CS481: Bioinformatics Algorithms

Can Alkan
EA509
calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/
EXACT STRING MATCHING
The problem of String Matching

Given a string ‘t’, the problem of string matching deals with finding whether a pattern ‘p’ occurs in ‘t’ and if ‘p’ does occur then returning position in ‘t’ where ‘p’ occurs.
Brute force ($O(\text{mn})$)

\begin{verbatim}
n <- |t|
m <- |p|
i <= 1

while i < n
 if p == t[i, i+m-1]
 return i;
 else
 i = i + 1;
\end{verbatim}
SimpleStringSearch

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

| Y | Y | Y | Y | Y | N |
SimpleStringSearch

\[
\begin{array}{cccccccccccc}
A & B & C & E & F & G & A & B & C & D & E \\
A & B & C & D \\
N
\end{array}
\]
SimpleStringSearch

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

N
SimpleStringSearch

```
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>
```

\text{N}
SimpleStringSearch

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

N
SimpleStringSearch

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

N
SimpleStringSearch

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

Y Y Y Y Y
Straightforward string searching

- **Worst case:**
 - Pattern string always matches completely except for last character
 - Example: search for XXXXXXXY in target string of XXXXXXXXXXXXXXXXXXXXXXXX
 - Outer loop executed once for every character in target string
 - Inner loop executed once for every character in pattern
 - $O(mn)$, where $m = |p|$ and $n = |t|$

- **OK if patterns are short, but better algorithms exist**
SimpleStringSearch

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

| Y | Y | Y | Y | N |
Knuth-Morris-Pratt

- $O(m+n)$
- Key idea:
 - if pattern fails to match, slide pattern to right by as many boxes as possible without permitting a match to go unnoticed
The KMP Algorithm - Motivation

- Knuth-Morris-Pratt's algorithm compares the pattern to the text in left-to-right, but shifts the pattern more intelligently than the brute-force algorithm.
- When a mismatch occurs, what is the most we can shift the pattern so as to avoid redundant comparisons?
- Answer: the largest prefix of $P[0..j]$ that is a suffix of $P[1..j]$

.. a b a a b x

a b a a b a

No need to repeat these comparisons

Resume comparing here
KMP Failure Function

- Knuth-Morris-Pratt’s algorithm preprocesses the pattern to find matches of prefixes of the pattern with the pattern itself.

- The **failure function** $F(j)$ is defined as the size of the largest prefix of $P[0..j]$ that is also a suffix of $P[1..j]$.

- Knuth-Morris-Pratt’s algorithm modifies the brute-force algorithm so that if a mismatch occurs at $P[j] \neq T[i]$ we set $j \leftarrow F(j-1)$.

<table>
<thead>
<tr>
<th>j</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P[j]$</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>$F(j)$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

![Diagram](image-url)
The KMP Algorithm

- The failure function can be represented by an array and can be computed in $O(m)$ time.
- At each iteration of the while-loop, either
 - i increases by one, or
 - the shift amount $i - j$ increases by at least one (observe that $F(j-1) < j$).
- Hence, there are no more than $2n$ iterations of the while-loop.
- Thus, KMP’s algorithm runs in optimal time $O(m + n)$.

Algorithm $KMPMatch(T, P)$

```
F ← failureFunction(P)
i ← 0
j ← 0
while i < n
    if $T[i] = P[j]$
        if $j = m - 1$
            return $i - j \{ \text{match} \}$
        else
            $i ← i + 1$
            $j ← j + 1$
    else
        $j ← F[j-1]$
    else
        $i ← i + 1$
        $j ← 0$
return $-1 \{ \text{no match} \}$
```
Computing the Failure Function

- The failure function can be represented by an array and can be computed in $O(m)$ time.
- The construction is similar to the KMP algorithm itself.
- At each iteration of the while-loop, either
 - i increases by one, or
 - the shift amount $i - j$ increases by at least one (observe that $F(j - 1) < j$).
- Hence, there are no more than $2m$ iterations of the while-loop.

Algorithm failureFunction(P)

```plaintext
F[0] ← 0
i ← 1
j ← 0
m ← length(P)
while i < m
  if P[i] = P[j]
    {we have matched $j + 1$ chars}
    F[i] ← j + 1
    i ← i + 1
    j ← j + 1
  else if j > 0 then
    {use failure function to shift P}
    j ← F[j - 1]
  else
    F[i] ← 0  {no match}
    i ← i + 1
```
Example

\[
\begin{array}{cccccc}
 a & b & a & c & a & b \\
 1 & 2 & 3 & 4 & 5 & 6 \\
\end{array}
\]

\[
\begin{array}{cccccc}
 a & b & a & c & a & b \\
 a & b & a & c & a & b \\
\end{array}
\]

\[
\begin{array}{cccccc}
 a & b & a & c & a & b \\
 7 & 8 & 9 & 10 & 11 & 12 \\
\end{array}
\]

\[
\begin{array}{cccccc}
 a & b & a & c & a & b \\
 a & b & a & c & a & b \\
\end{array}
\]

\[
\begin{array}{cccccc}
 j & 0 & 1 & 2 & 3 & 4 & 5 \\
 P[j] & a & b & a & c & a & b \\
 F(j) & 0 & 0 & 1 & 0 & 1 & 2 \\
\end{array}
\]

\[
\begin{array}{cccccc}
 a & b & a & c & a & b \\
 13 & 14 & 15 & 16 & 17 & 18 & 19 \\
\end{array}
\]
The Boyer-Moore Algorithm

- Similar to KMP in that:
 - Pattern compared against target
 - On mismatch, move as far to right as possible

- Different from KMP in that:
 - Compare the patterns from right to left instead of left to right

- Does that make a difference?
 - Yes – much faster on long targets; many characters in target string are never examined at all
There is no E in the pattern: thus the pattern can’t match if any characters lie under t[3]. So, move four boxes to the right.
Boyer-Moore example

Again, no match. But there is a B in the pattern. So move two boxes to the right.
Boyer-Moore example

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

Y Y Y Y Y Y
Problem: determine d, the number of boxes that the pattern can be moved to the right.

d should be smallest integer such that $t[k+m-1] = p[m-1-d]$, $t[k+m-2] = p[m-2-d]$, ..., $t[k+i] = p[i-d]$
We said:

- d should be smallest integer such that:
 - $T[k+m-1] = p[m-1-d]$
 - $T[k+m-2] = p[m-2-d]$
 - $T[k+i] = p[i-d]$

Reminder:

- $k =$ starting index in target string
- $m =$ length of pattern
- $i =$ index of mismatch in pattern string

Problem: statement is valid only for $d \leq i$

Need to ensure that we don’t “fall off” the left edge of the pattern
Boyer-Moore: another example

<table>
<thead>
<tr>
<th>$t[k]$</th>
<th>$t[k+5]$</th>
<th>$t[k+8]$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c</td>
<td>X</td>
</tr>
<tr>
<td>Y</td>
<td>Z</td>
<td>W</td>
</tr>
</tbody>
</table>

If $c == W$, then d should be 3

If $c == R$, then d should be 7
Bad Character Rule

Suppose that P_1 is aligned to T_s now, and we perform a pair-wise comparing between text T and pattern P from right to left. Assume that the first mismatch occurs when comparing T_{s+j-1} with P_j.

Since $T_{s+j-1} \neq P_j$, we move the pattern P to the right such that the largest position c in the left of P_j is equal to T_{s+j-1}. We can shift the pattern at least $(j-c)$ positions right.
Character Matching Rule

- Bad character rule uses Character Matching Rule.
- For any character x in T, find the nearest x in P which is to the left of x in T.
Case 1. If there is a x in P to the left of T, move P so that the two x's match.
Case 2: If no such a x exists in P, move P to the right of x
Ex: Suppose that P1 is aligned to T6 now. We compare pairwise between T and P from right to left. Since T16,17 = P11,12 = “CA” and T15 = “G” ≠ P10 = “T”. Therefore, we find the rightmost position c=7 in the left of P10 in P such that Pc is equal to “G” and we can move the window at least (10-7=3) positions.

\[s=6\]

\(\begin{array}{cccccccccccccccc}
\end{array}\)

\(\begin{array}{cccccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\end{array}\)

\(\begin{array}{cccccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\end{array}\)

\(\text{direction of the scan}\)

\(\text{mismatch}\)

\(c\)

\(j=10\)

\(m=12\)
Good Suffix Rule 1

- If a mismatch occurs in T_{s+j-1}, we match T_{s+j-1} with $P_{j'-m+j}$, where j' ($m-j+1 \leq j' < m$) is the largest position such that

 1. $P_{j+1,m}$ is a suffix of $P_{1,j'}$
 2. $P_{j'-(m-j)} \neq P_j$

- We can move the window at least $(m-j')$ position(s).
The Substring Matching Rule

For any substring \(u \) in \(T \), find a nearest \(u \) in \(P \) which is to the left of it. If such a \(u \) in \(P \) exists, move \(P \);
Suppose that P_1 is aligned to T_6 now. We compare pair-wise between P and T from right to left. Since $T_{16,17} = \text{"CA"} = P_{11,12}$ and $T_{15} = \text{"A"} \neq P_{10} = \text{"T"}$. We find the substring "CA" in the left of P_{10} in P such that "CA" is the suffix of $P_{1,6}$ and the left character to this substring "CA" in P is not equal to $P_{10} = \text{"T"}$. Therefore, we can move the window at least $m - j'$ (12 - 6 = 6) positions right.
Good Suffix Rule 2

Good Suffix Rule 2 is used only when Good Suffix Rule 1 cannot be used. That is, t does not appear in P(1, j). Thus, t is unique in P.

- If a mismatch occurs in T_{s+j-1}, we match $T_{s+m-j'}$ with P_1, where $j'(1 \leq j' \leq m-j)$ is the largest position such that $P_{1,j'}$ is a suffix of $P_{j+1,m}$.

P.S. : t' is suffix of substring t.
Unique Substring Rule

- The substring u appears in P exactly once.
- If the substring s matches with $T_{i,j}$, no matter whether a mismatch occurs in some position of P or not, we can slide the window by l.

The string s is the longest prefix of P which equals to a suffix of u.
The Suffix to Prefix Rule

- For a window to have any chance to match a pattern, in some way, there must be a suffix of the window which is equal to a prefix of the pattern.
The Suffix to Prefix Rule

- Note that the above rule also uses Rule 1.
- It should also be noted that the unique substring is the shorter and the more right-sided the better.
- A short u guarantees a short (or even empty) s which is desirable.
Ex: Suppose that P_1 is aligned to T_6 now. We compare pair-wise between P and T from right to left. Since $T_{12} \neq P_7$ and there is no substring $P_{8,12}$ in left of P_8 to exactly match $T_{13,17}$. We find a longest suffix “AATC” of substring $T_{13,17}$, the longest suffix is also prefix of P. We shift the window such that the last character of prefix substring to match the last character of the suffix substring. Therefore, we can shift at least 12-4=8 positions.
Let $B(a)$ be the rightmost position of a in $P[1..j]$. The function will be used for applying *bad character rule*.

We can move our pattern right at least $j-B[j](T_{s+j-1})$ position by above B function.

Move at least $10-B[10](G) = 10$ positions
Let $G_s(j)$ be the largest number of shifts by *good suffix rule* when a mismatch occurs for comparing P_j with some character in T.
• \(gs_1(j) \) be the largest \(k \) such that \(P_{j+1,m} \) is a suffix of \(P_{1,k} \) and \(P_{k-m+j} \neq P_j \) where \(m-j+1 \leq k < m \); 0 if there is no such \(k \).

\((gs_1 \) is for Good Suffix Rule 1)\n
• \(gs_2(j) \) be the largest \(k \) such that \(P_{1,k} \) is a suffix of \(P_{j+1,m} \) where \(1 \leq k \leq m-j \); 0 if there is no such \(k \).

\((gs_2 \) is for Good Suffix Rule 2.)\n
• \(Gs(j) = m - \max\{gs_1, gs_2\} \), if \(j = m \), \(Gs(j) = 1 \).

<table>
<thead>
<tr>
<th>(j)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P)</td>
<td>()</td>
<td>())</td>
<td>())</td>
<td>())</td>
<td>(X)</td>
<td>())</td>
<td>())</td>
<td>())</td>
</tr>
<tr>
<td>(gs_1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(gs_2)</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(Gs)</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>3</td>
<td>8</td>
<td>11</td>
<td>6</td>
<td>11</td>
<td>1</td>
</tr>
</tbody>
</table>

\(gs_1(7) = 9 \)

\(\because P_{8,12} \) is a suffix of \(P_{1,9} \) and \(P_4 \neq P_7 \)

\(gs_2(7) = 4 \)

\(\because P_{1,4} \) is a suffix of \(P_{8,12} \)
\[
\begin{array}{cccccccccccc}
 j & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
 gs_1 & 0 & 0 & 0 & 0 & 0 & 9 & 0 & 0 & 6 & 1 & 0 & \\
 gs_2 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 1 & 1 & 1 & 0 \\
 Gs & 8 & 8 & 8 & 8 & 8 & 8 & 3 & 8 & 11 & 6 & 11 & 1 \\
\end{array}
\]

\[s=6\]

\[s+j-1\]

\[m=12\]

\[j'=6\]

\[j=10\]
Time Complexity

- Use good character or bad suffix rule
 - The one that skips more
- The preprocessing phase in $O(m+\Sigma)$ complexity
- If you are searching for ALL matches, worst case:
 - $O(mn)$ when P is in T at all positions
 - $T=$AAAAAAAAAAAAAAA; $P=$AAAA
 - $O(m+n)$ when P is not in T
BRUTE FORCE – EXAMPLE #2
Brute force

T = ABABABCABABABCABABAC
P = ABABAC Comparisons: 6
 x

T = ABABABCABABABCABABAC
P = ABABAC Comparisons: 1
 x

T = ABABABCABABABCABABAC
P = ABABAC Comparisons: 5
 x

T = ABABABCABABABCABABAC
P = ABABAC Comparisons: 1
 x

T = ABABABCABABABCABABAC
P = ABABAC Comparisons: 3
 x
Brute force

\[
\begin{align*}
T &= \text{ABABABCABABABABCABABAC} \\
P &= \text{ABABAC} \\
\text{Comparisons: 1} \\
T &= \text{ABABABCABABABABCABABAC} \\
P &= \text{ABABAC} \\
\text{Comparisons: 1} \\
T &= \text{ABABABCABABABABCABABAC} \\
P &= \text{ABABAC} \\
\text{Comparisons: 6} \\
T &= \text{ABABABCABABABABCABABAC} \\
P &= \text{ABABAC} \\
\text{Comparisons: 1} \\
T &= \text{ABABABCABABABABCABABAC} \\
P &= \text{ABABAC} \\
\text{Comparisons: 5}
\end{align*}
\]
Brute force

T = ABABABCABABABCABABAC
P = ABABAC
Comparisons: 1

T = ABABABCABABABCABABAC
P = ABABAC
Comparisons: 3

T = ABABABCABABABCABABAC
P = ABABAC
Comparisons: 1

T = ABABABCABABABCABABAC
P = ABABAC
Comparisons: 1

T = ABABABCABABABCABABAC
P = ABABAC
Comparisons: 6

match

Total comparisons: 41
KMP – EXAMPLE #2
Knuth-Morris-Pratt

T = ABABABCABABABCABABAC
P = ABABAC

Reminder: \(F(j) \) is defined as the size of the largest prefix of \(P[0..j] \) that is also a suffix of \(P[1..j] \)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>A</th>
<th>B</th>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Algorithm `failureFunction(P)`

\[
\begin{align*}
F[0] & \leftarrow 0 \\
i & \leftarrow 1 \\
j & \leftarrow 0 \\
m & \leftarrow \text{length}(P) \\
\text{while } i < m \\
& \quad \text{if } P[i] = P[j] \\
& \quad \quad \{ \text{we have matched } j + 1 \text{ chars} \} \\
& \quad \quad F[i] \leftarrow j + 1 \\
& \quad \quad i \leftarrow i + 1 \\
& \quad \quad j \leftarrow j + 1 \\
& \quad \text{else if } j > 0 \text{ then} \\
& \quad \quad \{ \text{use failure function to shift } P \} \\
& \quad \quad j \leftarrow F[j - 1] \\
& \quad \text{else} \\
& \quad \quad F[i] \leftarrow 0 \{ \text{ no match } \} \\
& \quad i \leftarrow i + 1
\end{align*}
\]
Knuth-Morris-Pratt

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

T = ABABABABCABABABCABABAC
P = ABABAC

\[T[i] = ABABABCABABABCABABAC \]
\[P[j] = ABABAC \]

\[j = 5, \ i = 5 \]

New j = F[4] = 3 (shift 5-3 = 2)
New i = 5 (no change)

\[T[i] = ABABABCABABABCABABAC \]
\[P[j] = ABABAC \]

Algorithm **KMPMatch**(T, P)

\[F \leftarrow \text{failureFunction}(P) \]
\[i \leftarrow 0 \]
\[j \leftarrow 0 \]

while \(i < n \)

if \(T[i] = P[j] \)

if \(j = m - 1 \)

return \(i - j \) { match }

else

\[i \leftarrow i + 1 \]
\[j \leftarrow j + 1 \]

else

if \(j > 0 \)

\[j \leftarrow F[j-1] \]

else

\[i \leftarrow i + 1 \]
\[j \leftarrow 0 \]

return \(-1\) { no match }

Comparisons = 6
Algorithm \textbf{KMPMatch}(T, P)

\[
\begin{align*}
F & \leftarrow \text{failureFunction}(P) \\
& \text{if } T[i] = P[j] \\
& \quad \text{if } j = m - 1 \\
& \quad \quad \text{return } i - j \{ \text{match} \} \\
& \quad \text{else} \\
& \quad \quad i \leftarrow i + 1 \\
& \quad \quad j \leftarrow j + 1 \\
& \text{else} \\
& \quad \quad \text{if } j > 0 \\
& \quad \quad \quad j \leftarrow F[j-1] \\
& \quad \quad \text{else} \\
& \quad \quad \quad i \leftarrow i + 1 \\
& \quad \quad \quad j \leftarrow 0 \\
& \text{return } -1 \{ \text{no match} \}
\end{align*}
\]

\text{T = ABABABCABABABCABABACABABAC}
\text{P = ABABAC}

\text{j = 4, i = 6}

\text{New } j = F[3] = 2 \text{ (shift 4-2 = 2)}
\text{New } i = 6 \text{ (no change)}

\text{T = ABABABCABABABCABABAC}
\text{P = ABABAC}

\text{Comparisons = 6+5 = 11}
Knuth-Morris-Pratt

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

T = ABABABCABABABCABABABCABABAC
P = ABABAC

j = 2, i = 6

New j = F[1] = 0 (shift 2-0 = 2)
New i = 6 (no change)

T = ABABABCABABABCABABABCABABAC
P = ABABAC

Algorithm \textit{KMPMatch}(T, P)

\[
\begin{align*}
F & \leftarrow \text{failureFunction}(P) \\
i & \leftarrow 0 \\
j & \leftarrow 0 \\
\text{while } i < n & \\
& \quad \text{if } T[i] = P[j] \\
& \quad \quad \text{if } j = m - 1 \\
& \quad \quad \quad \text{return } i - j \{ \text{match} \} \\
& \quad \quad \text{else} \\
& \quad \quad \quad i \leftarrow i + 1 \\
& \quad \quad \quad j \leftarrow j + 1 \\
& \quad \text{else} \\
& \quad \quad \text{if } j > 0 \\
& \quad \quad \quad j \leftarrow F[j - 1] \\
& \quad \quad \text{else} \\
& \quad \quad \quad i \leftarrow i + 1 \\
& \quad \quad \quad j \leftarrow 0 \\
& \text{return } -1 \{ \text{no match} \}
\end{align*}
\]

Comparisons = 11 + 3 = 14
Algorithm KMPMatch(T, P)

\[
F \leftarrow \text{failureFunction}(P)
\]

\[
i \leftarrow 0
\]

\[
j \leftarrow 0
\]

while \(i < n \)

\(\text{if } T[i] = P[j] \)

\(\text{if } j = m - 1 \)

\(\text{return } i - j \{ \text{match} \} \)

\(\text{else} \)

\(i \leftarrow i + 1 \)

\(j \leftarrow j + 1 \)

\(\text{else} \)

\(\text{if } j > 0 \)

\(j \leftarrow F[j - 1] \)

\(\text{else} \)

\(i \leftarrow i + 1 \)

\(j \leftarrow 0 \)

\(\text{return } -1 \{ \text{no match} \} \)

Comparisons = 14+1 = 15
Algorithm **KMPMatch**(*T*, *P*)

\[F \leftarrow \text{failureFunction}(P) \]

\[i \leftarrow 0 \]

\[j \leftarrow 0 \]

while \(i < n \)

\[
\begin{align*}
\text{if } T[i] &= P[j] \\
\quad &\text{if } j = m - 1 \\
\quad &\quad \text{return } i - j \{ \text{match} \} \\
\quad &\text{else} \\
\quad &\quad i \leftarrow i + 1 \\
\quad &\quad j \leftarrow j + 1 \\
\text{else} \\
\quad &\text{if } j > 0 \\
\quad &\quad j \leftarrow F[j - 1] \\
\quad &\text{else} \\
\quad &\quad i \leftarrow i + 1 \\
\quad &\quad j \leftarrow 0 \\
\text{return } -1 \{ \text{no match} \}
\end{align*}
\]

T = ABABABCABABABABCABABACABABAC

P = ABABAC

\(j = 5, \ i = 12 \)

New \(j = F[4] = 3 \) (shift 5-3=2)

New \(i = 12 \) (no change)

T = ABABABCABABABABCABABACABABAC

P = ABABAC

\(i=12 \)

\(j=3 \)

Comparisons = 15 + 6 = 21
Algorithm \textit{KMPMatch}(T, P)

\[F \leftarrow \text{failureFunction}(P) \]

\[i \leftarrow 0 \]

\[j \leftarrow 0 \]

\[\text{while } i < n \]

\[\text{if } T[i] = P[j] \]

\[\text{if } j = m - 1 \]

\[\text{return } i - j \{ \text{match} \} \]

\[\text{else} \]

\[i \leftarrow i + 1 \]

\[j \leftarrow j + 1 \]

\[\text{else} \]

\[\text{if } j > 0 \]

\[j \leftarrow F[j - 1] \]

\[\text{else} \]

\[i \leftarrow i + 1 \]

\[j \leftarrow 0 \]

\[\text{return } -1 \{ \text{no match} \} \]

\[\]
Algorithm **KMPMatch**(T, P)

\[
F \leftarrow \text{failureFunction}(P)
\]

\[
i \leftarrow 0
\]

\[
j \leftarrow 0
\]

\[\text{while } i < n\]

\[\text{if } T[i] = P[j]\]

\[\text{if } j = m - 1\]

\[\text{return } i - j \{ \text{ match} \}\]

\[\text{else}\]

\[i \leftarrow i + 1\]

\[j \leftarrow j + 1\]

\[\text{else}\]

\[\text{if } j > 0\]

\[j \leftarrow F[j - 1]\]

\[\text{else}\]

\[i \leftarrow i + 1\]

\[j \leftarrow 0\]

\[\text{return } -1 \{ \text{ no match} \}\]

Knuth-Morris-Pratt

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

\[F \rightleftharpoons 0 \ 0 \ 1 \ 2 \ 3 \ 0\]

\[T = \text{ABABABCABABABCABABAC}\]

\[P = \text{ABABAC}\]

\[j = 2, \ i = 13\]

New \(j = F[1] = 0\) (shift 2-0=0)

New \(i = 13\) (no change)

\[T = \text{ABABABCABABABCABABAC}\]

\[P = \text{ABABAC}\]

\[i=13\]

\[j=0\]

Comparisons = 26+3 = 29
Algorithm KMPMatch(T, P)

\[F \leftarrow \text{failureFunction}(P) \]

\[i \leftarrow 0 \]
\[j \leftarrow 0 \]

while \(i < n \)

\[\text{if } T[i] = P[j] \]

\[\text{if } j = m - 1 \]

\[\text{return } i - j \{ \text{match} \} \]

\[\text{else} \]

\[i \leftarrow i + 1 \]
\[j \leftarrow j + 1 \]

\[\text{else} \]

\[\text{if } j > 0 \]

\[j \leftarrow F[j-1] \]

\[\text{else} \]

\[i \leftarrow i + 1 \]
\[j \leftarrow 0 \]

\[\text{return } -1 \{ \text{no match} \} \]
BOYER-MOORE – EXAMPLE

#2
Boyer-Moore

T = ABABABCABABABCABABAC
P = ABABAC

Comparison: 1

T = ABABA

P = ABABAC

Bad character rule

T = ABABABCBABABABCABABAC
P = ABABAC

Good suffix rule
Note: no suffix matches in the previous step!!!

Pick bad character rule shift:

T = ABABABCBABABABCABABAC
P = ABABAC
Boyer-Moore

T = ABABABCABABABABCABABAC
P = ABABAC

Comparison: 1

T = ABABABC
P = ABABAC

x

T = ABABABCABABABCABABAC
P = ABABAC

Bad character rule

T = ABABABABCABABABCABABAC
P = ABABAC

Good suffix rule
Note: no suffix matches in the previous step!!!

Pick either shift:

T = ABABABCABABABABCABABAC
P = ABABAC
Boyer-Moore

Comparison: 1

T = ABABABCABABABABCABABAC
P = ABABAC

X

T = ABABABCABABABABCABABAC
P = ABABAC

Bad character rule

T = ABABABCABABABABCABABAC
P = ABABAC

Good suffix rule
Note: no suffix matches in the previous step!!!

Pick bad character rule shift:

T = ABABABCABABABABCABABAC
P = ABABAC
Boyer-Moore

Comparison: 1

T = ABABABCABABABABCABABAC
P = ABABAC

T = ABABABCABABABCABABAC
P = ABABAC

Bad character rule

T = ABABABCDEFGABABABCABABAC
P = ABABAC

Good suffix rule
Note: no suffix matches in the previous step!!!

Pick bad character rule shift:

T = ABABABCDEFGAABABCABABAC
P = ABABAC

T = ABABABCDEFGABABABCABABAC
P = ABABAC

Pick bad character rule shift:
Boyer-Moore

\[T = \text{ABABABCABABABCABABAC} \]
\[P = \text{ABABAC} \]

Comparison: 1

\[T = \text{ABABABCABABA}_B \text{CABABAC} \]
\[P = \text{ABA}_B \text{BAC} \]

Bad character rule

\[T = \text{ABABABCABABABCABABAC} \]
\[P = \text{ABABAC} \]

Good suffix rule

Note: no suffix matches in the previous step!!!

Pick bad character rule shift:

\[T = \text{ABABABCABABABCABABAC} \]
\[P = \text{ABABAC} \]
Boyer-Moore

T = ABABABCABABABABCABABAC
P = ABABAC

Comparison: 1

T = ABABABCABABABABC
P = ABAB

Bad character rule

T = ABABABCABABABABCABABAC
P = ABABAC

Good suffix rule

Pick either:

T = ABABABCABABABABCABABAC
P = ABABAC
Boyer-Moore

T = ABABABCABABABCABABAC
P = ABABAC

Comparison: 1

T = ABABABCABABABCA
P = ABAC

Bad character rule

T = ABABABCABABABCABABAC
P = ABABAC

Good suffix rule

Pick bad character rule shift:

T = ABABABCABABABCABABAC
P = ABABAC
Boyer-Moore

\[T = \text{ABABABCABABABCABABAC} \quad \text{Comparison: 1} \]
\[P = \text{ABABAC} \]
\[x \]

\[T = \text{ABABABCABABABCABABCABABAC} \quad \text{Bad character rule} \]
\[P = \text{ABABAC} \]

\[T = \text{ABABABCABABABCABABAC} \quad \text{Good suffix rule} \]
\[P = \text{ABABAC} \]

Pick bad character rule shift and match:

\[T = \text{ABABABCABABABCABABAC} \quad \text{Comparison: 6} \]
\[P = \text{ABABAC} \]

Total comparisons: 14
BOYER-MOORE – EXAMPLE
#3
Boyer-Moore

\[T = \text{ABABABCABABABCABCABCBAB} \]
\[P = \text{ABCBAB} \]

Comparison: 4

\[T = \text{ABABABCABABABCABCABCBAB} \]
\[P = \text{ABCBAB} \]

\[T = \text{ABABABCABABABCABCABCBAB} \]
\[P = \text{ABCBAB} \]

Bad character rule

\[T = \text{ABABABCABABABCABCABCBAB} \]
\[P = \text{ABCBAB} \]

Good suffix rule 2

\[\text{Suffix (BAB)} = \text{prefix}(P) = \text{AB} \]

Pick good suffix rule 2:

\[T = \text{ABABABCABABABCABCABCBAB} \]
\[P = \text{ABCBAB} \]
Boyer-Moore

\[T = ABABABCABABABCBAB \quad \quad \text{Comparison: 1} \]

\[P = ABCBAB \]

\[x \]

\[T = ABABABCABABABCBAB \quad \quad \text{Bad character rule} \]

\[P = ABCBAB \]

\[T = ABABABCABABABCBAB \quad \quad \text{Good suffix rule} \]

\[P = ABCBAB \]

\[\quad \text{No suffix match in previous step} \]

Pick either:

\[T = ABABABCABABABCBAB \]

\[P = ABCBAB \]
Boyer-Moore

T = ABABABCA\textcolor{red}{BABABABABCACBCBAB} \quad \text{Comparison: 4}
\text{P} = \textcolor{red}{ABCBAB} \quad \text{x}

T = ABABABCA\textcolor{red}{ABABABABCACBCBAB} \quad \text{Bad character rule}
\text{P} = \textcolor{red}{ABCBAB}

T = ABABABCA\textcolor{red}{BABABABCACBCBAB} \quad \text{Good suffix rule 2}
\text{P} = \textcolor{red}{ABCBAB}
\text{Suffix (BAB) = prefix(P) = AB}

Pick good suffix rule 2:

T = ABABABC\textcolor{red}{ABABABABCACBCBABABAB\textcolor{red}{ABCACBCBAB}}
\text{P} = \textcolor{red}{ABCBAB}
Boyer-Moore

Comparison: 1

T = ABABABCABABABABCABCBAB
P = ABCBAB

x

T = ABABABCABABABABCABCBAB
P = ABCBAB

Bad character rule

T = ABABABCABABABABCABCBAB
P = ABCBAB

Good suffix rule
No suffix match in previous step

Pick either:

T = ABABABCABABABABCABCABCBAB
P = ABCBAB
Boyer-Moore

Comparison: 3

Bad character rule

Good suffix rule 1 or 2
Suffix (AB) = prefix(P) = AB

Total comparisons: 19