The Change Problem

Goal: Convert some amount of money M
into given denominations, using the
fewest possible number of coins

Input: An amount of money M, and an array of
d denominations c=(c,, c,, ..., c ), in a

decreasing order of value (c,>c,> ... >c )

Output: A list of d integers i, i, ..., iy such that
G, +ci,+...+cji, =M

andi, +1i,+ ... +1,is minimal




Change Problem: Example

Given the denominations 1, 3, and 5, what
is the minimum number of coins needed to
make change for a given value?

Value |1 2 3 4 5§ 6 7/8 9 10

Min # of coins

Only one coin is needed to make change
for the values 1, 3, and 5



Change Problem: Example
(cont’d)

Given the denominations 1, 3, and 5, what
iIs the minimum number of coins needed to
make change for a given value?

Value 1 2 3 4 5 6 7 8 9 10
Min # of coins 2 2 2 2 2

==

However, two coins are needed to make
change for the values 2, 4, 6, 8, and 10.




Change Problem: Example
(cont’d)

Given the denominations 1, 3, and 5, what
iIs the minimum number of coins needed to
make change for a given value?

Value 1 2 3 4 5 6 7 8 9 10
Min#ofcoins |12 (1212|323 2

=

Lastly, three coins are needed to make
change for the values 7 and 9




Change Problem: Recurrence

This example is expressed by the following
recurrence relation:

minNumCoins(M) =

min of
<

/

minNumCoins(M-1) + 1
minNumCoins(M-3) + 1

minNumCoins(M-5) + 1



Change Problem: Recurrence
(cont’d)
Given the denominations c: c,, C,, ..., C,,

the recurrence relation is:

~
minNumCoins(M-c,) + 1

: minNumCoins(M-c.) + 1
minNumCoins(M) = min °f< ( 2

minNumCoins(M-c ) + 1
o



Change Problem: A Recursive
Algorithm
RecursiveChange(M,c.d)
ifM=0
return O
bestNum~Coins - infinity
for/i = 1tod
ifM = c
numcCoins = RecursiveChange(M - ¢, c,

d)
if numCoins + 1 < bestNumCoins
bestNumCoins = numCoins + 1
return bestNumcCoins



RecursiveChange Is Not
Efficient

It recalculates the optimal coin combination
for a given amount of money repeatedly

e, M=77,¢c=(1,3,7):
2 Optimal coin combo for 70 cents is
computed 9 times!



The RecursiveChange Tree




We Can Do Better

We're re-computing values in our algorithm more
than once

Save results of each computation for 0 to M

This way, we can do a reference call to find an
already computed value, instead of re-computing
each time

Running time M*d, where M is the value of money
and d is the number of denominations



The Change Problem: Dynamic
Programming

DPChange(M,c,d)
bestNumCoins, = 0

form = 1to M
bestNumCoins_, = infinity

fori = 1tod
ifm = c,

if bestNumCoins,, .+ 1 <

bestNumCoins

bestNumCoins_ 6 = bestNumCoins_, .
a+1

return bestNum~Coins,



01 2 3 4 5 6
1 2

01 2 3 4 5 6 7
2

01 2 3 45 6|7 8
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Example
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01 2 3

DPChange

01 23 45 6 7 8 9

01 2 3 4

(1,3,7)

M=9

C

01 2 3 4 5



Manhattan Tourist Problem
(MTP)

Imagine seeking a path

(from source to sink) to

_®
travel (only eastward Souree x % l
and southward) with the —

most number of * %*
attractions (*) in the ‘ ‘ |
Manhattan grid * %*




Manhattan Tourist Problem
(MTP)

Imagine seeking a path

(from source to sink) to
travel (only eastward
and southward) with the

Source

most number of

attractions (*) in the
Manhattan grid




Manhattan Tourist Problem: Formulation

Goal: Find the longest path in a weighted
rid.

Q

Input: A weighted grid G with two distinct
vertices, one labeled “source” and the other
labeled “sink”

Output: A longest path in G from “source” to
“Sink”




MTP: An Example

: j coordinate
source

1
1
4 6 5 2
9 r !
© 0 7 3 4
.E 2 \ Q4 4 15\ ;(@
o
3
o 4 4 5 2 1
S ! 3 , 3 , 0 2 o~
' ' )
5 6 8 5 3
P , 1 | 3 2 - f23 sink




MTP: Greedy Algorithm Is Not
Optimal

source C >

promising
start, but
leads to bad

choices!




MTP: Simple Recursive
Program
MT(n,m)

if n=0 or m=0
return MT(n,m)
X = MT(n-1,m)+

length of the edge from (n- 1,m)
to (n,m)

y = MT(n,m-1)+

length of the edge from (n,m-1) to
(n,m)

return max{x,y}



MTP: Dynamic Programming

source

Calculate optimal path score for each vertex in the graph

Each vertex’s score is the maximum of the prior vertices
score plus the weight of the respective edge in between



‘ MTP: Dynamic Programming

(cont’d) _
J

0 1 2

source \
0 o— 2,
1 3
| 5 3 So2= 3
1 =7
5 4
3 S,,=4




MTP: Dynamic Programming

(cont’d) _
J
0 1 2 3
source\
0 O 1 2 > c] »
1 3 8
l 5 3 10 S;0=8
1 \ 4 '5 \ 4 1 \ 4
5 4 13
3 5 S1,2 =13
2 y - >
8 9
0 32,1 =9




‘ MTP: Dynamic Programming
(cont’d) J

1 2 3
source\
0 O 1 2 = 3 >
1 3 8
l 5 3 10 5
1 A\ 4 5 \ 4 1 5 »Y
5 4 13 8
3 5 3 Si5=8
2 \ 4 5 :' 3 Y
8 9 12
0 0 Sz,2 =12
0
3 Y >
8 T 9
greedy alg. S31=9

fails!



‘ MTP: Dynamic Programming

(cont’d) j
0 1 2 3
source \
0 S 2, 5
1 3 8
l 5 3 10 5
1 ) 4 -5 4 1 ) -5 R
5 4 13 8
3 5 3 2
2 \4 -5 :' 3 5 3 Y
8 9 12 15
0 0 5 S,;=15
2 v 0 X U
8 9



‘ MTP: Dynamic Programming

(cont’d) j
0 1 2 3
source\
0 SO 2, 5
! 3 8 Done!
: 5 3 10 5
1 ) 4 -5 \ 4 1 ) -5 R
5 4 13 8
3 5 -3 2| (showing all back-traces)
2 \ 4 -5 :' 3 — 3 Y
8 9 12 15
0 0 5 1
2 Y 0 \ 4 0 v 0 ‘
8 9 9 16




MTP: Recurrence

Computing the score for a point (i,j) by the
recurrence relation:

- s, ;+ weight of the edge between (i-1, j) and (i,
s = max J )

i,
S

~ )
The running time is n x m for a n by m grid

+ weight of the edge between (i, j-1) and (i,

i, j1

(n = # of rows, m = # of columns)



Manhattan Is Not A Perfect Grid

N

') C
o &

AU\O«?

)

A, B

\
J Ll
J\

What about diagonals?

The score at point B is given by:

_ max
Ss = of

/

< S,, T weight of the edge (A,,
S,; T weight of the edge (A,,
-

s, + weight of the edge (A,, B)

w N
gz



Manhattan Is Not A Perfect Grid (cont’d)

Computing the score for point x is given by the
recurrence relation:

r

s, = max ) s, + weight of vertex (y, x) where
of y € Predecessors(x)

-

Predecessors (x) — set of vertices that have edges
leading to x

The running time for a graph G(V, E)
(V is the set of all vertices and E is the set of all edges)

is O(E) since each edge is evaluated once



Traveling in the Grid

* The only hitch is that one must decide on the
order in which visit the vertices

* By the time the vertex x is analyzed, the
values s, for all its predecessors y should be

computed — otherwise we are in trouble.

* \We need to traverse the vertices in some
order



DAG: Directed Acyclic Graph

Since Manhattan is not a perfect regular grid,
we represent it as a DAG



Longest Path in DAG
Problem

Goal: Find a longest path between two
vertices in a weighted DAG

Input: A weighted DAG G with source and
sink vertices

Output: A longest path in G from source to
sink




Longest Path in DAG: Dynamic

Programming

Suppose vertex v has indegree 3 and
predecessors {u,, U,, U,}

Longest path to v from source is:

(s, + weight of edge from u, to v

S = max

V= of | Sw + weight of edge from u, to v

- Sy, + weight of edge from u,to v
In General:

s, = max, (s, + weight of edge from u to v)




Traversing the Manhattan
GI‘ld_ a) b)

3 different strategies: ) e
* a) Column by nh
column

* b) Row by row i
* c¢) Along diagonals B

~
# rd

e
-~
//////////
///////
////////////
[y o

/////
/////
s el #



ALIGNMENT




Alignment: 2 row representation

Given 2 DNA sequences v and w:

V  ATGTTAT
W : ATCGTAC

Alignment: 2 *kmatrix(k>m, n)

letters of v A|lT|-|G|T|T | A|T

letters of w A T|C| G |T|-|A|-]|C

5 matches 2 insertions 2 deletions



Aligning DNA Sequences

Vv
W (—

V = ATCTGATG n =38
W = TGCATAC

m=7

@/‘f’\—

©

A

T

9

A\T]

&

E

/|GG
mdels{\ms

f
ertion

4 matches
1 mismatch

matc 2 insertions
/é wismatc\h 3



Longest Common Subsequence (LCS) -
Alignment without Mismatches

Given two sequences
V=V, V,...v_and w =w, W,...W,
The LCS of v and w is a sequence of positions in
vil<ipb<i,<..<i,<m
and a sequence of positions in
w:l<j<j<..<j=<n

such that i,-th letter of v equals to j-letter of w and t is
maximal



LCS: Example

jcoords: 0 1 2 2 3 3 4 5 6 7 8
elementsofv | A T|-/Cl-|TIG|IA TIC
elementsofw | - | TIGIC A TI-|Al~-IC

j coords: 001 2 3 45 5 6 6 7

(0,0)%(1,0)84(2,1)8%(2,2)8%(3,3)34(3,4) 244, 5)¥%(5,5)3%(6,6) 4 7,6)%(8,7)
positionsinv: 2<3<4<6<38

Matches shown in e :
positionsinw: 1 <3<5<6<7

red
Every common subsequence is a path in 2-D

grid




[.CS Problem as Manhattan Tourist
PrObI?mA T C T G A T C
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‘ Edit Graph for LCS Problem

j AT C€C T GG A T C

i 0 | . |- |-
T1 v R 4 q'\’
C 3 v R4 K 4
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Edit Graph for LCS Problem

A T C T A T C
R . R N R . Every path is a

\’ . common
T v v R R 4 Y Y Y SUbseq uence.

A
-
A
;/
A
-
A
-
A
-

v R 3 Every diagonal
\’ edge adds an
" I extra element to
AN \’ common
I () — subsequence

LCS Problem:
Find a path with

maximum
\ ‘ ‘ ‘ l number of

diagonal edges

o
«
A
«
A
«
V<
«
V<
«
w
»
l
l‘
«

o » 4 » O




Computing LCS
Letv. = prefixofvoflengthi: v, ...v

and w; = prefix of wof length j: w, ... w,
The length of LCS(v,,w;) is computed by:

si,j — max< <

~ Sy q F10F vi=w,



Computing LCS (cont’d)

iLj-1 il
1 10
SM’j 0 .1 -1 o o
S;; < MAX S;q4 ¥ 0 . L) - i,
Siqj4 F 1, if v.= w;




Every Path in the Grid
Corresponds to an Alignment

W A T C G
V 0 1 2 S | 4 0\14;4;;4&1
0 V= AT-GT
A | w- ATCG-
T > 012 344
G 3
T 4 !5




DISTANCE BETWEEN
STRINGS




Aligning Sequences without
Insertions and Deletions: Hamming

IStance
]allven two DNA sequences vand w :

v : ATATATAT
w: TATATATA

The Hamming distance: d (v, w) = 8 is
large but the sequences are very similar



Aligning Sequences with
Insertions and Deletions

By shifting one sequence over one
position:

v : ATATATAT--

w: -TATATATA

The edit distance: d (v, w) = 2.

Hamming distance neglects insertions
and deletions in DNA



Edit Distance

Levenshtein (1966) introduced edit distance
between two strings as the minimum number
of elementary operations (insertions,
deletions, and substitutions) to transform one
string into the other

d(v,w) = MIN number of elementary operations
to transform v & w



Edit Distance vs Hamming Distance

Hamming distance
always compares
ith letter of v with

i'th letter of w
V = ATATATAT

W = TATATATA
Hamming distance:
d(v, w)=8

Computing Hamming distance
is a trivial task.



Edit Distance vs Hamming

Distance
Hamming distance

always compares
ith letter of v with

i'th letter of w
V = ATATATAT

W = TATATATA
Hamming distance:
d(v, w)=8

Computing Hamming distance
IS a trivial task

Edit distance
may compare
I'th letter of v with

jt letter of w

V = - ATATATAT

NINRIN
W = TATATATA

Edit distance:
d(v, w)=2
Computing edit distance
IS @ non-trivial task



Edit Distance: Example

TGCATAT & ATCCGAT in 5 steps

TGCATA ¥ (delete last )

TGCAT ¥ (delete last )
TGCAT 4 (insert A at front)
ATGCAT & (substitute C for 3 G)
ATCCAT & (insert G before last A)
ATCCGAT (Done)




Edit Distance: Example

TGCATAT & ATCCGAT in 5 steps

TGCATA
TGCAT
TGCAT
ATGCAT
ATCCAT

ATCCGAT

% (delete last )

% (delete last )

¥ (insert A at front)

¥ (substitute C for 3¢ G)

¥ (insert G before last A)

(Done)

What is the edit distance? 5?



Edit Distance: Example (conta)

TGCATAT & ATCCGAT in 4 steps

GCA

A

¥ (insert A at front)

ATGCATA ¥ (delete 6" )

ATGCAT
ATGCGTA
ATCCGA

A

% (substitute G for 5" A)
% (substitute C for 3 G)
(Done)



Edit Distance: Example (conta)

TGCATAT & ATCCGAT in 4 steps

GCA

A

¥ (insert A at front)

ATGCATA & (delete 6" )
ATGCATA

ATGCGTA
ATCCGA

% (substitute G for 5" A)
% (substitute C for 3 G)
(Done)

Can it be done in 3 steps???



The Alignment Grid ... .

o1 2 3 4 5 5 6 6 7

* Every alignment 3= .l
path is from T
source to sink
T : é;_

=
—~
~o
—~



\ '/

Alignment as a Path in the Edit

Graph

W

N

4 5677
TTAT
T A_C

2
T
T
2 5566 7

3
6
CG
3 4

- Corresponding path -

(e,0) , (1,1) , (2,2), (2,3),
(3,4), (4,5), (5,5), (6,6),
(7,6), (7,7)



Alignments in Edit Graph

\ '/

(cont’d)

W

'and - represent
indels invand w
with score 0.

N represent matches

with score 1.

* The score of the
alignment path is 5.



Alignment as a Path in the Edit
Graph

W Every path in the
V edit graph
corresponds to an

HIR } ahgnml

- F
C G

l —
AT T AT -
! AT T - A - C




Alignment as a Path in the Edit

Graph

Vv

W

<

v

X

¥

Old Alignment
0122345677

v= AT _GTTAT_

w= ATCGT A C
0123455667

New Alignment
0122345677
v= AT _GTTAT_
w= ATCG TA _ C
0123445667




Alignment as a Path in the Edit

Grarh
W
v 012234567
v= AT GTTAT
w= ATCGT A
< 012345566

| (0,0), (1,1), (2,2),
(3,4), (4,5), (5,5), (6,6),
| (7,6),




‘ Alignment: Dynamic

Programming
S, = St ifvi=w,
max si-1,j l

si, j-1




Dynamic Programming

Example

Vv

W

Initialize 1st row and
1st column to be all
Zeroes.

Or, to be more
precise, initialize 0t
row and 0" column
to be all zeroes.



Dynamic Programming
Example

Si=  Siii1 Bvalue from NW +1, if v, = VA
max i1 ¥ value from North (top)

S... ¥ value from West (left) .




Alignment: Backtracking

Arrows M show where the score
originated from.

I if from the top

. if from the left

\ ifv,=w,



Backtracking Example

Find a match in row and column

W 2,

\ PR PR PR \ | i=2,j=2,5is a match (T).
o ] =2, i=4,5,7 is a mateh (T).

¥ \T Sincev,=w,; s;,=s,,.,+1

T\ S,, =[s;;,=1] + 1

B l S;,5 T LS1,4 1] + 1

t I S, = [s;;, =1] +1

S:, = [S,, =1] + 1

S,, = [sg; = 1] + 1




Backtracking Example

w
v 4
NN Continuing with the
I . dynamic
TN programming
Lt - | algorithm gives this
Pl ] result
NN
ENEENIEE




‘ Alignment: Dynamic

Programming
S, = St ifvi=w,
max si-1,j l

si, j-1




Alignment: Dynamic

Programming
S, = St ifvi=w,
max si-1,j+0 l
s, . .+0

i, j-1

This recurrence corresponds to the Manhattan
Tourist problem (three incoming edges into a
vertex) with all horizontal and vertical edges
weighted by zero.



LCS Algorithm

LCS(v,w)
for 1 = 1 to n
Si,@ = 0
for j = 1 tom
SO,j = 0
for 1 = 1 to n
for j = 1 tom
Si-l,]
S;; = max{ Si i1
a“ T a“
b _ {l :\_u

return—(s,,, b)



Now What?

LCS(v,w) created the
alignment grid

Now we need a way
to read the best
alignment of vand w

Follow the arrows
backwards from sink

W

V‘
N
N A N A
P IN ]
NN
PG EIN
SRR
PSP




Printing LCS: Backtracking

PrintLCS(b,v,/,))
if i=0o0rj=0
return
if b, ="\ “
PrintLCS(b,v,i-1,j-1)
print v,
else
if b, = T !
PrintLCS(b,v,i-1,))
else
PrintLCS(b,v,i,j-1)



[.CS Runtime

It takes O(nm) time to fill in the nxm dynamic
programming matrix.
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