CS481: Bioinformatics Algorithms

Can Alkan

EA509

calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/

MULTIPLE SEQUENCE ALIGNMENT

Multiple Alignment versus Pairwise Alignment

- Up until now we have only tried to align two sequences.
- What about more than two?
- A faint similarity between two sequences becomes significant if present in many
- Multiple alignments can reveal subtle similarities that pairwise alignments do not reveal

Generalizing the Notion of Pairwise Alignment

- Alignment of 2 sequences is represented as a 2-row matrix
- In a similar way, we represent alignment of 3 sequences as a 3-row matrix

Score: more conserved columns, better alignment

Alignments = Paths in...

Align 3 sequences: ATGC, AATC, ATGC

Alignment Paths

x coordinate

Alignment Paths

Align the following 3 sequences:

ATGC, AATC, ATGC

0	1	1	2	3	4	
	Α		Т	G	С	
0	1	2	3	3	4	
	Α	Α	Т		С	

x coordinate

y coordinate

-- A T G C

Alignment Paths

0	1	1	2	3	4
	Α		Т	G	С
0	1	2	3	3	4
	Α	Α	Т		С
0	0	1	2	3	4
		Α	Т	G	С

x coordinate

y coordinate

z coordinate

Resulting path in (x,y,z) space:

$$(0,0,0) \rightarrow (1,1,0) \rightarrow (1,2,1) \rightarrow (2,3,2) \rightarrow (3,3,3) \rightarrow (4,4,4)$$

Aligning Three Sequences

- Same strategy as aligning two sequences
- Use a 3-D "Manhattan Cube", with each axis representing a sequence to align
- For global alignments, go from source to sink

2-D vs 3-D Alignment Grid

2-D edit graph

3-D edit graph

Architecture of 3-D Alignment Cell

Multiple Alignment: Dynamic Programming

•
$$s_{i,j,k} = \max \begin{cases} s_{i-1,j-1,k-1} + \delta(v_i, w_j, u_k) \\ s_{i-1,j-1,k} + \delta(v_i, w_j, u_k) \\ s_{i-1,j,k-1} + \delta(v_i, w_j, u_k) \\ s_{i,j-1,k-1} + \delta(v_i, w_j, u_k) \\ s_{i-1,j,k} + \delta(v_i, v_j, u_k) \\ s_{i,j-1,k} + \delta(v_i, v_j, u_k) \\ s_{i,j-1,k} + \delta(v_i, v_j, v_j) \\ s_{i,j-1,k} + \delta(v_i, v_j, v_k) \\ s_{i,j,k-1} + \delta(v_i, v_j, v_k) \end{cases}$$
 edge diagonal: two indels

• $\delta(x, y, z)$ is an entry in the 3-D scoring matrix

Multiple Alignment: Running Time

- For 3 sequences of length n, the run time is $7n^3$; $O(n^3)$
- For k sequences, build a k-dimensional Manhattan, with run time $(2^k-1)(n^k)$; $O(2^kn^k)$
- Conclusion: dynamic programming approach for alignment between two sequences is easily extended to k sequences but it is impractical due to exponential running time

Multiple Alignment Induces Pairwise Alignments

Every multiple alignment induces pairwise alignments

```
x: AC-GCGG-C
y: AC-GC-GAG
z: GCCGC-GAG
```

Induces:

```
x: ACGCGG-C; x: AC-GCGG-C; y: AC-GCGAG y: ACGC-GAC; z: GCCGC-GAG; z: GCCGCGAG
```

Reverse Problem: Constructing Multiple Alignment from Pairwise Alignments

Given 3 arbitrary pairwise alignments:

```
x: ACGCTGG-C; x: AC-GCTGG-C; y: AC-GC-GAG y: ACGC-GAC; z: GCCGCA-GAG; z: GCCGCAGAG
```

can we construct a multiple alignment that induces them?

Reverse Problem: Constructing Multiple Alignment from Pairwise Alignments

Given 3 arbitrary pairwise alignments:

```
x: ACGCTGG-C; x: AC-GCTGG-C; y: AC-GC-GAG y: ACGC-GAC; z: GCCGCA-GAG; z: GCCGCAGAG
```

can we construct a multiple alignment that induces them?

NOT ALWAYS

Pairwise alignments may be inconsistent

Inferring Multiple Alignment from Pairwise Alignments

- From an optimal multiple alignment, we can infer pairwise alignments between all pairs of sequences, but they are not necessarily optimal
- It is difficult to infer a "good" multiple alignment from optimal pairwise alignments between all sequences

Combining Optimal Pairwise Alignments into Multiple Alignment

Can combine pairwise alignments into multiple alignment

(a) Compatible pairwise alignments

Can *not* combine pairwise alignments into multiple alignment

(b) Incompatible pairwise alignments

Profile Representation of Multiple Alignment

Profile Representation of Multiple Alignment

In the past we were aligning a sequence against a sequence

Can we align a sequence against a profile?

Can we align a profile against a profile?

Aligning alignments

Given two alignments, can we align them?

```
x GGGCACTGCAT
y GGTTACGTC-- Alignment 1
z GGGAACTGCAG
w GGACGTACC-- Alignment 2
v GGACCT----
```

Aligning alignments

- Given two alignments, can we align them?
- Hint: use alignment of corresponding profiles

```
x GGGCACTGCAT
```

y GGTTACGTC-- Combined Alignment

z GGGAACTGCAG

w GGACGTACC--

v GGACCT----

Sequence to profile alignment

Sequence S₁ to Profile C

Let:

- □ p(y,j): frequency that character y appears in column j of the profile C --- $y \in \Sigma \cup \{'-'\}$
- \square S(x,j): score for aligning x with column j
- V(i, j): value of optimal alignment of substring
 S[1..i] with the first j columns of profile C

```
Col 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 C .6 0 0 0 1 0 0 .4 1 0 0 .6 .2 0 0 p(C, 1) = 0.6, \ p(C, 2) = 0, \ p(C, 3) = 0, \dots p(C, 9) = 1 \dots
```

Sequence to profile alignment

- $V(0,j) = \sum_{k \le j} S('-',k)$
- $V(i,0) = \sum_{k \le i} \delta(S_1(k),'-')$ where $S_1(k)$ is the kth character of S_1

$$V(i,j) = \max \begin{cases} V[i-1,j-1] + S(S_1(i),j) \\ V[i-1,j] + S(S_1(i),'-') \\ V[i,j-1] + S('-',j) \end{cases}$$

Sequence to profile

Match = 2 Mismatch = -1 Gap = -1

Profile															
	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	-13	-14
С	-1	8.0	-0.2	-1.2	-2.2	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11
Α	-2	-0.2	2.8	1.8	8.0	-0.2	-1.2	-1	-2	-3	-4	-5	-6	-7	-8
G	-3	-1.2	1.8	4.8	3.8	2.8	1.8	0.8	-0.2	-1.2	-2.2	-3.2	-4.2	-5.2	-5
G	-4	-2.2	0.8	3.8	4.4	3.4	2.4	1.4	0.4	-0.6	-1.6	-2.6	-3.6	-4	-3.2
Т	-5	-3.2	-0.2	2.8	3.4	3.4	5.4	4.4	3.4	2.4	1.4	0.4	-0.6	-1.6	-2.6
Α	-6	-4.2	-1.2	1.8	2.4	2.4	4.4	7.4	6.4	5.4	4.4	3.4	2.4	1.4	0.4
С	-7	-5.2	-2.2	0.8	1.4	4.4	3.4	6.4	7.6	8.4	7.4	6.4	5.4	4.4	3.4
С	-8	-6.2	-3.2	-0.2	0.4	3.4	3.4	5.4	6.6	9.6	8.6	8.2	7.2	6.2	5.2
Α	-9	-7.2	-4.2	-1.2	-0.6	2.4	2.4	5.4	5.6	8.6	11	10	9	8	7
С	-10	-8.2	-5.2	-2.2	-1.6	1.4	1.4	4.4	5.6	7.6	10	11.8	10.8	9.8	8.8
G	-11	-9.2	-6.2	-3.2	-2.6	0.4	0.4	3.4	4.6	6.6	9	10.8	10.8	11	11.8
G	-12	-10.2	-7.2	-4.2	-3.6	-0.6	-0.6	2.4	3.6	5.6	8	9.8	9.8	11	13

CAGG-TACCAC-GG

Sequence to profile alignment

```
New Profile C:
      - A G G C T A T C A C C
      T A G - C T A C C A - - - G G C A G - C T A T C A C C A G G G
      CAG-CTATCGC-
                                        G
      C A G G - T A C
                         C A C
                           .83
A
           .83 .5 1 .67 .17
     . 67
          1 .33
                               .50
G
                           .17
                   1 .5
     .16
Т
                                    .17
                           .33 .83 .33
     .17
            .67 .17
```

Multiple Alignment: Greedy Approach

- Choose most similar pair of strings and combine into a profile, thereby reducing alignment of k sequences to an alignment of of k-1 sequences/profiles. Repeat
- This is a heuristic greedy method

```
k \begin{cases} u_1 = ACGTACGTACGT... & u_1 = ACg/tTACg/tTACg/cT... \\ u_2 = TTAATTAATTAA... & u_2 = TTAATTAATTAA... \\ u_3 = ACTACTACTACT... & ... \\ ... & u_k = CCGGCCGGCCGG... \end{cases} k-1
u_1 = ACg/tTACg/tTACg/cT... \\ u_2 = TTAATTAATTAA... \\ ... & u_k = CCGGCCGGCCGG... \end{cases}
```

Greedy Approach: Example

Consider these 4 sequences

```
s1 GATTCAs2 GTCTGAs3 GATATTs4 GTCAGC
```

Greedy Approach: Example (cont'd)

■ There are $\binom{4}{2}$ = 6 possible alignments

```
s2 GTCTGA
s1 GATTCA--
s4 GTCAGC (score = 2)
s1 GAT-TCA
s2 G-TCTGA
s2 G-TCTGA
s2 GATAT-T (score = 1)
s1 GAT-TCA
s3 GAT-ATT
s3 GATAT-T (score = 1)
s4 G-TCAGC (score = -1)
```

Greedy Approach: Example (cont'd)

 s_2 and s_4 are closest; combine:

new set of 3 sequences:

```
S_1 GATTCA

S_3 GATATT

S_{2,4} GTCt/aGa/c
```

Progressive Alignment

- Progressive alignment is a variation of greedy algorithm with a somewhat more intelligent strategy for choosing the order of alignments.
- Progressive alignment works well for close sequences, but deteriorates for distant sequences
 - Gaps in consensus string are permanent
 - Use profiles to compare sequences

ClustalW

- Popular multiple alignment tool
- 'W' stands for 'weighted' (different parts of alignment are weighted differently).
- Three-step process
 - 1.) Construct pairwise alignments
 - 2.) Build Guide Tree
 - 3.) Progressive Alignment guided by the tree

Step 1: Pairwise Alignment

- Aligns each sequence again each other giving a similarity matrix
- Similarity = exact matches / sequence length (percent identity)

Step 2: Guide Tree

Create Guide Tree using the similarity matrix

ClustalW uses the neighbor-joining method

 Guide tree roughly reflects evolutionary relations

Step 2: Guide Tree (cont'd)

Step 3: Progressive Alignment

- Start by aligning the two most similar sequences
- Following the guide tree, add in the next sequences, aligning to the existing alignment
- Insert gaps as necessary

```
FOS_RAT

FOS_MOUSE

FOS_CHICK

FOSB_MOUSE

FOSB_HUMAN

PEEMSVTS-LDLTGGLPEATTPESEEAFTLPLLNDPEPK-PSLEPVKNISNMELKAEPFD

PEEMSVAS-LDLTGGLPEASTPESEEAFTLPLLNDPEPK-PSLEPVKSISNVELKAEPFD

SEELAAATALDLG---APSPAAAEEAFALPLMTEAPPAVPPKEPSG--SGLELKAEPFD

PGPGPLAEVRDLPG----STSAKEDGFGWLLPPPPPPPP------LPFQ

***:

**:

**:

**:

**:

**:

**:
```

Dots and stars show how well-conserved a column is.

SCORING ALIGNMENTS

Multiple Alignments: Scoring

 Number of matches (multiple longest common subsequence score)

Entropy score

Sum of pairs (SP-Score)

Multiple LCS Score

 A column is a "match" if all the letters in the column are the same

> AAA AAA AAT ATC

Only good for very similar sequences

Entropy

- Define frequencies for the occurrence of each letter in each column of multiple alignment
 - $p_A = 1, p_T = p_G = p_C = 0$ (1st column)
 - $p_A = 0.75, p_T = 0.25, p_G = p_C = 0 (2^{nd} column)$
 - $p_A = 0.50, p_T = 0.25, p_C = 0.25, p_G = 0 (3^{rd} column)$
- Compute entropy of each column

$$-\sum_{X=A,T,G,C} p_X \log p_X$$
 AAA AAT

AAA

Entropy: Example

$$entropy \begin{pmatrix} A \\ A \\ A \end{pmatrix} = 0$$
 Best case

Worst case
$$entropy \begin{pmatrix} A \\ T \\ G \\ C \end{pmatrix} = -\sum \frac{1}{4} \log \frac{1}{4} = -4(\frac{1}{4} * -2) = 2$$

Multiple Alignment: Entropy Score

Entropy for a multiple alignment is the sum of entropies of its columns:

$$\Sigma_{\text{over all columns}} \Sigma_{X=A,T,G,C} p_X \log p_X$$

Entropy of an Alignment: Example

column entropy

$$-(p_A \log p_A + p_C \log p_C + p_G \log p_G + p_T \log p_T)$$

Α	Α	Α
Α	С	С
Α	С	G
Α	С	Т

•Column 2 =
$$-[(1/4)*log(1/4) + (3/4)*log(3/4) + 0*log0 + 0*log0]$$

= $-[(1/4)*(-2) + (3/4)*(-.415)] = +0.811$

•Column 3 =
$$-[(1/4)*log(1/4)+(1/4)*log(1/4)+(1/4)*log(1/4)+(1/4)*log(1/4)+(1/4)*log(1/4)]$$

= $4*-[(1/4)*(-2)] = +2.0$

•Alignment Entropy = 0 + 0.811 + 2.0 = +2.811

Multiple Alignment Induces Pairwise Alignments

Every multiple alignment induces pairwise alignments

```
x: AC-GCGG-Cy: AC-GC-GAGz: GCCGC-GAG
```

Induces:

```
x: ACGCGG-C; x: AC-GCGG-C; y: AC-GCGAG y: ACGC-GAC; z: GCCGC-GAG; z: GCCGCGAG
```

Sum of Pairs Score(SP-Score)

- Consider pairwise alignment of sequences

 a_i and a_j
 imposed by a multiple alignment of k sequences
- Denote the score of this suboptimal (not necessarily optimal) pairwise alignment as

$$s^*(a_i, a_j)$$

Sum up the pairwise scores for a multiple alignment:

$$s(a_1,...,a_k) = \sum_{i,j} s^*(a_i, a_j)$$

Computing SP-Score

Aligning 4 sequences: 6 pairwise alignments

Given a_1, a_2, a_3, a_4 :

$$s(a_1...a_4) = \Sigma s^*(a_1,a_1) = s^*(a_1,a_2) + s^*(a_1,a_3) + s^*(a_1,a_4) + s^*(a_2,a_3) + s^*(a_2,a_4) + s^*(a_3,a_4)$$

SP-Score: Example

$$a_1$$
 ATG-C-AAT
. A-G-CATAT
 a_k ATCCCATTT

To calculate each column:

$$s'(a_1...a_k) = \sum_{i,j} s^*(a_i, a_j) \leftarrow \binom{n}{2}$$
 Pairs of Sequences

$$G - \mu \qquad 1 \qquad \text{Score} = 1 - 2\mu$$

$$C - \mu \qquad G$$

$$Column 3$$

Back to guide trees for MSA

- Guide tree construction
 - UPGMA
 - Neighbor Joining
 - **-**
- Easy MSA: Center Star

Star alignments

- Construct multiple alignments using pair-wise alignment relative to a fixed sequence
- Out of a set S = {S₁, S₂, . . . , S_r} of sequences, pick sequence S_c that maximizes

$$star_score(c) = \sum \{sim(S_c, S_i) : 1 \le i \le r, i \ne c\}$$

where $sim(S_i, S_j)$ is the optimal score of a pairwise alignment between S_i and S_j

Star alignment Algorithm

- Compute sim(S_i, S_i) for every pair (i,j)
- Compute star_score(i) for every i
- 3. Choose the index c that minimizes star_score(c) and make it the center of the star
- Produce a multiple alignment M such that, for every i, the induced pairwise alignment of S_c and S_i is the same as the optimum alignment of S_c and S_i .

Star alignment example

```
S<sub>c</sub> AA--CCTT S<sub>c</sub> A-ACC-TT
```

S₁ AATGCC-- S₂ AGACCGT-

S_c A-A--CC-TT

S₁ A-ATGCC----

S₂ AGA--CCGT-

Multiple Alignment: History

1975 Sankoff

Formulated multiple alignment problem and gave dynamic programming solution

1988 Carrillo-Lipman

Branch and Bound approach for MSA

1990 Feng-Doolittle

Progressive alignment

1994 Thompson-Higgins-Gibson-ClustalW

Most popular multiple alignment program

1998 Morgenstern et al.-DIALIGN

Segment-based multiple alignment

2000 Notredame-Higgins-Heringa-T-coffee

Using the library of pairwise alignments

2004 MUSCLE