
EXACT STRING
MATCHING

Eileen Kraemer

The problem of String
Matching

Given a string ‘t’, the problem of string
matching deals with finding whether a pattern
‘p’ occurs in ‘t’ and if ‘p’ does occur then
returning position in ‘t’ where ‘p’ occurs.

Brute force (O(mn))

n <- |t|
m <- |p|
i <= 1
while i < n
 if p == t[i, i+m-1]
 return i;
 else
 i = i + 1;

SimpleStringSearch

t[0] t[1] t[2] t[3] t[4] t[5] t[6] t[7] t[8] t[9] t10]

A B C E F G A B C D E

 A B C D

p[0] p[1] p[2] p[3]

 Y Y Y N

SimpleStringSearch

t[0] t[1] t[2] t[3] t[4] t[5] t[6] t[7] t[8] t[9] t10]

A B C E F G A B C D E

 A B C D

 p[0] p[1] p[2] p[3]

 N

SimpleStringSearch

t[0] t[1] t[2] t[3] t[4] t[5] t[6] t[7] t[8] t[9] t10]

A B C E F G A B C D E

 A B C D

 p[0] p[1] p[2] p[3]

 N

SimpleStringSearch

t[0] t[1] t[2] t[3] t[4] t[5] t[6] t[7] t[8] t[9] t10]

A B C E F G A B C D E

 A B C D

 p[0] p[1] p[2] p[3]

 N

SimpleStringSearch

t[0] t[1] t[2] t[3] t[4] t[5] t[6] t[7] t[8] t[9] t10]

A B C E F G A B C D E

 A B C D

 p[0] p[1] p[2] p[3]

 N

SimpleStringSearch

t[0] t[1] t[2] t[3] t[4] t[5] t[6] t[7] t[8] t[9] t10]

A B C E F G A B C D E

 A B C D

 p[0] p[1] p[2] p[3]

 N

SimpleStringSearch

t[0] t[1] t[2] t[3] t[4] t[5] t[6] t[7] t[8] t[9] t10]

A B C E F G A B C D E

 A B C D

 p[0] p[1] p[2] p[3]

 Y Y Y Y

Straightforward string
searching
 Worst case:

 Pattern string always matches completely except for last
character

 Example: search for XXXXXXY in target string of
XXXXXXXXXXXXXXXXXXXX

 Outer loop executed once for every character in target
string

 Inner loop executed once for every character in pattern
 O(mn), where m = |p| and n = |t|

 OK if patterns are short, but better algorithms
exist

Knuth-Morris-Pratt

 O(m+n)
 Key idea:

 if pattern fails to match, slide pattern to right by
as many boxes as possible without permitting a
match to go unnoticed

The KMP Algorithm -
Motivation

 Knuth-Morris-Pratt’s algorithm
compares the pattern to the
text in left-to-right, but shifts
the pattern more intelligently
than the brute-force algorithm.

 When a mismatch occurs,
what is the most we can shift
the pattern so as to avoid
redundant comparisons?

 Answer: the largest prefix of
P[0..j] that is a suffix of P[1..j]

x

j

. . a b a a b

a b a a b a

a b a a b a

No need to
repeat these
comparisons

Resume
comparing
here

KMP Failure Function

 Knuth-Morris-Pratt’s
algorithm preprocesses the
pattern to find matches of
prefixes of the pattern with
the pattern itself

 The failure function F(j) is
defined as the size of the
largest prefix of P[0..j] that is
also a suffix of P[1..j]

 Knuth-Morris-Pratt’s
algorithm modifies the brute-
force algorithm so that if a
mismatch occurs at P[j]T[i]
we set j  F(j  1)

j 0 1 2 3 4 
P[j] a b a a b a

F(j) 0 0 1 1 2 

x

j

. . a b a a b

a b a a b a

F(j1)

a b a a b a

The KMP Algorithm

 The failure function can be
represented by an array and
can be computed in O(m) time

 At each iteration of the while-
loop, either
 i increases by one, or
 the shift amount i  j increases

by at least one (observe that
F(j  1) < j)

 Hence, there are no more
than 2n iterations of the while-
loop

 Thus, KMP’s algorithm runs in
optimal time O(m  n)

Algorithm KMPMatch(T, P)
F  failureFunction(P)
i  0
j  0
while i  n

if T[i]  P[j]
if j  m  1

return i  j { match }
else

i  i  1
j  j  1

else
if j  0

j  F[j  1]
else

i  i  1
return 1 { no match }

Computing the Failure
Function

 The failure function can be
represented by an array and
can be computed in O(m) time

 The construction is similar to
the KMP algorithm itself

 At each iteration of the while-
loop, either
 i increases by one, or
 the shift amount i  j increases

by at least one (observe that
F(j  1) < j)

 Hence, there are no more
than 2m iterations of the while-
loop

Algorithm failureFunction(P)
F[0]  0
i  1
j  0
m  length(P)
while i  m

if P[i]  P[j]
{we have matched j + 1 chars}

F[i]  j + 1
i  i  1
j  j  1

else if j  0 then
{use failure function to shift P}

j  F[j  1]
else

F[i]  0 { no match }
i  i  1

Example

1

a b a c a a b a c a b a c a b a a b b

7

8

19181715

a b a c a b

1614

13

2 3 4 5 6

9

a b a c a b

a b a c a b

a b a c a b

a b a c a b

10 11 12

c

j 0 1 2 3 4 
P[j] a b a c a b

F(j) 0 0 1 0 1 

The Boyer-Moore Algorithm

 Similar to KMP in that:
 Pattern compared against target
 On mismatch, move as far to right as possible

 Different from KMP in that:
 Compare the patterns from right to left instead of

left to right
 Does that make a difference?

 Yes – much faster on long targets; many
characters in target string are never examined at
all

Boyer-Moore example

t[0] t[1] t[2] t[3] t[4] t[5] t[6] t[7] t[8] t[9] t10]

A B C E F G A B C D E

 A B C D

p[0] p[1] p[2] p[3]

 N

There is no E in the pattern : thus the pattern can’t match if any characters
lie under t[3]. So, move four boxes to the right.

Boyer-Moore example

t[0] t[1] t[2] t[3] t[4] t[5] t[6] t[7] t[8] t[9] t10]

A B C E F G A B C D E

 A B C D

p[0] p[1] p[2]
p[3]

 N

Again, no match. But there is a B in the pattern. So move two boxes to
the right.

Boyer-Moore example

t[0] t[1] t[2] t[3] t[4] t[5] t[6] t[7] t[8] t[9] t10]

A B C E F G A B C D E

 A B C D

p[0] p[1] p[2] p[3]

 Y YYY

Boyer-Moore : another
example
 t[k] t[k+1] … t[k+i] t[k+m-1]

 … c E … R G

 L E … S D E … R G

p[0] p[1] … p[i-1] p[i] p[i+1] … p[m-1]

 Y YYYN

Problem: determine d, the number of boxes that the pattern can be
moved to the right.

d should be smallest integer such that t[k+m-1]= p[m-1-d], t[k+m-2] =
p[m-2-d], … t[k+i] = p[i-d]

The Boyer-Moore Algorithm

 We said:
 d should be smallest integer such that:

 T[k+m-1] = p[m-1-d]
 T[k+m-2] = p[m-2-d]
 T[k+i] = p[i-d]

 Reminder:
 k = starting index in target string
 m = length of pattern
 i = index of mismatch in pattern string

 Problem: statement is valid only for d<= i
 Need to ensure that we don’t “fall off” the left edge of the

pattern

Boyer-Moore : another
example
 t[k] t[k+5] t[k+8]

 c X Y Z

 Y Z W X Y Z X Y Z

p[0] p[1] p[2] p[3] p[4] p[5] p[6] p[7] p[8]

 Y YYN

If c == W, then d should be 3

If c == R, then d should be 7

Bad Character Rule
Suppose that P1 is aligned to Ts now, and we perform a pair-wise
comparing between text T and pattern P from right to left. Assume that
the first mismatch occurs when comparing Ts+j-1 with Pj .

Since Ts+j-1 ≠Pj , we move the pattern P to the right such that the largest

position c in the left of Pj is equal to Ts+j-1. We can shift the pattern at

least (j-c) positions right.

P x y t

T x t

P x y t

s

j m1 c

j m1

Shift

s +j -1

Rule 2-1: Character Matching
Rule
 Bad character rule uses Rule 2-1 (Character Matching

Rule).
 For any character x in T, find the nearest x in P which

is to the left of x in T.

Implication of Rule 2-1

 Case 1. If there is a
x in P to the left of T,
move P so that the
two x’s match.

 Case 2: If no such a x exists in P, move P to
the right of x

xT

P

Ex: Suppose that P1 is aligned to T6 now. We compare pairwise between T and P from
right to left. Since T16,17 = P11,12 = “CA” and T15 =“G” ≠P10 = “T”. Therefore, we
find the rightmost position c=7 in the left of P10 in P such that Pc is equal to “G” and

we can move the window at least (10-7=3) positions.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T A A A A A A T C A C A T T A G C A A A A

P A T C A C A G T A T C A
1 2 3 4 5 6 7 8 9 10 11 12

s=6

P A T C A C A G T A T C A
1 2 3 4 5 6 7 8 9 10 11 12

m=12j=10c

mismatch

direction of the scan

Good Suffix Rule 1
 If a mismatch occurs in Ts+j-1, we match Ts+j-1 with Pj’-m+j , where j’

(m-j+1 ≦ j’ < m) is the largest position such that

(1) Pj+1,m is a suffix of P1,j’

(2) Pj’-(m-j) ≠Pj.

 We can move the window at least (m-j’) position(s).

P z t y t

T x t

P z t y t

s

Shift

s+j-1

jj’ m1 j’-m+j

jj’ m1 j’-m+j

z≠y

Rule 2: The Substring
Matching Rule
 For any substring u

in T, find a nearest u
in P which is to the
left of it. If such a u
in P exists, move P;

31

Ex: Suppose that P1 is aligned to T6 now. We compare pair-wise between P and T
from right to left. Since T16,17 = “CA” = P11,12 and T15 =“A” ≠P10 = “T”. We find
the substring “CA” in the left of P10 in P such that “CA” is the suffix of P1,6 and
the left character to this substring “CA” in P is not equal to P10 = “T”. Therefore,
we can move the window at least m-j’ (12-6=6) positions right.

P A T C A C A T C A T C A
1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T A A A A A A G C C T A G C A A C A A A A

P A T C A C A T C A T C A
1 2 3 4 5 6 7 8 9 10 11 12

j=10

s=6

j’=6

s+j-1

Shift

m=12

mismatch

A≠T

Good Suffix Rule 2

 If a mismatch occurs in Ts+j-1, we match Ts+m-j’ with P1,
where j’ (1 ≦ j’ ≦ m-j) is the largest position such that

P1,j’ is a suffix of Pj+1,m.

T x t

P t’ y t

s

j’ j m1

Shift

s+j-1 s+m-j’

j’ j m1
P.S. : t’ is suffix of substring t.

P t’ y t

t’

t’

Good Suffix Rule 2 is used only when Good Suffix Rule 1 can not be used.
That is, t does not appear in P(1, j). Thus, t is unique in P.

Rule 3-1: Unique Substring Rule

 The substring u appears in P exactly once.
 If the substring s matches with Ti,j , no matter whether a mismatch

occurs in some position of P or not, we can slide the window by l.

 T:

 P:

The string s is the longest prefix of P which equals to a suffix of u.

s

s s

s u

i j

l

u

u

Rule 1: The Suffix to Prefix
Rule
 For a window to have any chance to match a

pattern, in some way, there must be a suffix of the
window which is equal to a prefix of the pattern.

T

P

Rule 1: The Suffix to Prefix
Rule
 Note that the above rule also uses Rule 1.
 It should also be noted that the unique substring is the shorter and

the more right-sided the better.
 A short u guarantees a short (or even empty) s which is desirable.

u

s s

s u

i j

l

u

 Ex: Suppose that P1 is aligned to T6 now. We compare pair-wise between P
and T from right to left. Since T12 ≠ P7 and there is no substring P8,12 in left of
P8 to exactly match T13,17. We find a longest suffix “AATC” of substring T13,17,
the longest suffix is also prefix of P. We shift the window such that the last
character of prefix substring to match the last character of the suffix
substring. Therefore, we can shift at least 12-4=8 positions.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T A A A A A A T C A C A T T A A T C A A A

P A A T C A T C T A A T C
1 2 3 4 5 6 7 8 9 10 11 12

j=7

s=6

j’=4

P A A T C A T C T A A T C
1 2 3 4 5 6 7 8 9 10 11 12

m=12

Shift

mismatch

j=7j’=4

m=12

 Let B(a) be the rightmost position of a in P[1..j]. The
function will be used for applying bad character rule.

 We can move our pattern right at least j-B[j](Ts+j-1)
position by above B function.

Σ A C G T
B[12]
…
B[10]
…

12

9

11

8

0

0

10

10

j 1 2 3 4 5 6 7 8 9 10 11 12

P A T C A C A T C A T C A

j 1 2 3 4 5 6 7 8 9 10 11 12

P A T C A C A T C A T C A

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T A G C T A G C C T G C A C G T A C A

Move at least
10-B[10](G) = 10 positions

39

Let Gs(j) be the largest number of shifts by
good suffix rule when a mismatch occurs for
comparing Pj with some character in T.

40

• gs1(j) be the largest k such that Pj+1,m is a suffix of P1,k and
Pk-m+j ≠ Pj, where m-j+1 ≦k<m ; 0 if there is no such k.

 (gs1 is for Good Suffix Rule 1)

• gs2(j) be the largest k such that P1,k is a suffix of Pj+1,m, where
1≦k ≦m-j; 0 if there is no such k.

 (gs2 is for Good Suffix Rule 2.)

• Gs(j) = m – max{gs1, gs2}, if j = m ,Gs(j)=1.

j 1 2 3 4 5 6 7 8 9 10 11 12

P A T C A C A T C A T C A
gs1 0 0 0 0 0 0 9 0 0 6 1 0

gs2 4 4 4 4 4 4 4 4 1 1 1 0

Gs 8 8 8 8 8 8 3 8 11 6 11 1

gs1(7)=9

 ∵ P8,12 is a suffix of
P1,9 and P4 ≠ P7

gs2(7)=4

∵P1,4 is a suffix of P8,12

P A T C A C A T C A T C A
1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T A A A A A A G C C T A G C A A C A A A A

P A T C A C A T C A T C A
1 2 3 4 5 6 7 8 9 10 11 12

j=10

s=6

j’=6

s+j-1

Shift

m=12

mismatch

j 1 2 3 4 5 6 7 8 9 10 11 12

P A T C A C A T C A T C A
gs1 0 0 0 0 0 0 9 0 0 6 1 0

gs2 4 4 4 4 4 4 4 4 1 1 1 0

Gs 8 8 8 8 8 8 3 8 11 6 11 1

Time Complexity

 The preprocessing phase in O(m+Σ)
complexity

 If you are searching for ALL matches, worst
case:
 O(mn) when P is in T

 T=AAAAAAAAAAA; P=AAAA

 O(m+n) when P is not in T

42

	Exact string matching
	The problem of String Matching
	Brute force (O(mn))
	SimpleStringSearch
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Straightforward string searching
	Knuth-Morris-Pratt
	The KMP Algorithm - Motivation
	KMP Failure Function
	The KMP Algorithm
	Computing the Failure Function
	Example
	The Boyer-Moore Algorithm
	Boyer-Moore example
	Slide 20
	Slide 21
	Boyer-Moore : another example
	Slide 23
	Slide 24
	Bad Character Rule
	Rule 2-1: Character Matching Rule (A Special Version of Rule 2)
	Implication of Rule 2-1
	PowerPoint Presentation
	Slide 29
	Good Suffix Rule 1
	Rule 2: The Substring Matching Rule
	Slide 32
	Good Suffix Rule 2
	Rule 3-1: Unique Substring Rule
	Rule 1: The Suffix to Prefix Rule
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Time Complexity

