
The Change Problem
Goal: Convert some amount of money M 
into given denominations, using the 
fewest possible number of coins

Input: An amount of money M, and an array of 
d denominations c = (c1, c2, …, cd), in a 
decreasing order of value (c1 > c2 > … > cd)

Output: A list of d integers i1, i2, …, id such that 
c1i1 + c2i2 + … + cdid = M

and i1 + i2 + … + id is minimal



Change Problem: Example

Given the denominations 1, 3, and 5, what 
is the minimum number of coins needed to 
make change for a given value?

1 2 3 4 5 6 7 8 9 10

1 1 1

Value

Min # of coins

Only one coin is needed to make change 
for the values 1, 3, and 5



Change Problem: Example 
(cont’d)
Given the denominations 1, 3, and 5, what 
is the minimum number of coins needed to 
make change for a given value?

1 2 3 4 5 6 7 8 9 10

1 2 1 2 1 2 2 2

Value

Min # of coins

However, two coins are needed to make 
change for the values 2, 4, 6, 8, and 10.



Change Problem: Example 
(cont’d)

1 2 3 4 5 6 7 8 9 10

1 2 1 2 1 2 3 2 3 2

Value

Min # of coins

Lastly, three coins are needed to make 
change for the values 7 and 9

Given the denominations 1, 3, and 5, what 
is the minimum number of coins needed to 
make change for a given value?



Change Problem: Recurrence

This example is expressed by the following 
recurrence relation:

minNumCoins(M)  =

minNumCoins(M-1) + 1

minNumCoins(M-3) + 1

minNumCoins(M-5) + 1

min of



Change Problem: Recurrence 
(cont’d)
Given the denominations c: c1, c2, …, cd, 
the recurrence relation is:

minNumCoins(M)  =

minNumCoins(M-c1) + 1

minNumCoins(M-c2) + 1

…

minNumCoins(M-cd) + 1

min of



Change Problem: A Recursive 
Algorithm
1. RecursiveChange(M,c,d)
2.    if M = 0
3.       return 0
4.    bestNumCoins  infinity
5.    for i  1 to d
6.       if M ≥ ci

7.          numCoins  RecursiveChange(M – ci , c, 
d)

8.           if numCoins + 1 < bestNumCoins
9.             bestNumCoins  numCoins + 1
10. return bestNumCoins 



RecursiveChange Is Not 
Efficient
 It recalculates the optimal coin combination 

for a given amount of money repeatedly

 i.e., M = 77, c = (1,3,7):
 Optimal coin combo for 70 cents is 

computed 9 times!



The RecursiveChange Tree

74

77

76 70

75 73 69 73 71 67 69 67 63

74 72 68

72 70 66

68 66 62

72 70 66

70 68 64

66 64 60

68 66 62

66 64 60

62 60 56

. . . . . .
70 70 70 7070



We Can Do Better

 We’re re-computing values in our algorithm more 
than once

 Save results of each computation for 0 to M 

 This way, we can do a reference call to find an 
already computed value, instead of re-computing 
each time

 Running time M*d, where M is the value of money 
and d is the number of denominations 



The Change Problem: Dynamic 
Programming

1. DPChange(M,c,d)
2.    bestNumCoins0  0

3.    for m  1 to M
4.       bestNumCoinsm  infinity

5.       for i   1 to d
6.          if m ≥ ci

7.             if bestNumCoinsm – ci
+ 1  < 

bestNumCoinsm

8.                bestNumCoinsm  bestNumCoinsm – 

ci
+ 1 

9.    return bestNumCoinsM 



DPChange: Example

0

0 1

0 1 2

0 1 2 3

0 1 2 3 4

0 1 2 3 4 5

0 1 2 3 4 5 6

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 9

0 1

0

0 1 2

0 1 2 1

0 1 2 1 2

0 1 2 1 2 3

0 1 2 1 2 3 2

0 1 2 1 2 3 2 1

0 1 2 1 2 3 2 1 2

0 1 2 1 2 3 2 1 2 3

c = (1,3,7)
M = 9



Manhattan Tourist Problem 
(MTP)
Imagine seeking a path 
(from source to sink) to 
travel (only eastward 
and southward) with the 
most number of 
attractions (*) in the 
Manhattan grid
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Manhattan Tourist Problem 
(MTP)
Imagine seeking a path 
(from source to sink) to 
travel (only eastward 
and southward) with the 
most number of 
attractions (*) in the 
Manhattan grid

Sink
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Manhattan Tourist Problem: Formulation

Goal: Find the longest path in a weighted 
grid.

Input: A weighted grid G with two distinct 
vertices, one labeled “source” and the other 
labeled “sink”

Output: A longest path in G from “source” to 
“sink”



MTP: An Example
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MTP: Greedy Algorithm Is Not 
Optimal

1 2 5

 2 1 5

2 3 4

0 0 0
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2promising 
start, but 
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choices!
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18

22



MTP: Simple Recursive 
Program
MT(n,m)
   if n=0  or m=0
      return MT(n,m)
   x  MT(n-1,m)+
                   length of the edge from (n- 1,m) 

to (n,m)
   y  MT(n,m-1)+
                   length of the edge from (n,m-1) to 

(n,m)
   return max{x,y}



1

5

0 1

0

1

i

source

1

5
S1,0 = 5

S0,1 = 1

•  Calculate optimal path score for each vertex in the graph

•  Each vertex’s score is the maximum of the prior vertices 
score plus the weight of the respective edge in between

MTP: Dynamic Programming
j



MTP: Dynamic Programming 
(cont’d)
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MTP: Dynamic Programming 
(cont’d)
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MTP: Dynamic Programming 
(cont’d)

greedy alg. 
fails!
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MTP: Dynamic Programming 
(cont’d)
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MTP: Dynamic Programming 
(cont’d)
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0

1

16
S3,3 = 16

(showing all back-traces)

Done!



MTP: Recurrence

Computing the score for a point (i,j) by the 
recurrence relation:

si, j   = max 

si-1, j + weight of the edge between (i-1, j) and (i, 
j) 

si, j-1 + weight of the edge between (i, j-1) and (i, 
j)

The running time is n x m  for a n by m grid

(n = # of rows, m = # of columns)

 



Manhattan Is Not A Perfect Grid

What about diagonals?

•  The score at point B is given by:

sB  =
max 
of

sA1 + weight of the edge  (A1, B)

sA2 + weight of the edge  (A2, B)

sA3 + weight of the edge  (A3, B)

B

A3

A1

A2



Manhattan Is Not A Perfect Grid (cont’d)

Computing the score for point x is given by the 
recurrence relation:

sx  = max 

of

sy + weight of vertex (y, x) where 

                     y є Predecessors(x)

•  Predecessors (x) – set of vertices that have  edges 
leading to x 

• The running time for a graph G(V, E)                        
(V is the set of all vertices and E is the set of all edges)     
 is O(E) since each edge is evaluated once



Traveling in the Grid

• The only hitch is that one must decide on the  
order in which visit the vertices 

• By the time the vertex x is analyzed, the 
values sy for all its predecessors y should be 
computed – otherwise we are in trouble. 

• We need to traverse the vertices in some 
order

 



DAG: Directed Acyclic Graph

• Since Manhattan is not a perfect regular grid, 
we represent it as a DAG 



Longest Path in DAG 
Problem
• Goal: Find a longest path between two 

vertices in a weighted DAG

• Input: A weighted DAG G with source and 
sink vertices

• Output: A longest path in G from source to 
sink



Longest Path in DAG: Dynamic 

Programming 
• Suppose vertex v has indegree 3 and 

predecessors {u1, u2, u3}

• Longest path to v  from source is:

In General: 

sv = maxu  (su + weight of edge from u to v) 

sv =
max 
of

su1 + weight of edge from u1 to v 

su2 + weight of edge from u2 to v 

su3 + weight of edge from u3 to v 



Traversing the Manhattan 
Grid 
• 3 different strategies:

• a) Column by 
column

• b) Row by row
• c) Along diagonals

a) b)

c)



ALIGNMENT



Alignment: 2 row representation 

Alignment :  2 * k matrix ( k > m, n )

A T -- G T A T --

A T C G -- A -- C

letters of v

letters of w

T

T

V  : ATGTTAT 
W : ATCGTAC

5 matches 2 insertions 2 deletions

Given 2 DNA sequences v and w:



Aligning DNA Sequences

V  = ATCTGATG
W = TGCATAC

n = 8

m = 7

A T C T G A T G

T G C A T A C
V 

W 

match

deletion
insertion

mismatch

indels

4
1
2
3

 matches
 mismatch
 insertions 
deletions 



Longest Common Subsequence (LCS) – 
Alignment without Mismatches

•   Given two sequences 

            v = v1 v2…vm and w = w1 w2…wn

•   The LCS of v and w is a sequence of positions in 

v: 1 < i1 < i2 < … < it < m

and a sequence of positions in 

w: 1 < j1 < j2 < … < jt < n

such that it -th letter of v equals to jt-letter of w and t is 
maximal



LCS: Example

A T -- C T G A T C

-- T G C T -- A -- C

elements of v

elements of w

--

A
1

2

0

1

2

2

3

3

4

3

5

4

5

5

6

6

6

7

7

8

j coords:

i coords:

Matches shown in 
red

positions in v:

positions in w: 

2 < 3 < 4 < 6 < 8

1 < 3 < 5 < 6 < 7

Every common subsequence is a path in 2-D 
grid

0

0

(0,0)(1,0)(2,1)(2,2)(3,3)(3,4)(4,5)(5,5)(6,6)(7,6)(8,7)



LCS Problem as Manhattan Tourist 
Problem

T

G

C

A

T

A

C

1

2

3

4

5

6

7

0i

A T C T G A T C
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Edit Graph for LCS Problem
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Edit Graph for LCS Problem

T
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C

A

T
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C

1
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7

0i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

Every path is a 
common 
subsequence.

Every diagonal 
edge adds an 
extra element to 
common 
subsequence

LCS Problem: 
Find a path with 
maximum 
number of 
diagonal edges



Computing LCS
Let vi   =   prefix of v of length i:    v1 … vi

and wj  =  prefix of w of length j:   w1 … wj

The length of LCS(vi,wj) is computed by:

si, j  = max
si-1, j

si, j-1

si-1, j-1  + 1  if  vi = wj 



Computing LCS (cont’d)

si,j = MAX 
si-1,j    + 0 
si,j -1   + 0 
si-1,j -1 + 1,    if  vi = wj

i,j

i-1,j

i,j -1

i-1,j -1

1 0

0



Every Path in the Grid 
Corresponds to an Alignment 

0 1 2 3 4

0

1

2

3

4

W A T C G

A

T

G

T

V
           

      0 1 2  2  3 4

V =    A T -  G T

          |  |       |

W=    A T C G –

       0 1 2  3 4 4



DISTANCE BETWEEN 
STRINGS



Aligning Sequences without 
Insertions and Deletions: Hamming 
Distance
Given two DNA sequences v and w :

v  :

•  The Hamming distance: dH(v, w)  =  8 is 
large but the sequences are very similar

AT AT AT AT
AT AT AT ATw :



Aligning Sequences with 
Insertions and Deletions

v  : AT AT AT AT
AT AT AT ATw : --
--

By shifting one sequence over one 
position:

•  The edit distance: dH(v, w)  =  2.

•  Hamming distance neglects insertions 
and deletions in DNA



Edit Distance

Levenshtein (1966) introduced edit distance 
between two strings as the minimum number 
of elementary operations (insertions, 
deletions, and substitutions) to transform one 
string into the other

d(v,w) = MIN number of elementary operations 

to transform v  w 



Edit Distance vs Hamming Distance

V  = ATATATAT

W = TATATATA

Hamming distance 
always compares 
 i-th letter of v  with
 i-th letter of w

Hamming distance:
      d(v, w)=8
Computing Hamming distance
          is a trivial task. 
               



Edit Distance vs Hamming 
Distance

Hamming distance:                    Edit distance: 
      d(v, w)=8                               d(v, w)=2 

Computing Hamming distance             Computing edit distance 

           is a trivial task                             is a non-trivial task

               

W = TATATATA

Just one shift

Make it all line up

V  = - ATATATAT

Hamming distance 
always compares 
 i-th letter of v  with
 i-th letter of w

Edit distance 
may compare 
 i-th letter of v  with
 j-th letter of w

V  = ATATATAT

W = TATATATA



Edit Distance: Example

TGCATAT  ATCCGAT in 5 steps

TGCATAT    (delete last T)

TGCATA      (delete last A)

TGCAT        (insert A at front)

ATGCAT      (substitute C for 3rd G)

ATCCAT      (insert G before last A) 

ATCCGAT       (Done)

 



Edit Distance: Example

TGCATAT  ATCCGAT in 5 steps

TGCATAT    (delete last T)

TGCATA      (delete last A)

TGCAT        (insert A at front)

ATGCAT      (substitute C for 3rd G)

ATCCAT      (insert G before last A) 

ATCCGAT       (Done)

What is the edit distance?  5?



Edit Distance: Example (cont’d)

TGCATAT  ATCCGAT in 4 steps

TGCATAT    (insert A at front)

ATGCATAT  (delete 6th T)

ATGCATA    (substitute G for 5th A)

ATGCGTA    (substitute C for 3rd G)

ATCCGAT (Done)

        



Edit Distance: Example (cont’d)

TGCATAT  ATCCGAT in 4 steps

TGCATAT    (insert A at front)

ATGCATAT  (delete 6th T)

ATGCATA    (substitute G for 5th A)

ATGCGTA    (substitute C for 3rd G)

ATCCGAT (Done)

       Can it be done in 3 steps???



The Alignment Grid 

• Every alignment 
path is from 
source to sink



Alignment as a Path in the Edit 
Graph

0 1 2 2 3 4 5 6 7 7
  A T _ G T T A T _
  A T C G T _ A _ C
0 1 2 3 4 5 5 6 6 7  

(0,0) , (1,1) , (2,2), (2,3), 
(3,4), (4,5), (5,5), (6,6), 
(7,6), (7,7)

1

0

2

3

4

5

6

7

10 2 3 4 5 6 7

GA T C AT Cw
A

T

T

G

T

A

T

v

- Corresponding path -



Alignments in Edit Graph 
(cont’d)

   and       represent 
indels in v and w 
with score 0.

   represent matches 
with score 1.
•  The score of the 

alignment path is 5.

1

0
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3

4

5

6

7

10 2 3 4 5 6 7

GA T C AT Cw
A

T

T

G

T

A

T

v



Alignment as a Path in the Edit 
Graph

1

0

2

3

4

5

6

7

10 2 3 4 5 6 7

GA T C AT C
w

A

T

T

G

T

A

T

v
Every path in the 
edit graph 
corresponds to an 
alignment:



Alignment as a Path in the Edit 
Graph

1

0

2

3

4

5

6

7

10 2 3 4 5 6 7

GA T C AT Cw
A

T

T

G

T

A

T

v
Old Alignment
   0122345677
v=  AT_GTTAT_
w=  ATCGT_A_C
   0123455667  

New Alignment
   0122345677
v=  AT_GTTAT_
w=  ATCG_TA_C
   0123445667



Alignment as a Path in the Edit 
Graph

   0122345677
v=  AT_GTTAT_
w=  ATCGT_A_C
   0123455667  

(0,0) , (1,1) , (2,2), (2,3), 
(3,4), (4,5), (5,5), (6,6), 
(7,6), (7,7)

1

0

2

3

4

5

6

7

10 2 3 4 5 6 7

GA T C AT Cw
A

T

T

G

T

A

T

v



Alignment: Dynamic 
Programming

si,j =           si-1, j-1+1 if vi = wj

        max            si-1, j

                  si, j-1

{



Dynamic Programming 
Example

1

0

2

3

4

5

6

7

10 2 3 4 5 6 7

GA T C AT Cw
A

T

T

G

T

A

T

v
Initialize 1st row and 
1st  column to be all 
zeroes. 

Or, to be more 
precise, initialize 0th 
row and 0th column 
to be all zeroes.

0 00 0 0 0 0 0

0

0

0

0

0

0

0



Dynamic Programming 
Example

1

0

2

3

4

5

6

7

10 2 3 4 5 6 7

GA T C AT Cw
A

T

T

G

T

A

T

v
Si,j =     Si-1, j-1

      max     Si-1, j

            Si, j-1

{

0 00 0 0 0 0 0

0

0

0

0

0

0

0

value from NW +1, if vi = wj

 value from North (top)
 value from West (left)

1

1

1

1

1

1

1

1 1 1 1 1 1



Alignment: Backtracking

Arrows              show where the score 
originated from.   

        if from the top

        if from the left

        if vi = wj 



Backtracking Example

Find a match in row and column 
2.

i=2, j=2,5 is a match (T).              
     

j=2, i=4,5,7 is a match (T).

Since vi = wj, si,j = si-1,j-1 +1

s2,2 = [s1,1 = 1] + 1 
s2,5 = [s1,4 = 1] + 1
s4,2 = [s3,1 = 1] + 1
s5,2 = [s4,1 = 1] + 1
s7,2 = [s6,1 = 1] + 1

1

0

2

3

4

5

6

7

10 2 3 4 5 6 7

GA T C AT Cw
A

T

T

G

T

A

T

v 0 00 0 0 0 0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1 1 1 1 1 1

2

2 2

2

2

2 2 2 2

2

2



Backtracking Example

1

0

2

3

4

5

6

7

10 2 3 4 5 6 7

GA T C AT Cw
A

T

T

G

T

A

T

v 0 00 0 0 0 0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1 1 1 1 1 1

2

2 2

2

2

2 2 2 2

2

2

Continuing with the 
dynamic 
programming  
algorithm gives this 
result.

2 3 3 3 3

2

2

2

2

3 4 4 4

3 4 4 4

3 4

3 4

5 5

5 5



Alignment: Dynamic 
Programming

si,j =           si-1, j-1+1 if vi = wj

        max            si-1, j

                  si, j-1

{



Alignment: Dynamic 
Programming

si,j =           si-1, j-1+1 if vi = wj

        max            si-1, j+0

                  si, j-1+0

{

This recurrence corresponds to the Manhattan 
Tourist problem (three incoming edges into a  
vertex) with all horizontal and vertical edges 
weighted by zero.  



LCS Algorithm

1. LCS(v,w)
2.   for i  1 to n
3.     si,0  0
4.   for j  1 to m
5.     s0,j  0
6.   for i  1 to n
7.     for j  1 to m
8.                    si-1,j

9.    si,j  max   si,j-1 
10.                    si-1,j-1 + 1, if vi = wj

11.                  “   “   if  si,j = si-1,j


         bi,j       “   “   if  si,j = si,j-1


                           “   “   if  si,j = si-1,j-1 + 1

    return (sn,m, b)

{

{



Now What?

 LCS(v,w) created the 
alignment grid

 Now we need a way 
to read the best 
alignment of v and w

 Follow the arrows 
backwards from sink

1

0

2

3

4

5

6

7

10 2 3 4 5 6 7

GA T C AT Cw
A

T

T

G

T

A

T

v 0 00 0 0 0 0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1 1 1 1 1 1

2

2 2

2

2

2 2 2 2

2

2

2 3 3 3 3

2

2

2

2

3 4 4 4

3 4 4 4

3 4

3 4

5 5

5 5



Printing LCS: Backtracking

1. PrintLCS(b,v,i,j)
2.     if  i = 0 or j = 0
3.           return
4.     if bi,j = “     “
5.            PrintLCS(b,v,i-1,j-1)
6.            print vi

7.       else
8.           if bi,j = “     “
9.    PrintLCS(b,v,i-1,j)
10.       else
11.              PrintLCS(b,v,i,j-1)



LCS Runtime

 It takes O(nm) time to fill in the nxm dynamic 
programming matrix.
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