]       t[1]        t[2]       t[3]       t[4]       t[5]      t[6]       t[7]      t[8]       t[9]       t10]

A B C E F G A B C D E

 A B C D

p[0]       p[1]      p[2]      
p[3]

 N

Again, no match.  But there is a B in the pattern.  So move two boxes to 
the right.



Boyer-Moore example

t[0]       t[1]        t[2]       t[3]       t[4]       t[5]      t[6]       t[7]      t[8]       t[9]       t10]

A B C E F G A B C D E

 A B C D

p[0]       p[1]      p[2]      p[3]

 Y YYY



Boyer-Moore : another 
example
            t[k]    t[k+1]    …                t[k+i]                                 t[k+m-1]

   …  c E … R G  

 L E … S D E … R G

p[0]       p[1]    …       p[i-1]      p[i]     p[i+1]    …                 p[m-1]

 Y YYYN

Problem: determine d, the number of  boxes that the pattern can be 
moved to the right.

d should be smallest integer such that t[k+m-1]= p[m-1-d], t[k+m-2] = 
p[m-2-d], … t[k+i] = p[i-d]



The Boyer-Moore Algorithm

 We said:
 d should be smallest integer such that:

 T[k+m-1] = p[m-1-d]
 T[k+m-2] = p[m-2-d]
 T[k+i] = p[i-d]

 Reminder: 
 k = starting index in target string
 m = length of pattern
 i = index of mismatch in pattern string

 Problem: statement is valid only for d<= i
 Need to ensure that we don’t “fall off” the left edge of the 

pattern



Boyer-Moore : another 
example
            t[k]                               t[k+5]                                 t[k+8]

    c X Y Z  

 Y Z W X Y Z X Y Z

p[0]       p[1]     p[2]      p[3]     p[4]     p[5]      p[6]      p[7]    p[8]

 Y YYN

If c == W, then d should be 3

If c == R, then d should be 7



Bad Character Rule
Suppose that P1 is aligned to Ts now, and we perform a pair-wise 
comparing between text T and pattern P from right to left.  Assume that 
the first mismatch occurs when comparing Ts+j-1 with Pj .

Since Ts+j-1  ≠Pj , we move the pattern P to the right such that the largest 

position c in the left of Pj is equal to Ts+j-1. We can shift the pattern at 

least (j-c) positions right.

P x y t

T x t

P x y t

s

j m1 c

j m1

Shift

s +j -1



Rule 2-1: Character Matching 
Rule
 Bad character rule uses Rule 2-1 (Character Matching 

Rule).
 For any character x in T, find the nearest x in P which 

is to the left of x in T. 



Implication of Rule 2-1

 Case 1.  If there is a 
x in P to the left of T, 
move P so that the 
two x’s match.



 Case 2: If no such a x exists in P, move P to 
the right of x

xT

P



Ex:  Suppose that P1 is aligned to T6 now.  We compare pairwise between T and P from 
right to left.  Since T16,17 = P11,12 = “CA” and T15 =“G” ≠P10 = “T”.  Therefore, we 
find the rightmost position c=7 in the left of P10 in P  such that Pc is equal to “G”  and 

we can move the window at least (10-7=3) positions.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T A A A A A A T C A C A T T A G C A A A A

P A T C A C A G T A T C A
1 2 3 4 5 6 7 8 9 10 11 12

s=6

P A T C A C A G T A T C A
1 2 3 4 5 6 7 8 9 10 11 12

m=12j=10c

mismatch

direction of the scan



Good Suffix Rule 1
 If a mismatch occurs in Ts+j-1, we match Ts+j-1 with Pj’-m+j , where j’ 

(m-j+1   ≦ j’ < m) is the largest position such that  

(1) Pj+1,m is a suffix of P1,j’ 

(2) Pj’-(m-j) ≠Pj. 

 We can move the window at least (m-j’) position(s).

P z t y t

T x t

P z t y t

s

Shift

s+j-1

jj’ m1 j’-m+j

jj’ m1 j’-m+j

z≠y



Rule 2:  The Substring 
Matching Rule 
 For any substring u 

in T, find a nearest u 
in P which is to the 
left of it.  If such a u 
in P exists, move P; 

31



Ex:  Suppose that P1 is aligned to T6 now.  We compare pair-wise between P and T 
from right to left.  Since T16,17 = “CA” = P11,12 and T15 =“A” ≠P10 = “T”.  We find 
the substring “CA” in the left of P10 in P such that “CA” is the suffix of P1,6  and 
the left character to this substring “CA” in P is not equal to P10 = “T”.  Therefore, 
we can move the window at least m-j’ (12-6=6) positions right.

P A T C A C A T C A T C A
1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T A A A A A A G C C T A G C A A C A A A A

P A T C A C A T C A T C A
1 2 3 4 5 6 7 8 9 10 11 12

j=10

s=6

j’=6

s+j-1

Shift

m=12

mismatch

A≠T



Good Suffix Rule 2

 If a mismatch occurs in Ts+j-1, we match Ts+m-j’ with P1, 
where j’ (1  ≦ j’ ≦ m-j) is the largest position such that 

P1,j’  is a suffix of  Pj+1,m. 

T x t

P t’ y t

s

j’ j m1

Shift

s+j-1 s+m-j’

j’ j m1
P.S. : t’ is suffix of substring t.

P t’ y t

t’

t’

Good Suffix Rule 2 is used only when Good Suffix Rule 1 can not be used. 
That is, t does not appear in P(1, j).  Thus, t is unique in P.



Rule 3-1:  Unique Substring Rule 

 The substring u appears in P exactly once.
 If the substring s matches with Ti,j , no matter whether a mismatch 

occurs in some position of P or not, we can slide the window by l.  
   

  
 T:

   P:  

     

The string s is the longest prefix of P which equals to a suffix of u.

s

s s

s u

i j

l

u

u



Rule 1:  The Suffix to Prefix 
Rule 
 For a window to have any chance to match a 

pattern, in some way, there must be a suffix of the 
window which is equal to a prefix of the pattern.

T

P



Rule 1:  The Suffix to Prefix 
Rule 
 Note that the above rule also uses Rule 1.
 It should also be noted that the unique substring is the shorter and 

the more right-sided the better.
 A short u guarantees a short (or even empty) s which is desirable. 

u

s s

s u

i j

l

u



 Ex: Suppose that P1 is aligned to T6 now.  We compare pair-wise between P 
and T from right to left. Since T12 ≠ P7 and there is no substring P8,12 in left of 
P8 to exactly match T13,17.  We find a longest suffix “AATC” of substring T13,17, 
the longest suffix is also prefix of P.  We shift the window such that the last 
character of prefix substring to match the last character of the suffix 
substring.  Therefore, we can shift at least 12-4=8 positions.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T A A A A A A T C A C A T T A A T C A A A

P A A T C A T C T A A T C
1 2 3 4 5 6 7 8 9 10 11 12

j=7

s=6

j’=4

P A A T C A T C T A A T C
1 2 3 4 5 6 7 8 9 10 11 12

m=12

Shift

mismatch

j=7j’=4

m=12



 Let B(a) be the rightmost position of a in P[1..j].  The 
function will be used for applying bad character rule.

 We can move our pattern right at least j-B[j](Ts+j-1) 
position by above B function.

Σ A C G T
B[12]
…
B[10]
…

12

9

11

8

0

0

10

10

j 1 2 3 4 5 6 7 8 9 10 11 12

P A T C A C A T C A T C A

j 1 2 3 4 5 6 7 8 9 10 11 12

P A T C A C A T C A T C A

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T A G C T A G C C T G C A C G T A C A

Move at least 
10-B[10](G) = 10 positions



39

Let Gs(j) be the largest number of shifts by 
good suffix rule when a mismatch occurs for 
comparing Pj with some character in T.



40

• gs1(j) be the largest k such that Pj+1,m is a suffix of P1,k and 
Pk-m+j ≠ Pj, where m-j+1 ≦k<m ; 0 if there is no such k.

   (gs1 is for Good Suffix Rule 1)

• gs2(j) be the largest k such that P1,k is a suffix of Pj+1,m, where 
1≦k ≦m-j; 0 if there is no such k.

   (gs2 is for Good Suffix Rule 2.)

• Gs(j) = m – max{gs1, gs2}, if j = m ,Gs(j)=1.

j 1 2 3 4 5 6 7 8 9 10 11 12

P A T C A C A T C A T C A
gs1 0 0 0 0 0 0 9 0 0 6 1 0

gs2 4 4 4 4 4 4 4 4 1 1 1 0

Gs 8 8 8 8 8 8 3 8 11 6 11 1

gs1(7)=9

 ∵ P8,12 is a suffix of 
P1,9    and  P4 ≠ P7

gs2(7)=4

∵P1,4 is a suffix of P8,12



P A T C A C A T C A T C A
1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T A A A A A A G C C T A G C A A C A A A A

P A T C A C A T C A T C A
1 2 3 4 5 6 7 8 9 10 11 12

j=10

s=6

j’=6

s+j-1

Shift

m=12

mismatch

j 1 2 3 4 5 6 7 8 9 10 11 12

P A T C A C A T C A T C A
gs1 0 0 0 0 0 0 9 0 0 6 1 0

gs2 4 4 4 4 4 4 4 4 1 1 1 0

Gs 8 8 8 8 8 8 3 8 11 6 11 1



Time Complexity

 The preprocessing phase in O(m+Σ) 
complexity 

 If you are searching for ALL matches, worst 
case:
 O(mn) when P is in T

 T=AAAAAAAAAAA;  P=AAAA

 O(m+n) when P is not in T

42


	Exact string matching
	The problem of String Matching
	Brute force (O(mn))
	SimpleStringSearch
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Straightforward string searching
	Knuth-Morris-Pratt
	The KMP Algorithm - Motivation
	KMP Failure Function
	The KMP Algorithm
	Computing the Failure Function
	Example
	The Boyer-Moore Algorithm
	Boyer-Moore example
	Slide 20
	Slide 21
	Boyer-Moore : another example
	Slide 23
	Slide 24
	Bad Character Rule
	Rule 2-1: Character Matching Rule (A Special Version of Rule 2)
	Implication of Rule 2-1
	PowerPoint Presentation
	Slide 29
	Good Suffix Rule 1
	Rule 2: The Substring Matching Rule
	Slide 32
	Good Suffix Rule 2
	Rule 3-1: Unique Substring Rule
	Rule 1: The Suffix to Prefix Rule
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Time Complexity

