The Change Problem

Goal: Convert some amount of money M into given denominations, using the fewest possible number of coins

Input: An amount of money M, and an array of d denominations $c = (c_1, c_2, ..., c_d)$, in a decreasing order of value $(c_1 > c_2 > ... > c_d)$

<u>Output</u>: A list of d integers i_1 , i_2 , ..., i_d such that $c_1i_1 + c_2i_2 + ... + c_di_d = M$ and $i_1 + i_2 + ... + i_d$ is minimal

Change Problem: Example

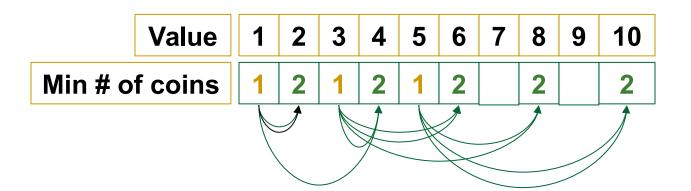
Given the denominations 1, 3, and 5, what is the minimum number of coins needed to make change for a given value?

	Value	1	2	3	4	5	6	7	8	9	10
Min # of coins		1		1		1					

Only one coin is needed to make change for the values 1, 3, and 5

Change Problem: Example (cont'd)

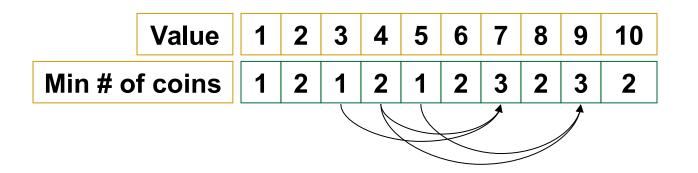
Given the denominations 1, 3, and 5, what is the minimum number of coins needed to make change for a given value?



However, two coins are needed to make change for the values 2, 4, 6, 8, and 10.

Change Problem: Example (cont'd)

Given the denominations 1, 3, and 5, what is the minimum number of coins needed to make change for a given value?



Lastly, three coins are needed to make change for the values 7 and 9

Change Problem: Recurrence

This example is expressed by the following recurrence relation:

min of

minNumCoins(M) =

minNumCoins(M-1) + 1

minNumCoins(M-3) + 1

minNumCoins(M-5) + 1

Change Problem: Recurrence (cont'd) Given the denominations c: $c_1, c_2, ..., c_d$, the recurrence relation is:

minNumCoins(M) = ^{min of}

 $minNumCoins(M-c_1) + 1$ $minNumCoins(M-c_2) + 1$

minNumCoins(M-c_d) + 1

Change Problem: A Recursive Algorithm

- <u>**RecursiveChange(M,c,d)**</u> 1.
- if M = 02.
- return 0 3.
- **bestNumCoins** \Rightarrow infinity 4
- for i 🜫 1 to d 5.
- if $M \geq C_i$ 6.

7.

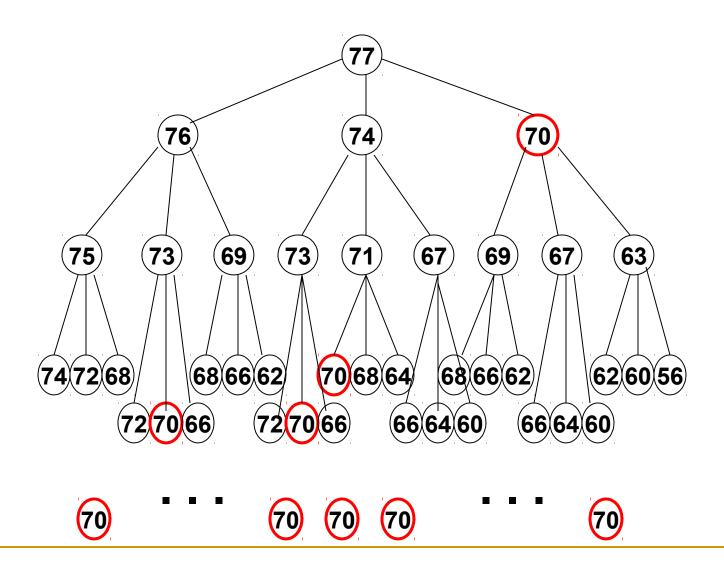
- numCoins \Rightarrow **RecursiveChange**(**M** c_i , **c**,
- **d**) if numCoins + 1 < bestNumCoins 8. 9.
 - bestNumCoins 🜫 numCoins + 1
- return bestNumCoins 10.

RecursiveChange Is Not Efficient

It recalculates the optimal coin combination for a given amount of money repeatedly

Optimal coin combo for 70 cents is computed 9 times!

The RecursiveChange Tree



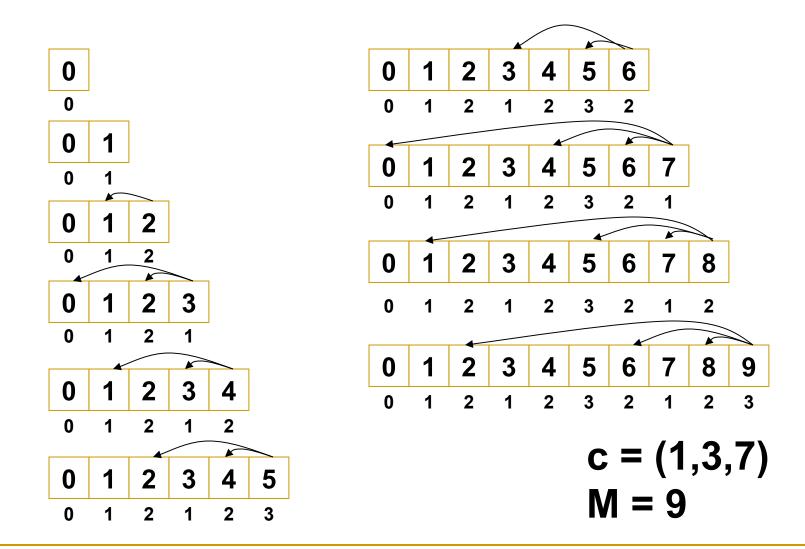
We Can Do Better

- We're re-computing values in our algorithm more than once
- Save results of each computation for 0 to M
- This way, we can do a reference call to find an already computed value, instead of re-computing each time
- Running time *M***d*, where *M* is the value of money and *d* is the number of denominations

The Change Problem: Dynamic Programming

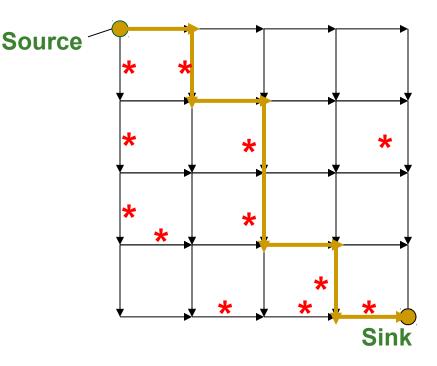
- 1. <u>DPChange(M,c,d)</u> bestNumCoins₀ ≈ 0 3. for m 🜫 1 to M **4. bestNumCoins**_m \Rightarrow **infinity** 5. for i 🜫 1 to d 6. if m ≥ c_i if bestNumCoins_{m - ci}+ 1 < 7. bestNumCoins **bestNumCoins**_m \ge **bestNumCoins**_m 8.
- 9. return bestNumCoins_M

DPChange: Example



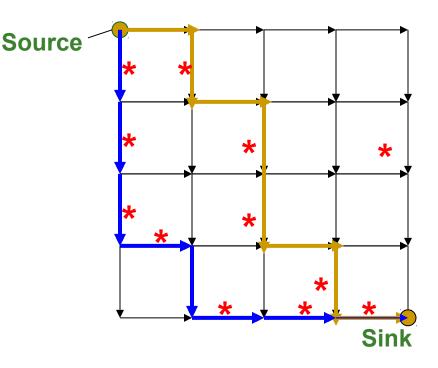
Manhattan Tourist Problem (MTP)

Imagine seeking a path (from source to sink) to travel (only eastward and southward) with the most number of attractions (*) in the Manhattan grid



Manhattan Tourist Problem (MTP)

Imagine seeking a path (from source to sink) to travel (only eastward and southward) with the most number of attractions (*) in the Manhattan grid

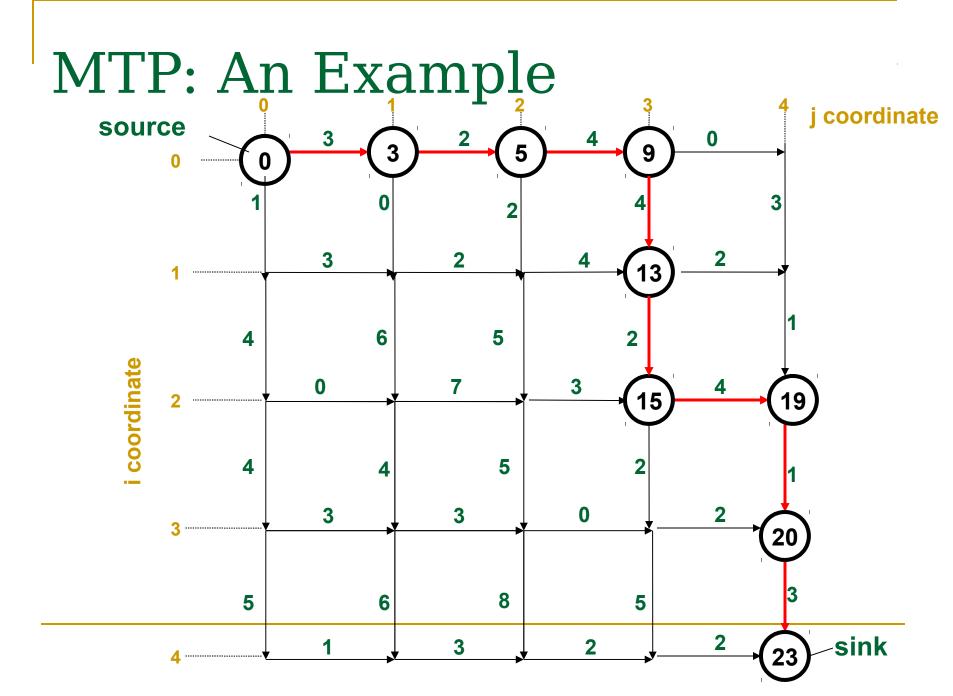


Manhattan Tourist Problem: Formulation

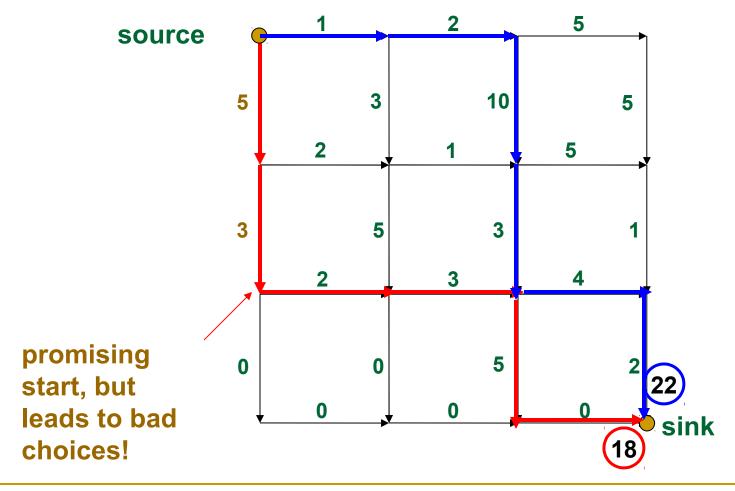
<u>Goal</u>: Find the longest path in a weighted grid.

Input: A weighted grid G with two distinct vertices, one labeled "source" and the other labeled "sink"

Output: A longest path in G from "source" to "sink"



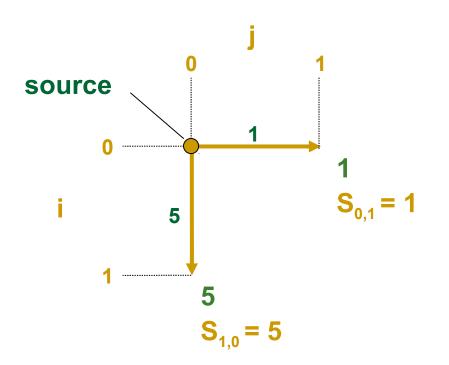
MTP: Greedy Algorithm Is Not Optimal



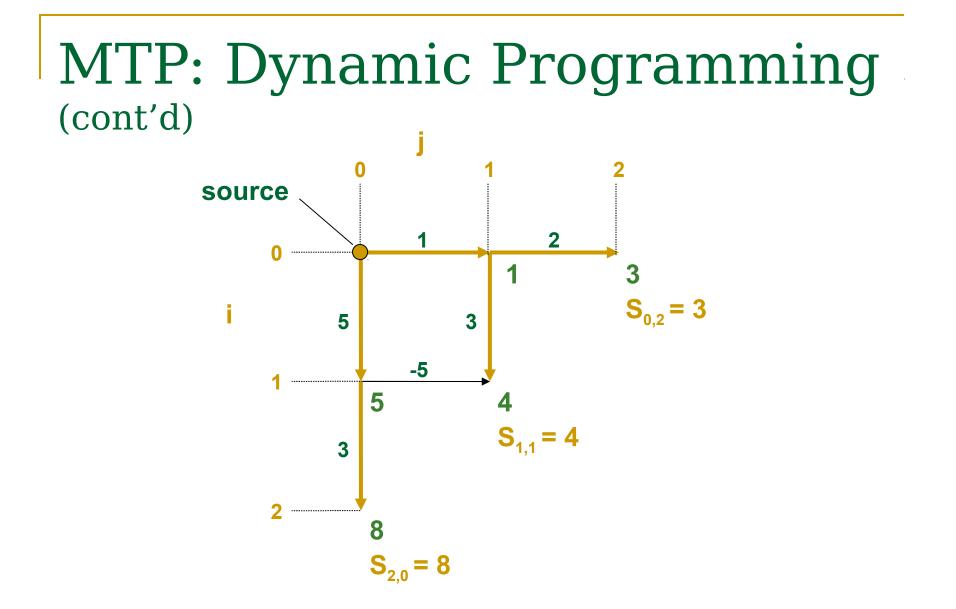
MTP: Simple Recursive Program

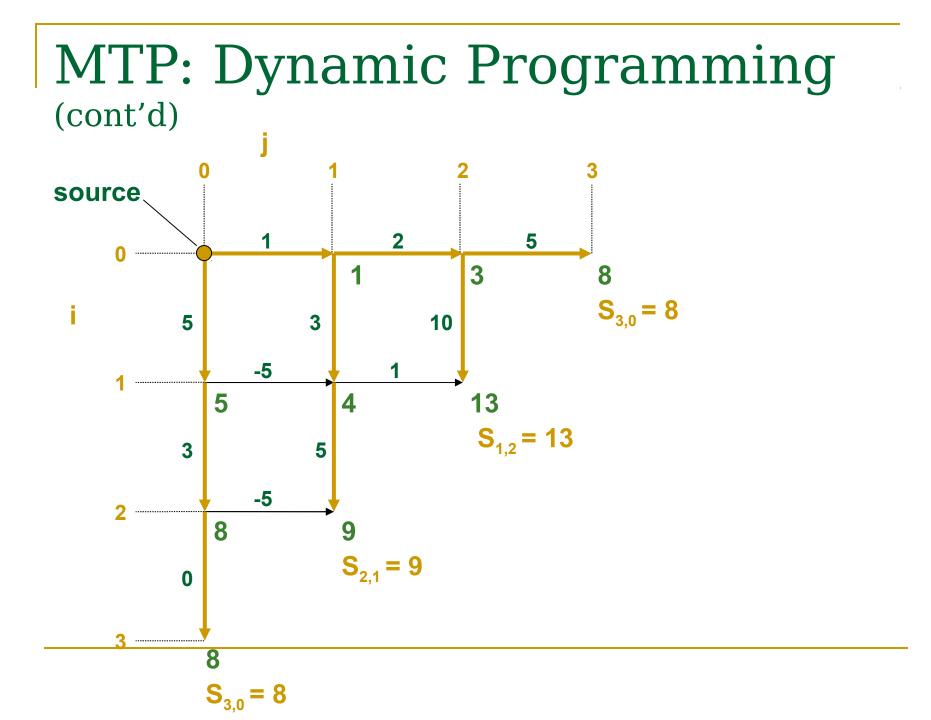
```
MT(n,m)
 if n=0 or m=0
   return MT(n,m)
 x 🜫 MT(n-1,m)+
           length of the edge from (n- 1,m)
  to (n,m)
 y ⇒ MT(n,m-1)+
           length of the edge from (n,m-1) to
  (n,m)
 return max{x,y}
```

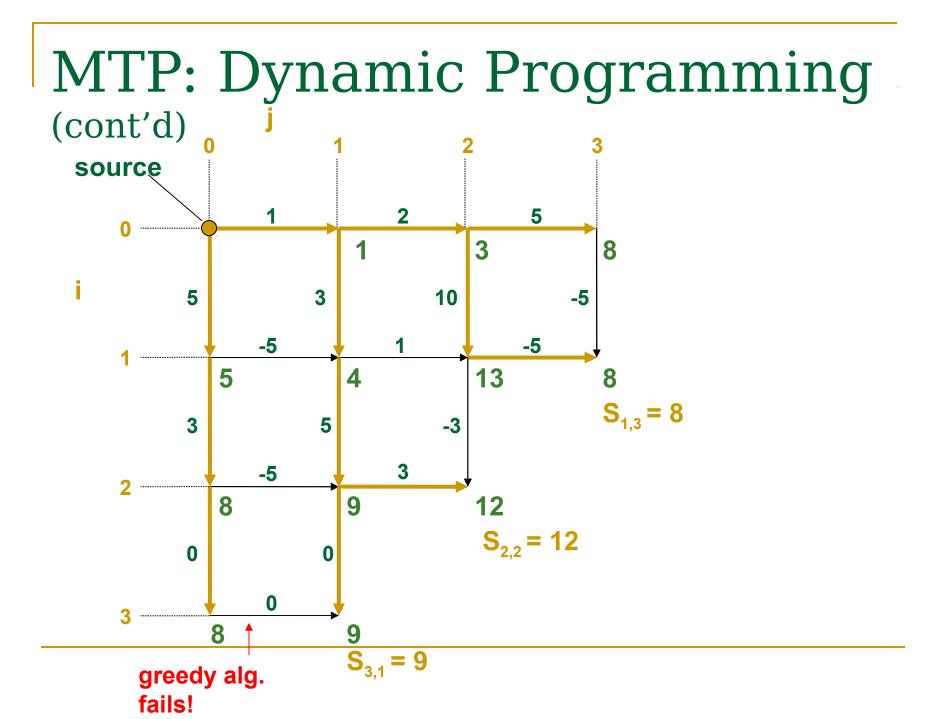
MTP: Dynamic Programming

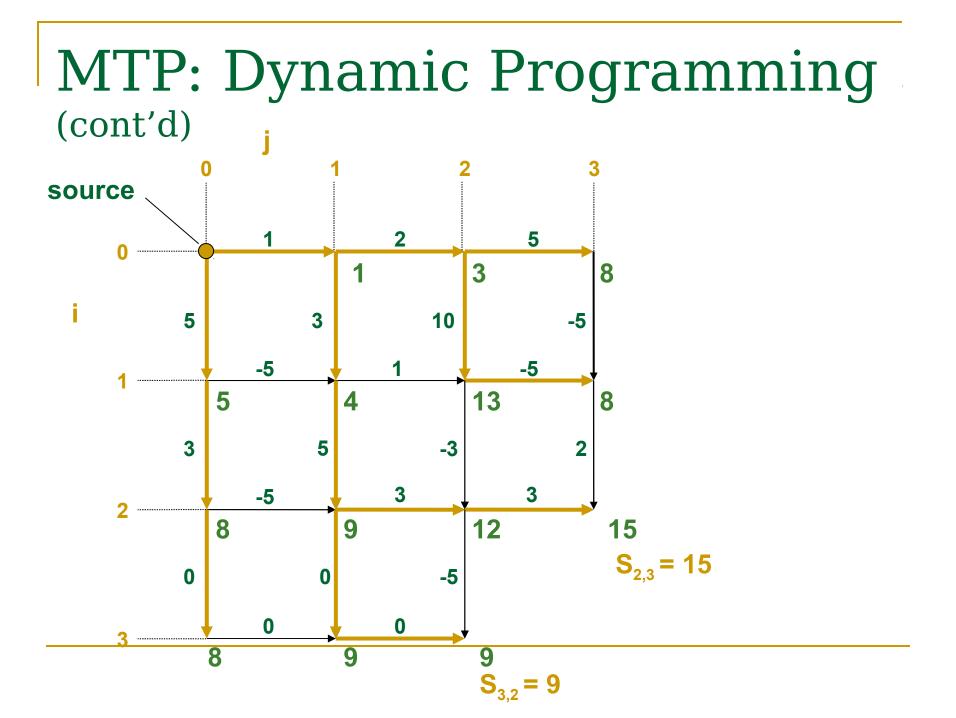


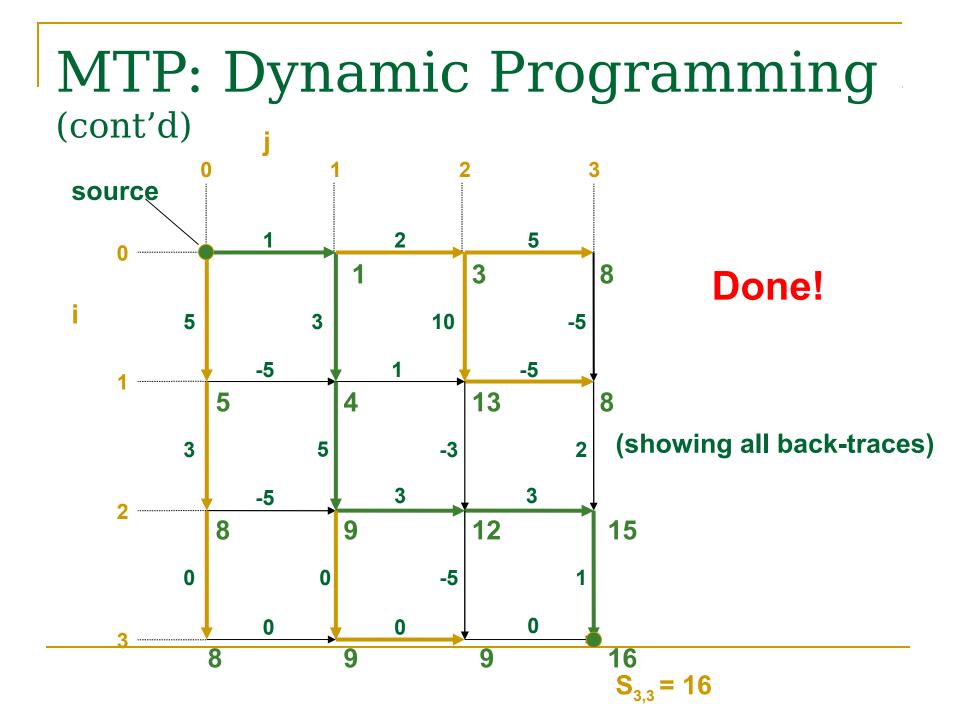
- Calculate optimal path score for each vertex in the graph
- Each vertex's score is the maximum of the prior vertices score plus the weight of the respective edge in between











MTP: Recurrence

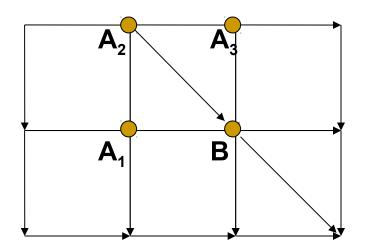
Computing the score for a point (i,j) by the recurrence relation:

$$s_{i, j} = \max \begin{cases} s_{i-1, j} + \text{weight of the edge between (i-1, j) and (i, j)} \\ s_{i, j-1} + \text{weight of the edge between (i, j-1) and (i, j)} \end{cases}$$

The running time is n x m for a n by m grid

(n = # of rows, m = # of columns)

Manhattan Is Not A Perfect Grid



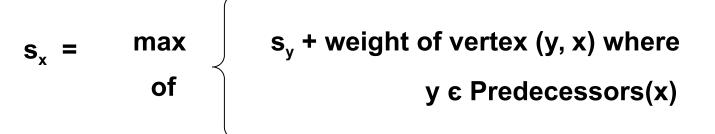
What about diagonals?

The score at point B is given by:

 $\mathbf{s}_{\mathsf{B}} = \max_{\mathbf{of}} \begin{cases} \mathbf{s}_{\mathsf{A1}} + \text{weight of the edge} (\mathsf{A}_1, \mathsf{B}) \\ \mathbf{s}_{\mathsf{A2}} + \text{weight of the edge} (\mathsf{A}_2, \mathsf{B}) \\ \mathbf{s}_{\mathsf{A3}} + \text{weight of the edge} (\mathsf{A}_3, \mathsf{B}) \end{cases}$

Manhattan Is Not A Perfect Grid (cont'd)

Computing the score for point x is given by the recurrence relation:



- Predecessors (x) set of vertices that have edges leading to x
- The running time for a graph G(V, E) (V is the set of all vertices and E is the set of all edges) is O(E) since each edge is evaluated once

Traveling in the Grid

- The only hitch is that one must decide on the order in which visit the vertices
- By the time the vertex x is analyzed, the values s_y for all its predecessors y should be computed otherwise we are in trouble.
- We need to traverse the vertices in some order

DAG: Directed Acyclic Graph

 Since Manhattan is not a perfect regular grid, we represent it as a DAG

Longest Path in DAG Problem

- <u>Goal</u>: Find a longest path between two vertices in a weighted DAG
- Input: A weighted DAG G with source and sink vertices
- <u>Output</u>: A longest path in G from source to sink

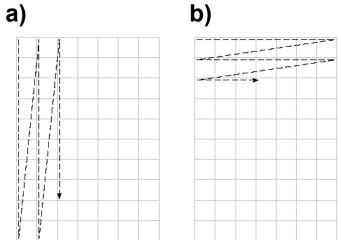
Longest Path in DAG: Dynamic Programming

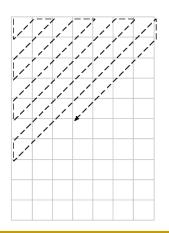
- Suppose vertex v has indegree 3 and predecessors {u₁, u₂, u₃}
- Longest path to v from source is:

 $\mathbf{s}_{v} = \max_{\text{of}} \begin{cases} \mathbf{s}_{u_{1}} + \text{weight of edge from } u_{1} \text{ to } v \\ \mathbf{s}_{u_{2}} + \text{weight of edge from } u_{2} \text{ to } v \\ \mathbf{s}_{u_{3}} + \text{weight of edge from } u_{3} \text{ to } v \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \mathbf{s}_{v} = \max_{u} (\mathbf{s}_{u} + \text{weight of edge from } u \text{ to } v) \end{cases}$

Traversing the Manhattan Grid

- 3 different strategies:
 - a) Column by column
 - b) Row by row
 - c) Along diagonals





ALIGNMENT

Alignment: 2 row representation

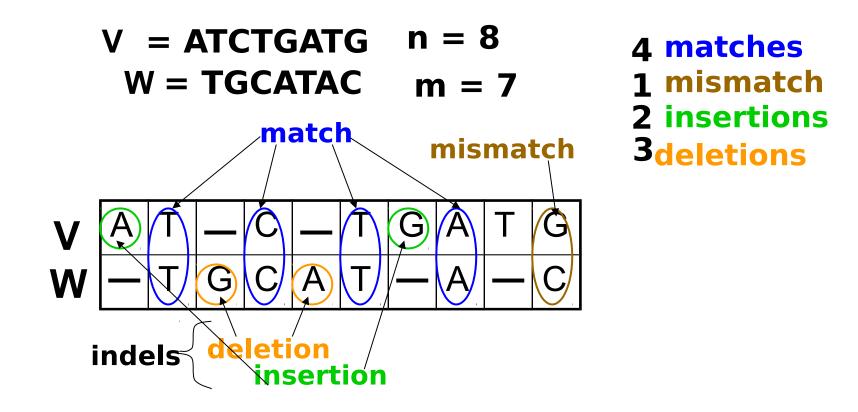
Given 2 DNA sequences v and w:

V : ATGTTAT W : ATCGTAC

Alignment: 2 * k matrix (k > m, n)

letters of v Α Т G Т т Α т letters of w T С Т G Α Α С 5 matches 2 insertions 2 deletions

Aligning DNA Sequences



Longest Common Subsequence (LCS) – Alignment without Mismatches

• Given two sequences

 $v = v_1 v_2 ... v_m$ and $w = w_1 w_2 ... w_n$

The LCS of v and w is a sequence of positions in

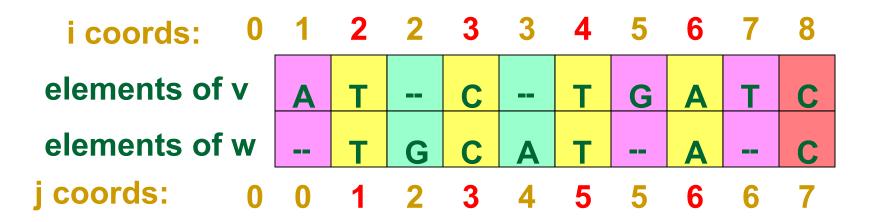
v:
$$1 \le i_1 < i_2 < ... < i_t \le m$$

and a sequence of positions in

w:
$$1 \le j_1 < j_2 < ... < j_t \le n$$

such that i_t -th letter of v equals to j_t -letter of w and t is maximal

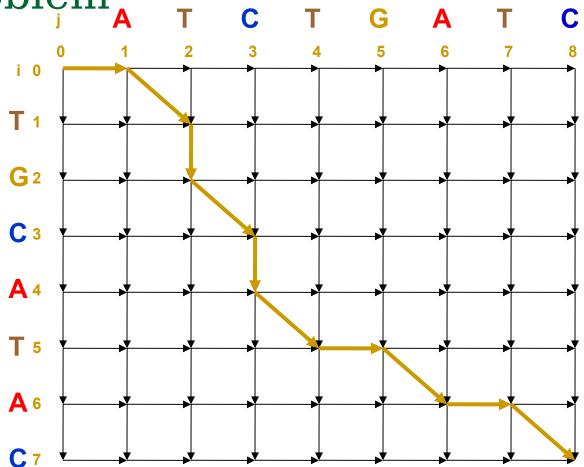
LCS: Example



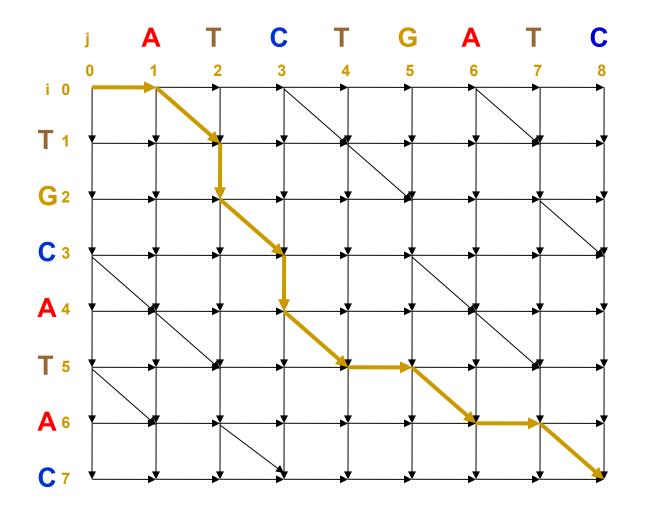
(0,0) (1,0) (2,1) (2,2) (3,3) (3,4) (4,5) (5,5) (6,6) (7,6) (8,7)

Matches shown in
redpositions in v: 2 < 3 < 4 < 6 < 8</th>positions in w: 1 < 3 < 5 < 6 < 7</td>Every common subsequence is a path in 2-D
grid

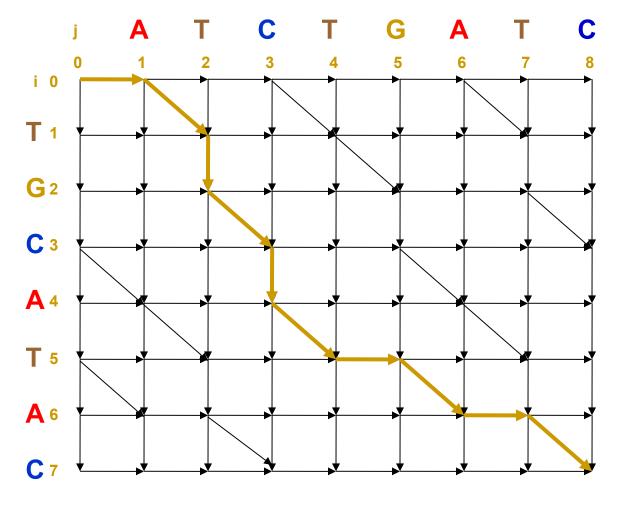
LCS Problem as Manhattan Tourist Problem



Edit Graph for LCS Problem



Edit Graph for LCS Problem



Every path is a common subsequence.

Every diagonal edge adds an extra element to common subsequence

LCS Problem: Find a path with maximum number of diagonal edges

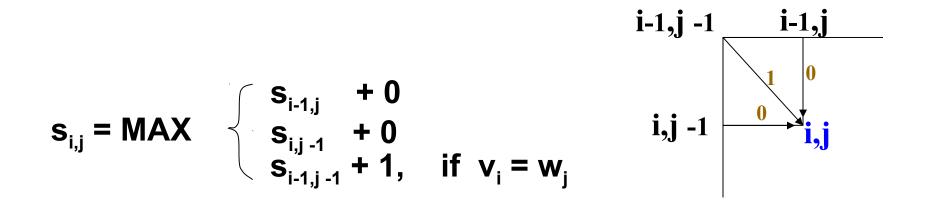
Computing LCS

Let v_i = prefix of v of length i: $v_1 \dots v_i$

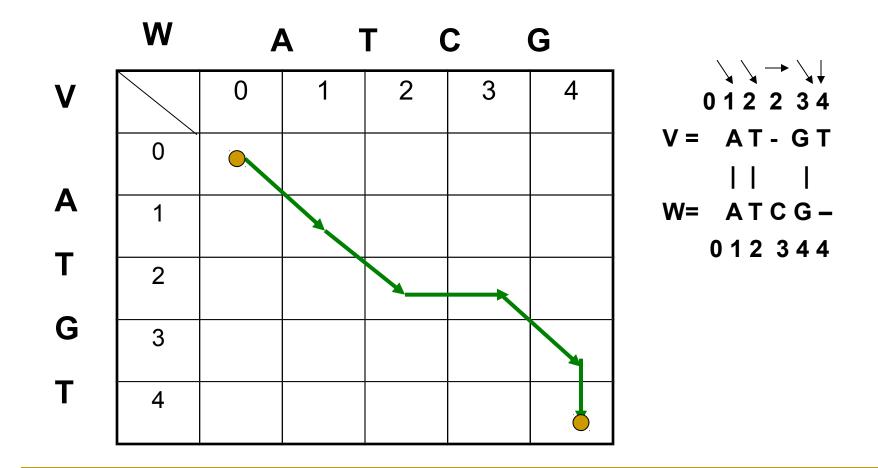
and w_j = prefix of w of length j: $w_1 \dots w_j$ The length of LCS(v_i, w_j) is computed by:

$$\mathbf{s}_{i,j} = \max \begin{cases} \mathbf{s}_{i-1,j} \\ \mathbf{s}_{i,j-1} \\ \mathbf{s}_{i-1,j-1} + 1 \text{ if } \mathbf{v}_i = \mathbf{w}_j \end{cases}$$

Computing LCS (cont'd)



Every Path in the Grid Corresponds to an Alignment



DISTANCE BETWEEN STRINGS

Aligning Sequences without Insertions and Deletions: Hamming Distance Given two DNA sequences v and w :

> v : ATATATAT w : TATATATA

 The Hamming distance: d_H(v, w) = 8 is large but the sequences are very similar Aligning Sequences with Insertions and Deletions

By shifting one sequence over one position:

v : ATATATAT-w : --TATATATA

- The edit distance: $d_H(v, w) = 2$.
- Hamming distance neglects insertions and deletions in DNA

Edit Distance

Levenshtein (1966) introduced edit distance between two strings as the minimum number of elementary operations (insertions, deletions, and substitutions) to transform one string into the other

d(v,w) = MIN number of elementary operations to transform v Saw

Edit Distance vs Hamming Distance

```
Hamming distance
always compares
 i<sup>-th</sup> letter of v with
 i<sup>-th</sup> letter of w
    \mathbf{V} = \mathbf{ATATATAT}
    W = TATATATA
Hamming distance:
    d(v, w)=8
Computing Hamming distance
      is a trivial task.
```

Edit Distance vs Hamming Distance **Edit distance** Hamming distance may compare always compares i^{-th} letter of v with i^{-th} letter of v with i^{-th} letter of w i^{-th} letter of w $\mathbf{V} = - \mathbf{ATATATAT}$ V = ATATATAT Just one shift Make it all line up W = TATATATAW = TATATATHamming distance: Edit distance: d(v, w) = 8d(v, w) = 2**Computing Hamming distance** Computing edit distance is a trivial task is a non-trivial task

Edit Distance: Example

TGCATAT MATCCGAT in 5 steps

TGCATAT TGCATA TGCAT ATGCAT ATCCAT ATCCGAT

- ✓ (delete last T)
- (delete last A)
- (insert A at front)
- ✓ (substitute C for 3rd G)
- (insert G before last A) (Done)

Edit Distance: Example

TGCATAT MATCCGAT in 5 steps

TGCATAT TGCATA TGCAT ATGCAT ATCCAT ATCCGAT

- ✓ (delete last T)
- ✓ (delete last A)
- (insert A at front)

\checkmark	(substitute	C for 3	$3^{rd} G$
--------------	-------------	---------	------------

(insert G before last A)

(Done)

What is the edit distance? 5?

Edit Distance: Example (cont'd)

TGCATAT MATCCGAT in 4 steps

TGCATAT \checkmark (insert A at front)ATGCATAT \checkmark (delete 6th T)ATGCATA \checkmark (substitute G for 5th A)ATGCGTA \checkmark (substitute C for 3rd G)ATCCGAT(Done)

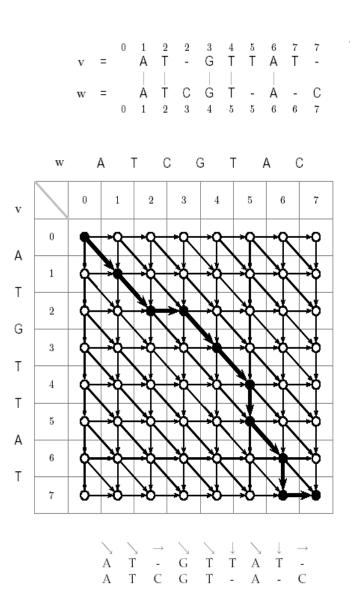
Edit Distance: Example (cont'd)

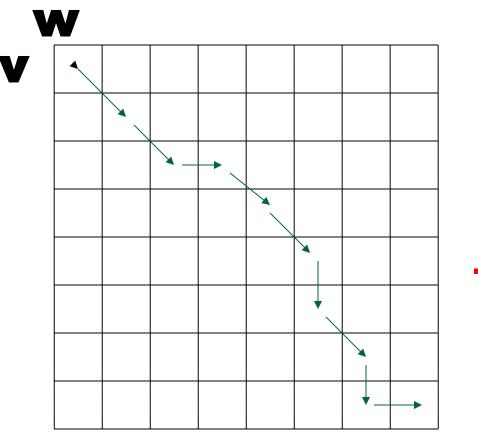
TGCATAT MATCCGAT in 4 steps

TGCATAT \checkmark (insert A at front)ATGCATAT \checkmark (delete 6^{th} T)ATGCATA \checkmark (substitute G for 5^{th} A)ATGCGTA \checkmark (substitute C for 3^{rd} G)ATCCGAT(Done)Can it be done in 3 steps???

The Alignment Grid

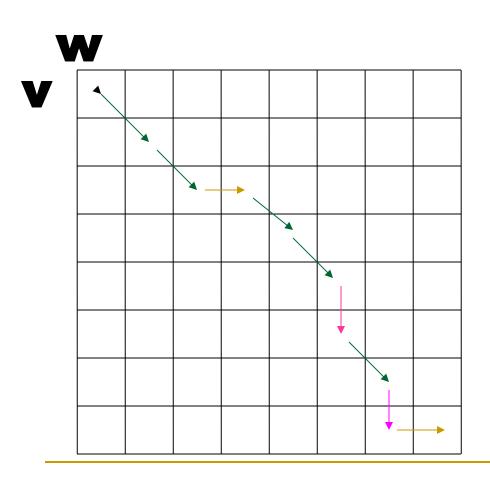
 Every alignment path is from source to sink





- Corresponding path -(0,0), (1,1), (2,2), (2,3), (3,4), (4,5), (5,5), (6,6), (7,6), (7,7)

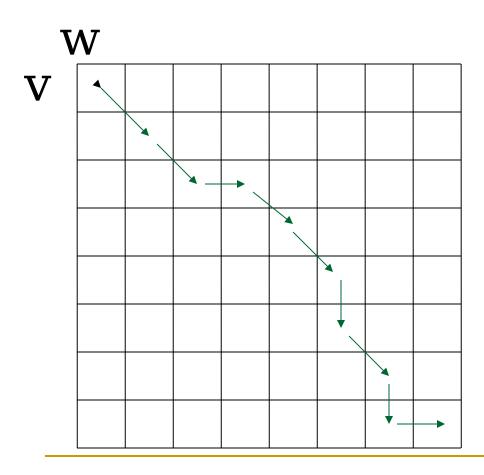
Alignments in Edit Graph



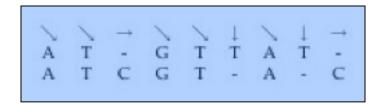
and → represent indels in v and w with score 0.

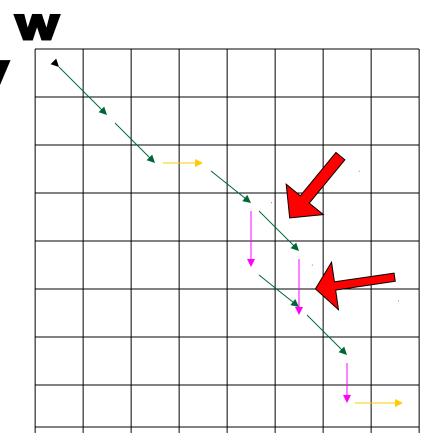
\represent matches with score 1.

 The score of the alignment path is 5.



Every path in the edit graph corresponds to an alignment:

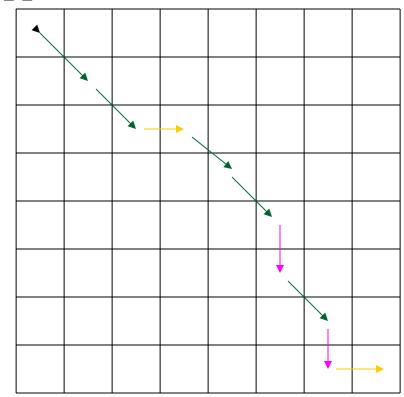




<u>Old Alignment</u> 0122345677 v= AT_GTTAT_ w= ATCGT_A_C 0123455667

<u>New</u>	Alic	Inm	<u>ent</u>
C	9122	234	5677

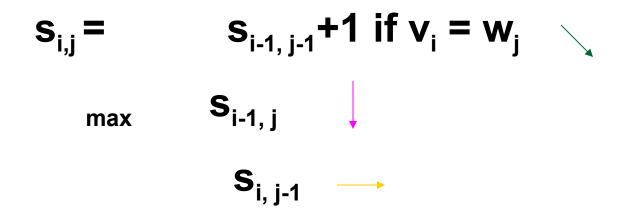
v= AT_GTTAT_ w= ATCG_TA_C 0123445667



0122345677 v= AT_GTTAT_ w= ATCGT_A_C 0123455667

(0,0), (1,1), (2,2), (2,3), (3,4), (4,5), (5,5), (6,6), (7,6), (7,7)

Alignment: Dynamic Programming



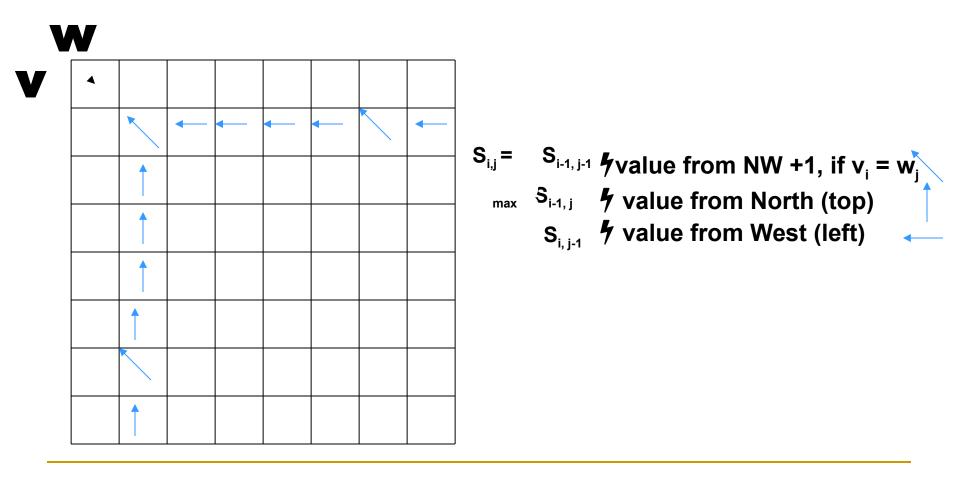
Dynamic Programming Example

V						
	•					

Initialize 1st row and 1st column to be all zeroes.

Or, to be more precise, initialize 0th row and 0th column to be all zeroes.

Dynamic Programming Example



Alignment: Backtracking

Arrows show where the score originated from.

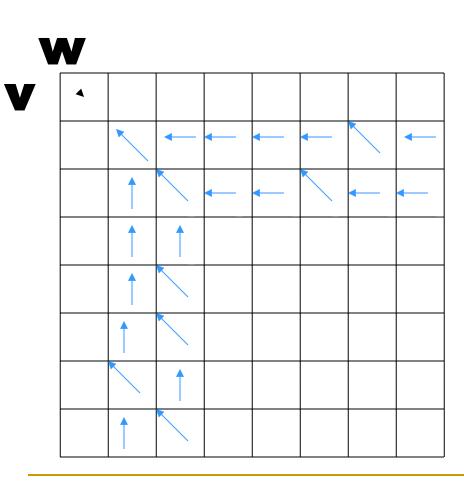
if from the top

if from the left

if
$$v_i = w_j$$

K

Backtracking Example



Find a match in row and column 2.

j=2, i=4,5,7 is a match (T).

$$s_{2,2} = [s_{1,1} = 1] + 1$$

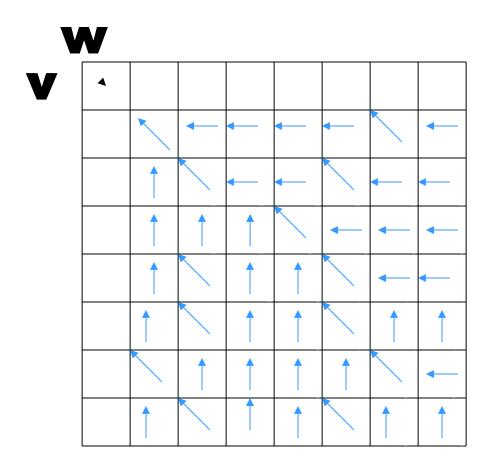
$$s_{2,5} = [s_{1,4} = 1] + 1$$

$$s_{4,2} = [s_{3,1} = 1] + 1$$

$$s_{5,2} = [s_{4,1} = 1] + 1$$

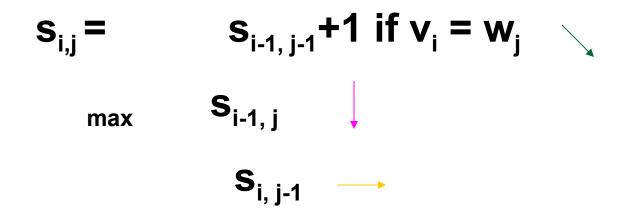
$$s_{7,2} = [s_{6,1} = 1] + 1$$

Backtracking Example

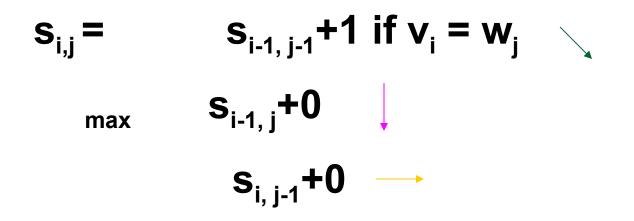


Continuing with the dynamic programming algorithm gives this result.

Alignment: Dynamic Programming

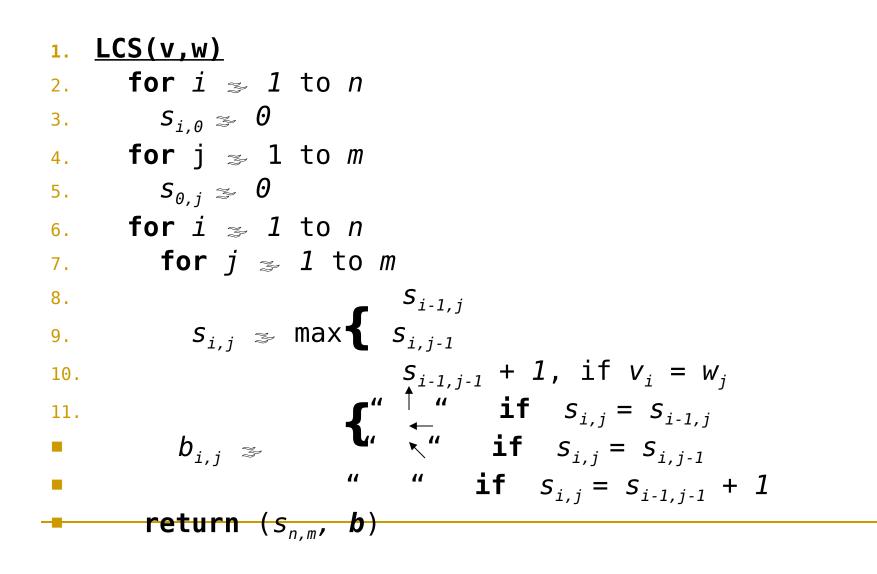


Alignment: Dynamic Programming



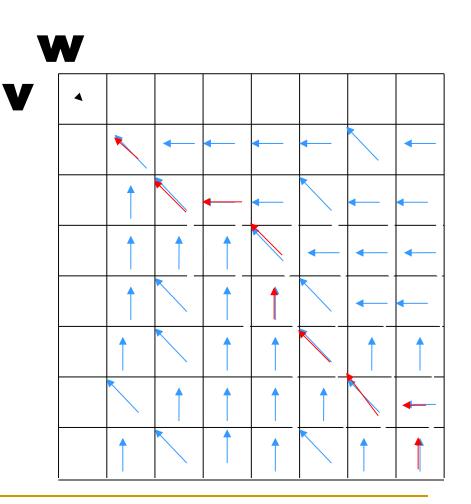
This recurrence corresponds to the Manhattan Tourist problem (three incoming edges into a vertex) with all horizontal and vertical edges weighted by zero.

LCS Algorithm



Now What?

- LCS(v,w) created the alignment grid
- Now we need a way to read the best alignment of v and w
- Follow the arrows backwards from sink



Printing LCS: Backtracking

1.	PrintLCS(b,v,i,j)
2.	if <i>i</i> = 0 or <i>j</i> = 0
3.	return
4.	if $b_{i,j} = " \land "$
5.	PrintLCS(b,v, <i>i-1,j-1</i>)
6.	print v_i
7.	else
8.	if $b_{i,j} = $ " ¹ "
9.	PrintLCS(b,v, <i>i-1,j</i>)
10.	else
11.	PrintLCS(b,v, <i>i,j</i> -1)

LCS Runtime

It takes O(nm) time to fill in the nxm dynamic programming matrix.