
The Change Problem
Goal: Convert some amount of money M
into given denominations, using the
fewest possible number of coins

Input: An amount of money M, and an array of
d denominations c = (c1, c2, …, cd), in a
decreasing order of value (c1 > c2 > … > cd)

Output: A list of d integers i1, i2, …, id such that
c1i1 + c2i2 + … + cdid = M

and i1 + i2 + … + id is minimal

Change Problem: Example

Given the denominations 1, 3, and 5, what
is the minimum number of coins needed to
make change for a given value?

1 2 3 4 5 6 7 8 9 10

1 1 1

Value

Min # of coins

Only one coin is needed to make change
for the values 1, 3, and 5

Change Problem: Example
(cont’d)
Given the denominations 1, 3, and 5, what
is the minimum number of coins needed to
make change for a given value?

1 2 3 4 5 6 7 8 9 10

1 2 1 2 1 2 2 2

Value

Min # of coins

However, two coins are needed to make
change for the values 2, 4, 6, 8, and 10.

Change Problem: Example
(cont’d)

1 2 3 4 5 6 7 8 9 10

1 2 1 2 1 2 3 2 3 2

Value

Min # of coins

Lastly, three coins are needed to make
change for the values 7 and 9

Given the denominations 1, 3, and 5, what
is the minimum number of coins needed to
make change for a given value?

Change Problem: Recurrence

This example is expressed by the following
recurrence relation:

minNumCoins(M) =

minNumCoins(M-1) + 1

minNumCoins(M-3) + 1

minNumCoins(M-5) + 1

min of

Change Problem: Recurrence
(cont’d)
Given the denominations c: c1, c2, …, cd,
the recurrence relation is:

minNumCoins(M) =

minNumCoins(M-c1) + 1

minNumCoins(M-c2) + 1

…

minNumCoins(M-cd) + 1

min of

Change Problem: A Recursive
Algorithm
1. RecursiveChange(M,c,d)
2. if M = 0
3. return 0
4. bestNumCoins infinity
5. for i 1 to d
6. if M ≥ ci

7. numCoins RecursiveChange(M – ci , c,
d)

8. if numCoins + 1 < bestNumCoins
9. bestNumCoins numCoins + 1
10. return bestNumCoins

RecursiveChange Is Not
Efficient
 It recalculates the optimal coin combination

for a given amount of money repeatedly

 i.e., M = 77, c = (1,3,7):
 Optimal coin combo for 70 cents is

computed 9 times!

The RecursiveChange Tree

74

77

76 70

75 73 69 73 71 67 69 67 63

74 72 68

72 70 66

68 66 62

72 70 66

70 68 64

66 64 60

68 66 62

66 64 60

62 60 56

.
70 70 70 7070

We Can Do Better

 We’re re-computing values in our algorithm more
than once

 Save results of each computation for 0 to M

 This way, we can do a reference call to find an
already computed value, instead of re-computing
each time

 Running time M*d, where M is the value of money
and d is the number of denominations

The Change Problem: Dynamic
Programming

1. DPChange(M,c,d)
2. bestNumCoins0 0

3. for m 1 to M
4. bestNumCoinsm infinity

5. for i 1 to d
6. if m ≥ ci

7. if bestNumCoinsm – ci
+ 1 <

bestNumCoinsm

8. bestNumCoinsm bestNumCoinsm –

ci
+ 1

9. return bestNumCoinsM

DPChange: Example

0

0 1

0 1 2

0 1 2 3

0 1 2 3 4

0 1 2 3 4 5

0 1 2 3 4 5 6

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 9

0 1

0

0 1 2

0 1 2 1

0 1 2 1 2

0 1 2 1 2 3

0 1 2 1 2 3 2

0 1 2 1 2 3 2 1

0 1 2 1 2 3 2 1 2

0 1 2 1 2 3 2 1 2 3

c = (1,3,7)
M = 9

Manhattan Tourist Problem
(MTP)
Imagine seeking a path
(from source to sink) to
travel (only eastward
and southward) with the
most number of
attractions (*) in the
Manhattan grid

Sink
*

*

*

*

*

**

* *

*

*

Source

*

Manhattan Tourist Problem
(MTP)
Imagine seeking a path
(from source to sink) to
travel (only eastward
and southward) with the
most number of
attractions (*) in the
Manhattan grid

Sink
*

*

*

*

*

**

* *

*

*

Source

*

Manhattan Tourist Problem: Formulation

Goal: Find the longest path in a weighted
grid.

Input: A weighted grid G with two distinct
vertices, one labeled “source” and the other
labeled “sink”

Output: A longest path in G from “source” to
“sink”

MTP: An Example

3 2 4

0 7 3

3 3 0

1 3 2

4

4

5

6

4

6

5

5

8

2

2

5

0 1 2 3

0

1

2

3

j coordinate
i c

o
o

rd
in

a
te

13

source

sink

4

3 2 4 0

1 0 2 4 3

3

1

1

2

2

2

4
19

95

15

23

0

20

3

4

MTP: Greedy Algorithm Is Not
Optimal

1 2 5

 2 1 5

2 3 4

0 0 0

5

3

0

3

5

0

10

3

5

5

1

2promising
start, but
leads to bad
choices!

source

sink
18

22

MTP: Simple Recursive
Program
MT(n,m)
 if n=0 or m=0
 return MT(n,m)
 x MT(n-1,m)+
 length of the edge from (n- 1,m)

to (n,m)
 y MT(n,m-1)+
 length of the edge from (n,m-1) to

(n,m)
 return max{x,y}

1

5

0 1

0

1

i

source

1

5
S1,0 = 5

S0,1 = 1

• Calculate optimal path score for each vertex in the graph

• Each vertex’s score is the maximum of the prior vertices
score plus the weight of the respective edge in between

MTP: Dynamic Programming
j

MTP: Dynamic Programming
(cont’d)

1 2

5

3

0 1 2

0

1

2

source

1 3

5

8

4

S2,0 = 8

i

S1,1 = 4

S0,2 = 33

-5

j

MTP: Dynamic Programming
(cont’d)

1 2

5

3

0 1 2 3

0

1

2

3

i

source

1 3

5

8

8

4

0

5

8

103

5

-5

9

13
1-5

S3,0 = 8

S2,1 = 9

S1,2 = 13

S3,0 = 8

j

MTP: Dynamic Programming
(cont’d)

greedy alg.
fails!

1 2 5

-5 1 -5

-5 3

0

5

3

0

3

5

0

10

-3

-5

0 1 2 3

0

1

2

3

i

source

1 3 8

5

8

8

4

9

13 8

9

12

S3,1 = 9

S2,2 = 12

S1,3 = 8

j

MTP: Dynamic Programming
(cont’d)

1 2 5

-5 1 -5

-5 3 3

0 0

5

3

0

3

5

0

10

-3

-5

-5

2

0 1 2 3

0

1

2

3

i

source

1 3 8

5

8

8

4

9

13 8

12

9

15

9

j

S3,2 = 9

S2,3 = 15

MTP: Dynamic Programming
(cont’d)

1 2 5

-5 1 -5

-5 3 3

0 0

5

3

0

3

5

0

10

-3

-5

-5

2

0 1 2 3

0

1

2

3

i

source

1 3 8

5

8

8

4

9

13 8

12

9

15

9

j

0

1

16
S3,3 = 16

(showing all back-traces)

Done!

MTP: Recurrence

Computing the score for a point (i,j) by the
recurrence relation:

si, j = max

si-1, j + weight of the edge between (i-1, j) and (i,
j)

si, j-1 + weight of the edge between (i, j-1) and (i,
j)

The running time is n x m for a n by m grid

(n = # of rows, m = # of columns)

Manhattan Is Not A Perfect Grid

What about diagonals?

• The score at point B is given by:

sB =
max
of

sA1 + weight of the edge (A1, B)

sA2 + weight of the edge (A2, B)

sA3 + weight of the edge (A3, B)

B

A3

A1

A2

Manhattan Is Not A Perfect Grid (cont’d)

Computing the score for point x is given by the
recurrence relation:

sx = max

of

sy + weight of vertex (y, x) where

 y є Predecessors(x)

• Predecessors (x) – set of vertices that have edges
leading to x

• The running time for a graph G(V, E)
(V is the set of all vertices and E is the set of all edges)
 is O(E) since each edge is evaluated once

Traveling in the Grid

• The only hitch is that one must decide on the
order in which visit the vertices

• By the time the vertex x is analyzed, the
values sy for all its predecessors y should be
computed – otherwise we are in trouble.

• We need to traverse the vertices in some
order

DAG: Directed Acyclic Graph

• Since Manhattan is not a perfect regular grid,
we represent it as a DAG

Longest Path in DAG
Problem
• Goal: Find a longest path between two

vertices in a weighted DAG

• Input: A weighted DAG G with source and
sink vertices

• Output: A longest path in G from source to
sink

Longest Path in DAG: Dynamic

Programming
• Suppose vertex v has indegree 3 and

predecessors {u1, u2, u3}

• Longest path to v from source is:

In General:

sv = maxu (su + weight of edge from u to v)

sv =
max
of

su1 + weight of edge from u1 to v

su2 + weight of edge from u2 to v

su3 + weight of edge from u3 to v

Traversing the Manhattan
Grid
• 3 different strategies:

• a) Column by
column

• b) Row by row
• c) Along diagonals

a) b)

c)

ALIGNMENT

Alignment: 2 row representation

Alignment : 2 * k matrix (k > m, n)

A T -- G T A T --

A T C G -- A -- C

letters of v

letters of w

T

T

V : ATGTTAT
W : ATCGTAC

5 matches 2 insertions 2 deletions

Given 2 DNA sequences v and w:

Aligning DNA Sequences

V = ATCTGATG
W = TGCATAC

n = 8

m = 7

A T C T G A T G

T G C A T A C
V

W

match

deletion
insertion

mismatch

indels

4
1
2
3

 matches
 mismatch
 insertions
deletions

Longest Common Subsequence (LCS) –
Alignment without Mismatches

• Given two sequences

 v = v1 v2…vm and w = w1 w2…wn

• The LCS of v and w is a sequence of positions in

v: 1 < i1 < i2 < … < it < m

and a sequence of positions in

w: 1 < j1 < j2 < … < jt < n

such that it -th letter of v equals to jt-letter of w and t is
maximal

LCS: Example

A T -- C T G A T C

-- T G C T -- A -- C

elements of v

elements of w

--

A
1

2

0

1

2

2

3

3

4

3

5

4

5

5

6

6

6

7

7

8

j coords:

i coords:

Matches shown in
red

positions in v:

positions in w:

2 < 3 < 4 < 6 < 8

1 < 3 < 5 < 6 < 7

Every common subsequence is a path in 2-D
grid

0

0

(0,0)(1,0)(2,1)(2,2)(3,3)(3,4)(4,5)(5,5)(6,6)(7,6)(8,7)

LCS Problem as Manhattan Tourist
Problem

T

G

C

A

T

A

C

1

2

3

4

5

6

7

0i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

Edit Graph for LCS Problem

T

G

C

A

T

A

C

1

2

3

4

5

6

7

0i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

Edit Graph for LCS Problem

T

G

C

A

T

A

C

1

2

3

4

5

6

7

0i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

Every path is a
common
subsequence.

Every diagonal
edge adds an
extra element to
common
subsequence

LCS Problem:
Find a path with
maximum
number of
diagonal edges

Computing LCS
Let vi = prefix of v of length i: v1 … vi

and wj = prefix of w of length j: w1 … wj

The length of LCS(vi,wj) is computed by:

si, j = max
si-1, j

si, j-1

si-1, j-1 + 1 if vi = wj

Computing LCS (cont’d)

si,j = MAX
si-1,j + 0
si,j -1 + 0
si-1,j -1 + 1, if vi = wj

i,j

i-1,j

i,j -1

i-1,j -1

1 0

0

Every Path in the Grid
Corresponds to an Alignment

0 1 2 3 4

0

1

2

3

4

W A T C G

A

T

G

T

V

 0 1 2 2 3 4

V = A T - G T

 | | |

W= A T C G –

 0 1 2 3 4 4

DISTANCE BETWEEN
STRINGS

Aligning Sequences without
Insertions and Deletions: Hamming
Distance
Given two DNA sequences v and w :

v :

• The Hamming distance: dH(v, w) = 8 is
large but the sequences are very similar

AT AT AT AT
AT AT AT ATw :

Aligning Sequences with
Insertions and Deletions

v : AT AT AT AT
AT AT AT ATw : --
--

By shifting one sequence over one
position:

• The edit distance: dH(v, w) = 2.

• Hamming distance neglects insertions
and deletions in DNA

Edit Distance

Levenshtein (1966) introduced edit distance
between two strings as the minimum number
of elementary operations (insertions,
deletions, and substitutions) to transform one
string into the other

d(v,w) = MIN number of elementary operations

to transform v w

Edit Distance vs Hamming Distance

V = ATATATAT

W = TATATATA

Hamming distance
always compares
 i-th letter of v with
 i-th letter of w

Hamming distance:
 d(v, w)=8
Computing Hamming distance
 is a trivial task.

Edit Distance vs Hamming
Distance

Hamming distance: Edit distance:
 d(v, w)=8 d(v, w)=2

Computing Hamming distance Computing edit distance

 is a trivial task is a non-trivial task

W = TATATATA

Just one shift

Make it all line up

V = - ATATATAT

Hamming distance
always compares
 i-th letter of v with
 i-th letter of w

Edit distance
may compare
 i-th letter of v with
 j-th letter of w

V = ATATATAT

W = TATATATA

Edit Distance: Example

TGCATAT ATCCGAT in 5 steps

TGCATAT (delete last T)

TGCATA (delete last A)

TGCAT (insert A at front)

ATGCAT (substitute C for 3rd G)

ATCCAT (insert G before last A)

ATCCGAT (Done)

Edit Distance: Example

TGCATAT ATCCGAT in 5 steps

TGCATAT (delete last T)

TGCATA (delete last A)

TGCAT (insert A at front)

ATGCAT (substitute C for 3rd G)

ATCCAT (insert G before last A)

ATCCGAT (Done)

What is the edit distance? 5?

Edit Distance: Example (cont’d)

TGCATAT ATCCGAT in 4 steps

TGCATAT (insert A at front)

ATGCATAT (delete 6th T)

ATGCATA (substitute G for 5th A)

ATGCGTA (substitute C for 3rd G)

ATCCGAT (Done)

Edit Distance: Example (cont’d)

TGCATAT ATCCGAT in 4 steps

TGCATAT (insert A at front)

ATGCATAT (delete 6th T)

ATGCATA (substitute G for 5th A)

ATGCGTA (substitute C for 3rd G)

ATCCGAT (Done)

 Can it be done in 3 steps???

The Alignment Grid

• Every alignment
path is from
source to sink

Alignment as a Path in the Edit
Graph

0 1 2 2 3 4 5 6 7 7
 A T _ G T T A T _
 A T C G T _ A _ C
0 1 2 3 4 5 5 6 6 7

(0,0) , (1,1) , (2,2), (2,3),
(3,4), (4,5), (5,5), (6,6),
(7,6), (7,7)

1

0

2

3

4

5

6

7

10 2 3 4 5 6 7

GA T C AT Cw
A

T

T

G

T

A

T

v

- Corresponding path -

Alignments in Edit Graph
(cont’d)

 and represent
indels in v and w
with score 0.

 represent matches
with score 1.
• The score of the

alignment path is 5.

1

0

2

3

4

5

6

7

10 2 3 4 5 6 7

GA T C AT Cw
A

T

T

G

T

A

T

v

Alignment as a Path in the Edit
Graph

1

0

2

3

4

5

6

7

10 2 3 4 5 6 7

GA T C AT C
w

A

T

T

G

T

A

T

v
Every path in the
edit graph
corresponds to an
alignment:

Alignment as a Path in the Edit
Graph

1

0

2

3

4

5

6

7

10 2 3 4 5 6 7

GA T C AT Cw
A

T

T

G

T

A

T

v
Old Alignment
 0122345677
v= AT_GTTAT_
w= ATCGT_A_C
 0123455667

New Alignment
 0122345677
v= AT_GTTAT_
w= ATCG_TA_C
 0123445667

Alignment as a Path in the Edit
Graph

 0122345677
v= AT_GTTAT_
w= ATCGT_A_C
 0123455667

(0,0) , (1,1) , (2,2), (2,3),
(3,4), (4,5), (5,5), (6,6),
(7,6), (7,7)

1

0

2

3

4

5

6

7

10 2 3 4 5 6 7

GA T C AT Cw
A

T

T

G

T

A

T

v

Alignment: Dynamic
Programming

si,j = si-1, j-1+1 if vi = wj

 max si-1, j

 si, j-1

{

Dynamic Programming
Example

1

0

2

3

4

5

6

7

10 2 3 4 5 6 7

GA T C AT Cw
A

T

T

G

T

A

T

v
Initialize 1st row and
1st column to be all
zeroes.

Or, to be more
precise, initialize 0th
row and 0th column
to be all zeroes.

0 00 0 0 0 0 0

0

0

0

0

0

0

0

Dynamic Programming
Example

1

0

2

3

4

5

6

7

10 2 3 4 5 6 7

GA T C AT Cw
A

T

T

G

T

A

T

v
Si,j = Si-1, j-1

 max Si-1, j

 Si, j-1

{

0 00 0 0 0 0 0

0

0

0

0

0

0

0

value from NW +1, if vi = wj

 value from North (top)
 value from West (left)

1

1

1

1

1

1

1

1 1 1 1 1 1

Alignment: Backtracking

Arrows show where the score
originated from.

 if from the top

 if from the left

 if vi = wj

Backtracking Example

Find a match in row and column
2.

i=2, j=2,5 is a match (T).

j=2, i=4,5,7 is a match (T).

Since vi = wj, si,j = si-1,j-1 +1

s2,2 = [s1,1 = 1] + 1
s2,5 = [s1,4 = 1] + 1
s4,2 = [s3,1 = 1] + 1
s5,2 = [s4,1 = 1] + 1
s7,2 = [s6,1 = 1] + 1

1

0

2

3

4

5

6

7

10 2 3 4 5 6 7

GA T C AT Cw
A

T

T

G

T

A

T

v 0 00 0 0 0 0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1 1 1 1 1 1

2

2 2

2

2

2 2 2 2

2

2

Backtracking Example

1

0

2

3

4

5

6

7

10 2 3 4 5 6 7

GA T C AT Cw
A

T

T

G

T

A

T

v 0 00 0 0 0 0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1 1 1 1 1 1

2

2 2

2

2

2 2 2 2

2

2

Continuing with the
dynamic
programming
algorithm gives this
result.

2 3 3 3 3

2

2

2

2

3 4 4 4

3 4 4 4

3 4

3 4

5 5

5 5

Alignment: Dynamic
Programming

si,j = si-1, j-1+1 if vi = wj

 max si-1, j

 si, j-1

{

Alignment: Dynamic
Programming

si,j = si-1, j-1+1 if vi = wj

 max si-1, j+0

 si, j-1+0

{

This recurrence corresponds to the Manhattan
Tourist problem (three incoming edges into a
vertex) with all horizontal and vertical edges
weighted by zero.

LCS Algorithm

1. LCS(v,w)
2. for i 1 to n
3. si,0 0
4. for j 1 to m
5. s0,j 0
6. for i 1 to n
7. for j 1 to m
8. si-1,j

9. si,j max si,j-1
10. si-1,j-1 + 1, if vi = wj

11. “ “ if si,j = si-1,j

 bi,j “ “ if si,j = si,j-1

 “ “ if si,j = si-1,j-1 + 1

 return (sn,m, b)

{

{

Now What?

 LCS(v,w) created the
alignment grid

 Now we need a way
to read the best
alignment of v and w

 Follow the arrows
backwards from sink

1

0

2

3

4

5

6

7

10 2 3 4 5 6 7

GA T C AT Cw
A

T

T

G

T

A

T

v 0 00 0 0 0 0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1 1 1 1 1 1

2

2 2

2

2

2 2 2 2

2

2

2 3 3 3 3

2

2

2

2

3 4 4 4

3 4 4 4

3 4

3 4

5 5

5 5

Printing LCS: Backtracking

1. PrintLCS(b,v,i,j)
2. if i = 0 or j = 0
3. return
4. if bi,j = “ “
5. PrintLCS(b,v,i-1,j-1)
6. print vi

7. else
8. if bi,j = “ “
9. PrintLCS(b,v,i-1,j)
10. else
11. PrintLCS(b,v,i,j-1)

LCS Runtime

 It takes O(nm) time to fill in the nxm dynamic
programming matrix.

	The Change Problem
	Change Problem: Example
	Change Problem: Example (cont’d)
	Change Problem: Example (cont’d)
	Change Problem: Recurrence
	Change Problem: Recurrence (cont’d)
	Change Problem: A Recursive Algorithm
	RecursiveChange Is Not Efficient
	The RecursiveChange Tree
	We Can Do Better
	The Change Problem: Dynamic Programming
	DPChange: Example
	Manhattan Tourist Problem (MTP)
	Manhattan Tourist Problem (MTP)
	Manhattan Tourist Problem: Formulation
	MTP: An Example
	MTP: Greedy Algorithm Is Not Optimal
	MTP: Simple Recursive Program
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	MTP: Recurrence
	Manhattan Is Not A Perfect Grid
	Manhattan Is Not A Perfect Grid (cont’d)
	Traveling in the Grid
	DAG: Directed Acyclic Graph
	Longest Path in DAG Problem
	Longest Path in DAG: Dynamic Programming
	Traversing the Manhattan Grid
	alignment
	Slide 34
	Aligning DNA Sequences
	Longest Common Subsequence (LCS) – Alignment without Mismatches
	LCS: Example
	LCS Problem as Manhattan Tourist Problem
	Edit Graph for LCS Problem
	Edit Graph for LCS Problem
	Computing LCS
	Computing LCS (cont’d)
	Every Path in the Grid Corresponds to an Alignment
	Distance between strings
	Slide 45
	Aligning Sequences with Insertions and Deletions
	Edit Distance
	Edit Distance vs Hamming Distance
	Edit Distance vs Hamming Distance
	Edit Distance: Example
	Edit Distance: Example
	Edit Distance: Example (cont’d)
	Edit Distance: Example (cont’d)
	The Alignment Grid
	Alignment as a Path in the Edit Graph
	Alignments in Edit Graph (cont’d)
	Slide 57
	Alignment as a Path in the Edit Graph
	Alignment as a Path in the Edit Graph
	Alignment: Dynamic Programming
	Dynamic Programming Example
	Dynamic Programming Example
	Alignment: Backtracking
	Backtracking Example
	Backtracking Example
	Alignment: Dynamic Programming
	Alignment: Dynamic Programming
	LCS Algorithm
	Now What?
	Printing LCS: Backtracking
	LCS Runtime

